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Abstract Numerical simulations were conducted for

thermally developing laminar flow in rectangular channels

with aspect ratios ranging from 1 to 100, and for parallel

plates. The simulations were for laminar, thermally

developing flow with H1 boundary conditions: uniform

heat flux along the length of the channel and constant

temperature around the perimeter. In the limit as the non-

dimensional length, x* = x/(DhRePr), goes to zero, the

Nusselt number is dependent on x* to the negative expo-

nent m. As the non-dimensional length goes to infinity the

Nusselt number approaches fully developed values that are

independent of x*. General correlations for the local and

mean heat transfer coefficients are presented that use an

asymptotic blending function to transition between these

limiting cases. The discrepancy between the correlation

and the numerical results is less than 2.5 % for all aspect

ratios. The correlations presented are applicable to all

aspect ratios and all non-dimensional lengths, and decrease

the discrepancy relative to existing correlations.

List of symbols

A Area (m2)

C Correlation coefficient

Cp Fluid specific heat (J/kg K)

Dh Hydraulic diameter (m)

H Channel height (m)

L Channel length (m)

N Blending coefficient

Nu Nusselt number

P Pressure (Pa)

Pr Prandtl number

Re Reynolds number

T Temperature (K)

W Channel width (m)

a Channel half height (m)

a1 Initial element size (m)

an Final element size (m)

b Channel half width (m)

d Incremental element size increase (m)

h Convection heat transfer coefficient (W/m2 K)

kf Fluid thermal conductivity (W/m K)

m Correlation exponent

n Number of elements

q Heat transfer (W)

q00 Heat flux (W/m2)

x* Dimensionless axial position

u Velocity 9 direction (m/s)

Greek symbols

a Aspect ratio

q Fluid density (kg/m3)

l Dynamic viscosity (N s/m2)

Subscripts

D Diameter

fd Fully developed

m Mean

s Surface

th Thermally developed

x Local
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1 Introduction

The prevalence of rectangular channels continues to grow

with the development of microchannel heat sinks [1, 2] and

compact heat exchangers [3]. Whether through microfab-

rication or conventional machining, rectangular channels

are significantly easier to fabricate than round channels on

the mini or microscale. As 3D stacking of high power chips

becomes a reality, interchip cooling will be required.

Brunschwiler et al. [4] demonstrated interlayer cooling in a

3D chip stack using microchannels, parallel plates, and pin

fin configurations. As the hydraulic diameter of the channel

is decreased, the range of mean velocities over which the

flow will be laminar significantly increases. Therefore,

accurate correlations for laminar flow in rectangular

channels are critical for the future development and

application of microchannels for electronics cooling. In

addition, there are numerous applications with conven-

tional rectangular channels that would benefit from widely

applicable, accurate correlations. Due to the lack of cor-

relations many designers substitute correlations for circular

channels which are often not appropriate [1].

While few applications truly exhibit a uniform heat flux

along the length of the channel, Lee et al. [1] showed that the

H1 boundary condition for thermally developing flow was the

most appropriate for microchannel heat sinks. The H1

boundary condition assumes that the perimeter of the channel

has a uniform temperature and the heat flux per unit length is

uniform along the length of the channel. Correlations for local

and mean Nusselt numbers for thermally developing flow were

proposed by Lee and Garimella [5] for the H1 boundary con-

dition with aspect ratios of 1–10 and non-dimensional lengths

in the entry region. Their correlations are based on computa-

tional results for theoretical laminar flow with constant ther-

mophysical properties and are compared to experimental

results. It will be shown that these correlations have a maxi-

mum discrepancy of 5 % for the local values and 5 % for the

mean values with non-dimensional lengths x*[1 9 10-3.

With no additional discrepancy, the Lee and Garimella [5]

correlations can be used as x* goes to infinity by transitioning

to the fully developed value when the correlation goes below

values for fully developed flow. Expressions are available for

the fully developed Nusselt number in rectangular channels

[6]. The correlations presented by Lee and Garimella [5]

should not be extended beyond an aspect ratio of 10 due to the

high order polynomials used to determine the coefficients.

Wibulswas conducted numerical studies with thermally

developing flow with both the H1 boundary condition and the

constant temperature, T, boundary conditions [7]. Their results

were presented in tabular form for a limited number of non-

dimensional lengths and for aspect ratios of 1–4 for the H1

boundary conditions.

