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Abstract The problem of double-diffusive flow in a long

rotating porous channel has been analysed numerically. The

two opposite vertical walls of the channel are maintained at

constant but different temperature and concentration, while

both horizontal walls are kept insulated. The generalised

model is used to mathematically simulate the momentum

equations with employing the Boussinesq approximation

for the density variation. Moreover, both the fluid and solid

phases are assumed to be at a local thermal equilibrium. The

Coriolis effect is considered to be the main effect of rota-

tion, which is induced by means of the combined natural

heat and mass transfer within the transverse plane. The

governing equations are discretised according to the finite

volume method with employing the hybrid differencing

scheme to calculate the fluxes across the faces of each

control volume. The problem of pressure–velocity coupling

is sorted out by relying on PISO algorithm. Computations

are performed for a wide range of dimensionless parameters

such as Darcy–Rayleigh number (100 B Ra* B 10,000),

Darcy number (10-6 B Da B 10-4), the buoyancy ratio (-

10 B N B 8), and Ekman number (10-7 B Ek B 10-3),

while the values of Prandtl and Schmidt numbers are

maintained constant and equal to 1.0. The results reveal that

the rotation seems to have a dominant role at high levels of

porous medium permeability, where it reduces the strength

of the secondary flow, and hence the rates of heat and mass

transfer. However, this dominance decreases gradually with

lessening the permeability for the same level of rotation, but

does not completely vanish.

List of symbols

a Side length of the channel (m)

c Dimensional concentration (kg/m3)

cF Dimensionless form-drag constant

cp Specific heat of fluid phase (J/kg �K)

C Dimensionless concentration [C = (c - cc)/

(ch - cc)]

C1, C2, C3 Coefficients of Eq. (17)

D The mass diffusivity of the solute into the

solvent (m2/s)

Dm The effective mass diffusivity (m2/s)

Da Darcy number (Da = K/a2)

e Unit vector

Ek Ekman number (Ek = mf/2x a2)

g Gravitational acceleration (m2 s-1)

K Permeability of the porous medium (m2)

kf Thermal conductivity of fluid phase

(W m-1 �K-1)

km Mean thermal conductivity (W m-1 �K-1)

ks Thermal conductivity of solid phase

(W m-1 �K-1)

Le Lewis number (Le = Sc/Pr = ae/Dm)

N Buoyancy ratio (N = bc Dc/bT DT)

Nu Average Nusselt number

p Dimensional pressure (Pa)

pr Dimensional reduced pressure (Pa)

Pr Dimensionless reduced pressure

Pr Prandtl number (Pr = mf/ae)

Ra Rayleigh number [Ra = g bT DT a3/(m a)]

Ra* Darcy–Rayleigh number [Ra* = Ra Da = g

bT DT K a/(m a)]
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Sc Schmidt number (Sc = mf/Dm)

Sh Average Sherwood number

T Dimensional temperature (�K)

u, v, w Dimensional velocity components (m/s)

U, V, W Dimensionless velocity components

v Dimensional velocity vector (m/s)

x Dimensional position vector (m)

x, y, z Dimensional coordinates (m)

X, Y, Z Dimensionless coordinates

Greek symbols

h The dimensionless temperature

ae The effective thermal diffusivity (m2/s)

qf Fluid density (kg/m3)

lf Dynamic viscosity (N s/m2)

mf Kinematic viscosity (m2/s)

e Porosity of the porous medium

bc Coefficient of concentration expansion (�K-1)

bT Coefficient of Thermal expansion (�K-1)

Subscripts

0 Reference point

c Cold

e Effective

f Fluid phase

g Gravity

h Hot

m Mean

s Solid phase

x Rotation

1 Introduction

In a wide range of natural phenomena and industrial appli-

cations, fluid flows are driven by means of buoyancy effects

resulted from density gradients, which are produced some-

times by combined temperature and concentration variations.

This phenomenon of the combined heat and mass transfer is

usually called double-diffusive flow. Due to the applied and

academic interest in this field, there has been a wide range of

mostly theoretical studies for more than a decade Mojtabi

and Charrier-Mojtabi [1]. Recently, the in progress state of

art of the combined heat and mass transfer in porous media

has been summarised by Nield and Bejan [2].

The combined heat and mass transfer in a porous

enclosure was studied numerically and analytically by

Trevisan and Bejan [3] using Darcy formulation. Extensive

efforts were implemented to examine the non-Darcian

influences on the thermosolutal free convection in porous

cavities such as employing Darcy–Brinkman’s model to

study the viscous effects of the boundaries Goyeau et al.

