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Abstract The effect of flow slip on the nanofluid

boundary layer over a stretching surface is studied. The

present results provide a basic understanding on the effects

of the slip boundary condition on heat and mass transfer of

nanofluids past stretching sheets subject to a convective

boundary condition from below. The results show that an

increase of thermophoresis parameter or slip factor would

decrease the reduced Nusselt number in some cases.

List of symbols

(qc)f Heat capacity of the fluid

(qc)p Effective heat capacity of the nanoparticle material

Bi Biot number

c Constant

DB Brownian diffusion coefficient

DT Thermophoretic diffusion coefficient

hf Heat transfer coefficient of convective heat transfer

k Thermal conductivity

Le Lewis number

N Slip constant

Nb Brownian motion parameter

Nt Thermophoresis parameter

Nu Nusselt number

p Pressure

Pr Prandtl number

qm Wall mass flux

qw Wall heat flux

Rex Local Reynolds number

Shx Local Sherwood number

T Fluid temperature

T? Ambient temperature

Tf Temperature of the hot fluid

Tw Temperature at the stretching sheet

u,v Velocity components along x and y axes

uw Velocity of the stretching sheet

x,y Cartesian coordinates (x axis is aligned along the

stretching surface and y axis is normal to it)

Greek symbols

a Thermal diffusivity

b Dimensionless nanoparticle volume fraction

g Similarity variable

h Dimensionless temperature

k Dimensionless slip factor

qf Fluid density

qp Nanoparticle mass density

s Parameter defined by ratio between the effective heat

capacity of the nanoparticle material and heat

capacity of the fluid

ø Nanoparticle volume fraction

ø? Ambient nanoparticle volume fraction

øw Nanoparticle volume fraction at the stretching sheet

w Stream function

1 Introduction

The boundary layer flow over a moving continuous solid

surface is an important type of flow, which occurs in sev-

eral engineering processes. For example, in industry the

heat-treated materials travel between a feed roll and a

wind-up roll while they are subject to heat transfer with a
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fluid. Another example is the materials manufactured by

extrusion of plastic sheets [1]. These engineering processes

can be modeled as a stretching sheet. The stretching sheet

phenomena occur in many other applications such as: paper

production, glass blowing, metal spinning [2], polymer

engineering [3], cooling of metallic sheets and crystal

growing [1, 3]. In the mentioned applications, the heat

transfer rate in the boundary layer over stretching sheet is

important because the quality of the final product depends

on the heat transfer rate between the stretching surface and

the fluid during the cooling or heating process [4]. There-

fore, the choice of a suitable cooling/heating liquid is

essential as it has a direct impact on the rate of heat

transfer.

In recent years, the heat transfer enhancement of nano-

fluid has been proposed as a route for surpassing the per-

formance of heat transfer rate in liquids currently available

[5]. Nanofluid is described as a fluid in which the solid

nanoparticles with the length scales of nanometers are

suspended in a conventional heat transfer fluid. It has been

demonstrated that the addition of highly conductive parti-

cles can significantly enhance the thermal conductivity of

the pure base fluid. For example, it was reported that the

effective thermal conductivity of an ethylene–glycol-based

nanofluid which contains nano size copper particles with

diameters less than 10 nm increased by up to 40 at 0.3 %

vol. of dispersed particles [6]. An excellent review of

nanofluid physics and developments can be found in [7, 8]

and the book of Das et al. [9]. The current experimental

data shows that the force-convection enhances in the

presence of nanoparticles [10], and the enhancement

increases with the increase of nanoparticle volume fraction

[11].

Currently, there are two main approaches in the mod-

eling of heat transfer convection in nanofluids. In the first

approach, the nanofluid can be modeled as the common

pure fluid where the conventional equations of mass,

momentum and energy can be used. In the mentioned

models, it is assumed that the enhancement of convective

heat transfer is just because of the enhancement in ther-

mophysical properties, which are affected by nanoparticle

volume fraction and nanoparticle properties. In these

models, the nanoparticles are in thermal equilibrium with

fluid molecules, and there is not any slip velocity between

the nanoparticles and fluid molecules. Thus, a uniform

mixture of nanoparticles is considered for the nanofluid [5,

11–13].

