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Abstract The phase change in biological tissues during a

freezing process is simulated by hyperbolic and parabolic

heat equations with temperature-dependent enthalpy. It is

observed that the experimental results are in a good

agreement with that the calculated results by the enthalpy

method. The results shown that the Fourier model predicts

tissues temperature lower than of the non-Fourier model.

Further decrease in freezing rate and freezing velocity is

noticed with an increase in relaxation time value.

1 Introduction

Freezing and thawing phenomena are applied in many

industrial and medical applications. Regarding the biolog-

ical tissues, these phenomena emerge during cryosurgery

and cryopreservation processes. The purpose of cryopres-

ervation is to preserve tissues/cells without any significant

damage to their function and mechanical properties, via-

bility, etc. [1–4]. The cryopreservation is widely used in

stem cell research [5, 6], organs preservation for transplant

[7] and engineered tissue products storage and transporta-

tion [8]. Biological activities are slow even non-active at

the beginning at subzero temperatures. The biological

materials’ activities are retrieved after the physiological

temperature is increased gradually. To guarantee an

optimal cooling rate for cryosurgery or cryopreservation,

the prediction of the transient temperature distribution of

the subject tissues is essential. The cryopreservation cool-

ing rate contributes to the viability of biological tissues

cells significantly.

The common phenomena that occur in the tissues

solidification process are the extra cellular and intercellular

ice formation influenced by the cooling rate. When the

cooling rate is low the extra-cellular ice forms and water is

transported out of the cell leading to its osmotic dehydra-

tion. When cooling rate is high there is not enough time for

the water to be transported out of the cell and intracellular

ice forms. These phenomena can cause damage to the cells

during preserving process. One of the common methods

suggested for preserving tissue cells during cryopreserva-

tion is rapid freezing. Freezing biological systems at

extremely high cooling rates (1,000’s of �C/min) lead to

solidification. At such a high cooling rate, the ice crystal-

lization and grain growth do not form but a second order

thermodynamic phase transition is evolved that leads to an

arrest in the translational molecular motions. The frozen

region tends to form amorphous ice that is said to have

vitrified or formed glass. In order to achieve the cryo-

preservation of high cooling rate, an increase in the tissue

thermal gradient could be considered as an alternative

approach. This approach can be adopted by irradiating laser

with an ultra short laser pulse that can expose to cryogenic

fluid temperatures.

The biological thermal tissues gradient evaluation for

the first time was introduced by Fowler and Toner [9]. A

new cryopreservation method using laser and liquid nitro-

gen was adopted by Kandra [10]. In his dissertation, one

and two-dimensional computational model of tissue section

irradiated by an ultra-short laser pulse and exposed to the

cryogenic fluid where adopted where the tissue section
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cooling rates were evaluated. He applied the parabolic

bioheat transfer conduction for modeling a new cryopres-

ervation method. The presence of large ice crystals in food

freezing processes, for excellent quality is studied by Sanz

et al. [11] for a large section of pork meat frozen by liquid

nitrogen evaporation. They applied finite element method

for solving governing equations in order to simulate the

cooling rates at the product surface. To validate their

results, they compared numerical and experimental results

and observed a good agreement between them.

In many fields of industrial application the solid–liquid

phase change is very extensive including the medical

application. Both cryopreservation and cryosurgery are the

methods allow for solid–liquid phase change to occur.

When this phenomenon occurs in the biological tissues

heat transfer, we know that a major difficulty emerges that

would be introduced in the non-linearity of the model by

the variable disconnection between different phase regions

and the unknown position of the solid–liquid interface [12].

Several studies have been conducted on the phase change

heat transfer in some industrial applications. Sadd and

Didlake [13] were of the first researchers who investigated

the phase change in the heat transfer process. They studied

melting of a semi-infinite body which was exposed to a

sudden temperature difference by the hyperbolic heat

conduction problem.

