
Abstract In this article, transient heat conduction in a

cylindrical shell of functionally graded material is

studied by using analytical method. The shell is

assumed to be in axisymmetry conditions. The material

properties are considered to be nonlinear with a power

law distribution through the thickness. The tempera-

ture distribution is derived analytically by using the

Bessel functions. To verify the proposed method

the obtained numerical results are compared with the

published results. The comparisons of temperature

distribution between various time and material prop-

erties are presented.

List of symbols

a inner radius

b outer radius

B1, B2 constant coefficients

B1i, B2i constant coefficients

C (kJ/kg K) specific heat

h (W/m2 K) heat convection coefficients

k (W/m K) heat conductivity
�k nondimentional heat conduction

coefficient

k0 material constant

m1, m2 material constant

N number of eigenvalues

r (m) radius

�r nondimensional radius

t time
�t nondimensional time

T (�K) temperature distribution
�t nondimensional temperature

distribution

T0 (�K) constant temperature

qcc (Kj/m3 K) the product of density and specific

heat of ceramic

qc0 material constant

q�c nondimensional

q (kg/m3) density

h (�C) temperature of shell body

h1 (�C) temperature of fluid

c, ci eigenvalues

k constant value

1 Introduction

Functionally graded materials (FGMs) are new kind of

materials. These materials are spatial composite within

which the mechanical properties vary continuously in

the macroscopic sense from one surface to the other.

These materials are expected to be used for thermal

applications and high rate temperature loading. An

important and useful aspect in this case is the deter-

mination of transient temperature distribution. Ana-

lytical and computational studies of appointing stresses

and displacements in cylindrical shell made of FGM

have been carried out by some of researchers as fol-

lowing.
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Temperature and stress distributions were deter-

mined in a stress-relief-type plate of FGMs with steady

state and transient temperature distributions by Awaji

[1]. A multi-layered material model was employed to

solve the transient temperature field in an FGM strip

with continuous and piecewise differentiable material

properties by Jin [2]. He obtained a closed form

asymptotic solution of the temperature field for short

times, by using an asymptotic analysis and an integra-

tion technique and the Laplace transform. A general

analysis of one dimensional steady state thermal

stresses in a thick hollow cylinder under axisymmetry

and nonaxisymmetry loads was developed by Jabbari

et al. [3, 4].

A local boundary integral equation method with the

moving least squares approximation of physical fields

was applied to transient heat conduction analysis in

functionally graded materials by Sladek et al. [5]. They

solved the initial boundary value problem in the La-

place transform domain with a subsequent numerical

Laplace inversion to obtain time-dependent solutions.

Tarn et al. [6] have studied the end effects of steady

state heat conduction in a hollow or solid circular

cylinder of FGM under 2D thermal loads with arbi-

trary end conditions. They evaluated the decay length

that characterizes the end effects on thermal field by

using matrix algebra and eigen function expansion. The

sensivity analysis of heat conduction for functionally

graded materials and the steady state, transient prob-

lem treated with the direct method and the adjoint

method were presented by Chen et al. [7]. The precise

time integration method is employed to solve the

transient problem by them. Transient temperature field

and associated thermal stresses in functionally graded

materials have been determined by using a finite ele-

ment-finite difference method (FEM/FDM) by Wang

et al. [8]. Thermal shock fracture of a FGM plate and

the thermal shock resistance of FGMs were analyzed

by them. A finite element/finite difference method

(FEM/FDM) was developed also to solve the time-

dependent temperature field in non-homogeneous

materials such as functionally graded materials by

Wang et al. [9].

This paper presents an analytical solution for tran-

sient temperature distribution in functionally graded

thick hollow cylinders.

2 Temperature field

To determine the temperature distribution in func-

tionally graded thick hollow cylinder with inner and

outer radii a and b, the following boundary and initial

conditions for the temperature field are considered.

The inner surface of shell is considered to be made of a

ceramic material. The boundary conditions are:

k
@T

@r
þ hT ¼ 0 at r ¼ a ð1Þ

@T

@r
¼ 0 at r ¼ b ð2Þ

where k is the thermal conductivity and h is the heat

transfer coefficient and T is defined by:

T r; tð Þ ¼ h r; tð Þ � h1 ð3Þ

where h(r,t) is the temperature of shell body and h 1 is

the temperature of fluid that flows in the cylinder. The

initial condition for temperature field is:

T r; 0ð Þ ¼ T0 ð4Þ

where T0 is a constant temperature. The heat transfer

equation in functionally graded hollow cylinder for

plane strain and axisymmetry case is:

1

r

@

@r
k � r � @T

@r

� �
¼ qc

@T

@t
ð5Þ

where q is the density and c is the specific heat. We

used the following nondimensional variables for

temperature field.

