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Abstract A new mathematical model for electromagnetic

thermofluid equation heat transfer with thermoelectric

properties using the methodology of fractional calculus is

constructed. The governing coupled equations in the frame

11 of the boundary layer model are applied to variety

problems. Laplace transforms and state space techniques

(Ezzat Can J Phys Rev 86:1241–1250 in 2008) are used to

get the solution of a thermal shock problem, a layer

problem and a problem for the semi-infinite space in the

presence of heat sources. According to the numerical

results and its graphs, a parametric study of time-fractional

order 0 \ a B 1, on temperature and the thermoelectric

figure of merit are conducted.

List of symbols

(x, y, z) Space coordinates

q Velocity vector

H Magnetic field intensity vector

B Magnetic induction vector

E Electric field vector

J Conduction electric density vector

u Velocity of the fluid along the

x-direction

U Velocity of the plate

T Temperature

Tw Temperature of the surface

T? Temperature of the fluid away from the

surface

To = Tw - T? Reference temperature

q Density

t Time

Cp Specific heat at constant pressure

pr Prandtl number

M Magnetic field parameter

T Temperature

Q Intensity of heat source

S Seebeck coefficient

P Peltier coefficient

ZT Thermoelectric figure of merit

Ho Constant component of magnetic field

ro Electrical conductivity

lo Magnetic permeability

j Thermal conductivity

l Dynamic viscosity

0 = l/q The kinematics viscosity

so Thermal relaxation time

a Fractional parameter

H(t) Heaviside unit step function

1 Introduction

In the literature concerning thermal effects in continuum

mechanics there are developed several parabolic and

hyperbolic theories for describing the heat conduction. The

hyperbolic theories are also called theories of second sound

and there the flow of heat is modeled with finite propagation

speed, in contrast to the classical model based on the Fou-

rier’s law leading to infinite propagation speed of heat sig-

nals. A review of these theories is presented in the articles by

Chandrasekharaiah [2] and Hetnarski and Ignaczak [3].

Differential equations of fractional order have been the

focus of many studies due to their frequent appearance in

various applications in fluid mechanics, viscoelasticity,
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biology, physics and engineering. The most important

advantage of using fractional differential equations in these

and other applications is their non-local property. It is well

known that the integer order differential operator is a local

operator but the fractional order differential operator is

non-local. This means that the next state of a system

depends not only upon its current state but also upon all of

its historical states. This is more realistic and it is one

reason why fractional calculus has become more and more

popular [4–6].

Fractional calculus has been used successfully to modify

many existing models of physical processes. The first

application of fractional derivatives was given by Abel

who applied fractional calculus in the solution of an inte-

gral equation that arises in the formulation of the taut-

ochrone problem. One can state that the whole theory of

fractional derivatives and integrals was established in the

2nd half of the nineteenth century. Caputo and Mainardi [7,

8] and Caputo [9] found good agreement with experimental

results when using fractional derivatives for description of

viscoelastic materials and established the connection

between fractional derivatives and the theory of linear

viscoelasticity. One can refer to Padlubny [5] for a survey

of applications of fractional calculus.

Among the few works devoted to applications of frac-

tional calculus to thermoelasticity we can refer to the works

of Povstenko [10, 11], who introduced a fractional heat

conduction law, found the associated thermal stresses, and

established the fundamental solutions to the Cauchy

problem in the case of spherical symmetry and investigated

stresses, due to the fractional heat conduction law, in an

infinite body with a circular cylindrical hole. Sherief et al.

[12] introduced new model of thermoelasticity using frac-

tional calculus, proved a uniqueness theorem and derived a

reciprocity relation and a variational principle. Youssef

[13] introduced another new model of fractional heat

conduction equation, proved a uniqueness theorem and

presented one-dimensional application. Some applications

of fractional calculus to various problems of mechanics of

fluid are reviewed in the literature [14–18]. In most of these

investigations the effect of the thermal state in a fluid is not

considered.

In this work we construct a mathematical model for heat

equation with fractional derivatives and thermoelectric

properties. The governing coupled equations in the frame

of the boundary layer are applied to a problem of a layer

medium in the presence of a transverse magnetic field.

Laplace transforms and state space approach techniques are

used to get the solution. Numerical results for the tem-

perature, the velocity component and heat flux are repre-

sented graphically. The effect of thermoelectric figure-of-

merit on fluid flow is studied for different values of fraction

order.