Studholme [14] used the Gibb’s free energy for mod-

eling the phase change heat and mass transfer during the

freezing process. Sanz and Elvira [15] studied the crys-

tallization process during food freezing. They employed

the enthalpy method and the Fourier heat conduction with

constant heat properties for freezing modeling. They also

used the isothermal phase change for heat transfer model-

ing on a meat piece and suggested 6 s freezing time for

solidification. The effects of non-Fourier heat transfer on

prediction of transient temperature and thermal stress in

skin cryopreservation are studied by Deng and Liu [16]. At

the moving interface for hyperbolic phase change, the

temperature is discontinuous, but for simplification, they

neglected this in their calculations discontinuity [13, 17].

They found that the non-Fourier effect can be essential

when the thermal relaxation time of biomaterials is long.

Wang et al. [18] applied the one-dimensional finite dif-

ference method in order to simulate the individual food

freezing time in the freezing process. They used the

apparent heat capacity approach for the phase change

modeling. To validate the accuracy of their results, they

compared numerical results with the obtained experimental

data. An exact analytical solution of three-dimensional

phase change heat transport of biological tissue during

freezing process was presented by Li et al. [19]. They used

the Green function for solving the Fourier heat conduction

phase change subject to different boundary conditions.

A review of heat and mass transfer modeling of tissues and

cells cryopreservation was perform by Xu et al. [20].

Biological tissues can be treated as porous materials.

The desired effects of porous media on freezing and

thawing process in tissues were achieved by Kumar and

Katiyar [21]. They applied the numerical simulation in

order to study the effect of porosity on the motion of

freezing and thawing front and transient temperature dis-

tribution in the tissue. They observed the significant effects

of porosity on the temperature profile and phase change

interface. They found that with an increase in the porosity

value, the freezing and thawing rates decrease. Other phase

change heat transfer studies are reported by Shemetov [22]

and Greenberg [23], Alexiades et al. [24], Lu [25],

Ayasoufi [26], Wang and Prasad [27], etc.

The objective of this study is to simulate the heat con-

duction in the tissue cryopreservation. This problem,

including the discontinuity of temperature at the solid–

liquid interface is solved numerically by the enthalpy

method via both parabolic and hyperbolic models. Most

researches have neglected the temperature discontinuity for

simplicity at the solid–liquid interface [13, 16, 17], but

here, two types of phase change (isothermal and non-iso-

thermal) are applied in order to simulate heat transfer in

freezing process. In most solidification systems, however,

the phase change from liquid to solid and the accompa-

nying evolution of latent heat will occur over a temperature

range where both the solid and liquid coexist [28]. In this

study, the linear evolution of latent heat over the solidifi-

cation range is used for the non-isothermal phase change.

The influence of this discontinuity and the relaxation time

on the temperature distribution through the subject tissues,

cooling rate and freezing position are studied and different

results are obtained for the parabolic and hyperbolic

models.

2 Mathematical formulations

2.1 The hyperbolic heat transfer formulation

for the enthalpy method during freezing process

The numerical solution of the hyperbolic phase change heat

transfer in skin cryopreservation was solved numerically by

the implicit method by Deng and Liu [16]. They ignored

the temperature discontinuity at the phase change. Here, for

numerical solution, the temperature at the moving interface

is considered discontinuous. The enthalpy method in the

fixed grid is applied for the numerical solution of the

parabolic and hyperbolic heat transfer during freezing

process.

The one-dimensional hyperbolic heat transfer equation

using the enthalpy method can be presented as:
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where, g is the sink or source of the heat, s is the relaxation

time, k is the thermal conductivity and e is the enthalpy per

unit volume. In two phases control volume, the combinational

thermal conductivity coefficient is calculated by:

1

ksl
¼ f

kl
þ 1� f

ks
ð2Þ

where, ksl is the combinational thermal conductivity of two

phases control volume with the volume fraction f, and the

enthalpy of two phases control volume is expressed by:

e ¼ 1� fð Þes þ fel ð3Þ

where, es and el are the enthalpy of solid and liquid phases

respectively in the control volume. The combinational

specific heat and density of two phases control volume are

defined by:

Csl ¼ 1� fð ÞCs þ fCl ð4Þ
qsl ¼ 1� fð Þqs þ f ql ð5Þ

where, Csl and qsl are the combinational specific heat and

density in two phases control volume, respectively. In

general, the enthalpy can depend on different parameters

like temperature, cooling rate, heating rate, etc. In most

studies, the temperature-dependent enthalpy is considered

for two phases modeling. In this article, the same concept is

followed for the solid–liquid modeling in cryopreservation.

