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Abstract The study investigates the transient thermal

performance of a constant area longitudinal fin made of a

functionally graded material. Such a fin offers advantages

that are not attainable with a traditional fin made of a

homogeneous material. A numerical approach has been

used to study the transient response of the fin with a step

change in its base temperature. The fin is assumed to have

an adiabatic tip. Three types of variations in the thermal

conductivity with the longitudinal distance along the fin are

considered: (a) linear, (b) quadratic, and (c) exponential.

New analytical solutions for the steady state performance

of the fin are derived in terms of the Bessel functions for

cases (a) and (c) and in terms of the Legendre functions for

case (b). These solutions provide a check on the accuracy

of the transient numerical predictions for large times. The

thermal performance of the fin is governed by the classical

fin parameter, Nc, and the fin thermal conductivity grading

parameter, a. Results are presented for the transient tem-

perature distribution, base heat flow, convective heat loss,

the energy stored in the fin and the fin efficiency for rep-

resentative values of Nc and a. It is found that the transient,

as well the steady state performance of the fin, is signifi-

cantly affected by the functional grading of the fin material.

The results presented are not only of fundamental interest

but can also be used to design a functionally graded

fin with the desirable steady and transient thermal

characteristics.

List of symbols

a Thermal conductivity grading

parameter, dimensionless

A Fin cross sectional area, m2

b Fin length, m

c1, c2, c3 Constants

csgn Complex sign function

f (X) Thermal conductivity grading

function

F Function of parameter a

g1ðXÞ; g2ðXÞ; g3ðXÞ Functions of X

h Convection heat transfer

coefficient, W/m2 K

I0, I1 Modified Bessel functions of the

first kind

J0, J1 Bessel functions of the first kind

k Thermal conductivity of fin, W/mK
�k Spatially averaged thermal

conductivity of fin, W/mK

K0, K1 Modified Bessel functions of the

second kind

m, n, p Constants

Nc Fin parameter based on thermal

conductivity of the fin at the tip,

dimensionless
�Nc Fin parameter based on spatially

averaged fin thermal conductivity,

dimensionless

P Fin perimeter, m or Legendre

function of the first kind

q Heat transfer rate, W/m
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Q Dimensionless heat transfer rate or

Legendre function of the second

kind

t Time, s

T Temperature, K

x Longitudinal distance measured

from the tip of the fin, m

X Dimensionless longitudinal distance

measured from the tip of the fin,

dimensionless

Y0, Y1 Bessel functions of the second kind

Subscripts

b Fin base

c Convective

o Value at x = 0 (fin tip)

s Sink

Greek symbols

a Thermal diffusivity of fin, m2/s

g Fin efficiency, dimensionless

C Gamma function

s Dimensionless time

h Dimensionless fin temperature

1 Introduction

With the advances in material science, functionally graded

materials (FGM) with specified continuous variation of

properties can now be designed and manufactured for use

in thermal components and systems. Such materials are

finding increasing use in rocket heat shields, heat exchan-

ger tubes, extended surfaces, thermoelectric generators,

heat-engine components, plasma facings for fusion reac-

tors, and electrically insulating metal/ceramic joints [1–3].

The traditional heat conduction theory, including extended

surface heat transfer, which applies to conduction in

homogeneous materials, must be modified to generate new

solutions that are applicable to heat conduction in FGM.

This paper embarks upon one such study. The continuous

spatial variation of thermophysical properties, such as

thermal conductivity, can offer advantages that are not

available with the use of homogeneous materials. For

example, a thin functionally graded thermal shield can

sustain steep temperature gradients without excessive

thermal stresses. Similar advantages can be realized with

the functionally graded heat exchanger tubes and the heat

engine components.