2 Fourier heat conduction law with time-fraction order

Thermoelectric devices have many attractive features

compared with the conventional fluid-based refrigerators

and power generation technologies, such as long life, no

moving part, no noise, easy maintenance and high reli-

ability. However, their use has been limited by the rela-

tively low performance of present thermoelectric materials.

The efficiency of a thermoelectric material is related to the

so-called dimensionless thermoelectric figure-of-merit ZT.

The thermoelectric figure of merit provides a measure of

the quality of such materials for applications and is defined

in [19]:

ZT ¼ roS2

j
T: ð1Þ

The best thermoelectric materials that are currently in

devices have a value of ZT � 1.

A related effect (the Peltier effect) was discovered a few

years later by Peltier, who observed that if an electrical

current is passed through the junction of two dissimilar

materials, heat is either absorbed or rejected at the junction

depending on the direction of the current. This effect is due

to the difference in Fermi energies of the two materials.

The absolute temperature T, the Seebeck coefficient S and

the Peltier coefficient P are related by the first Thomson

relation as in [20]:

P ¼ ST : ð2Þ

Cattaneo [21] was the first to offer an explicit

mathematical correction of the propagation speed defect

inherent in Fourier’s heat conduction law. Cattaneo’s theory

allows for the existence of thermal waves, which propagate

at finite speeds. Starting from Maxwell’s idea [22] and from

paper by Cattaneo [21], an extensive amount of literature

[23–26] has contributed to elimination of the paradox of

instantaneous propagation of thermal disturbances. The

approach is known as extend irreversible thermodynamics,

which introduces time derivative of the heat flux vector,

Cauchy stress tensor and its trace into the classical Fourier

law by preserving the entropy principle. Josef and Preziosi

[25] give a detailed history of heat conduction theory. In

addition to discussing various other models of heat

conduction, these authors’s state that Cattaneo’s equation

is the most obvious and simple generalized of Fourier’s law

that gives rise to a finite speed of propagation. Pure and

Kythe [26] investigated the effects of using the (Maxwell–

Cattaneo) model in Stoke’s second problem for a viscous

fluid. They also studied the effects of discontinuous

boundary data on the velocity gradients temperature fields

occurring in Stoke’s first problem for a viscous fluid. They

also note that in the theory of generalized thermofluid, the

non-dimensional thermal relaxation time so defined as
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so = CpPr, where Cp and Pr are the Cattaneo and Prandtl

numbers respectively, is of order (10)-2.

The Fourier law, modified in this way, established an

impact equation relating heat flux vector, velocity, and

temperature.

The energy equation in terms of the heat conduction

vector q is

qCp
D

Dt
T ¼ �r � qþ Q; ð3Þ

where q is the density of the fluid and Cp is the specific heat

at constant pressure and

Q ¼l 2
ou

ox

� �2

þ2
ov

oy

� �2

þ2
ow

oz

� �2

þ ow

oy
þ o v

oz

� �2
"

þ ou

oz
þ ow

ox

� �2

þ ov

ox
þ ou

oy

� �2
#
; ð4Þ

is the internal heat due to viscous stresses and the operator
D
Dt is the material derivative defined as

D

Dt
¼ o

ot
þ V � rð Þ ð5Þ

The generalized Fourier’s and Ohm’s laws in MHD for a

thermoelectric medium are given by Shercliff [27]

q ¼ �jrT þPJ; ð6Þ
J ¼ ro Eþ V � B� SrTð Þ; ð7Þ

where J is the conduction current density vector, E and B

are respectively, the electric density and the magnetic flux

density vectors and V ¼ U;V ;Wð Þ is the vector velocity of

the fluid. Substituting (6) in (3) we shall obtain the well-

known energy equation

qCp
D

Dt
T ¼ jr2T �r �P J þ Q: ð8Þ

Theoretically, Fourier’s heat-conduction equation leads

to solutions exhibiting infinite propagation speed of

thermal signals. It was shown in Cattaneo [21] and

Lebon and Rubi [23] that it is more reasonable physically

to replace (6) by the following generalized Fourier’s law of

heat conduction including the current density effect to

obtain [28]

qþ so
oq

ot
¼ �jrT þP J: ð9Þ

In this paper, we consider the theory developed by taking a

new fractional Taylor’s series of time-fractional order a
[29], to expand qðx; t þ soÞ and retaining terms up to order

a in the thermal relaxation time so. One then obtains a non-

Fourier formula of heat conduction including the current

density effect in which the evolution equation contains a

fractional order derivative with respect to time. That is

qþ sa
o

a!