In the second approach, it is believed that in the con-

vection of nanofluids there are several slip mechanisms, so

the volume fraction of nanoparticles in the nanofluid may

not be uniform. A comprehensive survey in the field of

convective transport in nanofluids has been done by Bu-

ongiorno [14]. He demonstrated that the high heat transfer

coefficients in the nanofluids cannot be explained ade-

quately by thermal dispersion [15], nanoparticle rotation

[16] or increase in turbulence intensity of nanoparticles

[17] as proposed in the literatures. Buongiorno considered

seven slip mechanisms which can produce a relative

velocity between the nanoparticles and the base fluid. Of

all of these seven mechanisms, only thermophoresis and

Brownian diffusion were found to be important. Later,

Buongiorno [14] developed an analytical model for con-

vective transport in nanofluids in which Brownian motion

and thermophoresis effect were considered.

Sakiadis [18] studied the boundary layer behavior for

the sheet moving with a constant velocity in a viscous fluid.

The analytical solution for steady stretching of the surface

was given by Crane [19]. After this pioneering work,

various aspects of the problem including magneto hydro-

dynamic flows [20], non-Newtonian fluids [21], nanofluids

[22–24], flows with chemical reactions [25], and also dif-

ferent hydrodynamic and thermal boundary conditions

have been investigated.

Some of the researchers considered different idealized

thermal boundary conditions for the sheet surface. Gupta

and Gupta [26] analyzed heat and mass transfer over a

stretching sheet with constant surface temperature. Dif-

ferent thermal boundary conditions such as power-law

surface temperature and power-law surface heat flux were

discussed by Fang [27]. Cortell [28] investigated the vis-

cous flow and heat transfer over a stretching sheet pre-

scribed power law surface temperature. However, when the

sheet is prescribed to a convective fluid from below, the

consideration of constant or variable temperature/heat flux

is not a realistic boundary condition in many engineering

applications of stretching sheet. In this case, the convective

boundary condition is a more realistic thermal boundary

condition. Recently, number of researchers examined the

convective boundary condition. Aziz [29] considered the

classical problem of hydrodynamic and thermal boundary

layers over a flat plate in a uniform stream of fluid. Aziz

obtained a similarity solution for laminar thermal boundary

layer over a flat plate with a convective surface boundary

condition. Later, Magyari [30] introduced an analytical

approach for heat equation which has been implemented in

the work of Aziz [29]. Hamad et al. [31] investigated the

heat and mass transfer of boundary layer stagnation-point

flow over a stretching sheet in a porous medium saturated

by a nanofluid using a lie group analysis. Ishak [32]

obtained a similarity solution of flow and heat transfer over

a permeable surface with a convective boundary condition.

The forced convection of a uniform stream flow over a flat

surface with a convective surface boundary condition has

been theoretically analyzed by Merkin and Pop [33]. Yao

et al. [34] studied heat transfer in the stretching sheet

problem with convective boundary condition, and they
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obtained an exact solution in the form of an incomplete

Gamma function. They reported that the convective

boundary condition results in temperature slip at the wall,

which it is greatly affected by the Prandtl number and the

wall stretching parameters. They found that the tempera-

ture profiles are quite different from the prescribed wall

temperature cases.

Beyond the temperature boundary conditions, many

researchers studied the different aspects of hydrodynamic

boundary conditions including permeable stretching sheet

and partial slip velocity on the sheet surface. The slip flow

problem of laminar boundary layer is of considerable

practical interest. Microchannels which are at the forefront

of today’s turbomachinery technologies, are widely being

considered for cooling of electronic devices, micro heat

exchanger systems, etc. If the characteristic size of the flow

system is small or the flow pressure is very low, slip flow

happens [35]. Wang [36] reported that the partial slip

between the fluid and the moving surface may occur

in situations that the fluid is particulate such as emulsions,

suspensions, foams and polymer solutions. Wang [37],

Andersson [38] and Ariel [39] employed a partial slip

boundary condition to study the flow of a pure fluid over a

stretching sheet. The effects of partial slip on the steady

flow of an incompressible, electrically conducting third

grade fluid past a stretching sheet has been examined by

Sahoo and Do [40]. Hayat et al. [41] analyzed the effect of

the slip boundary condition on the magneto hydrodynamic

flow and heat transfer over a stretching sheet. The influence

of partial slip, thermal radiation and temperature dependent

fluid properties on the hydro-magnetic fluid flow and heat

transfer over a flat plate with heat generation has been

analyzed by Das [42].

