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Abstract The unsteady magnetohydrodynamic flow of a

nanofluid past an oscillatory moving vertical permeable

semi-infinite flat plate with constant heat source in a

rotating frame of reference is theoretically investigated.

The velocity along the plate (slip velocity) is assumed to

oscillate on time with a constant frequency. The analytical

solutions of the boundary layer equations are assumed of

oscillatory type and they are obtained by using the small

perturbation approximations. The influence of various rel-

evant physical characteristics are presented and discussed.

List of symbols

Ai, Bi Constants

B0 Constant applied magnetic field (Wb m-2)

Cp Specific heat at constant pressure (J kg-1 K-1)

E Electric field (kJ)

g Gravity acceleration (m s-2)

J Current density

M Dimensionless magnetic field parameter

n Dimensionless frequency

Nu Local Nusselt number

Nur Reduced Nusselt number

Pr Prandtl number

�qw Dimensional heat flux from the plate

Q Dimensional heat source (kJ s-1)

QH Dimensionless heat source parameter (kJ s-1)

R Dimensionless rotation parameter

Rex Local Reynolds number

S Dimensionless suction parameter

t Dimensionless time (s)

T Local temperature of the nanofluid (K)

Tw Wall temperature (K)

T? Temperature of the ambient nanofluid (K)

u, v, w Dimensionless velocity components (m s-1)

U0 Characteristic velocity (m s-1)

w0 Mass flux velocity

Greek symbols

a Thermal diffusivity (m2 s-1)

b Thermal expansion coefficient (K-1)

e Dimensionless small quantity (�1)

/ Solid volume fraction of the nanoparticles

j Thermal conductivity (m2 s-1)

l Dynamic viscosity (Pa s)

m Kinematic viscosity (m2 s-1)

h Dimensionless temperature

r Electrical conductivity (m2 s-1)

�sw Skin friction or shear stress

X Constant rotation velocity

Superscript

– Dimensional quantities

Subscripts

f Fluid

s Solid

nf Nanofluid

1 Introduction

The reported breakthrough in substantially increasing the

thermal conductivity of fluids by adding very small amounts
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of suspended metallic or metallic oxide nanoparticles

(Cu, CuO, Al2O3) to the fluid [14, 27], or alternatively using

nanotube suspensions [10, 38] conflicts with the classical

theories [5–8, 13, 17, 21, 29, 30], of estimating the effective

thermal conductivity of suspensions. A very small amount

(less than 1% in terms of volume fraction) of copper nano-

particles was reported to improve the measured thermal

conductivity of the suspension by 40% [14, 27], while over a

150% improvement of the effective thermal conductivity at

a volume fraction of 1% was reported by Choi et al. [10] for

multi-walled carbon nanotubes suspended in oil. The com-

prehensive references on nanofluid can be found in the

recent book by Das et al. [12] and in the review papers by

Trisaksri and Wongwises [35], Wang and Mujumdar [37],

and Kakaç and Pramuanjaroenkij [23]. There have been

published quite many numerical studies on the modeling of

natural convection heat transfer in nanofluids, namely

Khanafer et al. [25], Roy et al. [34], Jou and Tzeng [22], Ho

et al. [18, 19], Congedo et al. [11], and Ghasemi and Ami-

nossadati [15]. These studies have used traditional finite-

difference and finite-volume techniques with the tremen-

dous call on computational resources that these techniques

necessitate. Abu-Nada [1] studied numerically the heat

transfer characteristics of flow over a backward facing step

using nanofluids. Abu-Nada et al. [3] investigated the heat

transfer enhancement in a differentially heated enclosure

using variable thermal conductivity and variable viscosity of

Al2O3–water and CuO–water nanofluids. Khan and Pop [24]