oa q

o ta
¼ �krT þP J 0\a� 1; ð10Þ

taking into consideration

oa

ota
f ðy; tÞ ¼

f ðy; tÞ � f ðy; 0Þ a! 0

Ia�1 of ðy;tÞ
ot 0\a\1

of ðy;tÞ
ot a ¼ 1

8<
: ;

where the notion Ia is the Riemann–Liouville fractional

integral is introduced as a natural generalization of the

well-known n-fold repeated integral Inf(t) written in a

convolution-type form as in [30]:

Iaf ðtÞ ¼
Rt
o

ðt�1Þa�1

CðaÞ f ð1Þ d1

I0f ðtÞ ¼ f ðtÞ

9=
; a[ 0:

In the limit as a tends to one, (9) reduces to the well

known Cattaneo law used by Lord and Shulman [31] to

derive the equation of the generalized theory of

thermoelasticity with one relaxation time. It is known that

Lebon et al. [32] and Jou et al. [33] that the classical entropy

derived using this law instead of being monotonically

increasing behaves in an oscillatory way. Strictly speaking,

this result is not incompatible with the Clausius’

formulation of the second law, which states that the

entropy of the final equilibrium state must be higher than

the entropy of the initial equilibrium state. However, the

non-monotonic behavior of the entropy is in contradiction

with the local equilibrium formulation of the second law,

which requires that the entropy production must be positive

everywhere at any time (Lebon et al. [32]). During the last

two decades, this became the subject of many research

papers and resulted in the introduction of what is known

now as extended irreversible thermodynamics. A review

can be found in Jou et al. [33].

Now taking the partial time derivative of fraction order

a of (3), we get [34]

qCp
D

Dt

oaT

ota

� �
¼ �r � oaq

o ta

� �
þ oaQ

ota
: ð11Þ

Multiplying (11) by
sa

o

a! and adding to (3) we obtain

q Cp
D

Dt
T þ sa

o

a!

oa T

o ta

� �
¼ � r � qþ sa

o

a!

oa q

o ta

� �

þ Qþ sa
o

a!

oaQ

o ta

� �
: ð12Þ

Using (10), we get

q Cp
D

Dt
T þ sa

o

a!

oa T

o ta

� �
¼ j r2T � r � P J

þ Qþ sa
o

a!

oa Q

o ta

� �
: ð13Þ
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Taking into account the definition of D
Dt from (5), we arrive

at

o

o t
þ V � rð Þ

� �
T þ sa

o

a!

oa T

o ta

� �

¼ j
q Cp

r2 T � 1

q Cp
r: P J þ 1

q Cp
Qþ sa

o

a!

oaQ

o ta

� �
:

ð14Þ

Equation (14) is the energy equation with fractional time

derivatives of order a(0 \ a B 1), taking into account the

relaxation time so.

The heat (14) in the limiting case a = 1 transforms to

o

o t
þ V � rð Þ

� �
T þ so

o T

o t

� �

¼ k

q Cp
r2 T � 1

q Cp
r � P J þ 1

q Cp
Qþ so

o Q

o t

� �
;

ð15Þ

which is the same equation obtained by Ezzat and Youssef

[28] in the generalized theory of thermoelectric fluid.

In the limiting case and using homogenous initial con-

dition a = 0, (14) reduces to

o

o t
þ V � rð Þ

� �
T ¼ k

q Cp
r2 T � 1

q Cp
r � P J

þ 1

q Cp
Q; ð16Þ

which is the same equation obtained by the coupled theory

of thermoelectric MHD [27].

3 Governing equations and sate space approach

Consider the laminar flow of an infinite incompressible

thermoelectric fluid above the non conducting half-space

y [ 0. Taking the positive y-axis of the Cartesian coordi-

nate system in the upward direction and the fluid flows

through half-space y [ 0 above and in contact with the

plane surface occupying xz-plane. A constant magnetic

field of strength Ho acts in the z direction. The induced

electric current due to the motion of the fluid that is caused

by the buoyancy forces does not distort the applied mag-

netic field. The previous assumption is reasonably true if

the magnetic Reynolds number of the flow (Rm = UL rolo)

is assumed to be small, which is the case in many aero-

dynamic applications where rather low velocities and

electrical conductivities are involved. Under these condi-

tions, no flow occurs in the y and z directions and all the

considered functions at a given point in the half-space

depend only on its y-coordinate and time t. The velocity

field is of the form, V � u; 0; 0ð Þ:

Given the above assumptions the governing one-

dimensional unsteady boundary layer equations for

momentum and heat transfer in such flow situations [35], in

the usual form, are

1. The figure-of-merit ZT at some reference temperature,

To = Tw – T? is defined as

ZTo ¼
rok2

o

j
To; ð17Þ

where ko is the Seebeck coefficient at To.

