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K	� Permeability (m2)

L	� Horizontal length scale of the aquifer (m)

M	� Molar mass of CO2 (kg mol−1)
N	� Number of nodes on a regular mesh
N 	� Number of nodes on an adaptive mesh
Nb	� Buoyancy frequency (s−1)

Da	� Darcy number 
(

K
H2

)

Re	� Reynolds number at macroscale 
(
UH
ν

)

Red	� Reynolds number at pore scale 
(
Ud
ν

)

Sc	� Schmidt number, ν
D

uDi
	� Space-time mean Darcian velocity (ms−1)

〈ui〉	� Space-time mean intrinsic velocity (ms−1)

u′i	� Deviation from uDi
 in a REV (ms−1)

u′′i 	� Deviation from 〈ui〉 in a REV (ms−1)

u1, u3	� Dimensionless space-time mean intrinsic velocity
c	� Dimensionless space-time mean intrinsic 

concentration
xi	� Cartesian coordinate in the i-th direction

Greek symbols
α	� Ratio of molecular viscosity to effective viscosity
β	� Solutal expansion coefficient

Γ 	� Rate of CO2 dissolution (Mm−1)

∆V 	� Representative elementary volume (REV)
∆Vf 	� The fraction of REV occupied with fluid
∆t	� time step
∆xi	� Local step size in the xi direction
∆x	� Minimum of ∆xi for i = 1, 3

φ	� Porosity 
(
∆Vf
∆V

)

ρ0	� Reference density
�	� Characteristic length scale of a REV
ǫ	� Error tolerance
µ	� Molecular viscosity (kg s−1m−1)

ν	� Kinematic viscosity (m2 s−1)

Abstract  Quantitative and realistic computer simula-
tions of mass transfer associated with CO2 disposal in 
subsurface aquifers is a challenging endeavor. This article 
has proposed a novel and efficient multiscale modeling 
framework, and has examined its potential to study the 
penetrative mass transfer in a CO2 plume that migrates in 
an aquifer. Numerical simulations indicate that the migra-
tion of the injected CO2 enhances the vorticity genera-
tion, and the dissolution of CO2 has a strong effect on the 
natural convection mass transfer. The vorticity decays with 
the increase of the porosity. The time scale of the vertical 
migration of a CO2 plume is strongly dependent on the rate 
of CO2 dissolution. Comparisons confirm the near optimal 
performance of the proposed multiscale model. These pri-
mary results with an idealized computational model of the 
CO2 migration in an aquifer brings the potential of the pro-
posed multiscale model to the field of heat and mass trans-
fer in the geoscience.

List of symbols
C	� Concentration of CO2

C0	� Reference concentration of CO2

D	� Diffusion coefficient (m2 s−1)

d	� Microscopic length scale (m)

g	� Acceleration due to gravity (ms−2)

H	� Vertical length scale of the aquifer (m)
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1  Introduction

The natural and mixed convection heat and mass transfer 
is an important topic of scientific scrutiny in a subsurface 
flow problem that investigates the disposal of anthropogenic 
CO2 from the atmosphere into saline aquifers  [32]. Exam-
ple of such projects include the Utsira sand at Sleipner, Nor-
way [11], the Mt. Simon aquifer in the Illinois basin [3, 25], 
saline aquifers in the Alberta basin, Canada [37], and the Car-
rizo-Willcox aquifer in Texas (CWT) [28]. Seismic data from 
the Sleipner shows a marked increase in the CO2 flux near 
the reservoir top (see Fig. 1a of [11]), which suggests further 
investigation of the rate of vertical migration and progressive 
development of CO2 plumes (e.g. [11]). Chadwick et al. [11] 
hypothesized that this marked variability may be due to the 
multiscale natural convection mass transfer associated with 
the non-Darcian plume migration through numerous path-
ways in the aquifer. In the same vein, multiscale processes 
associated to a plume migration in the Carrizo-Willcox aqui-
fer was investigated numerically by  Pruess and Nordbotten 
[36] using a classical macroscopic Darcian model along with 
a sub-grid scale parameterization scheme (albeit the exact 
form of the scheme was not outlined with full details in [36]). 
Clearly, a complete understanding of the multiscale mass 
transfer mechanism in aquifers remains an active research 
area in the field of geoscience and reservoir engineering [14, 
15, 26, 28, 33, 36, 39]. Hence, there are increasing interests 
on extending the adaptive mesh and multiscale finite volume/
element methods (AMR based methods) for high perfor-
mance numerical simulations of flow and transport in saline 
aquifers (e.g., see, [14, 15, 19, 22, 23, 29, 30, 33]).

The present article has investigated the development of a 
novel adaptive wavelet multiscale modeling and simulation 

methodology for studying the non-Darcian flow and trans-
port through aquifers. One objective of this article is to 
investigate an effective methodology to minimize com-
putational work and to improve the accuracy for transport 
problems in aquifers that deal with multiscale phenomena, 
in comparison to the commonly used classical numerical 
methods. For example, some authors verified with a clas-
sical method that a ∆x between 5× 10−4 m and 10−3 m 
is necessary to capture multiscale features (e.g., see  [33, 
36, 37]), for which, the number of the grid points is about 
N = 1013 in the domain 1m× 5m  (e.g.  [37]), and hence, 
N would be far beyond the limit of modern computers 
for such a faithful simulation in a vertical cross section 
(100 km× 200m) of the CWT  [36]. In contrast, this arti-
cle investigates a multiscale methodology to put the com-
putational effort locally in the physical domain (see [1, 2, 
43, 45, 46] for a technical details), where it is necessary 
to adapt the computational work to field-scale geological 
structures and complex physical processes in aquifers.