2 Thermally developing flow in rectangular channels:

numerical simulations

COMSOL was used to conduct a numerical study of

thermally developing flow in rectangular channels. The

flow velocity profile was assumed to be fully developed

and laminar; and the temperature dependence of the ther-

mophysical properties was neglected. Since the velocity

profile u(y, z) is known. COMSOL was used to solve the

energy equation provided below.

qf Cpu � rT ¼ r � kfrT
� �

ð1Þ

where Cp is the specific heat, qf is the density and kf is the

thermal conductivity of the fluid, u is the fluid velocity and

T is the fluid temperature.

The numerical simulations were conducted on a

dimensional basis using the properties of water and geo-

metric dimensions similar to those used by Lee and Gar-

imella [5]. The thermophysical properties used in the

simulation are provided in Table 1. The hydraulic diameter

was held constant at 333.33 lm while the aspect ratio was

varied. The mean velocity was also held constant at 5 m/s

throughout the study. By holding the mean velocity, fluid

properties and hydraulic diameter constant, the Reynolds

number was the same for all aspect ratios. However, since

the velocity profile is fully developed and the assumption

of the constant thermophysical properties has been made,

the calculated Nusselt number is only a function of the non-

dimensional length. Several other Reynolds numbers and

fluid properties were tested to verify independence.

In the 3D case for rectangular channels, the H1 boundary

condition was implemented using a thin wall as the fluid

boundary [1]. The thermal conductivity was set to 0 in the

axial direction (x) and to a very high value in the lateral

directions (y, z). A uniform heat flux was applied to the outer

surface of the wall which then results in a constant tem-

perature on the perimeter and uniform heat flux along the

length of the channel. In the 2D case for parallel plates, a

uniform heat flux was applied at the fluid boundary.

Figure 1 shows a cross section of the model for an

aspect ratio of 5. The wall thickness remained constant at

20 lm. Since the channels were rectangular, a mapped

mesh was used for both the walls and the fluid channel. The

Table 1 Thermophysical properties used in the numerical

simulations

Density qf 997.6 kg/m3

Specific heat Cp 4,181.5 J/kg K

Thermal conductivity kf 0.6056 W/m3 K

Dynamic viscosity lf 8.55e6 N s/ m2

Inlet temperature Ti 293.15 K
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final mesh after convergence is also shown in Fig. 1 for the

yz cross section. The heat transfer coefficient approaches

infinity at the leading edge of the channel, where the

thickness of the thermal boundary layer goes to zero. In

order to better capture these effects, a non-uniform mesh

was used in all directions.

The 3D velocity profile was evaluated based on an

analytical expression for fully developed flow shown below

as Eq. (2) [8]. The 2D velocity profile was found using the

standard equations for Poiseuille flow between parallel

plates. The non-uniform mesh used in the study was cre-

ated using an arithmetic sequence. These relations were

used to determine the location of each node within the

cross section of the fluid channel. These locations were

further refined by creating 4 additional equally spaced

points between each node location. The analytical expres-

sion for u(y, z) was then evaluated at each point on the

refined 2D grid to create 2D table data for the velocity

profile.

uðy; zÞ ¼
�16 dP=dx

� �

p4lf

X1

m¼1;3;5...

X1

n¼1;3;5...

sin mpy
a

sin mpz
b

mn m2

a2 þ n2

b2

� � ð2Þ

where u(y, z) is the fully developed velocity down the

channel in the 9 direction, a = H/2 is the channel half

height, b = W/2 is the channel half width and lf is the

dynamic viscosity. The pressure gradient is a constant and

was found in terms of the mean velocity, um, by averaging

the above expression.

The mean temperature was calculated by integrating the

product of the fluid temperature and velocity over the cross

section and dividing by the volumetric flow rate. These

results were compared to the linear relationship based on a

simple energy balance. The two methods agreed to within

1 9 10-4 %. Even though the temperature variation around

the perimeter was negligible, the surface temperature at each

x position was determined by averaging across the perimeter.

Tm ¼
R

uðy; zÞTðy; zÞdAR
uðy; zÞdA

ð3Þ

After the original solution was completed, the overall

length of each solution was extended by a factor of four by

running each converged solution in a pseudo-periodic

manner. The outlet temperatures were exported from

COMSOL and used as the inlet conditions for a second,

third and fourth segment of the channel. The mesh

remained identical in the y and z directions, and a uniform

element distribution was used in the x direction based on

the element width at x = L in the first segment. By using a

pseudo-periodic solution, axial conduction in the fluid was

neglected at the interface between each segment. The

assumption of negligible axial conduction has been com-

monly applied [5–7], and no discontinuity in the surface

temperature or mean temperature was observed. Figure 2

shows the mean and surface temperature profiles for the

first and second segments for an aspect ratio of 5. Each

segment had a length of 200 mm.