2.2 Isothermal phase change

For a material that changes phase at temperature T \ Ts,

the function of the enthalpy-temperature is defined by:

es ¼
ZT

Tref

qsCsdT T\Ts ð6Þ

where, Ts and Tref are the freezing and base temperature,

respectively. In this case, because the whole control volume

is in the solid phase, the latent heat is not considered; hence,

the volume fraction of the unfrozen phase is zero. When the

phase change begins, the temperature is Ts; thus, the

enthalpy-temperature function is expressed by:

esl ¼ esjT¼Ts
þHL T ¼ Ts ð7Þ

where, esl is the enthalpy of material during phase change

and HL is the latent heat of phase change defined by:

HL ¼ fL ð8Þ

where, L is the latent heat of the whole phase change

process. When the material temperature is greater than

freezing temperature (T [ Ts), the enthalpy-temperature

function is expressed by:

el ¼ esljT¼Tl
þ
ZT

Ts

qlCldT T [ Ts ð9Þ

where, Tl is the thawing temperature and the volume

fraction is one.

2.3 Non-isothermal phase change

For a non- isothermal phase change, the fusion occurs

over the temperature range Ts \ T \ Tl, and the volume

fraction f changes from a step function into other forms

that may or may not contain a discontinuity phase. For

this type of problem, when T \ Ts, the enthalpy function

is calculated by Eq. (6). In the unfrozen zone, however,

the liquid fraction needs to be defined at each point. The

liquid fraction can be a function of a number of solidifi-

cation variables [19]. In many systems, it is reasonable to

assume that the liquid fraction is just a temperature

function. The linear temperature-dependent enthalpy is

considered for the non-isothermal phase change. When the

material temperature is Ts B T B Tl, the enthalpy function

is defined by:

esl ¼ esjT¼Ts
þ
ZT

Ts

qslCsldT þ HL Ts� T � Tl ð10Þ

The above variables were defined in the previous

section. For T [ Tl, the enthalpy is defined by:

el ¼ esljT¼Tl
þ
ZT

Tl

qlCldT T [ Tl ð11Þ

3 The numerical solution for the enthalpy method

Numerical application of these methods gives better results

when the phase change occurs within a specific tempera-

ture range. The temperature distribution and volume frac-

tion of solid and liquid phases are obtained by enthalpy in

this newly presented method. Easy development of

enthalpy method compared to the multi-dimensional and

other heat transfer models such as: thermal wave and DPL

(dual-phase-lag) models are the advantages of this method

[28, 29].

The finite difference scheme is applied to discretize the

governing equations and boundary conditions. The explicit

form of finite difference for Eq. (1) by allowing for g = 0

can be presented as:
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Dt þ sð Þenþ1
i � Dt þ 2sð Þen

i þ s en�1
i

¼ Dt2

Dx2
kaven Tn

i�1 � Tn
i

� �
þ kaves Tn

iþ1 � Tn
i

� �� �
ð12Þ

where, Dt and Dx are the time and space steps, respectively,

kaven is the average thermal conductivity at nodes i and i-1

and kaves is the average thermal conductivity at nodes i and

i ? 1.

The Von Neumann analysis [30] is employed here for

stability analysis and can provide a necessary stability

criterion for a numerical scheme expressed as:

aDt 2Dt þ 4sTð Þ
Dx2 Dt þ 2sq

� � � 1; a ¼ max as; alð Þ ð13Þ

where, as and al are thermal diffusivity of solid and liquid

phases, respectively. The stability criterion of Eq. (13) is

derived for one phase without heat sources. The enthalpy of

each grid is calculated by:

enþ1
i ¼ c2en

i þ c3 en�1
i

þ c4 kaven Tn
i�1 � Tn

i

� �
þ kaves Tn

iþ1 � Tn
i

� �� �
ð14Þ

where, c1 = dt ? s, c2 = (Dt ? 2s), c3 = -s/c1 and

c4 ¼ Dt=Dxð Þ2
.

c1.

