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Abstract A theoretical solution is presented for the

convective heat transfer of Giesekus viscoelastic fluid in

pipes and channels, under fully developed thermal and

hydrodynamic flow conditions, for an imposed constant

heat flux at the wall. The fluid properties are taken as

constant and axial conduction is negligible. The effect of

Weissenberg number (We), mobility parameter (a) and

Brinkman number (Br) on the temperature profile and

Nusselt number are investigated. The results emphasize the

significant effect of viscous dissipation and fluid elasticity

on the Nusselt number in all circumstances. For wall

cooling and the Brinkman number exceeds a critical value

(Br1), the heat generated by viscous dissipation overcomes

the heat removed at the wall and fluid heats up longitudi-

nally. Fluid elasticity shifts this critical Brinkman number

to higher values.

List of symbols

Br Brinkman number

C Integration constant in Eq. 11

cp Heat capacity (J/K)

D/Dt Substantial derivative

G Dimensionless pressure

h Heat transfer coefficient (watt/m2 k)

H Half-width of channel and pipe radius (m)

k Thermal conductivity (watt/m k)

K1, K2 First and second integration constants in Eq. 26

n Plane (n = 0) or axisymmetric (n = 1)

conditions

Nu Nusselt number (2hH/k)

P Pressure (Pa)

q Heat flux (w/m2)

t Time (s)

T Temperature (K)

u Velocity (m/s)

We Weissenberg number k�u
H

� �

x Axial coordinate (m)

y Lateral coordinate (m)

Greek symbols

a Mobility parameter of Giesekus

_c Shear rate tensor (s-1)

g Zero-shear viscosity (Pa s)

h Dimensionless temperature

k Zero-shear relaxation time (s)

q Density (kg/m3)

s Stress tensor (Pa)

U Viscous dissipation function

Subscripts

b Refers to bulk value

w Refers to wall value

Superscripts

* Refers to dimensionless quantities

– Refers to the average value

T Transpose of tensor

1 Introduction

In a broad variety of chemical and industrial processes,

non-Newtonian fluids have to be heated or cooled.
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Examples related to the heat transfer characteristics of

non-Newtonian fluid flows in pipes appear in double pipes

and shell and tube heat exchangers; for instance in the

polymer and food industries where, it is possible to gen-

erate well-defined heat transfer rates in these geometries,

which have a strong influence to control extrusion pro-

cesses. Sometimes, it may also be necessary to know the

rate at which heat is removed from a pipe system or

physical configurations, such as screw conveyors.

Knowledge of temperature distribution as well as heat

transfer coefficient in the hot molten polymers that flow in

the pipes and channels prior to enter the extrusion is

valuable information in the polymer industry. This is so,

because due to the low heat conduction of molten poly-

mers, the temperature variation is quite nonuniform which

may cause hot spots and thermal instability in the tem-

perature distribution; which can make the temperature

control quite complicated. In the polymer industries, the

quality of the final products strongly depends on the ability

to control the heat transfer. Therefore, the knowledge of

temperature distribution as well as heat transfer coefficient

is very important.

The majority of research work about heat transfers in

non-Newtonian fluids considers the Power Law model to

describe the rheological properties of fluid. Various con-

ditions have been considered in solving the energy equa-

tion. Also different solution techniques have been devised.

Some solutions ignore the viscous dissipation term [1, 2],

while others include it [3, 4]. Similar treatment applies to

the axial heat conduction term [5]. In [6], the energy

equation is solved by including viscous dissipation term

and neglecting axial conduction term and assuming con-

stant thermo physical properties. The viscoelastic fluid is

assumed to follow the basic SPTT model. The solution is

offered for pipe and channel with constant heat flux

boundary condition. Reference [7] is similar to the pre-

ceding one but with constant wall temperature boundary

condition. Thermo-physical properties of fluids are con-

stant in some works, while they vary with temperature in

other works [8].