The analysis of heat transfer in a longitudinal fin made

of a homogeneous material having a constant area and

spatially uniform thermal conductivity is well documented

in books [1, 2]. For a fin made of a FGM, the spatial

dependence of thermal conductivity must be taken into

account to accurately predict the thermal performance of

the fin. Aziz and Rahman [3] investigated the steady-state

thermal performance of a radial fin of uniform thickness

made of a FGM. They considered variable thermal con-

ductivity of the fin and obtained analytical solutions for

the temperature distribution, heat transfer rate, fin effi-

ciency, and fin effectiveness. They also presented and

discussed numerical results illustrating the effect of the

radial dependence of the thermal conductivity on the

performance of the fin. Aziz [4] presented new analytical

solutions for predicting the steady state performance of a

longitudinal fin of uniform thickness with a coordinate

dependent thermal conductivity. He assumed boundary

conditions of constant base temperature and insulated tip.

He considered three types of thermal conductivity varia-

tions and obtained analytical solutions for the temperature

distribution in the fin, the fin heat transfer and fin effi-

ciency. He also presented numerical results to illustrate

the effect of variable thermal conductivity on the thermal

performance of the fin.

Several other transient conduction studies in FGM

without fins have also been reported. For example, Jin [5]

employed a multi-layered material model and obtained a

closed form solution for 1-D temperature distribution in a

FGM strip having variable properties. He used Laplace

transformation, an asymptotic analysis, and an integration

technique to obtain interface temperatures for short times.

Sladek et al. [6] proposed an advanced computational

method for the transient heat conduction analysis of

FGM. They used Laplace transform technique to solve the

initial-boundary value problem and presented numerical

results for a finite strip and a hollow cylinder with an

exponential spatial variation of the material properties.

Hosseini et al. [7] studied transient heat conduction in a

cylindrical shell made of a FGM assuming the thermal

properties to be power law functions of the radial coor-

dinate. They obtained temperature distribution in the

cylinder in terms of the Bessel functions and validated

their results with the available numerical results in the

literature. Chen and Tong [8] presented a sensitivity

analysis for the steady-state and transient heat conduction

in FGM.

Instead of the Fourier model, some studies of transient

conduction in FGM have used a hyperbolic heat conduc-

tion model. Such a model is more appropriate if the tran-

sient process is extremely fast and the temperature profiles

manifest wave characteristics such as in applications

involving short-pulse laser heating where the transient

response time is of the order of picoseconds. Babaei and

Chen [9] used such a model to investigate transient heat

transfer in a heterogeneous sphere. They allowed the

material properties to vary in the radial direction according
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to a power law and solved the problem using the Laplace

transform method. However, the vast majority of research

studies such as those by Noda [10], Eslami et al. [11], and

Hosseini et al. [7] used the Fourier model which is the

approach used in the present work.

For a properly designed longitudinal fin, heat con-

duction must occur predominantly in the axial direction

[12]. To account for the functional grading of the fin

material, only the thermal conductivity of the fin is

assumed to be a power law function of the axial coor-

dinate. The density and specific heat of the material are

assumed to be constant. The exponent in the power law

is a measure of the distribution of the nonhomogeneity in

the material. Such a power law type of spatial variation

of the thermal conductivity was used by Sahin [13] in

the study of optimal distribution of insulation on a flat

surface and by Babaei and Chen [9] in analyzing 1-D,

transient hyperbolic heat conduction in a functionally

graded hollow sphere.

This paper models 1-D transient conduction in a longi-

tudinal fin of uniform cross-sectional area A. The shape of

the cross-section can be rectangular, circular, elliptical etc.

The thermal conductivity of the fin is a prescribed function

of the axial coordinate. Three cases of thermal conductivity

variations are considered, namely, linear, quadratic, and

exponential. For the linear and exponential cases, the

steady state solutions are derived in terms of Bessel func-

tions and for the quadratic case, the steady state solution

appears in terms of Legendre functions.