Bocquet and Barrat [43] examined the effect of flow

boundary conditions from nano to micro scales near the

solid interfaces. They briefly discussed the mechanisms of

surface slip and heat transfer on the interface. Bachok et al.

[44] extended the Blasius and Sakiadis problems in nano-

fluids. Yacob et al. [5] investigated boundary layer

flow past a stretching sheet with a convective boundary

condition at the surface for two types of nanofluids,

namely, Cu–water and Ag–water. They discussed the effect

of the convective parameter on the heat transfer charac-

teristics, but they did not consider the effect of Brownian

motion and thermophoresis in their study. They found that

the heat transfer rate at the surface increases with the

increase of the nanoparticle volume fraction while it

decreases with the increase of the convective parameter.

Recently, the Buongiorno’s model [14] has been used by

Kuznetsov and Nield [45] to study the influence of nano-

particles on the natural convection boundary layer flow

past a vertical plate. Khan and Pop [22] analyzed the

boundary-layer flow of a nanofluid past a stretching sheet

in a model in which the Brownian motion and thermo-

phoresis effects have been taken into account. Hassani

et al. [46] analytically examined the work of Khan and Pop

[22]. Makinde and Aziz [47] examined the effect of a

convective boundary condition on the boundary layer flow

of nanofluids past a linear stretching sheet in order to

obtain the more realistic solution where non-isothermal

conditions at the flat sheet are present. They found that the

local concentration of nanoparticles increases as the con-

vection Biot number increases. The entropy generation [48]

and magnetic effects [49] also are analyzed for nanofluid

flow and heat transfer over stretching sheets. Rana and

Bhargava [50] considered a nonlinear velocity for the

sheet, and they analyzed the flow and heat transfer of a

nanofluid over it.

To the best of authors’ knowledge, there is not any

investigation to address the effect of the slip boundary

condition on the heat transfer characteristics of nanofluid

flow over stretching sheet prescribed convective boundary

conditions in a model in which the dynamic effects of

nanoparticles are taken into account. The present study

aims to examine the effect of the slip boundary condition

on the heat transfer characteristics of stretching sheet

which is subjected to convective heat transfer on its surface

in the presence of nanoparticles and their dynamic effects.

2 Governing equations

Consider a two-dimensional incompressible and steady

state viscous flow of a nanofluid over a continuously

stretching surface. The velocity of surface is linear, and is

taken as Uw(x) = c.x where c is a constant, and x is the

coordinate component measured along the stretching sur-

face. A flow with the convective heat transfer coefficient of

hf and temperature of Tf is flowing below the stretching

sheet. The scheme of physical configuration is depicted in

Fig. 1. It is worth mentioning that there are three distinct

boundary layers, namely, hydrodynamic boundary layer

(velocity), thermal boundary layer (temperature) and con-

centration boundary layer (nano particle volume fraction)

Fig. 1 Scheme of physical configuration of stretching sheet
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over the sheet. However, in the Fig. 1 only single boundary

layer is plotted to avoid congestion. Here, the nanofluid

flows at y = 0 where y is the coordinate measured normal

to the stretching surface.

In the continuum modeling of fluidic transport no-slip

boundary condition is sometimes assumed, which means

that the fluid velocity component is assumed to be zero

relative to the solid boundary [51]. For nanofluids, how-

ever, this assumption no longer holds [51], and a certain

degree of tangential slip must be allowed [51, 52]. Con-

sidering the Navier’s condition, the velocity slip is assumed

to be proportional to the local shear stress at the sheet

surface [37]. The fraction of nanoparticles øw is assumed

constant at the stretching surface. The stretching sheet

surface temperature Tw, which will be evaluated later, is the

result of a convective heating process depending to tem-

perature of hot convective fluid below the stretching sheet

(Tf) and convective heat transfer coefficient (hf).