analyzed the development of the steady boundary layer flow,

heat transfer and nanoparticle volume fraction over a linear

stretching surface in a nanofluid. Ahmad and Pop [4] studied

the steady mixed convection boundary layer flow past a

vertical flat plate embedded in a porous medium filled with

nanofluids using different types of nanoparticles as Cu

(copper), Al2O3 (alumina) and TiO2 (titania). Kuznetsov and

Nield [26] studied the classical problem of free convection

boundary layer flow of a viscous and incompressible fluid

(Newtonian fluid) past a vertical flat plate to the case of

nanofluids. In both of these papers the authors have used the

nanofluid model proposed by Buongiorno [9]. Although this

author discovered that seven slip mechanisms take place in

the convective transport in nanofluids, it is only the

Brownian diffusion and the thermophoresis that are the most

important when the turbulent flow effects are absent. How-

ever, we will use here the nanofluid model proposed by

Tiwari and Das [36], which was used by many researchers,

such as, Abu-Nada [1], Oztop and Abu-Nada [32], Abu-

Nada and Oztop [2], Muthtamilselvan et al. [31], etc.

The present paper deals with a theoretical study for the

problem of unsteady MHD free convection flow of a

nanofluid past an oscillatory moving vertical permeable

semi-infinite flat plate with constant heat source in a

rotating frame of reference with a constant suction velocity

at the plate. We will use here the nanofluid model proposed

by Tiwari and Das [36]. The aim is to investigate the

influence of solid volume fraction parameter / on the flow

and heat-transfer characteristics for various nanoparticles

considered. The mathematical analysis and the corre-

sponding solutions have been presented in the form of

Ganapathy [16].

2 Governing equations and the boundary conditions

Consider the unsteady three dimensional free convection

flow of a nanofluid past a vertical permeable semi-infinite

plate in the presence of an applied magnetic field with

constant heat source. We consider a Cartesian coordinate

system (�x; �y; �z) as is shown in Fig. 1. The flow is assumed to

be in the �x direction, which is taken along the plate, and

�z-axis is normal to the plate. We assume that the plate has

an oscillatory movement on time �t and frequency �n with

the velocity �uð0; �tÞ, which is given by �uð0; �tÞ ¼ U0 1þ½
e cosð�n�tÞ�, where e is a small constant parameter (e� 1) and

U0 is the characteristic velocity. We consider that initially

(�t\0) the fluid as well as the plate are at rest but for �t� 0 the

whole system is allowed to rotate with a constant velocity X
about the �z-axis. A uniform external magnetic field B0 is

taken to be acting along the �z-axis. We consider the case of a

short circuit problem in which the applied electric field

E = 0, and also assume that the induced magnetic field is

small compared to the external magnetic field B0. This

implies a small magnetic Reynolds number for the oscil-

lating plate (see Liron and Wilhelm [28]). The surface

temperature is assumed to have the constant value Tw while

the ambient temperature has the constant value T?, where

Tw [ T?. The conservation equation of current density

r � J ¼ 0 gives Jz = constant, where JðJx; Jy; JzÞ. Since the

plate is electrically nonconducting, this constant is zero. It is

assumed that the plate is infinite in extent and hence all

physical quantities do not depend on �x and �y but depend only

on �z and �t, that is o�u=o�x ¼ o�u=o�y ¼ o�v=o�x ¼ o�v=o�y ¼ 0,

Fig. 1 Physical model and coordinate system
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etc. It is further assumed that the regular fluid and the sus-