Once the surface and mean temperature profiles were

determined, the local and mean heat transfer coefficient

Fig. 1 COMSOL model geometry showing a quarter channel with

the thin wall used to implement the H1 boundary condition
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Fig. 2 Surface and mean temperatures for two sequential rectangular

channel segments each with an aspect ratio of 5. The dimensions of

each channel segment are 1,000 lm 9 200 lm 9 200 mm
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and Nusselt numbers were determined using the following

equations.

hx ¼
Ts;x � Tm;x

q00
; NuD;x ¼

hxDh

kf

ð4Þ

1

hm

¼ 1

L

ZL

0

1

hx

dx; NuDh;m ¼
hmDh

kf

ð5Þ

where Ts,x is the local surface temperature, Tm,x is the local

mean temperature, q00 is the surface heat flux applied to the

channel walls, kf is the thermal conductivity of the fluid,

and L is the channel length.

The non-uniform grid was created with an arithmetic

sequence in each direction where the inputs are the number

of elements and the factor over which the elements grow

over the full range. Table 2 shows the channel dimensions

and the mesh input parameters at select aspect ratios for the

converged solutions. Table 3 shows the same information

as Table 2, but with respect to the arithmetic sequence used

to create the non-uniform grid, an = a1 ? (n - 1)�d, where

a1 is the minimum element size, n is the number of elements

and d is the incremental increase. The smallest element is

always located in the corner at the inlet and the element

dimensions increase in each direction. The very large

growth factor in the x direction is necessary to achieve a

narrow element at the inlet. The large growth factor has a

smaller effect on the size of the final node. In an arithmetic

sequence the last node will only increase to twice the

average element size as the growth factor goes to infinity.

Mesh convergence was verified in the first segment in the

following manner. In each lateral direction the growth

factor was held constant and the number of elements was

increased by a factor of
ffiffiffi
23
p

at each refinement. In the axial

direction, the element size at x = 0 was decreased by a

factor of two, while the number of elements was simulta-

neously increased by a factor of
ffiffiffi
23
p

at each refinement. The

growth factor in the x direction was then re-calculated based

on the first element spacing, number of elements and

channel length. While all Nusselt numbers were considered

in the convergence criteria, the values at low x* were the

most sensitive to the mesh refinement. The solutions were

considered to be converged when the local and mean

Nusselt numbers at x* = 1 9 10-4 did not change by more

than 0.1 % as the mesh was refined. The local and mean

Nusselt numbers at x* = 1 9 10-5 changed by less than

0.3 % on the final refinement. To improve the convergence

of the mean Nusselt number, the local Nusselt numbers

were curvefit over the range of x* values from 5 9 10-5 to

2 9 10-4 with the functional form Cx*m. The curvefit was

then used to approximate the contribution from x* values

below 5 9 10-5 to the mean Nusselt number.

After extending the solution length by a factor of 4, the

local Nusselt numbers had reached a constant value. The

local fully developed Nusselt values were then compared to

the following expression for fully developed flow in rect-

angular channels developed by Shah and London [6]. The

resulting discrepancy was less than ±0.1 %.

NuDh;fd ¼ 8:235 � 1� 2:0421 1=a

� �
þ 3:0853 1=a

� �2
�

� 2:4765 1=a

� �3

þ1:0578 1=a

� �4

�0:1861 1=a

� �5
�

ð6Þ

Having reached thermally fully developed flow, the local

heat transfer coefficient was assumed to be constant and

extended up to x* = 100. The extended mean heat transfer

Table 2 Channel dimensions and mesh parameters used for the fluid domain for select aspect ratios

Channel

aspect ratio

Channel height

(lm)

Channel width

(lm)

Channel length

(mm)

# y

elements

# z

elements

# x

elements

y growth

factor

z growth

factor

x growth

factor

1 333.33 333.33 400 30 30 2,000 3 3 200

5 1,000 200 200 60 24 1,400 6 3 284

10 1,833.3 183.33 150 90 24 1,200 9 3 124

100 16,833.3 168.33 100 100 24 980 70 3 101

? 167.77 300 24 2,240 3 268

Table 3 Mesh parameters

based on an arithmetic sequence

where a1 is the initial element

size and d is the incremental

increase

Channel aspect

ratio

a1,y

(lm)

dy

(lm)