2. The first Thomson relation at room temperature is

po ¼ koTo; ð18Þ

where po is the Peltier coefficient at To.

3. The magnetic induction has one non-vanishing

component:

Bz ¼ lo Ho ¼ Bo ðconstantÞ

4. The Lorentz force F = J ^ B, has one component in

x-direction is

Fx ¼ �ro B2
o u � ro ko Bo

o T

o y
: ð19Þ

5. The equation of motion with modified Ohm’s law

ou

o t
¼ t

o2u

o y2
� ro B2

o

q
u � rokoBo

q
o T

o y
: ð20Þ

6. The energy equation with modified Fourier’s law

q Cp
o

o t
T þ sa

o

a!

oa T

o ta

� �
¼ j þ ropokoð Þ o2T

o y2

þ poro Bo
o u

o y
þ Q

þ so
o Q

o t
: ð21Þ

Let us introduce the following non-dimensional

variables:

y� ¼ U

t
y ; t� ¼ U2

t
t ; s�o ¼

U2

t
so;

u� ¼ u

U
; H ¼ T � T1

To
; q� ¼ t

j To U
q

Q� ¼ t2 Q

j U2 To
; pr ¼

Cpl
j
; M ¼ t roB2

o

q U2
;

Ko ¼
koroBoTo

q U2
; Po ¼

pot roBo

j To

ð22Þ

Equations (20) and (21) are reduce to the non-dimensional

equations (dropping the asterisks for convenience)

o u

o t
¼ o2u

o y2
�Mu� Ko

oH
o y

; ð23Þ
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pr
o

o t
þ sa

o

a!

oaþ1

o taþ1

� �
H ¼ ð1þ ZToÞ

o2 H
o y2

þ Po
o u

o y

þ Qþ so
o Q

o t
: ð24Þ

To simplify the algebra, only problems with zero initial

conditions are considered. Appling the Laplace transform

defined by the formulas [10]

LfgðtÞg ¼ �gðsÞ ¼
Z1

0

e�stgðtÞ dt

LfDngðtÞg ¼ sn LfgðtÞg n [ 0

9>>=
>>;
; ð25Þ

on both sides of (23) and (24) and writing the resulting

equations in matrix form results in

d

dy

�Hðy; sÞ
�uðy; sÞ
�H0ðy; sÞ
�u0ðy; sÞ

8>>><
>>>:

9>>>=
>>>;
¼

0 0 1 0

0 0 0 1

a 0 0 �b

0 sþM Ko 0

8>>><
>>>:

9>>>=
>>>;

�

�Hðy; sÞ
�uðy; sÞ
�H0ðy; sÞ
�u0ðy; sÞ

8>>><
>>>:

9>>>=
>>>;
� b �Qðy; sÞ

0

0

1

0

2
6664

3
7775; ð26Þ

where

a ¼ spr

1þ ZTo
1þ sa

o

a!
sa

� �
; b ¼ Po

1þ ZTo
;

b ¼ 1

1þ ZTo
1þ sa

o

a!
sa

� �
:

The formal solution of (26) can be expressed as

�Gðy;sÞ¼exp Aðy;sÞy½ 	 �Gð0;sÞþ
Zy

0

exp �AðsÞz½ 	Bðz;sÞdz

0
@

1
A:
ð27Þ

In the special case when there is no heat source acting

inside the medium, (25) simplifies to

�Gðy; sÞ ¼ exp Aðy; sÞ y½ 	 �Gð0; sÞ: ð28Þ

The characteristic equation of the matrix A(s) has the form

k4 � s þM þ a� Kobð Þ k2 þ ðsþMÞa ¼ 0; ð29Þ

where k is a characteristic root. The Cayley–Hamilton

theorem states that the matrix A satisfies its own

characteristic equation in the matrix sense. Therefore, it

follows that

A4 � sþM þ a� Kobð ÞA2 þ aðsþMÞ I ¼ 0: ð30Þ

Equation (30) shows that A4 and all higher powers of A

can be expressed in terms of A3, A2, A and I, the unit

matrix of order 4. The matrix exponential can now be

written in the form

exp½AðsÞy	 ¼ a0ðy; sÞI þ a1ðy; sÞAðsÞ þ a2ðy; sÞ A2ðsÞ
þ a3ðy; sÞA3 ðsÞ: ð31Þ

The scalar coefficients of (31) are now evaluated by

replacing the matrix A by its characteristic roots ±k1 and

±k2, which are the roots of the biquadratic (29), satisfying

the relations

k2
1 þ k2

2 ¼ sþM þ a� Kob; ð32aÞ

k2
1k2

2 ¼ ðsþMÞa: ð32bÞ

This leads to the system of equations

expð
k1xÞ ¼ ao 
 a1k1 þ a2k2
1 
 a3k3

1; ð33aÞ

expð
k2xÞ ¼ ao 
 a1k2 þ a2k2
2 
 a3k3

2: ð33bÞ

The solution of the above system of linear equations is

given by

ao ¼
k2

1 cosh k2 y� k2
2 cosh k1y

k2
1 � k2

2

;

a1 ¼
k3

1 sinh k2 y� k3
2 sinh k1y

k1k2ðk2
1 � k2

2Þ
;

a2 ¼
cosh k1y� cosh k2y

k2
1 � k2

2

;

a3 ¼
k2 sinh k1y� k1 sinh k2 y

k1k2ðk2
1 � k2

2Þ

: ð34Þ

Substituting the expression (34) into (31) and computing

A2, and A3, we obtain after some lengthy algebraic

manipulations,

exp A sð Þ � y½ 	 ¼ L y; sð Þ ¼ ‘ij y; sð Þ
� �

; i; j¼ 1;2;3;4: ð35Þ

where the elements ‘ij(y, s) are given in Appendix.

It is now possible to solve a broad class of one-

dimensional problems of thermoelectric fluid flow with

fractional order heat transfer in the presence of a constant

magnetic field.

4 Applications

Problem I: A thermal shock semi-space problem We

consider a semi-space homogeneous thermoelectric med-

ium occupying the region y C 0 with quiescent initial state.

A thermal shock is applied to the boundary plane y = 0 in

the form

Hð0; tÞ ¼ Ho HðtÞ; ð36Þ

where, Ho is a constant and the boundary plane y = 0 is

taken to be a fixed plane, i.e.
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uð0; tÞ ¼ 0: ð37Þ

Since the solution is unbounded at infinity, the initial

conditions should be so adjusted that the infinite terms are

eliminated.

We now apply the state space approach described above

to this problem. The two components of the transformed

initial state (0, s) are known, namely,

�Hð0; sÞ ¼ Ho

s
; ð38Þ

which follows from (35) and

�uð0; sÞ ¼ 0; ð39Þ

which follows from (36).

To obtain the two remaining components �u0ð0; sÞ and
�h0ð0; sÞ we substitute y = 0 in both sides of (28) and in

performing the necessary matrix operations, we obtain a

system of linear algebraic equations in the two unknowns

�u0ð0; sÞ and �H0ð0; sÞ; whose solution gives

�u0ð0; sÞ ¼ aKoHo

s k1k2 þ að Þ ; ð40Þ

�H0ð0; sÞ ¼ �Hok1k2 k1 þ k2ð Þ
s k1k2 þ sþMð Þ : ð41Þ

Inserting the values from (38) to (41) into the right-hand

side of (28), we obtain upon using (32)

�H ðy; sÞ

¼ Ho

s

k2 k2
1 � s�M

� 	
e�k1y � k1 k2

2 � s�M
� 	

e�k2y

k1 � k2ð Þ k1k2 þ sþMð Þ

� �

ð42Þ

�uðy; sÞ ¼ � a KoHo

s k1 � k2ð Þ k1k2 þ að Þ e�k1y � e�k2y
� �

: ð43Þ

In non-dimensional form, the expression for the skin-

friction component s in the main flow is:

�s ¼ o�u

oy

� �
y¼0

¼ aKoHo

s k1k2 þ að Þ : ð44Þ

Problem II: A problem of a layer media We consider a

thermoelectric fluid occupying the region 0 B y B Y

bounded by two parallel walls in the presence of a

transverse magnetic field applied externally. Initially both

the plates and fluid are assumed to be at rest. Let us

suddenly impart a constant velocity U to the lower plate in

its own plane in the presence of magnetic field.

The mechanical boundary conditions can be written as

uð0; tÞ ¼ U; or �uð0; sÞ ¼ 1

s
; ð45Þ

uðY ; tÞ ¼ 0; or �uðY; sÞ ¼ 0: ð46Þ

The thermal boundary conditions are assumed to be

Hð0; tÞ ¼ HoHðtÞ or �Hð0; sÞ ¼ Ho

s
; ð47Þ

oHðY; tÞ
oy

¼ 0 or
o �HðY ; sÞ

oy
¼ 0: ð48Þ

Condition (47) means that the plate y = 0, is acted on by a

constant thermal shock at time t = 0, while condition (48)

signifies that the plate y = Y, is thermally insulated.