In the same vein, AMR based classical adaptive and mut-
iscale methods require to find an individual error monitor-
ing scheme for each new applications (e.g.  [22, 23, 33]). 
These methods were developed for steady elliptic prob-
lems, and their extension to multiscale flow and transport in 
aquifers is being investigated by a number of other authors 
(see the recent work of Künze et al. [23]). Note also that an 
extremely small time step (∆t) is needed when these AMR 
based methods explicitly simulate natural and mixed convec-
tion heat and mass transfer in aquifers. In contrast, the pre-
sent article investigates a multiscale methodology that cap-
tures multiscale physics with a more robust wavelet based 
computation, where the error is controlled a priori according 
to a prescribed tolerance (ǫ) [45, 46], and the time step (∆t) 
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Fig. 1   a  Observed volumes of CO2 near the top of the Sleipner 
aquifer between 1999 and 2006; data 1:  volume (m3) of CO2 by 
method 1, broken line fitted curve, t + t2, data 2: volume (m3) of 
CO2 by method 2, and solid line fitted curve, 5t + 2t2  (e.g.  [11]). A 
parabolic increase of CO2 volume as a function of time, t   [year] is 

noticed.b A schematic representation of pathlines for plumes in an 
aquifer. Clearly, grid points may be placed on rocks or very low per-
meability zone, where a high resolution would place grid points close 
to pathlines, thereby improving the accuracy



1249Heat Mass Transfer (2015) 51:1247–1261	

1 3

can be chosen independent of the spatial grid (∆x) [1, 2]. In 
addition, the present research employs the volumetric mean 
of the time-averaged conservation laws with respect to a rep-
resentative elementary volume  (REV) so that the non-Dar-
cian multiscale features (e.g. [11]) in a flow may be resolved 
with a non-Darcian multiscale model (see  [13, 44] and the 
refs therein). This approach provides a natural framework 
for adopting appropriate parameterization for phenomena 
which are not directly resolved with the mean conservation 
laws  (e.g.  [36]). Here, the effect of CO2 dissolution on the 
gravitational segregation of a CO2 plume has been param-
eterized. Most importantly, the size of the REV has been 
adapted dynamically to the local variation of the CO2 mass 
fraction. To the best of knowledge, the present development 
is a first time investigation for the multiscale natural convec-
tion mass transfer in a saline aquifer, and it complements 
the growing trend in computational modeling of the natural/
mixed convection phenomena in subsurface flows as well 
as in other fields [22, 30, 33, 35, 45, 46]. Following are few 
remarks on the proposed multiscale methodology.

•	 Remarks  The flow and transport at the reservoir scale 
is approximated with the classical Darcian approach. 
The multiscale mass transfer has been resolved with a 
non-Darcian approach. Subgrid scale parameterization 
schemes for both the momentum diffusion and the CO2 
dissolution have been adopted.

•	 A multilevel algorithm has been developed for the non-
linear coupling between the mass and momentum trans-
fer processes in aquifers, which occurs at different tem-
poral and spatial scales.

•	 Spatial differential operators are discretized using N  
significant wavelets, where each wavelet represents the 
change in scale near a grid point, and multiscale fea-
tures are captured with a multiscale wavelet theory.

•	 There are two important computational benefits. First, 
the number of grid points N  is significantly small com-
pared to the number of grid points needed for a clas-
sical numerical method if the same level of accuracy 
is desired. Second, if N  increases, then the CPU time 
increases approximately linearly. Note that for a given 
tolerance ǫ, N  may increase due to change in gradients 
of solution.

•	 The error for such a simulation is controlled in both space 
and time according to the prescribed tolerance (ǫ) and the 
maximum allowable CFL number, which is verified with 
a large number (>50) of numerical experiments.
Section  2 summarizes the new developments towards 

capturing the multiscale features in a subsurface plume 
migration. The adaptive multiscale methodology has been 
presented in Sect.  3. Representative results from a series 
of numerical experiments have been presented in Sect.  4. 
Finally, Sect.  5 discusses the potential extension of the 

present development in the field of computational heat and 
mass transfer analysis.

2 � The proposed multiscale modeling framework

This model aims to simulate the natural convection mass 
transfer phenomena associated with CO2 storage and 
migration in a typical aquifer, such as the Carrizo-Wilcox 
aquifer, Texas, US (a further details in Sect.  4.2.1). In 
the following development, the aquifer height, H, is the 
length scale, and a typical flow speed, U, in the aquifer is 
the velocity scale. A vertical cross section of the aquifer 
is assumed to be simulated, which is a good approxima-
tion to represent overall multiscale features of the problem 
(see, [36, 37]). The boundary conditions assume imperme-
able caproks on the bottom and top boundaries as well as 
open lateral boundaries. The aquifer is assumed a homoge-
neous and isotropic porous medium.

The present model diagnoses the flow and transport at 
the reservoir scale from the classical Darcian approach. The 
multiscale mass transfer has been resolved with a non-Dar-
cian approach, where the REVs are resized locally in order 
to adapt the effective numerical resolution to the localized 
features of mass transfer. Subgrid scale parameterization 
schemes for both the momentum diffusion and the CO2 dis-
solution have been adopted.

2.1 � Classical upscaling approach for diagnosing 
macroscopic transfer

The pore scale  (fine scale) heat, mass, and momen-
tum transfer is replaced to the reservoir scale (macro-
scale) (e.g. [5, 33]), where

are the time and volume averages of the velocity field, 
respectively. The Darcian velocity uDi

is a space-time mean 
with respect to the REV (∆V) and the time scale, T0, which 
contains both the solid and the fluid  (see  [5] for details). 
Therefore, the natural convection mass transfer in an aqui-
fer is typically studied with the following upscaling repre-
sentation (e.g., [16, 20, 33, 34, 38, 41])

ui =
1

T0

∫
t+T0

t

ui(xi, t
′)dt′ and

uDi
= �ui�v ≡

1

∆V

∫

∆V

uidV

(1)uDi
= −

K

µ

(
∂p

∂xi
+ ρ(C)gδi3

)

,
∂uDi

∂xi
= 0,

(2)
∂C

∂t
+

∂

∂xj

(
1

φ
uDj

C − D
∂C

∂xj

)

= 0.
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In this model, the momentum transfer is in a steady state, 
both the advection uDj

∂uDi
∂xj

 and the deviatoric stress make 
a negligible contribution to momentum transfer, the drag 
between the porous medium and the fluid is assumed line-
arly proportional to the pressure gradient, and the Reynolds 
number, Red = ρUd

µ
 does not exceed a value about 1 (e.g., 

see Chapter 5, [5]).
As discussed in the introduction, using the macroscopic 

upscaling (1, 2), faithful simulations of the convective mass 
transfer in an aquifer often requires a high numerical reso-
lution  (e.g.  [33, 36, 37]) because the characteristic length 
scale (�) of the REV is typically at the order of ∆x. As dem-
onstrated schematically in Fig. 1(b), ∆x needs to be suffi-
ciently small in order for � → d so that computations on 
grid points would represent the actual mass transfer along 
streamlines. In the following two sections, a multiscale rep-
resentation of the fine scale mass and momentum transfer 
has been studied, using the most robust volumetric mean of 
the time-averaged conservation laws [5, 8, 9, 47].