# y

elements

a1,z

(lm)

dz

(lm)

# z

elements

a1,x

(lm)

dx

(lm)

# x

elements

1 5.55 0.358 30 5.55 0.358 30 2 0.198 2,000

5 4.76 0.390 60 4.17 0.333 24 1 0.202 1,400

10 4.07 0.358 90 3.82 0.306 24 2 0.205 1,200

100 4.74 3.24 100 3.51 0.281 24 2 0.204 980

? 3.47 0.278 24 1 0.118 2,240
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coefficients were then calculated up to x* = 100 by inte-

grating over the local heat transfer coefficients using

Eq. (5). The results are shown in Figs. 3 and 4. It is clearly

observed that the Nusselt numbers of high aspect ratio

channels approach the values for parallel plates.

3 Thermally developing flow in rectangular channels:

correlations

3.1 Correlations for parallel plates

Shah et al. [9] presented tabulated results for the local and

mean Nusselt between parallel plates with a uniform and

equal wall heat flux boundary condition based on analytical

solutions presented by Cess and Schaffer [10]. Shah pro-

posed the following correlations for the local and mean

Nusselt number for thermally developed flow between

parallel plates [6].

NuDh;x ¼
1:490 � x��1=3 x� � 0:002

1:490 � x��1=3 þ 0:4 0:002\x� � 0:01

8:235þ 8:68 103x�ð Þ�0:506
exp �164 � x�ð Þ x� � 0:01

8
<

:

ð7Þ

NuDh;m ¼
2:236 � x��1=3 x� � 0:001

2:236 � x��1=3 þ 0:9 0:001\x� � 0:01

8:235þ 0:0364

x�
x� � 0:01

8
><

>:
ð8Þ

Awad presented correlations based on the tabulated data

presented by Shah, but used an asymptotic method to fit the

data [11]. Their correlations are provided as Eqs. (9) and

(10) for the local and mean Nusselt numbers. The Awad

correlation captures the Nusselt number with a single

equation that transitions from the asymptotic behavior at

low values of x* when the plates are not influencing each

other to fully developed flow where the Nusselt number is

constant. The asymptotic method was first presented by

Churchill and Usagi et al. [12].

NuDh;x ¼ ð1:490 � x��1=3Þ4:5 þ ð8:235Þ4:5
h i 1=4:5ð Þ

ð9Þ

NuDh;m ¼ ð2:236 � x��1=3Þ3:5 þ ð8:235Þ3:5
h ið1=3:5Þ

ð10Þ

As discussed in the previous section, COMSOL Multi-

physics� was used to solve for the thermally developing

temperature profile between parallel plates with a uniform

heat flux boundary condition.

Figure 5 compares the analytical Shah tabulated values

[9], the Shah correlation [6], the Awad correlation [11], and

the current 2D numerical values. The maximum discrep-

ancy between the Shah analytical values and the current 2D

numerical simulation is less than ±0.3 % for x* values

above 5 9 10-5 and less than ±0.1 % for x* values above

1 9 10-3 for both the local and mean Nusselt numbers.

The Shah correlation has a maximum discrepancy of

±0.8 % for the local Nusselt number, Eq. (7), and ±2.6 %

for the average Nusselt number, Eq. (8). The Awad cor-

relation has a maximum discrepancy of ±2.5 % for the

local Nusselt number, Eq. (9), and ±0.9 % for the average

Nusselt number, Eq. (10).

The mean Nusselt values presented by Shah are based

on a simple average of the heat transfer coefficient. The

average heat transfer coefficient derived in this manner is

most appropriate when the surface-fluid temperature dif-

ference (Ts - Tm) is constant.
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Fig. 3 Local Nusselt numbers for thermally developing flow in a

rectangular channel with aspect ratio, a

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
0

10
1

10
2

x*

 = 1 

 = 4

 = 7

 = 10

 = 15

 = 30

 = 100

 = 

 = 1 

α
α
α
α

α
α
α
α

α

∞

Fig. 4 Mean Nusselt numbers for thermally developing flow in a

rectangular channel with aspect ratio, a
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q ¼
Z

hxðTs � TmÞ dA ¼ AðTs � TmÞ
1

A

Z
hxdA

¼ hmAðTs � TmÞ ð11Þ

where hx is the local heat transfer coefficient and A is the

surface area. The average heat transfer coefficient is then

calculated in the following manner.

hm ¼
1

L

ZL

0

hxdx ð12Þ

An alternative method for calculating the average heat

transfer coefficient is based on determining an average

temperature difference with a known amount of heat

transfer. This method is most applicable when the heat flux,

q00, is known and constant [13].