When y attends to infinity, the values of the temperature

and nanoparticle fraction attend to the constant values of T?

and ø? in the quiescent part of the nanofluid, respectively. ø

and T indicate the fraction of nanoparticles and the temper-

ature of flow, respectively. For nanofluids, by considering

the dynamic effects of the nano particles and applying the

boundary layer approximations the Boungiorno’s [14] con-

vective transport equations in the Cartesian coordinate sys-

tem of x and y can be written as follows [22, 47]:

ou

ox
þ ov

oy
¼ 0 ð1Þ

u
ou

ox
þ v

ou

oy
¼ � 1

qf

op

ox
þ mr2u ð2Þ

u
ov

ox
þ v

ov

oy
¼ � 1

qf

op

oy
þ mr2v ð3Þ

u
oT

ox
þ v

oT

oy
¼ ar2T þ s DBr/ � rT þ DT

T1
rT � rT

� �

ð4Þ

u
o/
ox
þ v

o/
oy
¼ DBr2/þ DT

T1

� �
r2T ð5Þ

subject to the following boundary conditions at the sheet,

v ¼ 0; u ¼ UWðxÞ � US; �k
oT

oy

� �
¼ hf ðTf � TÞ;

/ ¼ /W ; at y ¼ 0 ð6Þ

and the following boundary conditions at the far field (i.e.

y??),

v ¼ u ¼ 0; T ¼ T1; / ¼ /1; ð7Þ

Here, u and v are the velocity components along the

axis x and y respectively. p is the fluid pressure, a is the

thermal diffusivity, k is the thermal conductivity of fluid,

v is the kinematic viscosity, qf is the density of the base

fluid, qp is the density of the particles, Us is the velocity

slip at the wall, DB is the Brownian diffusion coefficient,

and DT is the thermophoresis diffusion coefficient.

s = (qc)p/(qc)f is the ratio of the effective heat capacity

of the nanoparticle material and heat capacity of the fluid,

q is the density and ø is rescaled nanoparticle volume

fraction and r2 is the Laplace operator in Cartesian

coordinates.

In order to obtain similarity solution for Eqs. (1)–(5), the

stream function and dimensionless variables can be intro-

duced in the following form,

w ¼
ffiffiffiffiffi
cv
p

f ðgÞ; g ¼ y
ffiffiffiffiffiffiffi
c=v

p
ð8aÞ

bðgÞ ¼ /� /1
/W � /1

; hðgÞ ¼ T � T1
Tf � T1

ð8bÞ

The stream function w can be defined as u ¼ ow=o y,

v ¼ �ow=o x, so that Eq. (1) is satisfied identically. The

pressure outside the boundary layer in quiescent part of flow

is constant; and the flow occurs only due to the stretching of

the sheet; and hence, the pressure gradient can be neglected.

Considering the usual boundary layer approximations,

u [ [ v, ou
oy

[ [ ou
ox
; ov
ox
; ov
oy

, the momentum equation in y

direction reduces to oP
oy
¼ 0. By applying the introduced

similarity transforms, Eq. (8a, b), on the remaining

governing Eqs. (2), (4), (5) the following set of ordinary

differential equations are obtained,

f 000 þ f f 00 � f 02 ¼ 0; ð9Þ
1

pr
h00 þ f h0 þ Nbb0h0 þ Nth02 ¼ 0; ð10Þ

b00 þ Nt

Nb
h00 þ Le f b0 ¼ 0; ð11Þ

Here, by using the boundary layer approximations and

introducing the Navier’s condition one may obtain,

u� UWðxÞ ¼ Nqm
ou

oy
¼ US ð12Þ

where q is the density and N is a slip constant. By applying

the similarity transforms, the Eq. (12) is reduced to,

f 0ð0Þ � 1 ¼ kf 00ð0Þ; ð13Þ

where k ¼ N qðcvÞ1=2
is the dimensionless slip factor.