In the present study, Giesekus model has been employed

to describe the hydrodynamic behavior of viscoelastic fluid

in pipe and channel. To avoid the severe complexity arise

from non-linear velocity profile equation; a suitable

approximation using power series is used to solve the

momentum equation. Subsequently, by using the afore-

mentioned approximate velocity and shear stress equation

in the energy equation; the temperature distribution and

heat transfer coefficient is obtained. The flow under con-

sideration is assumed to be thermally and hydrodynami-

cally fully developed and the axial heat conduction is

neglected. Details of work are presented in the following

sections.

2 Mathematical formulation

The Giesekus model which is used as our rheological

model is as follows:

sþ ak
g
ðs � sÞ þ ksð1Þ ¼ g _c ð1Þ

where

_c ¼ ruþ ruð ÞT
h i

ð2Þ

sð1Þ ¼
Ds
Dt
� s � ruþ ruð ÞT �s
� �

ð3Þ

Ds
Dt
¼ os

ot
þ u � rð Þs ð4Þ

s and t are the stress tensor and the time, respectively. u is the

velocity vector. g and k are model parameters representing

zero-shear viscosity and zero-shear relaxation time,

respectively [9]. The parameter a in Eq. 1 is a model

parameter and the term containing a in the constitutive

equation is attributed to the anisotropic Brownian motion

and/or anisotropic hydrodynamic drag on the constituent

polymer molecules [10], and it is required that 0 B a B 1 as

discussed by Giesekus [11]. Setting a = 0 reduces the model

to the upper convected Maxwell (UCM). The solution of

continuity and momentum equations as well as the Giesekus

equation results in Eq. 5 for shear rate. Equation 5, in

fact is similar to the Eq. 17 of work done by Yoo and Choi

[12]:

du�

dy�
¼ 2as�

1� 2a� 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a2We2s�2
p

2a� 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a2We2s�2
p� �2

ð5Þ

The starred quantities are used for the dimensionless

parameters.The dimensionless stress term is define as

below:

s� ¼ Gy�

2n
ð6Þ

Weissenberg number and the dimensionless terms are

defined as below:

We¼ k�u

H
; y� ¼ y

H
; s� ¼ sH

g�u
; u� ¼ u

�u
; G¼ H2

g�u

dP

dx

� 	

ð7Þ

H is tube radius or channel half-height. P is the pressure.

x and y are axial coordinate and lateral coordinate,

respectively.

For pipe flow n = 1 and for channel flow as flow

between parallel plates n = 0. The classical positive and

negative solutions of Eq. 5 have been discussed by

Schleiniger and Weinacht [13] using linear stability anal-

ysis and the requirements arising from configuration tensor.
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They concluded that for the case of no-solvent viscosity,

there is only one stable, physically relevant solution and

that is the positive solution with the following restrictions:

s�j j\ 1

We

ffiffiffiffiffiffiffiffiffiffiffi
1

a
� 1

r

0\a� 1

2
ð8Þ

s�j j\ 1

2aWe

1

2
\a� 1 ð9Þ

To reduce complexity in the heat transfer calculations,

we have decided to use an approximate solution of Eq. 5.

To do so, the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a2We2s�2
p

in Eq. 5 can be

expressed in a power series, using the binominal

expansion:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a2We2s�2
p

ffi 1� 2a2We2s�2 ð10Þ

where all terms of higher order have been ignored com-

pared to the leading term, in the approximation, which is

valid for small values of 4a2We2s*2. A similar approach

has been considered by other researchers [14–16]. The

truncation error is less than 6% when 4a2We2s*2 is less

than 1
2

(6% relative to the exact value of,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a2We2s�2
p

). Hence, if 4a2We2s�2\1
2

the accuracy of

this approximation is more than 94%. Because in this

inequality s* is a function of We and a, therefore this

inequality implicitly indicates the conditions for having

acceptable approximation errors. Therefore the revelant

constitutive stability condition i.e. Eqs. 8 or 9 and the

approximation validity condition i.e. s�j j\ 1

2
ffiffi
2
p

aWe
should

be satisfied simultaneously.