2.2 � Multiscale intrinsic mass transfer model

The intrinsic space-time average is

where ∆Vf  is the volume of the fluid contained in a 
REV. Note the difference between 〈ui〉v and 〈ui〉, where 
uDi

= φ�ui�  [21]. The time and volume averages are 
assumed to commute; i.e,. �ui� = �ui�, one may apply 
the temporal average into a volume averaged variable, 
and vice-versa. Using the intrinsic average �·�, the space-
time transmissivity in a REV may be resolved, which is 
neglected in the classical macroscopic model (1–2).

To illustrate the multiscale framework, we begin with 
the decomposition

at three scales, where the first component, uDi
= �ui�v, cap-

tures the mean discharge per unit area, but does not repre-
sent a details of the flow. The second component, u′i, adds 
the missing details into uDi

 such that �u′i�v = 0 and 
〈
ū′i
〉
�= 0.  

The third component, u′′i , represents a further details that 
satisfies �u′′i�v = 0 and �u′′i� = 0. Clearly, the space-time 
mean intrinsic velocity �ui� = uDi

+ u′i resolves an addi-
tional details u′i with respect to the classical mean Darcy 
velocity uDi

. Similarly, the space-time intrinsic mean of the 
concentration of CO2 can be obtained. In order to simplify 
the symbolic representation, ui is used for the dimension-
less mean velocity 〈ui〉, and c for the dimensionless mean 
concentration 〈C〉 in the rest of this article, where all quanti-
ties are assumed uniform in the x2 direction. Note that this 
two-dimensional assumption is an idealization for the radial 

�ui� =
1

∆Vf

∫

∆V

ui(xi, t)dV ,

ui = uDi
+ u′i + u′′i

symmetry of the dynamics of the CO2 plume  (e.g.,  [30, 
36]), and has been adopted to aid the investigation on the 
proposed multiscale model development.

The derivation of the present intrinsic multiscale model 
for the mass transfer is similar to what was detailed 
by Breugem and Rees [9] for the heat transfer, and by Lage 
et  al. [24] for the momentum transfer  (see also  [5, 8, 21, 
29, 47]). However, in the heat transfer model, an independ-
ent diffusion equation was considered in [9] to account for 
thermal conduction through the solid phase. In the present 
mass transfer model, the dissolution of the invaded phase 
has been parameterized through the averaging process. At 
a depth below 800 m (see, [6]), the geothermal effects may 
be compensated by the geo-pressure gradient (see, [26] and 
chapter 2 of [13]), which is further illustrated by Pruess and 
Nordbotten [36]. The pressure gradient terms in Eqs. (4, 5) 
accounts for the geothermal pressure gradient. Since stud-
ies indicate a weak dependence between the molar volume 
of dissolved CO2 and density of the binary mixture, the 
Boussinesq approximation is reasonable  [4, 13, 26, 33]. 
Following the derivation of  Lage et  al. [24], the macro-
scopic upscaling  (1, 2) has been replaced with the multi-
scale upscaling (3–6):

In this model, the Schmidt number is Sc = ν
D

, the macro-
scopic Reynolds number and the Darcy number are defined 
by Re = ρUH

µ
 and Da = K/H2, respectively, where 

Red ≪ Re and Da = O(1/Re). Clearly, if Re → ∞,  
we have Da → 0, which corresponds to a macroscopic 
model (1, 2).

As described in “Appendix”, the space-time average of 
the nonlinear advection of momentum takes the form

which resulted into the additional term

(3)
∂u1

∂x1
+

∂u3

∂x3
= 0

(4)

∂u1

∂t
+ u1

∂(u1/φ)

∂x1
+ u3

∂(u1/φ)

∂x3

= −
∂(Pφ)

∂x1
+

α

Re
∇2

u1 −
φu1

DaRe

(5)

∂u3

∂t
+ u1

∂(u3/φ)

∂x1
+ u3

∂(u3/φ)

∂x3

= −
∂(Pφ)

∂x3
+

α

Re
∇2

u3 −
φu3

DaRe
+

Gr

Re2
c

(6)
∂c

∂t
+ u1

∂c

∂x1
+ u3

∂c

∂x3
= −

Re2

GrFr2
u3 +

1

ReSc
∇2c.

〈

uj
∂ui

∂xj

〉

= �uj�
∂�ui�
∂xj

+
∂

∂xj

(

�u′′
i
��u′′

j
� + �u′′

i
u′′
j
� + �u′′i u

′′
j �
)

,
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of which, the first two components have been neglected 
in the present laminar mass transfer model, and the last 
term can be parameterized with the Brinkman model [10], 
which—in the dimensionless form – has taken the form of 
the second term on the right hand sides  (rhs) of both  (4) 
and (5). The third term on the rhs of (4, 5) has appeared due 
to the intrinsic average of the viscous and pressure stress, 
which models the density of the pressure drag and skin 
friction,

when the Reynolds number is small, i.e., Red = O(1) [13].
Similarly, the nonlinear advection of the mass flux has 

resulted into the additional term

of which the first two components have been neglected and 
the last component has been parameterized to model the 
effect of dissolution with the first term on the right hand 
side of (6).

2.3 � The dissolution of CO2 through the dispersive mass 
flux

Literature review does not indicate a common approach for 
modeling the effect CO2 dissolution into the resident saline, 
despite there are few attempts (e.g. see [36]). If a CO2 plume 
proceeds upward from an isolated source, the saline density at 
the interface increases by about 0.1–1 % [33]. To a first order 
approximation, the global density of the background environ-
ment adopts a vertically decreasing profile when the plume 
migrates upward, albeit more specific observational data 
would confirm the actual density profile (e.g. see also the den-
sity distribution presented by Pruess and Nordbotten [36]).

The present work has proposed a simple model

for the mass dispersion associated with the microscopic 
space-time variation of mass and momentum, where a 
steady state horizontally homogeneous background con-
centration c̃(x3) = C0 + Γ x3 has been assumed since the 
molecular mass of CO2 is larger than that of brine (see [19, 
33, 39]). With this model, one can define a Buoyancy fre-
quency by N2

b = gMΓ/ρ0 to characterize the effect of dis-
solution, where M is the molar mass of CO2 and ρ0 = C0M 
is a reference density. Here, N2

b > 0 corresponds to a 
situation with Γ > 0; i.e., in this case, CO2 has been 

∂

∂xj

(

�u′′i ��u′′j � + �u′′i u′′j � + �u′′i u′′j �
)

,

fi = −
µ

K
uDi

,

∂

∂xj

(

�u′′i ��c′′j � + �u′′i c′′j � + �u′′i c′′j �
)

∂

∂xj

〈

ū′′i c̄
′′
j

〉

= u3
∂ c̃

∂x3

accumulated near the reservoir top, where the dissolution 
would result into gravitational fingers studied by Pau et al. 
[33]. N2

b < 0 corresponds to Γ < 0; i.e., CO2 dissolution 
is now associated with a vertically migrating plume  [11]. 
Accordingly, a Froude number is given by

and using data from the Carrizo-Wilcox aquifer, Texas, 
e.g., U ∼ 5× 10−5 m/s and H ∼ 200m  [28, 36], we esti-
mate that Fr ≥ 1 corresponds to Nb ≤ 2.5× 10−7 s−1 and 
Γ ≥ −10−10 M/m. Clearly, Γ ≪ −10−10 M/m results into 
Fr ≪ 1, and the mass transfer analysis for varying Fr 
exploits the effect of the CO2 dissolution.