2 Analysis

Consider a straight fin of constant cross-sectional area A,

perimeter of the cross-section P, and length b as shown in

Fig. 1. The thermal conductivity of the fin is a function of

the axial coordinate x, but its specific heat and density are

taken as constants. The fin has a thermal diffusivity a based

on the thermal conductivity value at x = 0. As indicated in

Fig. 1, the axial coordinate x is measured from the tip of

the fin. The fin loses heat by surface convection to a sink at

temperature Ts. The convection heat transfer coefficient

h over the surface of the fin is assumed to be constant. The

fin is initially in thermal equilibrium with the sink at

temperature Ts. At time t� 0, the base of the fin is sub-

jected to a step increase in temperature from Ts to Tb, while

the tip remains adiabatic. The governing partial differential

equation for the transient response of a convecting fin with

a variable thermal conductivity can be written as

o

ox
f ðxÞ oTðx; tÞ

ox

� �
� hP

k0A
Tðx; tÞ � Ts½ � ¼ 1

a
oTðx; tÞ

ot
ð1Þ

subject to following initial and boundary conditions:

Tðx; 0Þ ¼ Ts

Tðb; tÞ ¼ Tb

oT

ox
ð0; tÞ ¼ 0

ð2a; b; cÞ

with the use of the following dimensionless variables,

hðX; sÞ ¼ T � Ts

Tb � Ts
; X ¼ x

b
; s ¼ at

b2
; Nc ¼

hPb2

koA
ð3Þ

Equation (1) takes the following form

o

oX
f ðXÞ ohðX; sÞ

oX

� �
� NchðX; sÞ ¼

ohðX; sÞ
ot

ð4Þ

The initial and boundary conditions in dimensionless

form appear as follows.

hðX; 0Þ ¼ 0; hð1; sÞ ¼ 1;
oh
oX
ð0; sÞ ¼ 0 ð5a; b; cÞ

The following three different cases of variable thermal

conductivity are considered in this study, namely

k ¼ k0f ðXÞ ð6Þ

where

f ðXÞ ¼ 1þ aX; linear ð7Þ

f ðXÞ ¼ 1þ aX2; quadratic ð8Þ

f ðXÞ ¼ eaX; exponential ð9Þ

These forms of thermal conductivity variations have

been used by Sahin [13] in deriving the optimal thickness

distribution of a given amount of insulation made of a

heterogeneous material. The objective of a nonuniform

thickness of insulation was to minimize the heat loss from

the surface. It was shown that the insulation with a

nonuniform thickness was superior to the insulation with

uniform thickness. However, this conclusion is of

theoretical interest only because such a nonuniform

deposition of insulation on a surface is difficult to

achieve in practice, and also expensive. The extra

expense may be justified if the energy savings due to

reduced heat loss are substantial.

Insulated tip 

Perimeter, P 

Cross-sectional 

area, A

bT

, s

x 

x=0

x=b 

h T

(x)k

Fig. 1 A functionally graded longitudinal fin of constant cross-

sectional area
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The instantaneous base heat flow is given by

qb ¼ k0f ðX ¼ 1ÞA oT

ox
ðb; tÞ ð10Þ

which may be expressed in dimensionless form as follows:

Qb ¼
qbb

k0AðTb � TsÞ
¼ f ðX ¼ 1Þ oh

oX
ð1; sÞ ð11Þ

The instantaneous convective heat loss from the fin is

given by

qc ¼ P

Zb

0

h T � Tsð Þdx ð12Þ

or dimensionless form as

Qc ¼
qcb

k0AðTb � TsÞ
¼ Nc

Z1

0

hdX ð13Þ

The instantaneous rate of energy storage in the fin can

be determined from the energy balance as follows

qstored ¼ qb � qc ð14Þ

or in dimensionless form as

Qstored ¼ Qb � Qc ð15Þ

The instantaneous fin efficiency may be defined as the

instantaneous convective heat loss divided by the

instantaneous convective heat loss if the entire fin was at

the temperature of its base, i.e.