Performing introduced similarity transforms (i.e. Eq. (8))

on the remaining boundary conditions Eqs. (6), (7) the

transformed boundary conditions are obtained which can

be summarized as below,

At g ¼ 0 : f ¼ 0; f 0 ¼ 1þ kf 00; h0 ¼ Biðh� 1Þ; b ¼ 1

ð14Þ
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At g!1 : f 0 ¼ 0; h ¼ 0; b ¼ 0 ð15Þ

In the above equations, primes denote differentiation

with respect to g. The parameters of Pr, Le, Nb, Nt and Bi

are defined by,

Pr ¼ m
a
; Le ¼ m

DB

;Nb ¼ ðqcÞPDBð/W � /1Þ
ðqcÞf m

;

Nt ¼ ðqcÞPDTðTf � T1Þ
ðqcÞf mT1

;Bi ¼ hf

ffiffiffiffiffiffiffi
v=c

p
k

ð16Þ

where Pr, Le, Nb, Nt and Bi denote the Prandtl number,

Lewis number, Brownian motion parameter, thermopho-

resis parameter and Biot number, respectively. Consider a

case which Nb and Nt are equal to zero and Biot number

attends to infinity. The problem reduces to the classical

problem of flow and heat transfer due to a stretching sur-

face in a viscous fluid with constant wall temperature [36,

37, 40]. In this case, the boundary value problem for b
becomes ill-posed without physical meaning.

The quantities of local Nusselt number (Nux) and

Sherwood number (Shx) as important parameters in heat

and mass transfer can be introduced as,

Nux ¼
xqW

kðTW � T1Þ
; Shx ¼

xqm

DBð/W � /1Þ
ð17Þ

where qw is the wall heat flux and qm is the wall mass flux.

Using the similarity transforms introduced in Eq. (8), one

may obtain,

Re�1=2
x Nux ¼ �h0ð0Þ; Re�1=2

x Shx ¼ �b0ð0Þ ð18Þ

where Rex = uw(x)x/m is the local Reynolds number based

on the stretching surface velocity, uw(x). Kuznetsov and

Nield referred the value of Re�1=2
x Nux as the reduced

Nusselt number, and the value of Re�1=2
x Shx as reduced

Sherwood number [45]. Also, Khan and Pop [22] and

Makinde and Aziz [47] used these names in their papers. It

is worth mentioning that Wang [36] and Andersson [38]

obtained an exact solution for Eq. (9) subject to the

boundary conditions Eqs. (14) and (15).

3 Results and discussion

The exact solution of momentum equation, Eq. (9), subject

to the boundary conditions of Eqs. (14) and (15) is pro-

posed by Andersson [38] as follow:

f gð Þ ¼ c 1� expð�cgÞð Þ ð19Þ

where c is the real and positive root of kc3 þ c2 � 1 ¼ 0.

Using the exact solution (Eq. (19)), the set of ordinary

differential equations (Eqs. (10) and (11)) subject to the

boundary conditions (Eqs. (14) and (15)) are solved

numerically for various ranges of the slip boundary

condition and for different values of the Prandtl number,

Lewis number, Brownian motion parameter, thermopho-

resis parameter and Biot number. Numerical results are

obtained using Runge–Kutta–Fehlberg method [53, 54].

The most crucial factor of the solution is to choose the

appropriate finite value of g?. Thus, to estimate the value

of g?, it increased from initial value of 15 to the evaluated

values of h0(0) and b0(0) which they differ only after

desired significant digit.

The values of Biot number (Bi) are chosen as less than

unit, higher than unit (Bi = 10) and very high

(Bi = 1,000). The results of increase of the Biot number

from very low to very high values show that the value of

Bi = 1,000 can accurately simulate the isothermal

boundary condition which has been previously considered

by Khan and Pop [22] with no slip boundary condition.

Therefore, Bi = 1,000 is considered as the physical

infinity of the problem where the wall temperature is very

close to the hot fluid temperature Tf. The values of slip

factor (k) are chosen as zero (no slip), between zero and

unit and a value larger than unit (k = 1.5). This selected

range of the slip parameters is in good agreement with

works of Hamad et al. [55], Wang [36, 37]. Since most

nanofluids examined to date have large values for the

Lewis number Le [ 1 [56], the values of Le = 5 and 10

have been examined in the present study. The choice of

the values for Nb and Nt was dictated by the fact that

these values were used by Khan and Pop [22] and Mak-

inde and Aziz [47] for the flow of nanofluid over an

stretching sheet.