Ts � Tmð Þ ¼ 1

A

Z
Ts � Tmð ÞdA ¼ 1

A

Z
q00

hx

dA

¼ q00
1

A

Z
1

hx

dA ¼ q00

hm

ð13Þ

The mean heat transfer coefficient calculated in this manner

represents the average convective resistance of the surface.

1

hm

¼ 1

L

ZL

0

1

hx

dx ð14Þ

Calculating the mean heat transfer coefficient as an average

convective resistance is more appropriate for a constant

heat flux boundary condition. Therefore, a new correlation

is proposed for the mean Nusselt number to replace Eq.

(10). Mean Nusselt numbers were recalculated using Eq.

(14), and a new correlation was developed using the

methodology described by Awad et al. [11].

NuDh;m ¼ ð1:987 � x��1=3Þ3:5 þ ð8:235Þ3:5
h ið1=3:5Þ

ð15Þ

3.2 Correlations for rectangular channels: existing

Lee et al. [5] conducted a numerical study for thermal

developing flow in channels with aspect ratios from 1 to 10

and channel lengths up to the point where the local Nusselt

number was within 5 % of the fully developed values. The

results at each aspect ratio were curve fit using an equation

with 4 unknown coefficients. The coefficients were then

curve fit with polynomials. The resulting correlations are

only applicable for aspect ratios up to 10 and for x* values

less than x*th, the dimensionless entrance length from Eq.

(16) [5]. The authors state that for x* values beyond x*th,

fully developed values according to Eq. (6) should be used.

However, it seems more appropriate to transition to the

fully developed values when the predicted values fall

below the fully developed values.

x�th ¼ �1:275� 10�6a6 þ 4:709� 10�5a5 � 6:902� 10�4a4

þ 5:014� 10�3a3 � 1:769� 10�2a2 þ 1:845� 10�2a

þ 5:691� 10�2

ð16Þ

NuDh;x ¼
1

C1;x x�ð ÞC2;xþC3;x

þ C4;x for 1� a� 10

and x�\x�th ð17Þ

C1;x ¼ �3:122� 10�3a3 þ 2:435� 10�2a2

þ 2:143� 10�1aþ 7:325

C2;x ¼ 6:412� 10�1

C3;x ¼ 1:589� 10�4a2 � 2:603� 10�3aþ 2:444� 10�2

C4;x ¼ 7:148� 1:328� 101 1=a

� �
þ 1:515� 101 1=a

� �2

� 5:936 1=a

� �3

NuDh;m ¼
1

C1;m x�ð ÞC2;mþC3;m

þ C4;m for 1� a� 10 and

x�\x�th ð18Þ

C1;m ¼ �2:757� 10�3a3 þ 3:274� 10�2a2

� 7:464� 10�5aþ 4:476

C2;m ¼ 6:391� 10�1

C3;m ¼ 1:604� 10�4a2 � 2:622� 10�3aþ 2:568� 10�2

C4;m ¼ 7:301� 1:311� 101 1=a

� �
þ 1:519� 101 1=a

� �2

� 6:094 1=a

� �3
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Fig. 5 Comparison of existing correlations and data to a 2D

numerical simulation for thermally developing flow between parallel

plates with uniform and equal heat fluxes
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Figure 6a shows a comparison of the numerical simu-

lations with the local correlations proposed by Lee and

Garimella [5]. The Lee correlation is in good agreement

with the numerical simulations for x* [ 1 9 10-3 with a

maximum discrepancy of less than ±5 %. The behavior for

x* values below 10-4 is more clear visible in Fig. 6a on the

inset semi-log plot. At first the Lee correlation begins to

overpredict the values, and below x* = 1 9 10-4 the Lee

correlation begins to underpredict as the correlation levels

off to a constant value. This is the nature of the functional

form chosen for the curvefit, which approaches a constant

as x* goes to zero due to the finite value of C3 in Eqs. (17)

and (18). Therefore, it is recommended that a lower bound

be set on the Lee correlations of x* = 1 9 10-3 for the

local correlation. Lee et al. [1, 5] observed that the majority

of experimental studies on microchannels experience

thermally developing flow where 0.003 B x* B 0.056.

Figure 6b shows a comparison between the numerical

results and published numerical results of Wibulswas [7].