g ¼ qc

hPb Tb � Tsð Þ ð16Þ

which may be expressed in terms of the dimensionless

quantities as

g ¼ Qc

Nc
: ð17Þ

3 Transient response

Equation (4) with the initial and boundary conditions

(5a, b, c) was solved numerically using the algorithm

available in MAPLE 14 [15] for solving parabolic partial

differential equations. The procedure can be implemented

by calling the command pdsolve. This command with the

numeric option specified delivers the numerical solution in

the form of a module from which the numerical solution

can be extracted in the form of numerical data or as a plot

or as an animation. The solutions are generated by using

the default method which uses a second order (in space and

time) centered implicit finite difference scheme. The space

and time steps were chosen as DX ¼ Ds ¼ 0:001. The

procedure also offers the choice of the number of points for

plotting the data. Numerical experiments revealed that the

use of 1,000 points was sufficient to generate smooth

graphs. For each value of dimensionless time s, the 1,000

point values of the dimensionless temperature h were used

to obtain a least squares fit, fourth-order polynomial which

was then used in Eq. (13) to compute the values of Qc. The

accuracy of the numerical procedure used by MAPLE 14

and the least squares polynomial fit was tested against the

exact analytical solutions developed by Donaldson and

Shouman [14] for a constant thermal conductivity. The

numerical results agreed with the analytical results [14] to

four places of decimal and confirmed the accuracy of the

numerical solutions generated by MAPLE 14 [15]. A sec-

ond check was provided by comparing the numerical

results for large times with the steady state solutions which

are derived next.

4 Steady state analytical solutions

By ignoring the transient term in Eq. (4) and the initial

condition, Eq. (5a, b, c), the steady state energy equation

for the fin together with the boundary conditions may be

written as

d

dX
f ðXÞ dhðXÞ

dX

� �
� NchðXÞ ¼ 0 ð18Þ

dhð0Þ
dX
¼ 0; hð1Þ ¼ 1 ð19a; bÞ

The analytical solutions of Eqs. (18, 19a, b) were

obtained by inputting these equations in Maple [15] and

utilizing its ordinary differential equation solving command

dsolve. For all three cases of thermal conductivity variation,

namely linear, quadratic, and exponential, Maple delivered

exact analytical solutions as shown next.

Linear case:

f ðXÞ ¼ 1þ aX

The solution of Eqs. (18) and (19a, b) is found in terms

of the Bessel functions and is given by

hðXÞ ¼ J0 g1ðXÞ½ �Y1ðc1Þ � Y0 g1ðXÞ½ �J1ðc1Þ
J0 g1ð0Þ½ �Y1ðc1Þ � Y0 g1ð0Þ½ �J1ðc1Þ

ð20Þ

where J and Y are the Bessel functions of first and second

kind, respectively, with subscripts denoting the order of the

function. The function g1ðXÞ and the constant c1 are given

by

g1ðXÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Ncð1þ aXÞ=a2

p
; c1 ¼ 2csgnð1=aÞ

ffiffiffiffiffiffiffiffiffi
�Nc

p
=a

ð21a; bÞ

where csgn stands for the sign function.
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Quadratic case:

f ðXÞ ¼ 1þ aX2

In this case, the solution of Eqs. (18) and (19a, b) is

found in terms of the Legendre and gamma functions and

may be written as

hðXÞ ¼
ffiffiffi
p
p

Qnð
ffiffiffiffiffiffiffi
�a
p

XÞ � Cð�n=2ÞCðp=2ÞQmð0ÞPnð
ffiffiffiffiffiffiffi
�a
p

XÞffiffiffi
p
p

Qnð
ffiffiffiffiffiffiffi
�a
p

Þ � Cð�n=2ÞCðp=2ÞQmð0ÞPnð
ffiffiffiffiffiffiffi
�a
p

Þ
ð22Þ

where P and Q are the Legendre functions of the first and

the second kind, respectively, and C is the gamma function.