2.4 � The natural convection mass transfer as a function 
of Fr

The dominant mechanism for the onset of background dis-
solution on the natural convection mass transfer during the 
migration of a CO2 plume has now been studied with a 
dimensional analysis, which explains the effect of the vari-
ation of the Froude number.

To estimate the order of magnitude of each term in the 
mass and momentum conservation laws (see Breugem and 
Rees [9]), consider the solutal Grashof number,

the Schmidt number, Sc = ν/D, the horizontal length scale, 
L, and the vertical length scale, H.

Note the large aspect ratio of typical aquifers 
(e.g. the Carrizo-Wilcox aquifer, Texas, US  [28]) 
and the order of magnitude for the inertial term, 
u1

∂u1
∂x1

+ u3
∂u1
∂x3

= O(
√
GrH2/L2). Using horizontal and 

vertical length scales, L ∼ 10 km and H ∼ 200m, respec-
tively  (e.g.  [19]), where H2/L2 ≪ 1, as well as a fixed 
Gr < 2 500, and in the limit of Da → ∞, we obtain the 
following dimensionless linear system of PDEs

The system is independent of the length and time scales, as 
well as of other dimensional parameters, and hence, exhibits 
a self-similar solution. The existence of a self similar solution 

Fr2 =
U2

N2
bH

2
,

Gr =
g∆ρH3

ρ0ν2
=

gβ∆cH3

ν2
,

∂u1

∂x1
+

∂u3

∂x3
= 0,

0 = −
∂p

∂x1
+

∂2u1

∂x23
,

0 = −
∂p

∂x3
+ c,

u3 =
∂2c

∂x23
.
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indicates that the vertical length scale can be determined from 
the dimensional parameters ν, D, H, L, and Nb those appear 
in the dimensional system of equations. A dimensional rea-
soning can be used to define the vertical length scale as a 
function of the remaining other parameters; i.e.,

which gives an aspect ratio between the vertical scale and 
the horizontal scale:

Clearly, in the limit of Fr → ∞ for a fixed Gr and Sc, the 
vertical length scale extends to infinity; i.e., H → ∞. This 
indicates that a non-zero gradient, Γ , tends to reduce verti-
cal migration of the CO2 plume. For too small a value of 
Fr, the vertical length scale is also too small; the plume 
will not continue to migrate vertically upward for small Fr

. This dimensional analysis has a good agreement with the 
numerical simulations presented in Sect. 4.3.2.

This section concludes by noting that the analysis of the 
multiscale model  (3–6) with an adaptive wavelet multiscale 
technique is a novel contribution of the present research, in 
contrast to classical models, where the macroscopic model (1, 
2) analysed with a multiscale technique [22, 30, 33].

3 � The adaptive wavelet multiscale simulation 
methodology

To outline the proposed numerical method, Eqs. (4–6) has 
been written in the following compact form:

where Ψi represents u1, u3, or c, and Rij (i, j = 1, 3) rep-
resent the right hand sides of Eqs. (4–6). Since the veloc-
ity (u1, u3) and the concentration (c) depends on each other 
simultaneously in a natural convection mass transfer appli-
cation, a fully implicit time integration scheme has been 
adopted, where u1, u3, and c are computed simultaneously.

3.1 � Time integration

A fractional-step method, originally proposed by  Chorin 
[12], has been applied to solve (7) for Ψ n+1/2

i ,

H6 =
νDL2

N2
b

,

(
H

L

)4

=
Fr2

GrSc
.

(7)
∂Ψi

∂t
+ uj

∂Ψi

∂xj
=

∂Rij

∂xj

Ψ
n+ 1

2

i − Ψ n
i

∆t
+

1

2



u
n+ 1

2

j

∂Ψ
n+ 1

2

i

∂xj
+ unj

∂Ψ n
i

∂xj



 =
1

2

�

R
n+ 1

2

ij + Rn
ij

�

,

and it takes the following symbolic form

where superscripts n and n+ 1
2
 mean the present time step 

and the first fraction of the next time step, respectively.
In the second fraction of a time step, Eq. (3) is satisfied, 

∂un+1
j

∂xj
= 0, such that the macroscopic model (1) is approxi-

mately diagnosed from

where un+1
Di

= un+1
i − u

n+1/2
i . Setting cn+1 = cn+

1
2 from the 

nonlinear algebraic system (8), un+1
i  is also diagnosed from 

the elliptic problem (9), where (8) and (9) must be solved 
with efficient iterative solvers at each time step.

Since  (8) is a nonlinear system, the classical Newton’s 
method

such that

must evaluate the matrix-vector product J sk at every k-th 
iteration with O(N 2) operations, where J  is the Jacobian 
matrix and sk is the error to be found. In order to reduce this 
high cost to O(N ), let us consider the Frechet derivative

where η is a small real number. The performance of this 
approach—known as the Jacobian free Newton-Kry-
lov (JFNK) algorithm—was verified for multiphysics simu-
lations. However, the improvement in the operation count 
is paid off by requiring a preconditioner, which is a serious 
drawback for extending the JFNK to the simulation of heat 
and mass transfer. In the present work, we study an alter-
native, where the multiscale wavelet method captures the 
multiscale physics, and the Newton’s method along with 
the Frechet derivative is used to reduce the residual of (8) 
by a certain fraction at each level of the present multiscale 
wavelet based solution methodology.