Equations (44) and (47) give two components of the

initial state vector �G(0, s). To obtain the remaining two

components, we use (28) between y = 0 and y = Y to

obtain the following two simultaneous linear equations:

l23ðY; sÞ �H0ð0; sÞ þ l24ðY ; sÞ �u0ð0; sÞ ¼ �Ho

s
l21ðY ; sÞ

� 1

s
l22ðY; sÞ;

l33ðY; sÞ �H0ð0; sÞ þ l34ðY ; sÞ�u0ð0; sÞ ¼ �
Ho

s
l31ðY ; sÞ

� 1

s
l32ðY; sÞ:

The solution of these equations gives

�H0ð0; sÞ ¼ Hoaðk2
1 � k2

2Þ
Cs

sinh k1Y sinh k2Yð Þ

þ k1k2b

Cs
� k1 cosh k2Y sinh k1Y � k2 cosh k1Y sinh k2Yð Þ

ð49Þ

�u0ð0;sÞ¼HoaKo

Cs
k2 sinhk1Y coshk2Y�k1 sinhk2Y coshk1Yð Þ

þk1k2ðk2
1�k2

2Þ
Cs

coshk1Y coshk2Yð Þ ð50Þ

C ¼ k1 k2
2 � a

� 	
cosh k1Y sinh k2Y

� k2 k2
1 � a

� 	
cosh k2Y sinh k1Y:

Inserting the values from (45) to (50) into the right-hand

side of (28), we obtain upon using (32)

Hðy; sÞ ¼
Hok1 k2

2 � a
� 	
C s

sinh k2Y � k1k2b

C s
cosh k2Y

� �

� cosh k1ðY � yÞ

�
Hok2 k2

1 � a
� 	
C s

sinh k1Y � k1k2b

C s
cosh k1Y

� �

� cosh k2ðY � yÞ;
ð51Þ
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�uðy; sÞ ¼ aKo Ho

C s
sinh k2Y �

k2 k2
1 � a

� 	
C s

cosh k2Y

� �

� sinh k1 ðY � yÞ

� aKo Ho

C s
sinh k1Y �

k1 k2
2 � a

� 	
C s

cosh k1Y

� �

� sinh k2 ðY � yÞ: ð52Þ

Problem (III): Plane distribution of heat sources We

assume that there is a plane distribution of continuous heat

sources located at the plate y = 0. The intensity of the heat

sources is thus given by

Qðy; tÞ ¼ Qo HðtÞdðyÞ;

where Qo is a constant and d(y) is Dirac’s delta function.

Taking Laplace transform, we obtain

�Qðy; sÞ ¼ Qo
dðyÞ

s
: ð53Þ

We shall now proceed to obtain the solution of the

problem for the region y C 0. The solution for the other

region is obtained by replacing each y by –y.

Evaluating the integral in (27) using the integral

properties of the Dirac delta function, we obtain

�Gðy; sÞ ¼ Lðy; sÞ ½�Gð0; sÞ þ HðsÞ	; ð54Þ

where

Bðy; sÞ ¼ �Qob
4s

k1k2þsþM
k1þk2

0

1
Ko

k1þk2

2
664

3
775:

Equation (54) expresses the solution of the problem in

the Laplace transform domain in terms of the vector H(s)

representing the applied heat source and the vector �Gð0; sÞ
representing the conditions at the plane source of heat. In

order to evaluate the components of this vector, we note

first that due to the symmetry of the problem, the

temperature is a symmetric of y while the velocity is

anti-symmetric. It thus follows that

u ð0; tÞ ¼ 0 or �u ð0; sÞ ¼ 0: ð55Þ

Gauss’s divergence theorem will now be used to obtain the

thermal condition at the plane source. We consider a short

cylinder of unit base whose axis is perpendicular to the

plane source of heat and whose bases lie on opposite sides

of it. Taking limits as the height of the cylinder tends to

zero and noting that there is no heat flux through the lateral

surface, upon using the symmetry of the temperature field

we get

q ð0; tÞ ¼ Qo

2
HðtÞ or �qð0; sÞ ¼ Qo

2s
: ð56Þ

Using Fourier’s law of heat conduction in the non-

dimensional form, namely

�q ¼ �
1þ ZTo½ 	 �H0 þPo �u
� 	

1þ sa
o

a! sa
ð57Þ

we obtain the condition

H0ð0; sÞ ¼ � b Qo

2s
: ð58Þ

Equations (55) and (58) give two components of the vector
�G 0; sð Þ. In order to obtain the remaining two components,