Table 1 shows the variation of the reduced Nusselt

number (Nur) for different values of Nb, Nt, Le and k when

Pr = 1.0 and Pr = 10. Table 2 shows the variation of

reduced Sherwood number for the same parameters as

Table 1. Results of Table 1 demonstrate that increase of

Biot number increases the reduced Nusselt number while

the increase of either thermophoresis parameter or slip

factor decreases the reduced Nusselt number for the

selected range of Prandtl and Lewis numbers. The results

of Table 2 show that the increase of the slip factor

decreases the reduced Sherwood number, but the variation

of other remaining parameters has different effects on

reduced Sherwood number.

Profiles of h(g) and b(g) for selected values of the slip

factor (k), Nb and Nt are shown in Figs. 2 and 3, respec-

tively, when Pr = 5, Le = 5 and Bi = 0.1. These figures

show the effect of the slip boundary condition on the non-

dimensional temperature and concentration distribution

profiles. These figures also show that increase of the slip

factor increases the magnitude of non-dimensional tem-

perature and concentration distribution. The Brownian

motion tends to uniform the concentration of nanoparticles,

and the thermophoresis force tends to move nanoparticles
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from hot to cold areas. Increase of Nb and Nt increases the

movement of nanoparticles away from the sheet surface and

consequently increases the magnitude of temperature profiles

and concentration distribution profiles (as seen in Figs. 2, 3).

Increase of slip factor increases the magnitude of both ther-

mal and concentration boundary layer thickness.