3.2 � The multiscale wavelet methodology

The wavelet method  (see  [1, 27, 42]) captures the multi-
scale physics, using the best N  terms of the multiscale 
decomposition
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according to a prescribed error tolerance ǫ on the magni-
tude of dη,s2k+1, where the error for resolving mass and/or 
energy is O(ǫ). In (10), the first term represents a sampling 
of Ψj (u1, u3, or c) on a coarse grid of (2sn+ 1)× (2sm+ 1) 
points, and the second term models the additional details 
of Ψj, which is not captured by the first term. In 2D, with 
the exception of east and north boundaries, each coarse grid 
sampling cs2k corresponds to three details data dη,s2k+1  (for 
η = 0, 1, 2). For example, if the REV [0, 4] × [0, 2] is 
divided by a factor of 2 in each direction, for the 2kth ver-
tex (0, 0), we have three (2k + 1) neighbors (0, 1), (2, 0), 
and (2, 1), where the corresponding detailed information is 
stored. When a REV is not sufficient to resolve Ψj on the 
2k-th grid point, at least one dη,s2k+1 will have a magnitude 
larger than ǫ, thereby providing with a natural framework 
for adapting the size of the REV to the local physical prop-
erty. Therefore, one would begin with REVs on a coarse 
grid, perform a wavelet analysis, and recursively resize 
only those REVs, where wavelet coefficients are large. The 
wavelet transform may be computed with the Wavelet tool-
box of Matlab without knowing the explicit information of 
ϕs
2k and ψη,s

2k+1. Note that the grid adaptation is automatic 
with the wavelet method [43].

To illustrate the benefits of the multiscale wavelet rep-
resentation, consider a prescribed concentration c(x1, x3) 
that decays exponentially with respect to a circle of radius 1
. Taking the wavelet transform of c(x1, x3), and recursively 
adapting the grid until all new wavelet coefficients satisfy 
a tolerance ǫ = 10−4, an adaptive wavelet grid has been 
obtained, which is presented in Fig. 2. Note that an obsta-
cle of size [−0.5, 0.5] × [−0.5, 0.5] has been placed at the 
center of the domain, showing that the wavelet transform 
can be computed on complex domains.

4 � Results and verification

4.1 � Verification results

The shear driven or natural convection transport of CO2 
in an aquifer is an idealized model, and is useful for com-
putational verification, where CO2 moves horizontally 
just below the impermeable caprock, or vertically after 
it has been injected through an injection well. Adapted 
from  [31, 37], a shear driven case and a natural convec-
tion case have been shown schematically in Fig.  3. Note 
that the shear driven case has been chosen for the avail-
ability of reference data so that the numerical model can 

(10)

Ψj(xi) =
∑

k

cs2kϕ
s
2k(xi)+

∞∑

l=s

2d−1∑

η=0

∑

k

d
η,l
2k+1ψ

η,l
2k+1(xi),

be quantified. In the next two simulations, the parameters 
Da = 104, Re = 103, α = 1, Sc = 0.72, φ = 90% have 
been adapted from [47].

4.1.1 � A shear driven mass transfer model for Gr → 0

The shear driven mass transfer at Gr = 0 is a benchmark 
example, where the momentum transfer is independent of 
the mass transfer. To study the performance of the proposed 
multiscale model, results of 30 simulations of a shear driven 
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Fig. 2   An example of the wavelet based adaptive grid generation for 
a typical concentration field c(x1, x3), where the ‘box’ at the center of 
the domain represents an impermeable region. Each ‘dot’ represents 
the physical position of a wavelet, representing a REV. More wavelets 
are used near a circle of radius 1, where c(x1, x3) has a sharp change, 
which confirms that REVs have been adapted to capture the local 
physical variation

brine

CO2

natural
convection

shear
driven

CO2

Fig. 3   Schematic description for the distribution of the CO2 phase 
after it has been injected into an aquifer. The natural convection mass 
transfer is an idealized model in the region that is next to the injection 
well-marked by the box. A region is marked “shear driven”, which 
may be a typical high permeability zone. Note that a shear driven 
case has been considered for the purpose of numerical verification 
only
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mass transfer case with Gr = 0 have now been summarized, 
where for each of the CFL numbers are 1, 2, 3, 4, 5, 6, the 
tolerance values are ǫ = 10−6, 10−5, 10−4, 10−3, 10−2.  
In the present multiscale model, ǫ controls N , as well as 
∆x = min(∆x1,∆x3)—the length scale of the smallest 
REV, where the grid points are adapted dynamically. To 
utilize the full advantage of this adaptivity, the maximum 
time step, ∆t, has also been adapted dynamically based 
on CFL = ∆t/∆x. Clearly, an increase of the CFL num-
ber (or ǫ) would increase the global temporal (or spatial) 
error. These 30 simulations provide an understanding of 
how the spatial and temporal errors are controlled globally 
in the present model. Note the use of a large CFL number 
(CFL = 6) is a distinct feature of the present methodology, 
and is an important contribution to the field of computa-
tional heat and mass transfer.

As demonstrated in Fig.  4a, b, the variation of the spa-
tial error tolerance 10−6 ≤ ǫ ≤ 10−2 and the CFL number, 
1 ≤ CFL ≤ 6 confirms the space-time error control of the 
proposed model. This velocity profile has a good agreement 
with the one, which was presented by Yang et al. [47] and Guo 
and Zhao [18]. Figure  4c shows that the computational 

degrees of freedom, N , varies like ǫ−1/2, which means that 
N  does not increase linearly if ǫ is decreased. Note that a 
direct numerical simulation of heat and mass transfer phe-
nomena with a classical finite difference (FD) model, would 
increase N  linear with a reduction of the error. The effi-
ciency of the present model can be seen from the comparison 
in Fig. 4c. Further more, with the error tolerance, ǫ = 10−3

, the present model needs N = 3,416, which is about 5 and 
13 % of the grid points required by the simulations of Ghia 
et al. [17] and Botella and Peyret [7], respectively. Although 
the physical setting of the present simulation is quite differ-
ent than that of refs  [7, 17], the similarity of dimensionless 
parameters allows us for a brief comparison in order to pro-
vide with a hint to the potential of the present model.

The laminar boundary layer thickness just below the top 
of the aquifer has been compared with the theoretical esti-
mate, δ ∼ Re−1/2, in Fig.  4d. A good fit between Re−0.5 
and Re−0.6 indicates that the laminar boundary layer has 
been resolved more accurately at higher Re. This idealized 
simulation at Gr = 0 exploit the potential of the present 
model for simulating the best solution using the least num-
ber of the degrees of freedom, N .