In this study, an independent-temperature thermal con-

ductivity is considered. While the different values of

thermal conductivity are considered for frozen and unfro-

zen zones, the thermal conductivity during phase change is

obtained by:

kaven ¼
2klks

ksf
n
i þ kl 1� f n

ið Þ þ ksf
n
i�1 þ kl 1� f n

i�1

� � ð15Þ

kaves ¼
2klks

ksf
n
i þ kl 1� f n

ið Þ þ ksf
n
iþ1 þ kl 1� f n

iþ1

� � ð16Þ

where, f is the volume fraction of unfrozen phase. In this

case, the average thermal conductivity of new time step

during phase change is calculated using the volume frac-

tion of unfrozen phase of the previous time step. In this

research, the density change and material deformation are

ignored during solidification and phase change. The spe-

cific heat value is considered constant and different at each

phase.

For a material that changes phase at a single temperature

Ts (isothermal phase change), the enthalpy of the liquid and

solid can be calculated by:

es ¼ qCsTs ð17Þ
el ¼ qCsTs þ qL ð18Þ

These values can also be used in the numerical approach

for determining whether each grid element is solid, liquid

or is undergoing the thawing/freezing process. For this type

of problem, the temperature field can be calculated by:

T ¼
T ¼ e=qCs

e\esð Þ
T ¼ Ts es� e� elð Þ
T ¼ e

qþ Ts Cl � Csð Þ � L
� 	.

Cl e [ elð Þ

8><
>:

ð19Þ

For the two phase zone, the volume fraction of liquid is

obtained by:

f ¼ ðe� esÞ=ðel � esÞ es� e� el ð20Þ

All these parameters are calculated in each time step.

For the non-isothermal phase change (linear temperature-

dependent enthalpy), the enthalpies per unit volume of the

fusion solid and the fusion liquid are defined in the

following equations, respectively.

es ¼ qCsTs ð21Þ
el ¼ qCsTs þ qCave Tl � Tsð Þ þ qL ð22Þ

where, Cave is the average specific heat. For this type of

problem, the temperature field can be calculated by:

T ¼

T ¼ e=qCs
e\esð Þ

T ¼ Ts þ Tl � Tsð Þ e�es

el�es

� 	
es� e� elð Þ

T ¼ e
qþ CsTs � Cave Tl � Tsð Þ þ ClTl � L
� 	.

Cl e [ elð Þ

8>><
>>:

ð23Þ

Here, the two important parameters are the freezing

velocity and the freezing rate. The freezing velocity is the

distance that the final point of solidification process moves

per unit of time; the freezing rate for each point of the

tissue is defined by the amount of temperature drop during

complete solidification process per unit of time and defined

as:

freezing velocity ¼ Dx

tfni
� tfni�1

ð24Þ

freezing ratei ¼ Tinii � Tfinal

� �
=tfni

ð25Þ

where, Tinii and Tfinal are the initial temperatures of point i

before cooling process begins and final temperature of

point i after cooling process ends, respectively; tfni�1
is the

time of complete solidification at point (i - 1) and tfni
is

the final time of solidification process at point i.

4 Results and discussion

4.1 Case study and validation of numerical simulation

In this article, the numerical results are shown for the

parabolic and hyperbolic heat transfer with phase change

during the solidification process. The grid-dependence test

is first conducted by using several different size meshes.
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For the grid study, a slice of beef with x = 0.02 m length is

selected; the beef properties have been reported by Wang

et al. [18]. The time step and relaxation time (in the

hyperbolic model) for the numerical solution are

Dt = 10-6 and s = 0.1 s, respectively. The beef slice is

frozen symmetrically on both sides with constant temper-

ature 77 K and the initial temperature is T0 = 300 K. The

effect of mesh size and time step on the hyperbolic beef

temperature are studied.