we substitute y = 0 on both sides of (54) obtaining a

system of linear equations whose solution gives

�Hð0; sÞ ¼ bQoðk1k2 þ sþMÞ
2sk1k2ðk1 þ k2Þ

; ð59Þ

�u0ð0; sÞ ¼ b Ko Qo

2s k1 þ k2ð Þ : ð60Þ

As before, we have suppressed the positive exponential

terms appearing in the entries of L(y, s). Substituting the

above values in the right-hand side of (54), we obtain

�H ðy; sÞ ¼ b Qo

2sðk2
1 � k2

2 Þ

� k2
1 � s�M

k1

e
k1y � k2
2 � s�M

k2

e
k2y

� �
;

ð61Þ

�u ðy; sÞ ¼ 
 b Ko Qo

2s � k2
1 � k2

2

� 	 e
k1y � e
k2y
� �

: ð62Þ

In the above equations the upper (plus) sign indicates the

solution in the region y \ 0, while the lower (minus) sign

indicates the region y C 0, respectively.

5 Numerical inversion of the Laplace transforms

In order to invert the Laplace transform in the above

equations, we adopt a numerical inversion method based on

a Fourier series expansion [36]. In this method, the inverse

g(t) of the Laplace transform �g sð Þ is approximated by the

relation

g ðtÞ ¼ ec�t

t1

"
1

2
�g c�ð Þ þ Re

 XN

k¼1

exp
i kPt

t1

� �

� �g c� þ i kP
t1

� �!#
; 0� t� 2 t1 ; ð63Þ

where c* is an arbitrary constant greater than all the real

parts of the singularities of g(t) and N is sufficiently large

integer chosen such that,
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ec�tRe exp
i Npt

t1

� �
�g c� þ i Np

t1

� �� �
� e; ð64Þ

where e is a prescribed small positive number that corre-

sponds to the degree of accuracy required.

Using the numerical procedure cited, to invert the

expressions of temperature, velocity and microrotaion,

fields in Laplace transform domain.

6 Numerical results and discussion

The investigation of the effect of the fractional derivative

parameter a (0 \ a\ 1) and the thermoelectric coefficients

are named for Seebeck coefficient Ko and Peltier coeffi-

cient Po as well as the efficiency of a thermoelectric figure

of merit ZTo on the flow of thermoelectric fluid over the

boundaries, in the presence of magnetic field has been

carried out in the preceding sections. The computations

were performed for a value of time, namely, t = 1. This

enables us to represent the typical numerical results in

Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, for the temperature H,

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

Distance, y

F-Law

FF-Law

GF-Law

T
em

pe
ra

tu
r,

Fig. 1 Dependence of temperature on distance for different theories

in problem

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Distance, y

T
em

pe
ra

tu
r ,

Θ

α = 0.1, 0.4, 0.7

Fig. 2 Dependence of temperature on distance for different values of

fractional order in problem I

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

1 2 3 4 5 6

Figure-of-merit,  ZTo

T
em

pe
ra

tu
r,

 

Fig. 3 A plot of the temperature as a function of the figure-of-merit

for several thermoelectric fluids in problem I
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velocity component u and heat flux for various values of

the parameters. The graphs show curves predicted by the

different theories of thermoelectric MHD. In these figures,

continues lines represent the solution corresponding to

using the classical Fourier equation of heat conduction

F-Law, ( a ¼ 0; so ¼ 0) and dotted lines represent the

solution corresponding to Cattaneo theory GF-Law,

a ¼ 1:0; so ¼ 0:02, while broken lines represent the solu-

tion corresponding to using fractional Fourier equation of

heat conduction FF-Law, (0\a\1; so ¼ 0:02).