By substituting Eq. 10 in 5, it is possible to integrate

Eq. 5 to obtain the following analytical expression for the

velocity profile:

u� ¼ 1

21�naGWe2

21þ2n a� 1ð Þ
aWe2G2y�2 � 4n

þ 1� 2að Þ



� Ln aWe2G2y�2 � 4n
�� ��� ��

þ C ð11Þ

By using the following boundary condition, the inte-

gration constant (i.e. C) can be obtained.

u� ¼ 0 at y� ¼ 1 ð12Þ

The average velocity is obtained as below:

�u ¼
RH

0
2pynu dy

RH

0
2pyn dy

ð13Þ

Dimensionless form of Eq. 13 is as below:

Z1

0

y�nu�dy� ¼ 1

nþ 1
ð14Þ

For each prescribed a and We, the solution of Eq. 14

will determine the value of G. Having G known, the

velocity profile as well as shear stress will be known.

The governing energy equation, with the assumption

of significant viscous dissipation and negligible axial

heat conduction can be represented by the following

equation:

qcpu
oT

ox
¼ k

1

yn

o

oy
yno

2T

oy2

� 	
þ U ð15Þ

where j, q and cp stand for thermal conductivity, density

and specific heat, respectively. T is the local fluid

temperature. The last term on the right-hand side in

Eq. 15 represents viscous dissipation, which is defined

as:

U ¼ s
du

dy
ð16Þ

The thermal boundary conditions for the case of

constant wall heat flux are as follow:

k
oT

oy
¼ qw at y ¼ H ð17Þ

oT

oy
¼ 0 at y ¼ 0 ð18Þ

where qw is positive for the case of wall heating and is

negative for the case of wall cooling.

3 Solution procedure

The flow is considered to be fully developed both ther-

mally and hydrodynamically. It is also assumed that the

flow is steady and laminar. Fluid properties and model

parameters are considered independent of temperature.

Fluids found in polymer processing (polymer melts and

concentrated solutions) are usually very viscous and

industrial flows frequently involve large velocity gradi-

ents, thus viscous dissipation effects can be important and

therefore will be taken into account. However, as men-

tioned above, we assume that the temperature variations

will not be high enough to impose significant changes in

fluid properties.

When the temperature profile is fully developed, one can

write (Bejan [17]):

o

ox

Tw � T

Tw � Tb

� 	
¼ 0 ð19Þ

For the special case of constant wall heat flux, Eq. 19

reduces to:

oT

ox
¼ oTb

ox
¼ const: ð20Þ

where Tb is the bulk temperature of the fluid. Performing an

energy balance over an infinitesimal element dx of fluid,

the following expression can be written:

Heat Mass Transfer (2010) 46:405–412 407

123



oTb

ox
¼ 2n

qcp�uH
qw þ

1

Hn

ZH

0

yns
du

dy
dy

0

@

1

A ð21Þ

Substitution of Eq. 21 into 15 and using dimensionless

terms results in the following equation:

1

y�n
o

oy�
y�n

o2h
oy�2

� 	
¼ 1þ 2nBr

Z1

0

y�ns�
du�

dy�
dy�

0

@

1

Au�

� BrU� ð22Þ

U*, Brinkman number and dimensionless temperature

are defined as below:

U� ¼ s�
du�

dy�
; Br ¼ g�u2

2Hqw
; h ¼ k T � Tbð Þ

2Hqw
ð23Þ

The dimensionless boundary conditions become:

oh
oy�
¼ 1=2 at y� ¼ 1 ð24Þ

oh
oy�
¼ 0 at y� ¼ 0 ð25Þ

Integrating Eq. 22 twice yields:

h ¼ 1þ 2nBr

Z1

0

y�ns�
du�

dy�
dy�

0

@

1

AUII � BrUII

þ K1

Z
1

y�n
dy� þ K2 ð26Þ

UII ¼
Z

1

y�n

Z
y�nu�dy�dy� ð27Þ

UII ¼
Z

1

y�n

Z
y�nU�dy�dy� ð28Þ

Mathematical expression for UII and UII are presented in

the Appendix 1. K1 and K2 are the first and second

integration constants, respectively, which can be obtained

using the boundary conditions. However, instead of

determining the value of K2, it is more appropriate to use

wall dimensionless temperature hw and subtract it from

dimensionless temperature h. Doing so, will result in the

elimination of K2 from the equation as is shown below.

h� hw ¼ 1þ 2nBr

Z1

0

y�ns�
du�

dy�
dy�

0

@

1

A UII � UIIjy�¼1

� �

� Br UII � UIIjy�¼1

� �
þ K1

Z
1

y�n
dy� ð29Þ

Using mean temperature definition Tb ¼
R H

0
2pynuTdy

R H

0
2pynudy

 !

and dimensionless temperature definition (Eq. 23) combined

with some simple mathematical manipulation will result in

the following expression:

hw ¼ nþ 1ð Þ
Z1

0

y�nu� hw � hð Þdy� ð30Þ

By inserting Eq. 29 into 30, hw may be evaluated.

However, due to the complexity of the integration process

it was decided to use numerical technique. Gaussian

method was employed and the dimensionless temperature

distribution h was obtained. Using the definition of heat

transfer coefficient h ¼ qw

Tw�Tb

� �
; the Nusselt number

Nu ¼ 2hH
k

� �
can be obtained as below:

Nu ¼ 1

hw
ð31Þ

where the Nusselt number can be calculated by substitution

of hw from Eq. 30 into 31.

4 Results and discussion

Figure 1 compares the velocity profiles obtained for small

a values of approximate solution with the exact solution of

Scheiniger and Weinacht [13]. The agreement is very good

and therefore, makes it suitable to extend this approxima-

tion to the energy equation as well.

The presence of viscous dissipation term causes varia-

tion in the viscoelastic fluid behavior during heating and

cooling processes. Taking this into consideration in the

coming section, the influence of various parameters on the

Fig. 1 Comparison of exact [13] and approximate velocity profile

for different values of a
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heat transfer will be discussed for the cases of wall heating

and wall cooling, respectively.

4.1 Wall heating

According to Eq. 17, a positive value of wall heat flux

(qw [ 0) imply that heat is being supplied across the wall

into the fluid and Eq. 23 requires that Br [ 0 in this case

Eq. 21 implies a positive longitudinal gradient of temper-

ature oT
ox [ 0
� �

; i.e. fluid is being heated. Figure 2 shows

the Nu number variations with We with Br number and a as

parameters. As it can be seen, Nu number increases with

fluid elasticity (i.e. We number). Fluid viscosity decreases

as fluid elasticity increases due to the shear thinning

behavior of fluid. As viscosity decreases; the heat genera-

tion inside the fluid decreases and therefore the temperature

difference between wall and bulk decreases. Therefore

Nusselt number Nu ¼ 2Hqw

k Tw�Tbð Þ

� �
will increase. This can be

verified from Fig. 3 as well; for instance compare the curve

for We = 0.1 and We = 5 at Br = 1.

According to Fig. 2 for a given Br number, when We

number approaches zero Nu number becomes independent

of a value. This is expected because viscoelastic fluids

behave as a Newtonian fluid when extensional parameter

i.e. a losses its effect.