The numerical results with the experimental data

obtained by Tu and Liu [31] for a slice of cucumber are

compared in Fig. 1. Wang et al. [18] applied this experi-

mental data for validate of their simulation results. The

cucumber thickness is 2.5 cm and the insulated boundary

condition at the center of cucumber (x = 1.25 cm) and

convection condition with air -40 �C and h = 280

W/m2 �C are considered as the boundary conditions. The

initial temperature of cucumber is T = 293 K and the

cucumber properties were described in the refs. [18, 31].

The temperature at the center of the cucumber slice (tem-

perature at x = 1.25 cm) of test object versus time for

numerical and experimental analysis is shown in Fig. 1. It

is worth mentioning that the obtained temperature distri-

bution in validating the study is calculated from the para-

bolic heat transfer model with phase change during

solidification process. As illustrated in Fig. 1, there exists

an excellent agreement between the numerical results and

the experimental data. It can be deduced that the enthalpy

method is a good method for predicting thermal behaviors

of biological materials during phase change in solidifica-

tion process.

4.2 The numerical results for the hyperbolic

non-isothermal phase change

In order to investigate the non-isothermal phase change

during the solidification process, a beef tissue of length

x = 0.01 m with the initial temperature T0 = 300 K is

selected. At t = 0, the surface temperature at x = 0 drops

to the fusion temperature of liquid nitrogen 77 K and is

maintained at that value. The surface at x = 0.01 m is

insulated. The beef tissue properties were presented in Ref.

[18] and the relaxation time is s = 0.3 s. The temperature

profiles of hyperbolic model for three different points of

the beef tissue (x = 0.0025, 0.005, 0.01 m) are illustrated

in Fig. 2. As expected, the tissue temperature for closer

points to x = 0 is lower than that of the farther points. In

general, the solidification process for closer points to the

cooling boundary occurs at the shorter time than the farther

points. As shown in Fig. 2, when the temperature of each

point in the tissue reaches to Tm = 272.65 K (thawing

temperature), a portion of the cooling energy is wasted by

the latent heat, afterwards this temperature reaches to

Ts = 269.15 K (freezing temperature). With the passage of

time, the slope of temperature profile becomes lower and

the interface velocity of phase change decreases as well.

After solidification process, when whole of tissue is frozen,

the thermal conductivity and the thermal diffusivity of the

frozen phase become greater than the unfrozen phase.

Thus, the temperature profile slope and freezing velocity

increase again. Because of the low difference temperature

between the tissue and the cooling boundary, the slope of

temperature profile and freezing velocity decrease again.

Fig. 1 The comparison between the present numerical results

obtained from the parabolic model and experimental data [31] for

the central temperature of a slice of cucumber

Fig. 2 The variations of temperature versus time for three different

points of beef tissue in non-isothermal phase change via the

hyperbolic model (s = 0.3 s)
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Figure 3 shows the temperature distribution in the sub-

ject beef tissue at time intervals t = 10, 20, 40, 60, and

80 s for hyperbolic case with s = 0.3 s. As the time

increases, the temperature distributions in the beef tissue

converge together. At the beginning of the solidification

process, the end parts of the beef tissue would not freeze;

but as time goes on, whole beef tissue freezes, because of

the higher thermal conductivity and diffusivity in the fro-

zen zone rather than the unfrozen zone, the freezing

velocity increases.

The position of the phase change interface versus time

for the beef tissue is shown in Fig. 4. With an increase in

time, the slope of freezing position decreases, and due to

being away from the cooling boundary, the temperature

gradient decreases as well. The interface velocity versus

time for the beef tissue is shown in Fig. 5. As can be

observed, at the beginning, the freezing velocity is high;

while interface velocity decreases with an increase in time.

As mentioned, with the tissue depth solidification, the

temperature gradient becomes smaller. Hence, the freezing

velocity and freezing rate decrease. The freezing rate up to

the end of solidification process along the beef tissue is

illustrated in Fig. 6. The intracellular and extra cellular ice

formations are common phenomena, affected by freezing

Fig. 3 The variation of temperature along the beef tissue for different

times in non-isothermal phase change via the hyperbolic model

(s = 0.3 s)

Fig. 4 The variation of freezing position versus time for a beef tissue

and the hyperbolic model (s = 0.3 s)

Fig. 5 The freezing velocity versus time for a beef tissue and the

hyperbolic model (s = 0.3 s)

Fig. 6 The variation of freezing rate along the beef tissue for the non-

isothermal phase change and the hyperbolic model (s = 0.3 s)
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rate. As expected, in the closer zones to the cooling

boundary the cooling rate is higher than that of the farther

zones. For the farther zones the cooling rate decreases

drastically. This phenomenon leads to the large ice crystals

formation that may damage the cells during preserving

process.