Fig. 4   Results from the perfor-
mance studies of the proposed 
multiscale mode. The horizontal 
velocity u = u1 × φ/U m/s 
as a function of z = x3 × H m 
along the vertical centerline of 
the aquifer. a CFL = 3 is fixed, 
but the tolerance, ǫ, varies in the 
range 10−6 ≤ ǫ ≤ 10−2. b The 
tolerance ǫ = 10−4 is fixed, but 
the CFL number varies in the 
range, 1 ≤ CFL ≤ 6. Clearly, 
the present model controls the 
space-time variation of the 
error, which is an important 
objective of this development. 
c The number of degrees of 
freedom, N , as a function of 
tolerance, ǫ. The result for the 
present model, N ∼ ǫ−1/2,  
is compared with that of a 
classical finite difference (FD) 
model, N ∼ ǫ−1. d Estimated 
boundary layer width, δ, has 
been compared with Re−0.5 and 
Re−0.6
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4.1.2 � A natural convection case for Gr → ∞

An idealization of the natural convection mass transfer in the 
aquifer has been simulated, where the boundary conditions, 
C = 1 and C = 0 on x1 = 0 and x1 = 1, represents the injec-
tion and removal of CO2 across x1 = 0 and x1 = 1, respec-
tively. Other boundary conditions are ∂C

∂x3
= 0 on x3 = 0 

and x3 = 1, ∂u1
∂x1

= 0 on x1 = 0 and x1 = 1. The velocity is 
assumed zero on all other boundaries. Under similar condi-
tions, Nordbotten and Celia [31] studied mixed convection 
mass transfer in an aquifer, and showed that the migration 
of CO2 occurs beneath the top boundary of the aquifer when 
natural convection dominates over the forced convection. 
Clearly, at large Gr (→ ∞), when the natural convection is 
dominant, the numerical simulation of the mass transfer in 
an aquifer would require high spatial resolution in order to 
resolve the solutal boundary layer. Hence, an estimate for 
N  as a function of Gr provides with a good understanding 
for the efficiency of the present multiscale model. Here, we 
summarize 7 representative simulations with values of Gr 
(1.5× 10

3
, 1.5× 10

4
, 1.5× 10

5
, 1.5× 10

6
, 1.5× 10

7
, 1.5

×10
8, and 1.5× 109), which show that N  increases approxi-

mately as Gr1/4. In Fig. 5, this result is also compared with 
the estimate Gr3/4 from the classical numerical simulation.

4.2 � Simulation of a vertically migrating CO2 plume

4.2.1 � The Carrizo‑Wilcox aquifer in Texas (CWT)

Over a period of 50 years, the injection of approximately 
370× 106 m3 super-critical CO2 per year into the central 
section of the CWT would store about one fifth of the CO2 
emissions in Texas [19, 28]. The CWT formation is about 
200m deep, and extends for a length of about 110 km at an 
angle ≈1.5° with the horizontal, reaching a depth of about 
4 km beneath the earth’s surface. A 2D vertical section of 
the CWT beneath a horizontal caprock at a depth of 3 km,  

which is 200m thick, and 2 km long, has been simulated. 
The length to width aspect ratio of the model region is 
10 : 1, which is different than the actual aspect ratio of the 
CWT. The temperature of the aquifer is assumed at the ini-
tial value. A 400m wide CO2 plume is assumed instantane-
ously at the center of the bottom boundary. The migration 
of CO2 takes place under the action of gravity.

Initially, both the resident brine and the invaded CO2 are 
assumed at rest. The normal components of the gradient of 
mass and momentum fluxes are assumed zero on the lateral 
boundaries for all time.

In Fig.  6, simulated vertical migration of a CO2 plume 
and the corresponding adapted grid points are presented at 
t = 11.4 year. Clearly, the REVs have been adapted dynami-
cally to resolve sharp gradients of the plume with respect to 
the error tolerance ǫ = 10−4. The minimum size of a REV 

Fig. 5   a The number of degrees 
of freedom (N ) for resolving 
the multiscale mass transfer 
as a function of Gr has been 
compared between the present 
multiscale model and a classical 
mass transfer model. The com-
putational gain of a multiscale 
model at high Gr is evident. 
b The scaling of the CPU time 
with respect to N , which shows 
that the CPU time remains 
approximately proportional 
to N  for the entire period of 
simulation 100 105 1010
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Fig. 6   Simulated plume migration and associated fingers in a 
2, 000m× 200m domain. a Distribution of CO2 is marked with the 
dark color, where the light color represents brine. b Distribution of 
grid points, showing that the most significant flow is located only 
in the region of fingers. c The most significant flow occupies a part 
400m× 200m of the domain, where a high resolution is needed 
(color figure online)
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is given by ∆x1 ∼ 2m and ∆x3 ∼ 1.5m near the center of 
the plume, and the maximum size of the same is given by 
∆xH1 = 62.5m and ∆xH3 = 50m away from the plume. The 
simulation needed an average N = 3,593 at each time step.

As depicted in Fig. 6c, the plume remains approximately 
in a region that extends from −200 to 200 m in the hori-
zontal direction with respect to the center of the domain. 
However, only in this part of the domain, one might get 
the qualitatively equivalent results by solving the multi-
scale model (3–6) with a classical numerical method, using 
the uniform resolution of ∆x1 ∼ 2m and ∆x3 ∼ 1.5m. In 
that case, at least 26,000 grid points would be needed. In 
comparison to this estimate, the present methodology (with 
N ∼ 3,593) is about 86 % efficient, albeit a direct compari-
son with a previous simulation would be realistic.

4.2.2 � A comparison of the computational gain with a 
TOUGH2 simulation

The recorded CPU time for the present simulation is 
approximately 2–3.6  ms per grid point on a Dell T7400 
workstation. A useful reference on the computational effort 
that is needed for a similar simulation is given by Pruess 
and Nordbotten [36], where the reported CPU time is about 
700 ms per grid block using the parallel code, TOUGH2, 
with 8 processors in a Dell 5400 workstation. This is equiv-
alent to about 5,600  ms per grid block for a single pro-
cessor computation. The CPU time comparison with this 
particular TOUGH2 simulation exploits the advantage of 
O(N ) computational complexity, which is one important 
development of the present multiscale model.

Since N  varies at each time step due to adaptivity, we 
have recorded the CPU time for advancing the solution 
each time step, and two representative results are presented 

in Figs. 5b and 7, showing that the CPU time is approxi-
mately proportional to N . These results explore the prom-
ise of this development.

4.3 � Analysis of natural convection mass transfer in an 
aquifer

4.3.1 � Penetrative mass transfer

Ruckenstein [40] studied a generalized penetration theory 
for mass transfer in the vicinity of a fluid–fluid interface. In 
this section, we have briefly studied the multiscale nature 
of the penetrative mass transfer and the associated vorti-
city generation in a subsurface aquifer. In order to study the 
vorticity generation, we have simulated natural convection 
mass transfer at various values of φ and Da.