The agreement was very good, and the small differences

are likely attributable to the finer mesh used in this study.

Figure 7a shows a comparison of the numerical simu-

lations with the mean correlations proposed by Lee and

Garimella [5]. The agreement between the Lee correlations

and the experimental data is very good for x* [ 1 9 10-4

with a maximum discrepancy that is below ±5 %. The

behavior for x* values below 10-4 is shown in Fig. 7a on

the inset semi-log plot. The Lee correlation starts to level

off and approach a constant value for x* values below

1 9 10-4. It is recommended that a lower bound be set on

the Lee correlations of x* = 1910-4 for the mean corre-

lation. Lee and Garimella [5] compared their mean

correlation with experimental data, for x* values ranging

from 3 9 10-4 to 2 9 10-3 with aspect ratios around 5,

and showed good agreement. Figure 7b shows a compari-

son between the current numerical results and the results

published by Wibulswas et al. [7]. The lack of agreement in

this case stems primarily from the manner in which the

mean Nusselt number is calculated. Wibulswas used

Eq. (12) to calculate the mean heat transfer coefficient,

while the mean value in this study was calculated using

Eq. (14) which is consistent with Lee and Garimella [5].

3.3 Correlations for rectangular channels: proposed

The asymptotic method proposed by Churchill and Usagi

[12] was used to determine new correlations for the local

and mean Nusselt numbers that are applicable for rectan-

gular channels with any aspect ratio subject to the uniform

heat flux (H1) boundary condition. The first step was to

determine the asymptotic behavior of each aspect ratio as

x* goes to zero. Figure 8 shows the results of the curvefits

for the local and mean values with an aspect ratio of 1. As

x* approached infinity, the local and mean Nusselt number

approach a constant value which is the fully developed

value of 3.61 for an aspect ratio of 1. As x* approached

zero the relationship is clearly linear on a logarithmic plot

obeying the following functional form where C and m can

be determined from a curvefit.

NuDh;x=m ¼ Cx�m ð19Þ

The curevfits were used to find C and m at each aspect ratio

simulated for both the local and mean Nusselt numbers.

The results are provided in Tables 4 and 5. Once the
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asymptotic behavior is known for each limit, the blending

function proposed by Churchill and Usagi [12] was used to

transition between these two limits.

NuDh
’ NuDh;x�!0

� �Nþ NuDh;x�!1
� �N

h i1=N
ð20Þ

The only unknown in this relation is the blending coeffi-

cient, N. Figure 9 shows the influence of the blending

function on the resulting curvefit. For a blending coefficient

of 1 the result is simply the sum of the two functions;

however as the blending coefficient goes to infinity the

blending function preferentially selects the function with

the larger value when both functions are positive. Since the

function NuDh;x�!0 goes to infinity at x* = 0 and to zero as

x* ? ?, there will only be a single transition. The

blending coefficient, N, was determined using a least

squares fit in the range of 1 9 10-4 B x* B 1 9 102 to be

4.621 as shown in Fig. 10. The value of the blending

coefficient was determined for each aspect ratio for both

the local and mean Nusselt numbers. The results of these

curvefits are provided in Tables 4 and 5. It can be observed
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Fig. 8 Curvefit results for the local Nusselt number with an aspect

ratio of 1 as x* ? 0 and as x* ? ?

Table 4 Local Nusselt number curve fit parameters from Eqs. (19)

and (20)

a C m N Nufd

1 1.064 -0.3448 4.621 3.610

2 1.127 -0.3423 4.411 4.126

3 1.195 -0.3402 4.317 4.798

4 1.248 -0.3386 4.327 5.333

5 1.286 -0.3376 4.358 5.738

6 1.312 -0.3371 4.389 6.050

7 1.333 -0.3367 4.415 6.295

8 1.352 -0.3361 4.451 6.492

9 1.367 -0.3357 4.477 6.654

10 1.380 -0.3353 4.503 6.788

12.5 1.404 -0.3347 4.550 7.042

15 1.422 -0.3342 4.585 7.221

20 1.443 -0.3337 4.620 7.455

30 1.466 -0.3330 4.663 7.702

50 1.486 -0.3325 4.698 7.909

100 1.501 -0.3321 4.722 8.069

? 1.521 -0.3314 4.761 8.235
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that the coefficients for the case of parallel plates (a ? ?)

are in agreement with Eqs. (9) and (15) but do not match

exactly. This is due to the fact that m and N were deter-

mined more exactly from the numerical curve fit described

above.