4.3 The effect of thermal relaxation

on the solidification process

A beef tissue of length x = 0.01 m same as the one in Sect.

4.2 is selected here. A comparison of the hyperbolic results

with the small relaxation time (s = 0.1) to the corre-

sponding parabolic solution is a logical way to validate the

numerical scheme for the hyperbolic phase change prob-

lems. The temperature profiles along the beef tissue at

t = 90 s are shown in Fig. 7 for parabolic (s = 0) and

hyperbolic (s = 0.1 and s = 0.3) solutions. It is well

known that when s approaches zero, the hyperbolic solu-

tion approaches the parabolic solution. In Fig. 7, the tem-

perature profile for s = 0.1 and s = 0 is almost identical;

while, as s increases the discrepancy between the hyper-

bolic and parabolic solutions becomes evident.

For both parabolic and hyperbolic (s = 0.25 s and

s = 0.45 s) models the temperature distribution for the end

of the beef tissue (x = 0.01 m) versus time is shown in

Fig. 8. As illustrated here, the tissue temperature for the

hyperbolic model at the same time is higher than the par-

abolic model. With an increase in the thermal relaxation

time, the temperature increases in the tissue. For example,

tissue temperature for s = 0.45 s is higher than s = 0.25 s.

This can be qualitatively analyzed as follow: the energy for

the low s case diffuses into the beef tissue much quicker;

hence, the tissue solidifies faster and the tissue temperature

decreases more compared to high s case. The temperature

distribution in a point of the tissue (x = 0.0025 m) for both

parabolic and hyperbolic models is illustrated in Fig. 9.

Similar to the results deduced from Fig. 8, the parabolic

model predicts lower temperature for tissues than the

hyperbolic model at the same time. By comparing Figs. 8

and 9, it is deduced that the discrepancy between the

Fig. 7 Comparison of the beef temperature for both hyperbolic

(s = 0.1, 0.3 s) and parabolic non-isothermal phase change model at

t = 90 s

Fig. 8 Comparison of the beef temperature for both hyperbolic

(s = 0.25, 0.45 s) and parabolic non-isothermal phase change model

for x = 0.01 m

Fig. 9 Comparison of the beef temperature for the hyperbolic

(s = 0.25, 0.45 s) and parabolic non-isothermal phase change model

for x = 0.0025 m

Heat Mass Transfer (2012) 48:1559–1568 1565

123



hyperbolic and parabolic models for closer points to the

cooling boundary (x = 0.0025 m) is higher than that of the

farther points (x = 0.01 m). Because the temperature gra-

dient at the closer points to the cooling boundary is severe,

subsequently the effect of thermal relaxation time on the

temperature distribution is more evident.

Figure 10 illustrates how freezing position is affected by

changes in the thermal relaxation time. According to

Fig. 10, the freezing position for the parabolic model

moves faster than the hyperbolic one. This means that the

phase change interface position for the parabolic case at the

same time is greater than that of the hyperbolic case.

Furthermore, with an increase in the thermal relaxation

time, the phase change interface moves slower.

The freezing velocity of the beef tissue for both para-

bolic and hyperbolic models is illustrated in Fig. 11. As

expected, the freezing velocity for the parabolic model is

higher than that of the hyperbolic model and as the freezing

velocity decreases, the thermal relaxation time increases.

As shown in Fig. 11, the discrepancy between the parabolic

and hyperbolic models at the beginning is clear. This is the

result of severe temperature gradient at beginning.

The effect of the thermal relaxation time on the cooling

rate for the part of beet tissue up to the complete solidifi-

cation process is shown in Fig. 12. As expected, the par-

abolic model predicts the higher freezing rate than the

hyperbolic model. This indicates that as the relaxation time

increases, the non-Fourier effect becomes more prominent.