It is also apparent from Fig. 2 that for the case of no

viscous dissipation i.e. Br = 0 and elasticity (i.e. We = 0);

Nu number approaches the value 4.364, which is in

agreement with the reported value of Nusselt number of

Newtonian fluids in pipes with constant heat flux boundary

as reported by Holman [18]. Figure 1 highlights that

velocity profile is being more flat by a increasing, it is

evident that the elasticity increases by a increasing,

according to above explanations about elasticity anyone

can find that the effect of a on heat transfer is similar to the

effect of We number. (Also, it can been concluded from

Figs. 2 and 4.)

Figures 2 and 5 show that viscous dissipation term has

quite strong effect on the Nu number. For instance compare

the curves for Br = 0.1 and Br = 0.5, it is evident that by

increasing Br number, Nu number decreases. With refer-

ence to the definition of Br number, one should notice that

as Br number increases, the inside heat generation by

viscous dissipation increases and therefore the temperatureFig. 2 Variation of Nu number with We number

Fig. 3 Dimensionless temperature profile for different values of We
number

Fig. 4 Dimensionless temperature profile for different values of a
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difference between wall and bulk increases and as a result

the Nu number decreases.

4.2 Wall cooling

Wall cooling (qw \ 0) is applied to reduce the bulk tem-

perature of fluid. However, in this process, the value of

viscous dissipation term might change the overall heat

balance.

While the absolute value of Br number is small (negli-

gible viscous dissipation), the fluid temperature along the

pipe will continuously decreases dT
dx

\0
� �

: However, when

|Br| becomes larger than a critical value; the inside heat

generation by viscous dissipation will overcome the cool-

ing process and the fluid will start to warm up itself
dT
dx

[ 0
� �

: The aforementioned critical value of Br number

can be obtained by equating the temperature gradient of

Eq. 21 to zero, which yield the following equation.

Br1 ¼
�1

2n
R 1

0
y�ns� du�

dy�
dy�

ð32Þ

Solution of the integral term of Eq. 32 results in

different mathematical expressions for the pipe and

channel which can be found in Appendix 2. According to

Fig. 6 for |Br| \ |Br1| fluid is cooled and for |Br| [ |Br1|

fluid is heated. It is evident from Fig. 7 that by increasing

the fluid elasticity (i.e. increasing We number) the absolute

value of Br1 increases. This means that, by increasing the

fluid elasticity the cooling range of fluid is extended. This

effect is again related to the shear thinning behavior of

fluid, where by increasing the fluid elasticity the viscosity

of fluid decreases and the internal heat generated by

viscous dissipation decreases and therefore the cooling

range of fluid is extended.

As Br number becomes larger than Br1; the internal heat

generation by viscous dissipation increases rapidly and

overcomes the wall cooling effect. In this situation, the

fluid heats up oT
ox [ 0
� �

: Figure 8 represents the effect of

Brinkman number and fluid elasticity on the Nusselt

number for the case of wall cooling. As can be seen from

this figure, there is a second critical Brinkman number

Fig. 5 Dimensionless temperature profile for different values of

Brinkman number (Br [ 0)

Fig. 6 Dimensionless temperature profile for different values of

Brinkman number (Br \ 0)

Fig. 7 Variation of the critical Brinkman number (Br) with the

Weissenberg number (We)
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(Br2) in which the Nusselt number approaches infinity. At

this Brinkman number, there is a change in the sign of

temperature difference leading to singularities in the

Nusselt number. It was found from this figure that for low

absolute values of Brinkman number up to Br2, the dif-

ference between wall and bulk temperature decreases and

then the Nusselt number increases. Since the fluid elasticity

reduces the effect of viscous dissipation, therefore by

increasing the fluid elasticity when Brinkman umber is kept

below Br2, the difference between wall and bulk temper-

atures increases and consequently the Nusselt number

decreases. At Br = Br2 the sing of temperature difference

will change and the Nusselt number approaches infinity.

For |Br| [ |Br2|, the increase of viscous dissipation

increases the temperature difference and therefore reduces

the Nusselt number (in the absolute term).the beheviors of

discussed above are all related to the variation of Brinkman

number. Notethat, opposit trends are expected is we

investigate the variation of fluid elasticity.