�T ¼ T

T0
; �r ¼ r

a
; �t ¼ th

qcc � a
; �q�c ¼ qc

qcc
; �k ¼ k

ah

Where q cc is the standard value (the density and

specific heat of inner surface ceramic material). Using

these terms, the heat transfer and boundary conditions

equations can be written as follows:

1

�r

@

@�r
�k � �r � @

�T

@�r

� �
¼ �q�c

@ �T

@�t
ð6Þ

�k
@ �T

@�r
þ �T ¼ 0 at �r ¼ 1 ð7Þ

@ �T

@�r
¼ 0 at �r ¼ b=a ð8Þ

�T r; 0ð Þ ¼ 1 ð9Þ

It is assumed that the thermal conductivity �k and �q�c are

the power functions of r as:

�k ¼ k0�r
m1 ð10Þ
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�q�c ¼ qc0�r
m2 ð11Þ

In the above equations k0, q c0, m1, m2 are the material

constants and q c0 = 1 for the ceramic material. With

introducing Eqs. 10 and 11 in Eq. 6 the following

equation is obtained:

k0�r
m @

2 �T

@�r2
þ k0 m1 þ 1ð Þ�rm�1 @

�T

@�r
¼ qc0

@ �T

@�t
ð12Þ

where:

m ¼ m1 �m2 ð13Þ

To solve the partial differential Equation (12), by

using the separation of variables method, the following

solution is assumed:

�T �r;�tð Þ ¼ R �rð Þ � g �tð Þ ð14Þ

Substituting Eq. 14 into Eq. 12 yields:

k0�r
m @

2R

@r2
� gþ k0 m1 þ 1ð Þ�rm�1 @R

@r
� g ¼ qc0

@g

@t
� R ð15Þ

or,

k0�r
m @2R

@�r2 þ k0 m1 þ 1ð Þ�rm�1 @R
@�r

R
¼

qc0
@g
@�t

g
¼ �k2 ð16Þ

In the above equations, k is a constant value. From

Eq. 16, two ordinary differential equations are ob-

tained as follows:

qc0
@g

@�t
þ k2g ¼ 0 ð17Þ

k0�r
m @

2R

@�r2
þ k0 m1 þ 1ð Þ�rm�1 @R

@�r
þ k2R ¼ 0 ð18Þ

Solutions of Eqs. 17 and 18 are:

gð�tÞ ¼ A1e
� k2

qc0
�t ð19Þ

R �rð Þ ¼ �r�
m1
2 B1Jn c�r

2�m
2

� �
þ B2Yn c�r

2�m
2

� �n o
ð20Þ

where:

n ¼ m1

m� 2
ð21Þ

c ¼ 2kffiffiffiffiffi
k0

p
m� 2ð Þ

ð22Þ

Thus the temperature distribution is:

�T �r;�tð Þ ¼ e
� k2

qc0
�t � �r�

m1
2 B1Jn c�r

2�m
2

� �
þ B2Yn c�r

2�m
2

� �n o

ð23Þ

By using Eqs. 23 and 10, the boundary condition (7)

is rewritten as the follows:

k0�r
m1 e

� k2

qc0
�t �m1

2

� �
�r�

m1
2 �1 B1Jn c�r

2�m
2

� �
þB2Yn c�r

2�m
2

� �n o� �

þk0�r
m1

�
e
� k2

qc0
�t ��r�

m1
2 c

�
2�m

2

�
�r�

m
2

�
B1J0n

�
c�r

2�m
2

�
þB2Y 0n

�
c�r

2�m
2

�	�

þe
� k2

qc0
�t ��r�

m1
2 B1Jn c�r

2�m
2

� �
þB2Yn c�r

2�m
2

� �n o
¼0

ð24Þ

where �r¼1; thus:

B2

B1
¼ f2

f1
ð25Þ

where

f1 ¼ ð1Þ�
m1
2 �m1

2
k0ð1Þ

m1
2 �1

� �
Yn cð1Þ

2�m
2

� �

þ 2�m

2

� �
ck0ð1Þ

m2
2 � Y 0n cð1Þ

2�m
2

� � ð26Þ

f2 ¼ ð1Þ�
m1
2 �m1

2
k0ð1Þ

m1
2 �1

� �
Jn cð1Þ

2�m
2

� �

þ 2�m

2

� �
ck0ð1Þ

m2
2 � J0n cð1Þ

2�m
2

� � ð27Þ

and the boundary condition (8) is written as:

@ �T

@�r
¼ e

� k2

qc0
�t �m1

2

� �
�r�

m1
2 �1 B1Jn c�r

2�m
2

� �
þ B2Yn c�r

2�m
2

� �n o

þ e
� k2

qc0
�t � �r�

m1
2 c

2�m

2

� �
�r�

m
2

B1J0n c�r
2�m

2

� �
þ B2Y 0n c�r

2�m
2

� �
g ¼ 0

n

ð28Þ

where �r ¼ b=a; thus:

B2

B1
¼ f4

f3
ð29Þ

where
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f3 ¼
2�m

2

� �
cðb=aÞ

m2�2m1
2 � Y 0n cðb=aÞ

2�m
2

� �

�m1

2
ðb=aÞ�

m1
2 �1 � Yn cðb=aÞ

2�m
2

� � ð30Þ

f4 ¼
2�m

2

� �
cðb=aÞ

m2�2m1
2 � J0n cðb=aÞ

2�m
2

� �

�m1

2
ðb=aÞ�

m1
2 �1 � Jn cðb=aÞ

2�m
2

� � ð31Þ

and

J0n c�r
2�m

2

� �
¼ d

dg
Jn c�r

2�m
2

� �h i
ð32Þ

Y 0n c�r
2�m

2

� �
¼ d

dg
Yn c�r

2�m
2

� �h i
ð33Þ

where g ¼ c�r
2�m

2 : The right-hand side of both Eqs. 25

and 29 shall be equal.

f2

f1
¼ f4

f3
ð34Þ

The eigenvalue c can be obtained from Eq. 35 as the

follows:

f1 � f4 � f3 � f2 ¼ 0 ð35Þ

The Eq. 35 can be solved by using numerical

methods, such as Newton–Rophson method and using

MATLAB software. The boundary condition (7) can

be derived by using Eqs. 26 and 27 as follows:

e
� k2

qc0
�tðB2 � f1 � B1 � f2Þ ¼ 0 ð36Þ

The coefficient B1 replaces by Eq. 29 and then:

e
� k2

qc0
�tðB2 � f1 � B2

f3

f4
� f2Þ ¼ e

� k2

qc0�t
B2

f4
ðf1 � f4 � f3 � f2Þ ¼ 0

ð37Þ

It means that the boundary condition (7) is satisfied for

each eigenvalues. By using similar method, the

boundary condition (8) can be satisfied. There are

infinite numbers of roots for Eq. 35 thus Eq. 23 can be

written:

�T �r;�tð Þ ¼
X1
i¼1

e
�

k2
i

qc0
�t � �r�

m1
2 B1iJn ci�r

2�m
2

� �
þ B2iYn ci�r

2�m
2

� �n o

ð38Þ

where ci (eigen values) are the roots of Eq. 35 and

i = 1,..., ¥. To determine of the value of B1i and B2i, we

consider N numbers of eigenvalues. By using the initial

conditions at t = 0, Eq. 38 can be satisfied.

1 ¼
X1
i¼1

�r�
m1
2 B1iJn ci�r

2�m
2

� �
þ B2iYn ci�r

2�m
2

� �n o
ð39Þ

For 2N values of r between 1 and b/a, the Eq. 39 can be

calculated and 2N equations will derive. These derived

equations can be written in matrix form as follows:

k 1; 1ð Þ : : : k 1; 2Nð Þ
: : :
: : :
: : :

k 2N; 1ð Þ : : : k 2N; 2Nð Þ

2
66664

3
77775

B11

B21

:
B1N

B2N

8>>>><
>>>>:

9>>>>=
>>>>;
¼

1
:
:
:
1

8>>>><
>>>>:

9>>>>=
>>>>;
ð40Þ

The components of k matrix are:

k i; 2j� 1ð Þ ¼ �r
�m1

2

i � Jn cj � �r
2�m

2

i

� �
ð41Þ

k i; 2jð Þ ¼ �r
�m1

2

i � Yn cj � �r
2�m

2

i

� �

j ¼ 1; . . . ;N and i ¼ 1; . . . ; 2N
ð42Þ

The B1i and B2i coefficients are determined from

Eq. 40 as:

B11

B21

:
B1N

B2N

8>>>><
>>>>:

9>>>>=
>>>>;
¼ k½ ��1

1
:
:
:
1

8>>>><
>>>>:

9>>>>=
>>>>;

ð43Þ

To achieve high precision results, the number of

eigenvalues in Eq. 38 should be increased.