[4], also using the generalised porous media model which

allows to examine the influence of porosity variation in

non-Darcy regime Nithiarasu et al. [5], and finally com-

paring the effects of Darcy, viscous, inertial, and combined

viscous-inertial drag on double-diffusive flow Karimi-Fard

et al. [6]. Recently, the effect of tilting the porous cavities

on the combined natural heat and mass transfer through

them was investigated numerically by Al-Farhany and

Turan [7]. The results revealed that increasing the incli-

nation angle affects the vortex strength negatively.

Regarding to the combined heat and mass transfer in

porous media subjected to rotation, studying such field has

been motivated by its wide range of practical applications

in engineering and geophysics. Chemical and food pro-

cessing industries, centrifugal casting and solidification of

metals, geophysical problems, petroleum industries, bio-

mechanics applications, in addition to rotating machinery

are just few examples of its engineering applications Va-

dasz [8]. Three-dimensional fluid flow in a rotating square

channel occupied by a heterogeneous porous medium was

studied analytically Vadasz [9] and numerically Havstad

and Vadasz [10] using Darcy formulation. The data has

confirmed the ability of inducing a mainstream flow along

the channel by means of the secondary circulation resulted

from the locally varying permeability. Vadasz [11, 12]

examined analytically the Coriolis effects on natural con-

vection induced by gravity in a long rotating porous box

but with applying different thermal boundary conditions.

The results revealed that there was a secondary circulation

in the plane perpendicular to the leading natural convection

plane and it was motivated by the Coriolis forces. The

natural convection induced by centrifugal acceleration in a

narrow porous layer subjected to rotation was examined

analytically by Vadasz [13–15] for an axis of rotation

attached to the porous layer, distant from the porous layer,

and located within the porous layer, respectively. The

results indicated that displacing the porous layer away from

the axis of rotation has a destabilizing effect, while placing

the rotation axis within the porous layer has produced a

stabilising influence in the part of the layer located to the

left of the axis of rotation and a destabilising effect to the

right part of it. The combined centrifugally and gravity

driven free convection in a narrow porous layer located far

away from the axis of rotation studied analytically by

Vadasz and Govender [16] using Darcy law, where it was

found that increasing the value of gravity Rayleigh number

had a stabilising influence on the flow field. In his analyt-

ical investigation for Coriolis influence on gravitational

induced convection, Vadasz [17] found that heat transfer is

retarded by rotation for both overstable and stationary

convection. However, it was noticed that heat transfer at

overstable convection is enhanced by rotation just within a

limited range of small parameters including Prandtl num-

ber. Motivated by the work of Vadasz [17], Straughan [18]
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examined analytically the thermal instability in a Darcian

porous medium rotating around an axis perpendicular to

the porous layer, where results of nonlinear energy was

derived for thermal convection. An analytical investigation

was presented by Malashetty et al. [19] for the thermal

convection in a rotating horizontal porous layer cooled

from above and heated from below using Darcy formula-

tion and the thermal local non-equilibrium model. They

found that the rotation has a retarding influence on heat

transfer rates. More recently, Bhadauria et al. [20] inves-

tigated analytically the rotation effect on the combined heat

and mass transfer in a saturated porous layer subjected to

vertical temperature and concentration differences. It was

found that increasing the rotation strength has a negative

influence on the onset of convection in addition to its role

in reducing both the heat and mass transfer rate.

The aim of the current paper is to present a compre-

hensive numerical study for the fluid flow induced by

means of the combined natural heat and mass transfer in

the fully developed flow region of a rotating square channel

occupied by a saturated porous medium. The Coriolis

effects are presented in terms of stream-functions, iso-

therms, and iso-concentration patterns in addition to the

average values of Nusselt and Sherwood numbers.

2 Mathematical formulation

A long rotating channel of a square cross section and occupied

by isotropic, homogeneous, and saturated porous medium, as

shown in Fig. 1 is assumed to carry an incompressible fluid

flow within it. The channel is assumed to be rotating around

the vertical axis, while the flow is considered steady and fully

developed; hence all the dependent variables remain constant

along the axial direction except the pressure, which has a

constant gradient. All lateral walls are considered imperme-

able with keeping the horizontal walls insulated for both

temperature and concentration, while the left and right ver-

tical walls are maintained at a uniform temperature and

concentration (Th & ch) and (Tc & cc), respectively.