In the limit of Da → 0, a first order estimate for the 
vorticity as a function of concentration is ω2 ∼ ∂c

∂x1
, which 

indicates that a counter clockwise vorticity is generated in 
the region that is to the immediate left of the plume when 
the plume migrates upward  [39]. Similarly, a clockwise 
vorticity is expected in the region that is to the immediate 
right of the plume. These clockwise and counter clock-
wise vortices interact with the porous structure, acceler-
ate horizontal migration, and are responsible for transfer-
ring mass and momentum from one scale to the other. In 
Fig.  8, the plume, the vorticity, and the adapted grid are 
presented for the porosities, φ = 10% and φ = 20%, 
where Da = 2.7× 10−4. A complicated multiscale dynam-
ics is observed. For the higher porosity, only 20  % of a 
REV is occupied by the fluid. A reduction of the porosity 
would decrease the volume of fluid faction in the REV, 
thereby strengthening the interaction between the fluid and 
the porous structure. For φ = 10,%, the mass transfer is 
accompanied with local sharp spatial gradients at multiple 
length scales, where 7,013 grid points are needed because 
REVs are resized to resolve sharp gradients of the plume. If 
the porosity is doubled to φ = 20%, the rate of mass trans-
fer is enhanced by smoothing out the spatial gradients, and 
thus, the number of grid points is reduced to 3,553. A better 
understanding of the vorticity field can be quantified with 
simulations at various values of Da.

For the fixed φ = 10%, let us present the time evolution 
for the mean vorticity for a variation of the Darcy number, 
Da = 1.4× 10−4, 2.7× 10−4, 2.7× 10−3, and 5.4× 10−3 . 
Since the variation of Da is between 10−4 and 10−3, these 
simulations explore the sensitivity of perturbations intro-
duced by the porous structure into the penetrative mass 
transfer. The growth of the mean vorticity, and its time evo-
lution has been presented in Fig. 9. Clearly, the Darcy num-
ber affects both the maximum of the mean vorticity and 
its amplitude of the fluctuation. Note that the natural con-
vection mass transfer enhances the vorticity at the lowest 
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Fig. 7   A scaling of the CPU time is compared with the number of 
grid points. In order to fit both the curves in the same frame, both the 
CPU time (upper curve) and the number of grid points (lower curve) 
have been normalized with respect to the maximum value of the cor-
responding data
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of these values of Da, which indicates that the penetra-
tive mass transfer in a saline aquifer is accompanied with 
vorticity.

4.3.2 � The effect of CO2 dissolution into the natural 
convection mass transfer

In the present model, the dissolution of CO2 into the resi-
dent saline has been characterized by the Froude number 
Fr. In Fig. 10, simulated distribution of CO2 has been pre-
sented at t = 11.4 y for three representative values of the 
Froude number, Fr = ∞, 3.3, and 1. The plume migrates 
vertically until it reaches the impermeable caprock at the 
top of the reservoir when Fr = ∞, when the brine is satu-
rated with CO2 such that Γ = 0. When 1 ≤ Fr < ∞, the 
plume migrates through a background environment with 
Γ < 0. Comparing Fig. 10a with Fig. 10c, we see that the 

plume has traveled less than half way in the vertical direc-
tion when Fr = 1.

This simulation indicates a marked variability in the 
vertical migration of CO2. These two-dimensional ideal-
ized simulations hint on the potential of the present model 
for analysing natural convection mass transfer and other 
related phenomena associated with CO2 storage in aqui-
fers. Further analysis with three dimensional simulations 
would be useful for explaining the multiscale and complex 
phenomena associated with the carbon capture and storage 
program.

5 � Summary and discussion

5.1 � Conclusion

This article introduces a multiscale modeling and simula-
tion approach for the natural convection mass transfer in 
an aquifer. In order to tackle the challenges of multiscale 
phenomena, we have adopted the classical volume averag-
ing technique to model a full details of the multiscale trans-
port. Taking average heat and mass transfer with respect to 
a REV leads to a general framework for parameterizing the 
effect of multiscale phenomena which is not resolved with 
the averaging process. A wavelet based multiscale simula-
tion methodology has been studied to dynamically resize 
the REV so that localized mass transfer can be resolved 
efficiently.

A brief summary of the present development and key 
findings have been outlined below.
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Fig. 8   The effect of the porosity (φ) in a natural convection mass 
transfer and the associated vorticity generation. a–c φ = 10%, d–f 
φ = 20%, a, d  the concentration of CO2, red CO2, yellow brine; b, 
e  the vorticity ω2 associated with the natural convection plume, red 
counter clockwise vortex, blue clockwise vortex, yellow zero vor-
ticity; c, f  the grid points. In c N = 7,013, and in f N = 3,553. 
Clearly, when φ increases the interaction between the fluid and the 
porous structure weakens (color figure online)
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Fig. 9   The time evolution of the mean vorticity 
1
A

∫∫
ω2(x1, x3, t) dA, where ω2 = ∂u3

∂x1
− ∂u1

∂x3
 is presented for 

Da = 1.4× 10−4, 2.7× 10−4, 2.7× 10−3, and 5.4× 10−3. The 
vorticity is normalized with respect to Ω = |∇ × u|, and the time is 
normalized with respect to T = L/U, where L and U are length and 
velocity scales, respectively
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•	 Using the space-time average of the first principle con-
servation laws with respect to a representative elemen-
tary volume and a representative elementary time scale, 
this work has studied the governing equations so that 
heat, mass, and momentum transfer can be captured in a 
range of multiple length and time scales.

•	 Results from a set of 30 representative numerical exper-
iments at Gr = 0 and Da = 104 show that the space-
time error can be controlled with a priori prescribed 
error tolerance ǫ and CFL number. This a priori error 
control is an important contribution that would benefit 
future developments in the field of computational heat 
and mass transfer analysis.

•	 Simulations with an idealized natural convection mass 
transfer observes that the number of computational 
degrees of freedom varies like N ∼ Gr1/4. Clearly, 
exploiting multiscale physics in the computational 
model has the potential to compute the most signifi-
cant proportion of the flow using a near optimal com-
putational effort. Further more, all simulations have 
indicated that the CPU time remains approximately 
proportional to N , which means that the amount of 
computational work remains proportional to the amount 
of actual physical change in the system. To the author’s 
opinion, this property of the present model is a distinct 
feature with respect to classical approaches those are 
commonly used in the computational heat and mass 
transfer analysis.

•	 Present simulations with varying Fr show a marked 
variation in the vertical migration of a CO2 plume, i.e. 
the associated time scale, which suggests that the effect 

of dissolution of CO2 in saline has a dominant role 
on the mass transfer mechanism. This would help to 
explain the dynamics of the subsurface CO2 plume in 
various storage facilities.