The constants m, n and p are used as shorthand defined as

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 4Nc

p
þ

ffiffiffi
a
p

2
ffiffiffi
a
p ; n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 4Nc

p
�

ffiffiffi
a
p

2
ffiffiffi
a
p ;

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 4Nc

p
þ 5

ffiffiffi
a
p

2
ffiffiffi
a
p : ð23a; b; cÞ

Exponential case:

f ðXÞ ¼ expðaXÞ

In this case, the solution of Eqs. (18) and (19a, b) is

found in terms of the modified Bessel functions and may be

written as

hðXÞ ¼ g2ðXÞ K0 g3ð0Þ½ �I1 g3ðXÞ½ � þ I0 g3ð0Þ½ �K1 g3ðXÞ½ �f g
K0 g3ð0Þ½ �I1 g3ð1Þ½ � þ I0 g3ð0Þ½ �K1 g3ð1Þ½ �

ð24Þ

where I and K are the modified Bessel functions of the first

kind and second kind, respectively, and the functions g2ðXÞ
and g3ðXÞ are defined as follows.

g2ðXÞ ¼ e�aðX�1Þ=2; g3ðXÞ ¼ 2
ffiffiffiffiffi
Nc

p
e�aX=2=a ð25a; bÞ

The steady state provided by Eqs. (20), (22), and (24)

were used to check the transient results for s ¼ 5 (within

0.4 % of steady state) and a match to three places of

decimal was verified for all the data generated as illustrated

in Table 1 which shows the transient results for s = 2, 3, 4,

and 5 along with the steady state analytical results. This

exercise provided a second check on the accuracy of the

numerical results as mentioned earlier.

5 Results and discussion

For a better understanding of the thermal conductivity

grading parameter a, the effect of a on the dimensionless

thermal conductivity for the three selected profiles is

illustrated in Fig. 2. It is clear from Fig. 2 that the

dimensionless thermal conductivity strong function of the

thermal conductivity grading parameter. It decreases for

negative values of a and increases for positive values of a,

whereas it remains constant when a = 0. To facilitate the

interpretation of results, it is convenient to calculate the

spatially averaged thermal conductivities for the three

variations of k considered. The integration of Eqs. (7), (8),

and (9) from X ¼ 0 to X ¼ 1 gives the average thermal

conductivity �k for the linear, quadratic, and exponential

cases as �k ¼ k0F where F ¼ 1þ a
2

� �
; 1þ a

3

� �
; and 1

a

expðaÞ � 1½ �; respectively. For a = 0.5, these values are

1.25, 1.17, and 1.30 k0 and for a ¼ �0:5, the values are

0.75, 0.83, and 0.79 k0 for the linear, quadratic, and

exponential cases, respectively. If one defines the fin

parameter �Nc based on �k as �Nc ¼ hPb2=�kA, then higher

values of �k give lower values of �Nc and vice versa.

Equations (4) and (6–9) show that the transient response

of the fin depends on two parameters, the classical fin

parameter Nc and the thermal conductivity grading

parameter ra. The effect of these two parameters on fin

temperature, base heat flow, convective heat loss, heat

stored in the fin and the efficiency will now be presented

Table 1 Comparison of transient results with analytical predictions

for the three profiles when Nc = 1, a = 0.5

X Transient solution Analytical solution

Eq. (20)
s ¼ 2 s ¼ 3 s ¼ 4 s ¼ 5

(a) Linear profile

0 0.7121 0.71227 0.71228 0.71228 0.71228

0.2 0.72552 0.72568 0.72569 0.72569 0.72569

0.4 0.76312 0.76326 0.76326 0.76326 0.76326

0.6 0.82223 0.82232 0.82233 0.82233 0.82232

0.8 0.90138 0.90143 0.90143 0.90143 0.90143

1 1 1 1 1 1

Eq. (22)