Table 1 Variation of reduced Nusselt number—h0(0) with Nb, Nt, Le, Pr, Bi and k

Le = 5 Le = 10

k = 0.1 k = 1 k = 0.1 k = 1

Pr Nb Nt Bi = 0.1 Bi = 10 Bi = 0.1 Bi = 10 Bi = 0.1 Bi = 10 Bi = 0.1 Bi = 10

0.1 0.08363 0.47065 0.08012 0.37544 0.08353 0.46632 0.08000 0.37195

0.1 0.3 0.08343 0.43555 0.07984 0.34695 0.08332 0.42938 0.07970 0.34197

0.5 0.08323 0.40356 0.07955 0.32107 0.08309 0.39597 0.07939 0.31495

0.1 0.08135 0.40478 0.07748 0.32246 0.08103 0.39591 0.07711 0.31533

1.0 0.3 0.3 0.08110 0.37410 0.07713 0.29765 0.08075 0.36407 0.07673 0.28960

0.5 0.08084 0.34622 0.07677 0.27517 0.08047 0.33536 0.07633 0.26648

0.1 0.07878 0.34680 0.07454 0.27595 0.07820 0.33501 0.07389 0.26649

0.5 0.3 0.07846 0.32014 0.07411 0.25446 0.07785 0.30772 0.07340 0.24452

0.5 0.07813 0.29599 0.07365 0.23505 0.07748 0.28318 0.07290 0.22481

0.1 0.09347 1.01455 0.09185 0.81483 0.09259 0.85606 0.09075 0.68511

0.1 0.3 0.09323 0.63282 0.09146 0.50199 0.09220 0.49193 0.09013 0.38955

0.5 0.09295 0.40811 0.09102 0.32239 0.09174 0.30726 0.08939 0.24269

0.1 0.08333 0.37491 0.07961 0.29789 0.07600 0.23713 0.07107 0.18799

10 0.3 0.3 0.08156 0.21804 0.07700 0.17247 0.07176 0.12917 0.06522 0.10211

0.5 0.07918 0.13723 0.07335 0.10841 0.06538 0.07962 0.05651 0.06291

0.1 0.05662 0.10802 0.05025 0.08549 0.03716 0.05166 0.03140 0.04084

0.5 0.3 0.04778 0.06123 0.04037 0.04839 0.02582 0.02782 0.02082 0.02198

0.5 0.03714 0.03826 0.02987 0.03023 0.01721 0.01712 0.01360 0.01353

Table 2 Variation of reduced Sherwood number—b0(0) with Nb, Nt, Le, Pr, Bi and k

Le = 5 Le = 10

k = 0.1 k = 1 k = 0.1 k = 1

Pr Nb Nt Bi = 0.1 Bi = 10 Bi = 0.1 Bi = 10 Bi = 0.1 Bi = 10 Bi = 0.1 Bi = 10

0.1 1.46505 1.31550 1.15203 1.03805 2.18059 2.07238 1.71885 1.63642

0.1 0.3 1.39993 1.01401 1.08997 0.79834 2.13272 1.86377 1.67333 1.47071

0.5 1.33620 0.78474 1.02961 0.61677 2.08633 1.71780 1.62960 1.35532

0.1 1.48901 1.45386 1.17502 1.14844 2.19926 2.17791 1.73674 1.72064

1.0 0.3 0.3 1.47119 1.38271 1.15817 1.09194 2.18808 2.13826 1.72623 1.68919

0.5 1.45392 1.33099 1.14199 1.05103 2.17750 2.11440 1.71642 1.67039

0.1 1.49390 1.48014 1.17970 1.16938 2.20312 2.19740 1.74043 1.73617

0.5 0.3 1.48574 1.45251 1.17206 1.14748 2.19954 2.18862 1.73712 1.72922

0.5 1.47798 1.43408 1.16489 1.13292 2.19637 2.18669 1.73430 1.72775

0.1 1.45032 1.06216 1.13685 0.83523 2.17463 2.03292 1.71267 1.60633

0.1 0.3 1.35870 1.08973 1.04828 0.86676 2.12063 2.37782 1.66219 1.88498

0.5 1.27306 1.54916 0.96757 1.23229 2.07731 2.86679 1.62573 2.27062

0.1 1.49987 1.52998 1.18558 1.20920 2.22686 2.30011 1.76316 1.81774

10 0.3 0.3 1.51068 1.67152 1.19810 1.32152 2.28692 2.48926 1.82278 1.96731

0.5 1.53439 1.81439 1.22649 1.43430 2.37658 2.62694 1.91164 2.07595

0.1 1.52145 1.55136 1.20484 1.22584 2.25179 2.27692 1.78238 1.79909

0.5 0.3 1.58157 1.64854 1.25851 1.30267 2.34971 2.38658 1.86262 1.88573

0.5 1.65543 1.72272 1.31976 1.36124 2.43146 2.45810 1.92593 1.94222
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For a typical case with Pr = 5, Le = 5 and Bi = 0.1,

the dependent similarity variables h(g) and b(g) are plotted

for different values of slip factors k and Biot number

parameter Bi in the Figs. 4 and 5, respectively. Figure 4

shows that increase of the slip factor k or Biot number Bi

increases the magnitude of non-dimensional temperature

profiles. The stronger convection (higher Biot number)

results in higher surface temperatures and consequently the

higher values of temperature profiles. Increase of the slip

factor decreases the tendency of the nanofluid to remove

the heat away from the plate and consequently causes the

higher values of temperature profiles. Figure 4 also depicts

that for the small (Bi = 0.1) and large (Bi = 10) values of

Biot number the effect of the slip factor k on the wall

values of non-dimensional temperature profiles h(0) is less

than it for middle values of Biot number (Bi = 1). Increase

of the Biot number or slip factor increases the thermal

boundary layer thickness and wall temperature values h(0).

Increase of thermal boundary layer thickness with the

increase of the slip factor is due to the fact that the flow of

fluid in the boundary layer is in results of the stretching of

the sheet. Therefore, increase of the slip factor decreases

the flow motion and consequently increases the thickness

of thermal and concentration boundary layers. Figure 5

reveals that profiles of b(g) for all selected values of Biot

number and slip factor take value of one on the sheet

surface, and they tends to zero as g tends to infinity. This

figure depicts that increase of Biot number or increase of

the slip factor increases the values of b(g). It is worth

noticing that in the case of (k ? 0) the present study

reduces to the work of Makinde and Aziz [47]. In the

Figs. 2 and 4, the non-dimensioanl temperature profiles (in

the case of k ? 0) are compared with the results reported

by Makinde and Aziz [47]. Similarly, in the Fig. 5, the

non-dimensioanl concentration profiles (in the cases of

k ? 0) are compared with the results reported by Makinde

and Aziz [47]. These figures show that the results of

present study are in good agreement with the previous

study.