Just like Fig. 11, here in the closer points to the cooling

boundary, the difference solution between both parabolic

and hyperbolic models is more evident.

4.4 The numerical results for the hyperbolic isothermal

phase change

In order to investigate the isothermal phase change during

cryopreservation, the skin tissue with x = 0.01 m length is

selected here. The skin properties are same as the recorded

in Ref. [16]. The boundary and initial conditions are same

as what is in Sect. 4.2. Here thermal relaxation time for the

Fig. 10 Comparison of freezing position for both hyperbolic

(s = 0.25, 0.45 s) and parabolic non-isothermal phase change of a

beef tissue

Fig. 11 The freezing velocity versus time for both hyperbolic

(s = 0.25, 0.45 s) and parabolic non-isothermal phase change model

of a beef tissue

Fig. 12 Comparison of freezing rate for both hyperbolic (s = 0.25,

0.45 s) and parabolic non-isothermal phase change model of a beef

tissue
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skin tissue is s = 0.2 s. The temperature distribution of

three points in skin tissue for the hyperbolic model is

shown in Fig. 13. It is clear that for the closer zones to the

cooling boundary the skin temperature decreases drasti-

cally, while in the zone farther from the cooling boundary

the slope of temperature profile becomes smaller gradually.

In this case, when the freezing process reaches each one of

the zones in the tissue, the phase change occurs at the

constant temperature and the latent heat of the tissue is

achieved at this temperature (freezing temperature Ts). As

shown in Fig. 13, for closer zones to the cooling boundary,

the phase change process occurs in a shorter time. Fig-

ure 14 illustrates that how the temperature profile of end

skin tissue (x = 0.01 m) is affected by the relaxation time.

As mentioned in the previous section, the parabolic model

predicts the temperature lower than the hyperbolic model at

the same time. This means that for the parabolic model, the

solidification process ends earlier than the hyperbolic

model. The skin temperature increases, when the thermal

relaxation time increases. The variation of temperature at

x = 0.0025 m in the isothermal phase change process for

both parabolic and hyperbolic models is illustrated in

Fig. 15. Similar to Fig. 14, at the same time, the hyperbolic

temperature is higher than the parabolic model. Here, for

closer zones to the cooling boundary, the discrepancy

between the Fourier and non-Fourier models is more evi-

dent than the farther zones. Both the isothermal and non-

isothermal types of phase change are observed in Figs. 15

and 8, respectively. In Fig. 8, the phase change occurs in a

limited interval of temperature, while in Fig. 15, the phase

change process occurs in the constant temperature.

5 Conclusions

In this article, the phase change process inside different

tissues subject to freezing process is studied numerically

with respect to the non-Fourier effect. For the numerical

solution, the enthalpy method is applied with respect to the

isothermal and non-isothermal phase changes. To validate

the numerical scheme, the parabolic numerical results are

compared with the experimental data that were presented

Fig. 13 The variations of temperature versus time for three different

points of skin tissue in isothermal phase change by the hyperbolic

(s = 0.2 s) model

Fig. 14 Comparison of the skin temperature for both hyperbolic

(s = 0.1, 0.3 s) and parabolic isothermal phase change for

x = 0.001 m

Fig. 15 Comparison of the skin temperature for both hyperbolic

(s = 0.1, 0.3 s) and parabolic isothermal phase change for

x = 0.0025 m
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by Tu and Liu [31] on a slice of cucumber. The comparison

between the hyperbolic results with the small relaxation

time with the parabolic results was used to validate the

numerical solution for the hyperbolic phase change during

cryopreservation. For the shorter thermal relaxation time, it

was observed that the hyperbolic solution was able to

approach the parabolic solution. Comparing the long

relaxation time parameter with the short relaxation time

parameter, it was observed that as relaxation time increa-

ses, the non-Fourier effect becomes more effective. The

freezing velocity and freezing rate were decreased when

the relaxation time was increased. The discrepancy

between the isothermal and non-isothermal phase change

results is evident. The results indicate that the enthalpy

method has a high capability to solve heat conduction

problems in the solidification process.
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