Hence we conclude with following points:

i. In all figures, it is noticed that the fractional order a has

a significant effect on all fields.

ii. It is noticed that all the waves reach the steady state

depending on the value the fractional order a.

iii The important phenomenon observed in all computa-

tions is that the solution of any of the considered

functions vanishes identically outside a bounded

region of space surrounding the heat source at a

distance from it equal to y*(t); say y*(t) is a particular

value of y depending only on the choice of t and is the

location of the wave front. This demonstrates clearly

the difference between the solution corresponding to

using classical Fourier heat equation F-Law,

(a ¼ 0; so ¼ 0) and to using the generalized Fourier

case GF-Law, (a ¼ 1:0; so ¼ 0:02). In the first and

older theory the waves propagate with infinite speeds,

so the value of any of the functions is not identically

zero (though it may be very small) for any large value

of y. In non-Fourier theory the response to the thermal

and mechanical effects does not reach infinity instan-

taneously but remains in a bounded region of space

given by 0 \ y \ y*(t) for the semi space problem and

by Min 0; y�ðtÞ � cð Þ\y\yþ y�ðtÞ for the whole

space problem.

iv In Figs. 1 and 2, we notice that the temperature

increment in the fractional order theory FF-Law,

(0\a\1; so ¼ 0:02) is continuous function, which

means that the particles transport the heat to the other

particles easily and this makes the decreasing rate of

the temperature greater than the other ones. In the

generalized theory GF-Law, (a ¼ 1:0; so ¼ 0:02:) the

thermal waves exhibit a jump discontinuity at
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Fig. 8 A plot of the temperature for different values of thermoelec-

tric figure-of-merit in problem III
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y = 3.75, but cut the y-axis rapidly than the other ones

[37] as in Figs. 1 and 8.

V. Figure 3 presents some data on the temperature as a

function of figure-of- merit of various thermoelectric

fluids. We notice that the efficiency of a thermoelec-

tric material figure-of-merit is proportional to the

temperature of the fluid particles [38, 39].

Vi. The Seebeck and Peltier effects are shown to be

closely related within the new thermodynamic model

applied recently to the quantitative theory of the

Seebeck coefficient. In this work, the model was

developed for the evaluation of the Seebeck and

Peltier coefficients. The gradual decrease of temper-

ature with Seebeck coefficients as shown in Fig. 4 has

also been reported by Huston [40], Ambia et al. [41]

and Patankar et al. [42]. In Fig. 5 we observe that the

Peltier coefficient is proportional to the temperature

at constant value of Seebeck coefficient. These results

agree with the expectation by the first Thomson

relation P = ST [20].

Vii. Figure 6 presents some data on the temperature as a

function of fractional order a of various thermoelec-

tric fluids.

vii. The velocity distributions for the layer medium and

the infinite space in the presence of heat sources are

represented graphically in Figs. 7 and 9 for different

values of fractional order a. From these figures we

learn that the velocity of the fluid particles increase

with the decrease of the fractional order a. This

means that the boundary layer region around the

surface dependence on the fractional order a.

iX. Investigation of heat transfer involves measuring a

heat flux on a surface along which a liquid moves

[39]. It is notice from Fig. 10 that heat flux increases

with decreasing the Prandtl number.

X. The flow of fluids over the boundaries has many

applications such as boundary-layer control. The study

of unsteady boundary layers owes its importance to

the fact that all boundary layers that occur in real life

are, in a sense, unsteady. In recent years, the

requirements of modern technology have stimulated

interest in fluid-flow studies, which involve the

intersection of several phenomena. One such study

is related to the effects of free convection flow through

a porous medium, which play an important role in

agriculture, engineering, petroleum industries, and

heat transfer [43].

7 Conclusions

(i) The main goal of this work is to introduce a new

mathematical model for Fourier law of heat conduc-

tion with time-fractional order and includes the ther-

moelectric figure-of-merit. According to this new

theory, we have to construct a new classification for

materials according to their fractional parameter a
where this parameter becomes a new indicator of its

ability to conduct heat in conducting medium. This

model enables us to improve the efficiency of a ther-

moelectric material figure-of-merit according to the

choice of suitable values of fractional derivative order

a. The result provides a motivation to investigate

conducting thermoelectric materials as a new class of

applicable thermoelectric fluids.

(ii) The importance of state-space analysis is recognized

in fields where the time behavior of any physical

process is of interest [1]. The state-space approach is

more general than the classical Laplace and Fourier

transform techniques. Consequently, state space is

applicable to all systems that can be analyzed by

integral transforms in time, and is applicable to many

systems for which transform theory breaks down [44].

(iii) The flow of fluids over the boundaries has many

applications such as boundary-layer control. The

study of unsteady boundary layers owes its impor-

tance to the fact that all boundary layers that occur in

real life are, in a sense, unsteady. In recent years, the

requirements of modern technology have stimulated

interest in fluid-flow studies, which involve the

intersection of several phenomena. One such study is

related to the effects of free convection flow through

a porous medium, which play an important role in

agriculture, engineering, petroleum industries, and

heat transfer.

(iv) Experimental studies confirmed that the one-dimen-

sional model could be used for heat calculation in

fluids over the boundaries.
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