To avoid overestimation in heat or mass transfer due to

using Darcy model compared to models include Forch-

heimer and Brinkman extensions as noticed by Becker-

mann et al. [21] and Karimi-Fard et al. [6], the generalised

model is employed to simulate the momentum equations,

which is capable of detecting the porosity influence on flow

characteristics, Nithiarasu et al. [5]. Both the solid and fluid

phases are assumed to be in local thermal equilibrium with

each other. The flow is assumed to be driven by a com-

bined buoyancy effect, resulted from both temperature and

concentration gradients with neglecting the buoyancy for-

ces resulted from the transverse and longitudinal centrifu-

gal acceleration. The Soret and Dufour effects have been

neglected with assuming all the fluid properties to be

constant everywhere of the flow field except the fluid

density in the buoyancy term, which is considered

changeful according to the Boussinesq approximation as:

qf ¼ q0 1� bTðT � T0Þ � bcðc� c0Þ½ � ð1Þ

where bT = -(1/q0)(qq/qT)p,c is the coefficient of thermal

expansion, while bc = -(1/q0)(qq/qc)p,T represents the

coefficient of concentration expansion. Thus, the dimen-

sional forms of the conservation equations of mass,

momentum, energy, and species are:

r � v ¼ 0 ð2Þ
qf

e2
ðv � rÞv ¼ �rpr þ

lf

e
r2v�

lf

K
v� qf

cF
ffiffiffiffi

K
p vj jv

þ qf � q0

� �

grðeg � xÞ �
2qf x

e
ex � v ð3Þ

ðv � rÞT ¼ aer2T ð4Þ

ðv � rÞc ¼ Dmr2c ð5Þ

where cF represents the form-drag coefficient and it is

incorporated through using Ergun’s correlation cF = 1.75/

(150 e3)1/2, pr = p - q0g(eg�x) - q0x
2(ex 9 x)�(ex 9 x)/

2 is the reduced pressure generalised to include the con-

stant components of the gravity in addition to the centrif-

ugal terms. This assumption and its derivation is detailed in

Vadasz and Govender [22]. Also, ae refers to the effective

thermal diffusivity of the porous medium in terms of mean

thermal conductivity km divided by the specific heat

capacity of the fluid (qcp)f. The mean thermal conductivity

accounts for the overall thermal conductivity of both the

fluid and solid phases km = ekf ? (1 - e)ks. So, the

effective thermal diffusivity can be computed as:
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Fig. 1 The geometrical shape of the studied problem
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ae ¼
e kf þ ð1� eÞ ks

ðq cpÞf
¼ e af þ ð1� eÞ ks

ðq cpÞf
ð6Þ

Moreover, Dm = eD represents the effective mass diffu-

sivity of the substance within the porous medium. Above

governing equations can be written in their detailed

dimensionless forms as:continuity equation:

oU

oX
þ oV

oY
¼ 0 ð7Þ

X-momentum equation:

1

e2
U

oU

oX
þ V

oU

oY

� �

¼ � oPr

oX
þ 1

e
o2U

oX2
þ o2U

oY2

� �

� U

Da

� 1:75
ffiffiffiffiffiffiffiffiffiffiffiffi

150 e3
p Vj jU

ffiffiffiffiffiffi

Da
p � 1

e Ek
W

ð8Þ

Y-momentum equation:

1

e2
U

oV

oX
þ V

oV

oY

� �

¼ � oPr

oY
þ 1

e
o2V

oX2
þ o2V

oY2

� �

� V

Da

� 1:75
ffiffiffiffiffiffiffiffiffiffiffiffi

150 e3
p Vj jV

ffiffiffiffiffiffi

Da
p þ Ra

Pr
ðhþ N CÞ

ð9Þ

Z-momentum equation:

1

e2
U

oW

oX
þ V

oW

oY

� �

¼ 1þ 1

e
o2W

oX2
þ o2W

oY2

� �

� W

Da

� 1:75
ffiffiffiffiffiffiffiffiffiffiffiffi

150 e3
p Vj jW

ffiffiffiffiffiffi

Da
p þ 1

e Ek
U ð10Þ

energy equation:

U
oh
oX
þ V

oh
oY
¼ 1

Pr

o2h
oX2
þ o2h

oY2

� �

ð11Þ

concentration equation:

U
oC

oX
þ V

oC

oY
¼ 1

Sc

o2C

oX2
þ o2C

oY2

� �

ð12Þ

The non-dimensional parameters employed in Eqs. (7)–

(12) are:

X ¼ x

a
; Y ¼ y

a
; Z ¼ z

a
;

U ¼ a

mf

u; V ¼ a

mf

v; W ¼ a

mf

w;

Pr ¼
a2

qf m
2
f

pr; h ¼ T � Tc

Th � Tc

; C ¼ c� cc

ch � cc

;

Ra ¼ gbTDTa3

mf ae

; Pr ¼ mf

ae

; Sc ¼ mf

Dm

;

N ¼ bcDc

bTDT
; Da ¼ K

a2
; Ek ¼ mf

2xa2
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ð13Þ

The rates of heat and mass transfer at the walls are com-

puted by means of the average values of Nusselt and

Sherwood numbers, respectively, as:

Nu ¼ 1

a

Z

a

0

� oh
oY

dy ð14Þ

Sh ¼ 1

a

Z

a

0

� oC

oY
dy ð15Þ

Eventually, the dimensionless forms of the boundary con-

ditions employed to solve the aforementioned equations

are:

U ¼ V ¼ W ¼ 0; h ¼ C ¼ 1 at X ¼ 0;
U ¼ V ¼ W ¼ 0; h ¼ C ¼ 0 at X ¼ 1;

U ¼ V ¼ W ¼ 0;
oh
oY
¼ oC

oY
¼ 0 at Y ¼ 0&1

9

>

=

>

;

ð16Þ

3 Solution procedure

Equations (7)–(12) have been discretised and transformed

into linear algebraic forms by using the finite volumes

method. The hybrid differencing approximation of Spal-

ding [23] has been employed to represent the convection

terms which appear in the discretised forms of the gov-

erning equations. By implementing this scheme, either

second-order accuracy solution at low Peclet numbers or

highly stable solution at its high values have been ensured.

The problem of pressure–velocity coupling has been solved

according to the PISO algorithm of Issa [24]. For solving

the resulted discretised algebraic equations, tri-diagonal

matrix algorithm (TDMA) has been used. In order to pre-

dict the probably steep gradients of velocity, temperature

and concentration at the channel walls more precisely, the

mesh has been refined near the walls boundaries symmet-

rically about both X = 0.5 and Y = 0.5 by implementing

the form of Havstad and Vadasz [10]. Convergence has

been measured in terms of the maximum change allowed in

each variable during any iteration, where the maximum

change allowed for convergence check is 10-6. An in-

house FORTRAN code was developed for solving the

current problem and validated with some of the previous

investigations related to the present study. Figure 2 repre-

sents the comparison of average Nusselt or Sherwood

number computed by the current code with the work of

Karimi-Fard et al. [6] for the double-diffusive flow by

using various porous media models. Figure 3 shows the

comparison with the work of Nithiarasu et al. [5] for the

variation of mean Sherwood with the buoyancy ratio by

using the generalized model of fluid flow via porous media.

The computed results by the current code have been in a

good agreement with the earlier studies, although there
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were small variances due to the difference in the numerical

techniques used in the current code and the previous

investigations.

4 Results

In the current section, the resulted data are presented in

terms of the streamlines, isotherms or iso-concentrations,

and the contours of the main velocity component within the

secondary plane in addition to the average values of Nus-

selt or Sherwood number and for a wide range of non-

dimensional parameters used. These dimensionless

parameters are the Darcy–Rayleigh number (100 B

Ra* B 10,000), Darcy number (10-6 B Da B 10-4), the

buoyancy ratio (-10 B N B 8), and Ekman number

(10-7 B Ek B 10-3), while the values Prandtl and Schmidt

numbers are maintained constant and equal to 1.0, hence,

both the thermal and solutal fields were assumed to be

identical.

Firstly, the rotation effects on the flow and heat or mass

transfer patterns are shown in Fig. 4a–f for Ra* = 1,000,

Da = 10-5, and N = 1.0 for various values of Ekman

number. In general, the strength of the secondary circula-

tion decreases with reducing Ekman number, or in other

words by increasing the rotation rate, hence, the heat and

mass transfer strength is affected and reduced with

increasing the rotation level. This outcome is due to the

increasing mainstream velocity with enhancing the rotation

rate and for a specific range of Ekman number as shown in

Fig. 4a–c, which will cause an obvious increase in the U-

velocity components by means of Coriolis effect in the X-

direction, and hence it will affect the entire secondary flow

and heat and mass transfer. However, with enhancing the

rotation rate further; its impact on the main velocity

component is reversed, where the mainstream velocity

tends to decrease considerably with reducing Ekman

number as it is clear from Fig. 4d–f. This reversal in trend

is a consequence of the vanishing of the secondary flow at

extreme rotation levels, and accordingly, the induced

mainstream velocity will be reduced significantly.