•	 Present simulations observes that the vertical migration 
of a plume enhances the vorticity generation, where the 
dissolution of CO2 has a strong influence on the vertical 
time scale of a plume.

•	 To the best of knowledge, this article, for the first time, 
has extended the second generation wavelet based adap-
tive technique to the field of subsurface flow and trans-
port modeling. Hence, the present works adds a novel 
technology to the growing interests of multiscale mod-
eling in the field of computational transport in aquifers.

5.2 � Discussions

There are several possibilities to extend the present 
development. This includes the simulation of heat and 
mass transfer in a large aquifer—such as 110 km long 
CWT or any other similar sites—where the phenomena 
is fully three-dimensional and gravitationally unsta-
ble. Future simulations, where the permeability, poros-
ity, and other reservoir characteristics would have been 
obtained with advanced field technologies, may pro-
vide with an understanding of the degree to the propor-
tion of actual multiscale features that can be resolved 
by the proposed model within the constraint of modern 
powerful computing resources. In a more realistic 3D 
simulation, if N  is still constrained by the computer 
power, then the smallest scale of a REV may need to 

Fig. 10   Effect of dissolution on 
the vertical migration of a CO2 
plume for Fr = ∞, 3.2, 1.0 at 
t = 11.4 year. The red and yel‑
low represents c = 1 and c = 0

, respectively. The displayed 
region extends from −600m to 
600m horizontally, and from 
0m to 200m vertically (color 
figure online)
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be increased, where further improvements of the param-
eterization scheme would be necessary. Therefore, the 
present work leaves potential open questions those 
may be addressed in the future. However, the present 
research indicates that 3D simulation will be benefited 
greatly if the present modeling approach is extended. 
Furthermore, the effect of variable permeability, tem-
perature perturbation, and pathway transmissivities 
have not been examined in the present article. These 
works are currently underway.

Acknowledgments  The author acknowledges financial support 
from the National Science and Research Council (NSERC), Canada. 
Useful discussions with Prof. Jan Martin Nordbotten (jan.nordbot-
ten@math.uib.no) is also greatly acknowledged. Many thanks to two 
anonymous reviewers for very useful comments and suggestions. The 
computational work was done partially with a Dell T7400 Worksta-
tion funded by the Industrial Research and Innovation Fund  (IRIF), 
Govt of Newfoundland and Labrador, and partially on the ACEnet 
(www.ace-net.ca) high performance computing cluster.

Appendix: The space‑time double decomposition 
methodology

This section outlines the proposed model of resolving mul-
tiscale physics of a natural convection mass transfer when a 
plume migrates after CO2 has been injected into an aquifer. 
The methodology aims to capture the average flow and trans-
port with respect to a REV and a representative time scale 
for the REV, as well as to parameterize the effect of the unre-
solved flow. Researchers with interest in further mathemati-
cal details of the adopted double decomposition methodology 
may find the works of De Lemos [13] and Lage et al. [24] 
useful. This section provides a brief outline for the decompo-
sition of the inertia term uj

∂ui
∂xj

 into a resolved proportion and 
an unresolved proportion, where the intrinsic space average 
(〈ui〉) is applied to time average (ui), and vice-versa (see also, 
Sect. 2.2).

If we take the time average of a spatially averaged quan-
tity, and use �u′′i � to denote temporal fluctuation of spatial 
averages, then a spatial mean may be decomposed as

where 
〈
u′′i
〉
 is the deviation of 〈ui〉 with respect to the time 

average. The double decomposition is obtained by taking a 
spatial decomposition, ui = �ui� + ũi, which is followed by 
a temporal decomposition; i.e.,

�ui� = �ūi� +
〈
u′′i
〉
,

ui = �ūi� +
〈
u′′i
〉

︸ ︷︷ ︸

�ui�

+

ũi
︷ ︸︸ ︷

ū′′i + u′′i

The following assumptions have been adopted to param-
eterize the effect of unresolved multiscale physics.

•	 ρ0
〈
u′′i
〉〈

u′′j

〉

 corresponds to momentum flux pertur-

bation associated with the temporal fluctuations of 
the spatially averaged quantities 

〈
u′′i
〉
, which has been 

neglected. This term needs to be parameterized if a tran-
sition to turbulence is important; i.e., if Rep ≫ 1.

•	 ρ0

〈

ū′′i ū
′′
j

〉

 corresponds to momentum diffusion asso-

ciated with the temporal mean of spatial fluctuation 
(same as the spatial average of temporal fluctuation). 
In order to allow a smooth transition of flow and trans-
port through pores of a porous medium, Brinkman [10] 
suggested to incorporate the effect of momentum dif-
fusion. In the present work, this term has been param-
eterized to incorporate the effect of momentum diffu-
sion.

•	 ρ0

〈

u′′i u
′′
j

〉

 represents dispersion of momentum due to 
both time and spatial fluctuation, and can be neglected 
unless turbulence intermittency is important.

The above approximations, along with the conserva-
tion of mass and the Boussinesq approximation, leads to 
uj

∂ui
∂xj

= ∂uiuj
∂xj

, and hence, the spatio-temporal average of the 
divergence of the momentum flux (divided by the density) 
can be derived recursively. First, let us apply the spatial 
decomposition, ui = �ui� + ũi, and write

Second, both the mean, 〈ui〉 and the fluctuation, ũi, are 
decomposed into a temporal mean and fluctuation, and as 
a result,

Third, the decomposition of the spatial fluctuation, ũi into 
a temporal mean, ū′′i , and a temporal fluctuation, u′′i , (i.e. 
ũi = ū′′i + u′′i ) results into the final form

Finally, using the average mass conservation,

Note that the above decomposition tells us what physical 
features of the problem has been modelled and the assump-
tions made to neglect some of the other physics. Similar 
approach has been used to derive Eq. (6).

∂

∂xj
�uiuj� =

∂

∂xj
[�ui��uj� + �ũiũj�]

∂

∂xj
�uiuj� =

∂

∂xj

[

�ūi��ūj� +
〈
u′′i
〉〈

u′′j

〉

+
〈

ũiũj

〉]

∂

∂xj
�uiuj� =

∂

∂xj

[

�ūi��ūj� +
〈
u′′
i

〉〈

u′′
j

〉

+
〈

ū
′′
i ū

′′
j

〉

+
〈

u′′
i
u′′
j

〉]

.

∂

∂xj
�uiuj� = �ūj�

∂�ūi�
∂xj

+
∂

∂xj

[
〈
u′′
i

〉〈

u′′
j

〉

+
〈

u′′
i
u′′
j

〉

+
〈

ū
′′
i ū

′′
j

〉]

.
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