In order to determine a general expression for all aspect

ratios, the coefficients C, m and N were plotted as a function

of 1/a and curvefit with a 2nd or 3rd order polynomial. The

resulting correlation is presented for the local Nusselt num-

bers for rectangular channels with the H1 boundary condition.

NuDh;x ¼ NuD;x�!0

� �Nþ NuD;fd

� �N
h i1=N

NuDh;x�!0 ¼ 1:515 1� 0:9991 1=a

� �
þ 1:263 1=a

� �2
�

�0:5613 1=a

� �3
�
� x�m

m ¼ �0:3321 1þ 0:09319 1=a

� �
� 0:05564 1=a

� �2
� �

N ¼ 4:688 1� 0:3647 1=a

� �
þ 0:3572 1=a

� �2
� �

ð21Þ

This correlation is valid for laminar flow, ReD \ -

ReD,critical, in rectangular channels and with fully devel-

oped velocity profiles subject to the H1 boundary

conditions. Critical Reynolds numbers are between 1,500

and 2,800 for smooth microchannels and between 300 and

700 for rough microchannels [14].

Figure 10 shows the proposed correlation versus the

numerical results at a few select aspect ratios. The

proposed correlation is applicable for all aspect ratios from

square channels to parallel plates. The correlation captures

the asymptotic relationship as x* goes to zero and as x*

goes to infinity, therefore the relationship is applicable for

all x* values. There is some discrepancy that arises as the

curve transitions between the asymptotic limits, but the

maximum discrepancy stays below ±2.5 % which is less

than best existing correlations for rectangular channels.

The following correlation is proposed for the mean

Nusselt number for rectangular channels subject to the H1

boundary conditions. Figure 11 shows a comparison of the

proposed correlation with the numerical results for select

Table 5 Mean Nusselt number curve fit parameters for Eqs. (19) and

(20)

a C m N Nufd

1 1.436 -0.3444 3.524 3.610

2 1.518 -0.3419 3.430 4.126

3 1.612 -0.3495 3.399 4.798

4 1.684 -0.3377 3.416 5.333

5 1.736 -0.3365 3.445 5.738

6 1.773 -0.3359 3.467 6.050

7 1.803 -0.3353 3.488 6.295

8 1.829 -0.3347 3.511 6.492

9 1.849 -0.3343 3.528 6.654

10 1.867 -0.3338 3.544 6.788

12.5 1.900 -0.3331 3.574 7.042

15 1.924 -0.3325 3.598 7.221

20 1.954 -0.3319 3.624 7.455

30 1.986 -0.3312 3.651 7.702

50 2.014 -0.3306 3.673 7.909

100 2.035 -0.3301 3.689 8.069

? 2.060 -0.3395 3.719 8.235
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Fig. 9 Influence of the blending coefficient, N, on the curvefit of the

local Nusselt number for an aspect ratio of 1
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Fig. 10 Comparison of the proposed correlation and the numerical

results for local Nusselt numbers
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aspect ratios. Again, since the curve fit captures the

asymptotic behavior as x* goes to zero and as x* goes to

infinity, the correlations is applicable for all x* values. The

maximum discrepancy is less then ±1 % for the mean

Nusselt numbers.

NuDh;m ¼ NuDh;x�!0

� �Nþ NuDh;fd

� �N
h i1=N

NuDh;x�!0 ¼ 2:053 1� 1:016 1=a

� �
þ 1:281 1=a

� �2
�

�0:5659 1=a

� �3
�
� x�m

m ¼ �0:3302 1þ 0:1083 1=a

� �
� 0:06569 1=a

� �2
� �

N ¼ 3:673 1� 0:3279 1=a

� �
þ 0:2924 1=a

� �2
� �

ð22Þ

4 Conclusions

Numerical simulations were conducted using COMSOL

to predict the local and mean Nusselt numbers in the

thermally developing region for rectangular channels. The

2D simulations are in excellent agreement with published

analytical values for parallel plates by Shah et al. [6]. The

3D numerical simulations are in good agreement with

existing correlations by Lee and Garimella [5] for aspect

ratios of 1–10 and published numerical values for local

Nusselt number [7]. The 3D numerical results approach

the parallel plate values as the aspect ratio increases.

Existing parallel plate correlations for the mean Nusselt

number are based on a simple average, which is most

appropriate for constant surface temperature boundary

conditions. While existing rectangular channel correla-

tions for the mean Nusselt number are based on an aver-

aged convective resistance, which is more appropriate

when the surface heat flux is constant. A modified corre-

lation is presented for parallel plates based on an average

convective resistance.