5 Conclusion

In this study, the velocity profile derived from approximate

hydrodynamics solution was employed to obtain the tem-

perature distribution and the Nu number for viscoelastic

fluid flow in pipes and channels. The viscoelastic fluid

chosen was assumed to obey one-mode Giesekus model.

It was assumed that thermo-physical properties of fluid

are constant, the axial heat conduction was negligible

and the fluid was assumed to be hydro-dynamically fully

developed. Effect of parameters such as generation of

internal heat due to viscous dissipation (Br), fluid elasticity

(We) and mobility factor (a) on temperature distribution

and Nu number was studied. Results were discussed for

fluid heating as well as for fluid cooling. Results showed

that viscous dissipation as well as elasticity have strong

effects on the heat transfer. Also in the cooling process, a

critical Brinkman number (Br1) is obtained such that for Br

numbers above Br1, the fluid in the cooling process starts to

warming up. This retrograd range increases with increasing

fluid elasticity.

Appendix 1

UII ¼
1

a2We4G3 aWe2G2 � 4ð Þ
� 32a� 24þ 2 3� 4að ÞaWe2G2
� ��

� Ln r�½ �Ln 1þ r�
ffiffiffi
a
p

WeG

2


 

þ 16a� 12þ 4aWe2G2
� �

diLog 1� aWe2G2r�2

4


 

þ 1� að Þ 16� 4aWe2G2
� �

Ln r�½ �Ln aWe2G2r�2 � 4
� �

þ 2 1� 2að ÞaWe2G2 þ 32a� 24
� �

Ln r�½ �

þ 8� 16aþ 2 2a� 2ð Þð ÞLn r�½ �Ln
aWe2G2r�2 � 4

aWe2G2 � 4


 

� 4� 8aþ 2a� 1ð ÞaWe2G2
� �

Ln
aWe2G2r�2 � 4

aWe2G2 � 4


 

þ 1� 2að ÞaWe2G2þ �24þ 32aþ 6� 8að ÞaWe2G2
� �

� Ln r�½ �Ln 1� r�
ffiffiffi
a
p

WeG

2


 
þ 4þ 8a

	

þ a� 1

2

� 	
Gr�2 þ 1

4
� 1

2
a

� 	
Gr�2Ln

aWe2G2r�2 � 4

aWe2G2 � 4


 

þ 4� 6að Þ r�

aWe2G
þ 2a� 1ð Þ

aWe2G
r�2Ln

aWe2G2r�2 � 4

aWe2G2 � 4


 

UII ¼
1

a2We2G2
Ln r�½ � þ 16a� 12ð Þð

� Ln r�2
� �

Ln 1� r�
ffiffiffi
a
p

WeG

2


 

þ 4a� 4ð ÞLn aWe2G2r�2 � 4
� �

þ 1

2
aWe2G2 1� 2að Þr�2 þ 8� 8að ÞLn r�½ �

þ 8a� 6ð ÞdiLog 1� aWe2G2r�2

4


 	

where

diLog½x� ¼
Zx

1

Ln½t�
1� t

dt

Fig. 8 Variation of Nusselt number (Nu) with Brinkman number

(Br \ 0)
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Appendix 2

First critical Br number for channel:

Br1 ¼
2ð�1þ 2aÞ

aWe2
� 8ð�1þ aÞ

aWe2 �4þ aWe2G2ð Þ

�

� 1

a
3
2We3G

4 �2þ 3að ÞArc tanh
1

2

ffiffiffi
a
p

WeG

� 	� 		�1

First critical Br number for pipe:

Br1 ¼
a2We4G2

�2

32ða� 1Þ
�4þ aWe2G2

� 2a� 1ð Þ �4þ aWe2G2
� ��

� 4 4a� 3ð ÞLn �4þ aWe2G2
� ���1
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