pended nanoparticles are in thermal equilibrium and no slip

occurs between them. Following the nanofluid model pro-

posed by Tiwari and Das [36] along with the Boussinesq and

boundary layer approximations, the boundary layer equa-

tions governing the flow and temperature are,

o�w

o�z
¼ 0 ð1Þ

o�u

o�t
þ �w

o�u

o�z
� 2X�v ¼ 1

qnf

½lnf

o2�u

o�z2

þ ðqbÞnf gðT � T1Þ � rB2
0�u� ð2Þ

o�v

o�t
þ �w

o�v

o�z
þ 2X�u ¼ 1

qnf

½lnf

o2�v

o�z2
� rB2

0�v� ð3Þ

oT

o�t
þ �w

oT

o�z
¼ anf

o2T

o�z2
� Q

ðqCpÞnf

ðT � T1Þ ð4Þ

along with the appropriate initial and boundary conditions

for the problem are given by

�uð�z; �tÞ ¼ 0; �vð�z; �tÞ ¼ 0; T ¼ T1 for �t\0 and any �z

�uð0; �tÞ ¼ U0 1þ e
2

ei�n�t þ e�i�n�t
� �h i

; �vð0; �tÞ ¼ 0; Tð0; �tÞ ¼ Tw

�uð1; �tÞ ! 0; �vð1; �tÞ ! 0; Tð1; �tÞ ! T1

9
=

;
for �t� 0

ð5Þ

where e� 1. It should be mentioned that the form of the

velocity �uð0; �tÞ, assumed in the boundary conditions (5), is

based on that proposed by Ishigaki [20] and Ganapathy

[16]. Here �u; �v and �w are the velocity components along the

�x; �y and �z-axis, respectively, T is the local temperature of

the nanofluid and Q is the additional heat source. On the

other hand, bf and bs are the coefficients of thermal

expansion of the fluid and of the solid, respectively, qf and

qs are the densities of the fluid and of the solid fractions,

respectively, while qnf is the density of the nanofluid, lnf is

the viscosity of the nanofluid, anf is the thermal diffusivity

of the nanofluid, and ðqCpÞnf is the heat capacitance of the

nanofluid, which are defined as (see Oztop and Abu-Nada

[32])

qnf ¼ ð1� /Þqf þ/qs; lnf ¼
lf

ð1� /Þ2:5
; anf ¼

jnf

ðqCpÞnf

ðqCpÞnf ¼ ð1� /ÞðqCpÞf þ/ðqCpÞs;
ðqbÞnf ¼ ð1� /ÞðqbÞf þ /ðqbÞs

jnf ¼ jf
js þ 2jf � 2/ðjf � jsÞ
js þ 2jf þ 2/ðjf � jsÞ

� �
ð6Þ

where / is the solid volume fraction of the nanoparticles,

and jnf is the thermal conductivity of the nanofluid, jf and

js are the thermal conductivities of the base fluid and of the

solid, respectively. The thermo-physical properties of the

base fluid (water), copper and titania which were used for

code validation are given in Table 1. We consider the

solution of Eq. (1) as

�w ¼ �w0 ð7Þ

where the constant w0 represents the normal velocity at the

plate which is positive for suction (w0 [ 0) and negative

for blowing or injection (w0\0). Thus, we introduce the

following dimensionless variables:

z¼ðU0=mf Þ�z; t ¼ ðU2
0=mf Þ�t; n¼ ðmf =U2

0Þ�n; u¼ �u=U0

v¼�v=U0; h¼ ðT � T1Þ=ðTw� T1Þ ð8Þ

where mf is the kinematic viscosity of the fluid part of the

nanofluid. Using 8, Eqs. 2–4 can be written in the

following dimensionless form:

1� /þ /ðqs=qf Þ
� � ou

ot
� S

ou

oz
� Rv

� 	

¼ 1

ð1� /Þ2:5
o2u

oz2
þ 1� /þ /ðqbÞs=ðqbÞf
h i

h�Mu

ð9Þ

ð1� /þ /ðqs=qf ÞÞ
ov

ot
� S

ov

oz
þ Ru


 �

¼ 1

ð1� /Þ2:5
o2v

oz2
�Mv ð10Þ

ð1� /þ /ðqCpÞs=ðqCpÞf Þ
oh
ot
� S

oh
oz


 �

¼ 1

Pr

jnf

jf

o2h
oz2
� QHh


 �
ð11Þ

where the corresponding boundary conditions (5) can be

written in the dimensionless form as:

uðz;tÞ¼0; vðz;tÞ¼0; hðz;tÞ¼0 fort\0andanyz

uð0;tÞ¼1þ e
2

eintþe�int
� �

;vð0;tÞ¼0;hð0;tÞ¼1

uð1;tÞ!0;vð1;tÞ!0;hð1;tÞ!0

9
=

;
fort�0

ð12Þ

Here Pr = mf/af is the Prandtl number, S is the suction

(S [ 0) or injection (S \ 0) parameter, M is the magnetic

parameter, R is the rotation parameter and QH is the heat

source parameter, which are defined as:

Table 1 Thermo-physical properties [32]

Physical

properties

Water Copper (Cu) Titanium

oxide (TiO2)

Cp (J/kg K) 4,179 385 686.2

q (kg/m3) 997.1 8,933 4,250

j (W/m K) 0.613 400 8.9538

b 9 10-5 (1/J) 21 1.67 0.9
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S ¼ w0

U0

; M ¼ rB2
0mf

qf U
2
0

; R ¼ 2Xmf

U2
0

; QH ¼
Qm2

f

kf U
2
0

ð13Þ

where, on using Eq. 9, the velocity characteristic U0 is

defined as

U0 ¼ gbf ðTw � T1Þmf

� �1=3
:

Now, in order to obtain the desired solutions of

Eqs. 9–12, we assume the fluid velocity in the complex

form as:

vðz; tÞ ¼ uðz; tÞ þ ivðz; tÞ ð14Þ

By using 14 we can simplify Eqs. 9 and 10 to the

following equation:

ð1� /þ /ðqs=qf ÞÞ
ov
ot
� S

ov
oz
þ iRv


 �

¼ 1

ð1� /Þ2:5
o2v
oz2
þ ½1� /þ /ðqbÞs=ðqbÞf �h�Mv

ð15Þ

The boundary conditions (12) become

vðz; tÞ ¼ 0; hðz; tÞ ¼ 0 for t\0 and any z

vð0; tÞ ¼ 1þ e
2

eint þ e�int
� �

; hð0; tÞ ¼ 1

vð1; tÞ ! 0; hð1; tÞ ! 0

9
=

;
for t� 0

ð16Þ

To solve Eqs. 11 and 15 under the boundary conditions

(16) in the neighborhood of the plate, we assume that (see

Ganapathy [16])

vðz; tÞ ¼ v0ðzÞ þ
e
2
½eintv1ðzÞ þ e�intv2ðzÞ� ð17Þ

hðz; tÞ ¼ h0ðzÞ þ
e
2
½einth1ðzÞ þ e�inth2ðzÞ� ð18Þ

for e� 1. Then substituting (17) and (18) into Eqs. (11)

and (15), and equating the coefficients of the same

harmonic and nonharmonic terms, neglecting the terms of

e2, we get the following set of ordinary differential

equations:

1

ð1� /Þ2:5
v000 þ Sð1� /þ /ðqs=qf ÞÞv00

� ½iRð1� /þ /ðqs=qf ÞÞ þM�v0

þ ½1� /þ /ðqbÞs=ðqbÞf �h0 ¼ 0; ð19Þ

1

ð1� /Þ2:5
v001 þ Sð1� /þ /ðqs=qf ÞÞv01

� ½iðRþ nÞð1� /þ /ðqs=qf ÞÞ þM�v1

þ ½1� /þ /ðqbÞs=ðqbÞf �h1 ¼ 0; ð20Þ

1

ð1� /Þ2:5
v002 þ Sð1� /þ /ðqs=qf ÞÞv02

� ½iðR� nÞð1� /þ /ðqs=qf ÞÞ þM�v2

þ ½1� /þ /ðqbÞs=ðqbÞf �h2 ¼ 0; ð21Þ
jnf

jf
h000 þ Pr S½1� /þ /ðqCpÞs=ðqf CpÞf �h

0
0 � QHh0 ¼ 0;

ð22Þ
jnf

jf
h001 þ Pr S½1� /þ /ðqCpÞs=ðqf CpÞf �h

0
1

� fin Pr½1� /þ /ðqCpÞs=ðqf CpÞf � þ QHgh1 ¼ 0;

ð23Þ
jnf

jf
h002 þ Pr S½1� /þ /ðqCpÞs=ðqf CpÞf �h

0
2

þ fin Pr½1� /þ /ðqCpÞs=ðqf CpÞf � � QHgh2 ¼ 0;

ð24Þ

where primes denote differentiation with respect to z.