The variation of dimensionless heat transfer rate (i.e.

reduced Nusselt number) and dimensionless mass transfer

rate (i.e. reduced Sherwood number) respect to thermo-

phoresis parameter for different values of Biot number and

slip factor when Pr = 10, Le = 10 and Nb = 0.1 are

shown in Figs. 6 and 7. According to Fig. 6 the

Fig. 2 Effect of slip factor, Nt and Nb on temperature profiles for

Pr = 5, Le = 5, Bi = 0.1

Fig. 3 Effect of slip factor, Nt and Nb on concentration profiles for

Pr = 5, Le = 5, Bi = 0.1

Fig. 4 Effect of slip factor and Bi on temperature profiles for

Nb = Nt = 0.1, Pr = Le = 5
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dimensionless heat transfer rate, reduced Nusselt number,

increases with decrease of the thermophoresis parameter,

increase of the Biot number and decrease of the slip factor.

Figure 7 depicts that increase of thermophoresis parameter

decreases the reduced Sherwood number for small values

of Biot number (i.e. Bi & 0.1), but for comparatively large

values of the Biot number (i.e. Bi & 0.5) increase of

thermophoresis parameter first decreases the reduced

Sherwood number and then increases it. In addition, from

the Fig. 7 it is clear that increase of the slip factor

decreases the reduced Sherwood number. The wall

temperature values h(0) as a function of Prandtl number for

selected values of Biot number and slip factor parameter

are plotted in Fig. 8 when Nb = Nt = 0.1 and Le = 5.

This figure depicts that the dimensionless wall temperature

increases with increase of Biot number or slip parameter,

but it first decreases and then slowly increases with the

increase of Prandtl number. Therefore, for each compara-

tively large value of Biot number there is an optimum

Prandtl number which minimizes the dimensionless wall

temperature h(0).

Fig. 5 Effect of slip factor and Bi on concentration profiles for

Nb = Nt = 0.1, Pr = 5, Le = 5

Fig. 6 Effects of slip factor, biot number and thermophoresis

parameter on the dimensionless heat transfer rates for Pr = 10,

Le = 10 and Nb = 0.1

Fig. 7 Effects of slip factor, biot number and thermophoresis

parameter on the dimensionless concentration rates for Pr = 10,

Le = 10 and Nb = 0.1

Fig. 8 Effects of slip factor, biot number and Prandtl number on the

dimensionless wall temperature for Le = 5 and Nb = 0.1 and

Nt = 0.1
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4 Conclusion

The effect of partial slip (i.e. Navier’s condition) on the

boundary layer flow and heat transfer of nanofluids past

stretching sheet prescribed convective heat transfer is the-

oretically investigated. The boundary layer equations

governing the flow, heat and nanoparticle are reduced to a

set of nonlinear ordinary differential equations using the

similarity transformations. The obtained differential equa-

tions are solved numerically for different combinations of

nanofluid parameters. Effect of slip factor (k), Biot number

(Bi) and nanofluid parameters including Lewis number

(Le), Brownian motion parameter (Nb) and thermophoresis

parameter (Nt) on the nanoparticle and thermal boundary

layers are discussed using tables and figures. It is observed

that by the increase in the slip factor k and Biot number Bi

the thermal boundary layer thickness increased. The

reduced Nusselt number and reduced Sherwood number on

the stretching sheet are strongly influenced by the slip

factor and Biot number. In all cases, the reduced Nusselt

number and reduced Sherwood number are decreased with

the increase of slip factor k. The reduced Nusselt number

increased with the increase of Biot number and decreased

with the increase of thermophoresis parameter for com-

paratively large values of Prandtl and Lewis numbers. The

dimensionless wall temperature increased with increase of

the Biot number or slip factor. Finally, it is found that for

small values of the Biot number, increase of the thermo-

phoresis parameter decreases the reduced Sherwood num-

ber (for comparatively small values of thermophoresis), but

when the thermophoresis parameter is comparatively large,

the increase of thermophoresis parameter increases the

reduced Sherwood number. Therefore, for each value of

slip factor and comparatively large values of Biot number

(i.e. Bi & 0.5) and small values of Nb (i.e. Nb = 0.1) there

is an Nt which minimizes the Sherwood number. In addi-

tion, when Nb and Nt are comparatively small, for each

comparatively large value of Biot number there is an

optimum Prandtl number which minimizes the dimen-

sionless wall temperature h(0).
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