(b) Quadratic profile

0 0.69648 0.69675 0.69675 0.69675 0.69676

0.2 0.71034 0.7106 0.7106 0.7106 0.71061

0.4 0.75087 0.75108 0.75108 0.75108 0.75108

0.6 0.81523 0.81537 0.81538 0.81538 0.81538

0.8 0.8996 0.89967 0.89967 0.89967 0.89967

1 1 1 1 1 1

Eq. (24)

(c) Exponential profile

0 0.72211 0.72224 0.72224 0.72224 0.72225

0.2 0.73569 0.73581 0.73581 0.73581 0.73581

0.4 0.77338 0.77348 0.77348 0.77348 0.77348

0.6 0.83165 0.83172 0.83172 0.83172 0.83172

0.8 0.90786 0.90789 0.90789 0.90789 0.90789

1 1 1 1 1 1
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and discussed. The transient temperature distributions for

the linear, quadratic and exponential variations in k for

different values of thermal conductivity grading parameter

a are shown in Figs. 3, 4 and 5 at different dimensionless

times with the fin parameter Nc fixed at 1.0. Following the

well known fin behavior, the dimensionless temperature in

each case decreases from the base of the fin to the tip. The

value a = -0.5 represents a material whose thermal con-

ductivity decreases by 50 % from tip to the base. The value

of a = 0 corresponds to a fin of uniform thermal conduc-

tivity. Also, the larger the thermal conductivity grading

parameter a, the flatter the temperature distribution and

consequently higher the fin tip temperature. It is also

observed that the dimensionless temperature increases with

the dimensionless time in each case as the fin responds to the

elevation in its base temperature. The response of the fin

temperature to the change in the thermal conductivity grad-

ing parameter a can be explained in terms of the spatially

averaged thermal conductivity �k: For a fin with uniform

thermal conductivity �k; the steady state temperature distri-

bution is given by the following well known expression.

hðXÞ ¼ cosh �NcX

cosh �Nc
ð26Þ

Consider the temperature distribution for the linear case

(Fig. 3). From the preceding paragraph, the values of �k for

a = -0.5, 0, and 0.5 are 0.75, 1 and 1.25 k0, respectively

which means the lowest �Nc is associated with a = 1 and

the highest with a = -0.5. Based on Eq. (20), the fin

temperatures should be higher for the case of a = 1 and

lower fora = -0.5. Although this is strictly true of the

steady state values, the transient curves should also exhibit

the same pattern. This is exactly what we see in Fig. 3 for

both instances of time. The same argument can be repeated

to explain the temperature distributions in Figs. 4 and 5.

The instantaneous dimensionless base heat flow, con-

vective heat loss from the fin and the rate of energy storage

in the fin corresponding to the temperature distribution in

Figs. 3, 4 and 5 are plotted in Figs. 6, 7 and 8. In each

figure, the surface heat loss is small in the early part of the

transient, and the bulk of the energy flow from the base of

the fin gets stored in the fin. As time passes, the surface

X

k/
k 0

0 0.25 0.5 0.75 1

0.6

0.8

1

1.2

1.4

1.6
Linear
Quadratic
Exponential

a=0

a=-0.5

a=0.5

Fig. 2 Effect of thermal conductivity grading parameter on dimen-

sionless spatial thermal conductivity variation
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Fig. 3 Transient temperature distribution in a longitudinal fin: linear

variation of k with X
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Fig. 4 Transient temperature distribution in a longitudinal fin:

quadratic variation of k with X
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heat loss increases and the stored component of the energy