However, this expansion of the solution is meaningful only

if the reduced equations are ordinary differential equations

of independent variable z. In fact, the solutions of v1; v2; h1

and h2 are time dependent and are not consistent with

the assumption. In addition, the corresponding boundary

conditions can be written as:

v0¼ 1;h0¼ 1;v1¼ 1;h1¼ 0;v2¼ 1;h2¼ 0 atz¼ 0;

v0! 0;h0! 0;v1! 0;h1! 0;v2! 0;h2! 0 atz!1:
ð25Þ

Solving Eqs. 19–24 with the boundary conditions (25) and

substituting the solutions into Eqs. 17 and 18, we obtain

(see Ganapathy [16])

v ¼ A1e�m1z þ ð1� A1Þe�m2z

þ e
2
ðe�m3zeint þ e�m4ze�intÞ; ð26Þ

h ¼ e�m1 z; ð27Þ

where the constants A1 and mi (i = 1–4) are given in

‘‘Appendix’’.

The physical quantities of practical interest in this work

are the skin friction coefficient Cf and the local Nusselt

number Nu, which are defined as

Cf ¼
�sw

qf U
2
0

; Nu ¼ �x�qw

kf ðTw � T1Þ
ð28Þ

where �sw and �qw are the wall shear stress or skin friction

and the wall heat flux from the plate, respectively, which

are given by

�sw ¼ lnf

o�u

o�z

� 	

�z¼0

; �qw ¼ �jnf
oT

o�z

� 	

�z¼0

ð29Þ
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Using (8) and (13), we obtain

Cf ¼
1

ð1� /Þ2:5
v0ð0Þ; Nur ¼ � jnf

jf
h0ð0Þ ð30Þ

where Nur ¼ Nu=Rex is the reduced Nusselt number see

Khan and Pop [24] and Rex ¼ U0�x=mf is the local Reynolds

number.

It should be mentioned that in the absence of the nano-

particles (/ = 0), the relevant results obtained are in agree-

ment with the results reported by [33] without mass transfer.

3 Results and discussion

A theoretical study on the effect of the metallic nanoparticle

on MHD free convection flow along a vertical permeable

semi-infinite flat plate with heat source when the plate

oscillates in time t in the presence of a rotating frame of

reference has been performed in this paper. The effects of

nanoparticles on the velocity and the temperature profiles as

well as on the skin friction coefficient and the local Nusselt

number are discussed numerically. We have chosen here

n = 10, nt = p/2, Pr = 6.2 and e = 0.02, while /, M, R, QH

and R are varied over a range, which are listed in the figures

legends. In order to highlight the important features of the

flow and the heat transfer characteristics, the numerical val-

ues are plotted in Figs. 2 3, 4, 5, 6, 7, 8. These figures show the

velocity profiles (Figs. 2, 4, 5), the temperature profiles

(Figs. 3, 6), the variation of the skin friction coefficient

(Fig. 7) and the variation of the reduced Nusselt number

(Fig. 8) for different values of the physical parameters.

Figure 2a, b are the graphical representation of the

velocity profiles v for various values of the Cu nanoparti-

cles volume fraction for M = 0 (no magnetic field) and for

M = 10, respectively, when S = 1, R = 0.1 and QH = 10.

It can be seen that the momentum boundary layer thickness

decreases with the increase in / and also the presence of

the magnetic field leads to more thinning of the boundary

Fig. 3 Temperature profiles for

various values of / in the

absence/presence of suction

effect when M = 0.4, R = 0.1,

QH = 10 and n = 10

Fig. 2 Velocity profiles for

various values of / in the

absence/presence of magnetic

field effect when S = 1,

R = 0.1, QH = 10 and n = 10
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layer. The effects of the nanoparticle volume fraction for

S = 0 and for S = 1.5 are presented in Figs. 2a, b,

respectively. From these figures it results in that increase of

the nanoparticle volume fraction leads to the increase of

the thermal boundary layer thickness. Also the thermal

boundary layer for Cu-water is greater than for pure water

(/ = 0). This is because copper has high thermal con-

ductivity and its addition to the water based fluid increases

the thermal conductivity for the fluid, so the thickness of

the thermal boundary layer increases. Furthermore, it can

be observed that the thermal boundary layer thickness

becomes thinner in the case of suction (S [ 0).