The mutual influence of medium permeability and the

rotation rate is shown in Fig. 5 for different values of both

Darcy and Ekman numbers at N = 1.0. In accordance to

expectations, lessening Darcy number or Ekman number or

both of them reduces the rates of heat and mass transfer.

However, it is also observed that at high values of per-

meability or Darcy number, the effects of rotation on the

rates heat and mass transfer are promoted considerably

with decreasing Ekman number, while they are hardly

detected at the lower levels of Darcy number. This result is

due to the fact that reducing Darcy number or the medium

permeability means increasing the resistance of the solid

matrix to the fluid flow through it, and hence decreasing the

strength of the mainstream flow which leads to reducing

the negative impact of Coriolis effect on the secondary

flow and heat and mass transfer within the transverse plane.

Figure 6 shows the combined effect of the buoyancy

ratio and Ekman number on the average values of Nusselt

and Sherwood numbers at Ra* = 1,000 and Da = 10-4.

The effect of amplifying the buoyancy effects on the rates

of heat and mass transfer is quite obvious. At low rotation

levels and with increasing the absolute value of the buoy-

ancy ratio within the range of (-2 C N C 0), the values of

both Nusselt and Sherwood numbers are enhanced con-

siderably, while with increasing the rotation levels, its

Fig. 2 The variation of average Nusselt or Sherwood number with

Darcy number for various porous media models at Pr = 1.0,

Ra = 105, N = 1.0, and Sc = 1.0

Fig. 3 The variation of average Sherwood number with the buoyancy

ratio N at e = 0.6, Pr = 1.0, Ra 9 Da = 200, and Le = 1.0
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Fig. 4 The effect of rotation

strength on streamlines (left),

W-velocity (middle), and

isotherms or concentration

(right) at e = 0.6, Da = 10-5,

Pr = 1.0, Sc = 1.0, Ra = 108,

N = 1.0, and for Ekman

number values (from top to

bottom) of a Ek = 10-4,

b Ek = 10-5,

c Ek = 3 9 10-6,

d Ek = 2 9 10-6,

e Ek = 10-6, and

f Ek = 7 9 10-7
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influence vanishes gradually until the transport phenome-

non of both heat and mass tend to occur approximately by

pure conduction at the extreme levels of rotation as it was

noted before in Fig. 4f of the isotherms and iso-concen-

trations patterns.

Eventually, the computed values of Nusselt or Sherwood

number were fitted to the power law proposed earlier by

Trevisan and Bejan [3] and reconfirmed later by Goyeau

et al. [4] after modifying it to include the rotation effect as

follow:

Nu; Sh ¼ 1þ C1 EkC2 Ra � N þ 1j jð ÞC3 ð17Þ

It is clear that Lewis number has been dropped from the

above correlation because it is equal to 1.0 due to our

earlier assumption that both the thermal and solutal

boundary layers are identical and both Prandtl and Schmidt

numbers are equal to 1.0; hence, above correlation is valid

for both Nusselt and Sherwood numbers. Also, this corre-

lation can be used for any value of buoyancy ratio even

N = -1. Hundreds of simulations were run to cover the

entire range of the independent variables, which were

Darcy number, Darcy–Rayleigh number, Ekman number,

and the buoyancy ratio. A statistical program (SPSS ver-

sion 16.0) was used to arrive at the coefficients of this

correlation equation. The computed data was divided into

sub ranges in order to get the best fitting for them, where

the data was divided firstly according to the level of Darcy

number, and then according to the rotation level. The

determined coefficients of above correlation and the pro-

portion of variance R2 are listed in Table 1 according to

range of the used data, where they are valid for

100 B Ra* B 10,000 and -10 B N B 8.

It is quite obvious that the effect of Darcy number on the

exponent C3 is similar to what was suggested earlier by

Goyeau et al. [4], where its value at low Darcy numbers

was expected to be close to 0.5, and then it decreases with

increasing Darcy number. Also, it is noticeable that Cori-

olis effect on the heat and mass transfer rates is not sig-

nificant at the moderate levels of rotation, but it becomes

more dominant when the rotation rates increase as it is

clear from the values of the exponent C2. The correlated

data was plotted with the computed data in order to

examine the deviation between them for different values of

Ra*|N ? 1| and Ek as it is shown in Figs. 7, 8 and 9 for

Darcy number of 10-4, 10-5, and 10-6, respectively. It is

clear that the correlated data are in a good agreement with

the computed at the moderate levels of rotation, but it

Fig. 5 The effect of varying Darcy number with changing the Ekman

number on the values of average Nusselt or Sherwood number at

e = 0.6, Ra = 108, Pr = 1.0, Sc = 1.0, and N = 1.0

Fig. 6 The effect of buoyancy ratio variation with changing Ekman

number on the values of average Nusselt or Sherwood at e = 0.6,

Da = 10-4, Ra* = 1,000, Pr = 1.0, Sc = 1.0

Table 1 The correlation coefficients and the proportion of variance

R2

Da Ek C1 C2 C3 R2

10-4 10-4 B Ek B 10-3 0.706 0.01 0.352 0.989

10-5 B Ek \ 10-4 1.913 0.187 0.418 0.953

10-5 10-5 B Ek B 10-4 0.858 0.013 0.374 0.99

10-6 B Ek \ 10-5 5.42 0.251 0.466 0.955

10-6 10-6 B Ek B 10-5 0.898 0.015 0.404 0.991

2 9 10-7 B Ek \ 10-6 3.564 0.191 0.505 0.972
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deviates quite obviously at the extreme rates of rotation and

especially at the lower values of Ra*|N ? 1|. Also, it is

noticeable that the correlated values of Nusselt number

have the best agreement with the calculated data at the

lowest Darcy number Da = 10-6. However, it cannot be

said that reducing Darcy number value increases the

matching of the correlated values with the computed data

because it is clear that the agreement for Da = 10-4 is

better than it for Da = 10-5. This fact can indicate the

difficulty of finding a single and universally valid corre-

lation that covers the entire domain of computed data vis-a-

vis the Darcy number and meanwhile has a predictable

trend of the agreement between the correlated data and

computed values.

5 Conclusions

Numerical study for the double-diffusive flow in a long

rotating porous channel has been presented. The tempera-

ture and concentration at the vertical walls are maintained

constant at high and low values, while both horizontal

walls are kept insulated. The generalised model has been

used to simulate the momentum equations with employing

the Boussinesq approximation for the density variation.

Moreover, both the fluid and solid phases are assumed to be

at a local thermal equilibrium. Computations are carried

out for a wide range of dimensionless parameters like

Darcy–Rayleigh number (100 B Ra* B 10,000), Darcy

number (10-6 B Da B 10-4), the buoyancy ratio (-

10 B N B 8), and Ekman number (10-7 B Ek B 10-3),

with keeping the values of the medium porosity, Prandtl

and Schmidt numbers constant at e = 0.6, Pr = 1.0, and

Sc = 1.0, respectively. The results reveal that the rotation

has a negative impact on the secondary circulation, and

hence, the heat and mass transport is reduced considerably

with increasing the rotation strength. In addition, the

mainstream velocity increases significantly with decreasing

Ekman number at the lower and moderate levels of rota-

tion, while it starts to decrease noticeably at the extreme

rates of rotation as a result of the vanishing of the sec-

ondary flow. Furthermore, the rotation seems to have a

dominant role at high levels of porous medium perme-

ability, where it reduces the strength of the secondary flow,

and hence the rates of heat and mass transfer. However,

this role is reduced gradually with decreasing the medium

permeability, but does not completely vanish. Eventually,

the computed values of Nusselt or Sherwood number were

fitted to a power law of Ekman number, Darcy–Rayleigh

Fig. 7 The computed and correlated values of average Nusselt or

Sherwood number versus Ra*|N ? 1| at Da = 10-4 for different

values of Ekman number

Fig. 8 The computed and correlated values of average Nusselt or

Sherwood number versus Ra*|N ? 1| at Da = 10-5 for different

values of Ekman number

Fig. 9 The computed and correlated values of average Nusselt or

Sherwood number versus Ra*|N ? 1| at Da = 10-6 for different

values of Ekman number
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number, and buoyancy ratio, where the correlated data is

found to be in a good agreement with the computed values

at the moderate levels of rotation, but it deviates quite

obviously at the extreme rates of rotation and especially at

the lower values of Ra*|N ? 1|.
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