decreases. At s � 1:75, the fin is virtually at steady state

and the storage term vanishes. At this point, the base heat

flow equals the surface heat loss. For each case illustrated

in Figs. 6, 7 and 8, the base heat flow rate and the surface

heat loss increases with the increase in the value of the

thermal conductivity parameter a. This can be explained as

follows. Consider the steady state base heat flow in terms

of the spatially averaged fin parameter which is given by

Qb ¼ F �Nc tanh �Nc ð27Þ

Equation (27) shows that the base heat flow is a function

of F and �Nc. For the linear case, the factor F is 0.75, 1.00,

and 1.25 for a = -0.5, 0, 0.5, respectively. For a fixed �Nc,

the steady state base heat flow must increase as the thermal

conductivity parameter a increases which is what we

observe for large values of s in Fig. 6. The results Figs. 7

and 8 for large values of s may be similarly explained. The

effect of parameter a on base heat flow seen in the steady

state results also prevails during the transient response i.e.

Qb increases as the parameter a increases.

The transient fin efficiency data for a fin with linear,

quadratic and exponential variations in k is plotted Figs. 9,
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τ

k=k0(e
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Fig. 5 Transient temperature distribution in a longitudinal fin:

exponential variation of k with X
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Fig. 7 Heat transfer rates in a longitudinal fin: quadratic variation of

k with X
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Fig. 8 Heat transfer rates in a longitudinal fin: exponential variation

of k with X
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10 and 11, respectively. Initially, the fin is in thermal

equilibrium with its surroundings and the base heat flow

and consequently the fin efficiency is zero. As the base

temperature is suddenly elevated, heat starts to flow

through the fin and its efficiency begins to increase sharply

in concert with the sharp increase in base heat flow. As the

steady state is approached, each efficiency curve should

asymptotically approach the steady value which is given by

g ¼ F
tanh �Nc

�Nc
ð28Þ

It is obvious from these figures that, in the transient

region, the efficiency increases with the dimensionless time

s, but attains a constant value as the steady state is

approached. The steady state is achieved faster when the

convective parameter Nc increases. It is also observed that
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Fig. 9 Efficiency of a functionally graded longitudinal fin: linear

variation of k with X
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Fig. 10 Efficiency of a functionally graded longitudinal fin: qua-

dratic variation of k with X
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Fig. 11 Efficiency of a functionally graded longitudinal fin: expo-

nential variation of k with X

τ

η

0.5 1 1.5 2
0.2

0.4

0.6

0.8

1

1
2

Linear,Quadratic,Exponential

Nc

a = -0.5
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the efficiency of a functionally graded longitudinal fin

increases with the increase in the thermal conductivity

grading parameter a, but decreases with the increase in

convective parameter Nc. This is true of all three cases

considered. The efficiency of the fin is compared in Fig. 12

for two values of the convective parameter Nc and three

values of the thermal conductivity grading parameter. It is

clear that the efficiency is lowest for the linear grading and

highest for the exponential grading. Again, the efficiency

increases with the decrease in the convective parameter Nc

as in the case for a fin made of a homogeneous material.

6 Conclusions

A numerical approach has been used to study the transient

response of a functionally graded longitudinal fin of con-

stant cross-sectional area. Three cases of spatial variation

of thermal conductivity have been investigated, namely

linear, quadratic, and exponential. For each case, exact

analytical solutions are derived for the steady state tem-

perature distributions in the fin. Of the three types of

thermal conductivity grading investigated, the exponen-

tially graded fin yields the highest steady state fin effi-

ciency. A functionally graded fin gives a superior thermal

performance when it is operating within an environment

which provides low heat transfer coefficient and when the

thermal conductivity grading parameter is high. In the early

part of the transient, the surface heat loss is small and the

energy stored in the fin is large. As time increases, the

surface heat loss increases and the stored energy decreases.

At steady state, the heat flow from the base equals the

surface heat loss. This pattern is observed in all the cases

studied in this paper.

The numerical procedure adopted here can be used to

study the transient response of a fin for any other form of

thermal conductivity grading besides the three cases treated

in this paper. The procedure can also be easily adapted to

study the transient response of a fin subjected to other types

of base and/or environment thermal disturbances.
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