Figure 3 shows the variation of the temperature profiles

for different values of the rotation parameter R for Cu-water

(see Fig. 3a) and for TiO2-water (see Fig. 3b) in the

absence/presence of nanoparticles. It is observed that the

temperature profiles across the boundary layer increase with

the decrease of R. Figure 4a, b show the effects of the

rotation parameter R on the velocity, respectively for / = 0

(regular fluid) and / = 0 (nanofluids). It is seen that the

velocity profiles increase when R decreases. Figure 5

depicts the temperature profiles for various values of the

heat generation parameter QH. It is noted from this figure

that the temperature profiles increase with a decreasing of

heat generation parameter QH. Figure 7a, b show the vari-

ation of the skin friction coefficient Cf or the shear stress

with the magnetic parameter M for some values of the

rotation parameter R and the heat generation parameter QH

for two different values of the nanoparticle volume fraction.

It is observed that Cf increases with the increase in R and

QH. It is also seen that for high value of /, the values of the

Fig. 4 Velocity profiles for

various values of R in the

absence/presence of

nanoparticles when S = 1.5,

M = 0.4, QH = 10 and n = 10

Fig. 5 Velocity profiles for various values of QH in the absence/

presence of nanoparticles when S = 1, M = 0.4 and n = 10

Fig. 6 Temperature profiles for various values of QH in the absence/

presence of nanoparticles when S = 1, M = 0.4, R = 0.2 and n = 10
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skin friction coefficient become higher. Furthermore, it is

seen that when the magnetic field parameter M increases, it

leads to the increase of the skin friction coefficient. Finally,

Fig. 8 illustrates the variation of the heat transfer rate or the

reduced Nusselt number Nur with S for various values of the

heat generation parameter QH and for two different values

of /. It is noticed that the heat transfer rates increase with

the increase in QH and /, and the changes in the heat

transfer rates increase with the increase in S.

4 Conclusions

In the present study, we have theoretically studied the

effects of the metallic nanoparticles on the unsteady MHD

convective flow of an incompressible fluid along an

oscillating vertical permeable semi-infinite plate in the

presence of a rotating frame of reference. We have inves-

tigated the way in which the velocity and temperature

profiles as well as the surface skin friction and the surface

heat flux depend on the nanoparticle volume fraction

parameter. It is shown that the inclusion of the nanoparti-

cles into the base fluid is capable to change the flow pattern

for the problem under consideration.
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Appendix

A1 ¼ �1=ðm2
2 � S1m2 � B1Þ

m1 ¼
1

2
S1Pr1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS1Pr1Þ2 þ 4QHjf =jnf

q
 �
;

mj ¼
1

2
S1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS1Þ2 þ 4Bj�1

q
 �
; j ¼ 2; 3; 4

B1 ¼ M1 þ iR1; B2 ¼ M1 þ iðR1 þ n1Þ;
B3 ¼ M1 þ iðR1 � n1Þ

S1 ¼ Sð1� /Þ2:5ð1� /þ /qs=qf Þ;

R1 ¼ Rð1� /Þ2:5ð1� /þ /qs=qf Þ

n1 ¼ nð1� /Þ2:5ð1� /þ /qs=qf Þ; M1 ¼ Mð1� /Þ2:5;

Pr1 ¼
Pr jf ½1� /þ /ðqCpÞs=ðCpÞ�

jnf ð1� /Þ2:5ð1� /þ /qs=qf Þ

Fig. 7 Skin friction coefficient

for various values of R (a) and

QH (b) for two values of / when

S = 1 and n = 10

Fig. 8 Reduced Nusselt number for various values of QH for two

values of / when M = 1, R = 0.3 and n = 10
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