It has been shown that the existing correlations for

rectangular channels, with aspect ratios of 1–10, present by

Lee and Garimella [5] agree with the numerical simulations

to within ±5 % for local when x* [ 1 9 10-3 and mean

Nusselt numbers when x* [ 1 9 10-4. New correlations

are presented that are applicable for all aspect ratios

including parallel plates. The correlations are based on an

asymptotic method and therefore more effectively repre-

sent the Nusselt number as x* goes to zero and as x* goes

to infinity. The proposed correlations are applicable for all

x* values and all aspect ratios, and agree with the numer-

ical simulations to ±2.5 % for the local correlation and

±1.0 % for the mean correlation.

Acknowledgments The authors would like to thank the U.S Army

Research Laboratory for their financial support and the members of

the Power Components Branch for their input and discussions. Con-

tributions to this paper by Andrew Smith were made while on sab-

batical at the U.S. Army Research Lab, Adelphi, MD.

References

1. Lee P-S, Garimella S, Liu D (2005) Investigation of heat transfer

in rectangular microchannels. Int J Heat Mass Tran

48:1688–1704

2. Qu W, Mudawar I (2002) Experimental and numerical study of

pressure drop and heat transfer in single-phase micro-channel

heat sink. Int J Heat Mass Tran 45:2549–2565

3. Kandlikar S (2005) High flux heat removal with microchannels—

a roadmap of challenges and opportunities. Heat Transf Eng

26:5–14

4. Brunschwiler T, Michel B, Rothuiezen H, Kloter U, Wunderle B,

Oppermann H, Reichl H (2008) Forced convective interlayer

cooling in vertically integrated packages. In: Proceedings of 11th

intersociety conference on thermal and thermomechancial phe-

nomena in electrical systems, ITHERM 2008, pp 1114–1125

5. Lee P-S, Garimella S (2006) Thermally developing flow and heat

transfer in rectangular microchannels of different aspect ratios.

Int J Heat Mass Trans 49:3060–3067

6. Shah R, London A (1978) Laminar flow forced convection in

ducts. Academic Press, New York

7. Wibulswas P (1966) Laminar-flow heat transfer in non-circular

ducts, PhD thesis, University of London

8. Marco S, Han L (1955) A note of limiting laminar Nusselt

number in ducts with constant temperature gradient by analogy to

thin-plate theory. Trans ASME 77:625–630

9. Shah R (1975) Thermal entry length solutions for circular tubes

and parallel plates. In: Proceedings of third national heat mass

transfer conference, Indian Institute of Technology, HMT-11-75

10. Cess R, Shaffer E (1959) Heat transfer to laminar flow between

parallel plates with a prescribed wall heat flux. Appl Sci Res

8:339–344

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
0

10
1

10
2

x*

 = 1 

 = 4

 = 7

 = 10

 = 15

 = 30

 = 100

 = 

Eq. [21]o

10
-5

10
-4

25

50

75

100

 = 1 

 = 

α
α
α
α

α

α

α
α
α
α ∞

∞

Fig. 11 Comparison of the proposed correlation and the numerical

results for mean Nusselt numbers

1636 Heat Mass Transfer (2014) 50:1627–1637

123



11. Awad M (2010) Heat transfer for laminar thermally developing

flow in parallel-plates using the asymptotic method. In: Pro-

ceedings of thermal issues in emerging technologies, ThETA 3,

Cairo, Egypt, pp 371–387

12. Churchill S, Usagi R (1972) A general expression for the corre-

lation of rates of transfer and other phenomena. AlChE J

18:1121–1128

13. Incropera F, Dewitt D, Bergman T and Lavine A (2007) Intro-

duction to heat transfer, 5th edn. Wiley, New York

14. Hetsroni G, Mosyak A, Pogrebnyak E, Yarin L (2005) Fluid flow

in micro-channels. Int J Heat Mass Trans 48:1983–1998

Heat Mass Transfer (2014) 50:1627–1637 1637

123


	Laminar thermally developing flow in rectangular channels and parallel plates: uniform heat flux
	Abstract
	Introduction
	Thermally developing flow in rectangular channels: numerical simulations
	Thermally developing flow in rectangular channels: correlations
	Correlations for parallel plates
	Correlations for rectangular channels: existing
	Correlations for rectangular channels: proposed

	Conclusions
	Acknowledgments
	References