3 Numerical results and discussion

To verify the proposed method, the functionally gra-

ded hollow cylinder with b/a = 1.1 where a and b are

inner and outer radii, is considered. Suppose that the

inner surface is made of graphite/epoxy with thermal

conductivity of k = 0.72 W/m K. This shell is a thin

hollow cylinder.

For t=0 and m1 = 0 (homogeneous material), the

first six eigenvalues are obtained by using the boundary

conditions (flux-prescribed at inner and outer surfaces)

in Ref. [6]. For simplicity of analysis the power law

coefficients for m1 and m2 are considered to be the

same. These eigenvalues are compared with the results
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presented in Ref. [6]. This comparison is shown in

Table 1.The results for various m1 and b/a = 1.1 are in

good agreement with those obtained according to Ref.

[6]. Consider the functionally graded thick hollow

cylinder with inner radius a and outer radius b. The

boundary and initial conditions are defined in Eqs. 7, 8

and 9. Suppose that the inner surface is made of

alumina (ceramic). The alumina specifications are

kc = 46 W/m K, cc = 0.76 kJ/kg K, qc = 3,800 kg/m3,

and inner radius a is 0.25 m.

The convection coefficient and temperature of the

fluid flowing within hollow cylinder are h = 4,600 W/

m2 K and h 1 = 200� C. The first five eigenvalues of

the functionally graded thick hollow cylinder for

various values of power index m1 and b/a and infinite

length are given in Tables 2 and 3. It can be seen

that the eigenvalues for various power law exponents

are increased as the value of b/a is decreased. By

using the proposed method, the behavior of a shell

subjected to a transient thermal loading can be

shown. Figure 1 shows the radial distribution of

temperature for �t ¼ 0:5 and b/a = 1.5 and various

values of power law exponents. It is evident that the

errors decrease as the numbers of eigenvalues are

increased. The effects of eigenvalue numbers on the

accuracy of the solution are shown in Fig. 2. The

accuracy of the results can be improved, by

increasing the number of applied eigenvalues. For

large values of power exponents, one can see higher

rates of heat transfer. Histories of the temperature

distribution across the thickness of the shell are

illustrated in Fig. 3. Figures 4 and 5 show the radial

distribution of temperature and histories of temper-

ature distribution across thickness of shell for b/

a = 2. It can be seen from the Figs. 3 and 5 that for

small values of b/a, the shell reaches the steady-state

temperature profile faster than the case with larger

values of b/a. By decreasing the value of b/a, the

behavior of the shell approaches to the behavior of a

shell made of homogeneous material. The

comparison of the present method and a numerical

method (using MATLAB software) for

m1 = m2 = 0.5 and b/a = 2, for different times, are

illustrated in Fig. 6. The results are in good agree-

ment with obtained results from numerical method

(MATLAB software). For m1 and m2 differing from

each other, assume that the outer surface of shell is

aluminum with specifications as: km = 204 W/m K,

cm = 0.896 kJ/kg K, qm = 2,707 kg/m3

Using Eqs. 10 and 11, the power function expo-

nents m1 and m2 can be calculated as, m1 = 4.018,

m2 = –0.432.The history of temperature distribution

across the thickness is shown in Fig. 7.

Table 1 The first six eigenvalues for thin hollow cylinder (b/a = 1.1)

m1 c1 c2 c3 c4 c5 c6

Present Ref. [6] Present Ref. [6] Present Ref. [6] Present Ref. [6] Present Ref. [6] Present Ref. [6]

0 0 0 31.4268 31.4292 62.8373 62.8385 94.2514 94.2522 125.6664 125.667 157.0818 157.0823
0.5 0 0 31.4226 31.4391 62.8352 62.8434 94.25 94.2555 125.6654 125.6695 157.081 157.0843
1 0 0 31.4308 31.4512 62.8392 62.8495 94.2527 94.2596 125.6674 125.6726 157.0825 157.0867
2 0 0 31.4699 31.4821 62.8589 62.865 94.2659 94.2699 125.6773 125.6803 157.0905 157.0928
5 0 0 31.5498 31.6271 62.8902 62.9378 94.2849 94.3185 125.6909 125.7167 157.1011 157.1221

Table 2 The first eight eigenvalues for FGM hollow cylinder (b/
a = 1.5)

m2 = m1

0.1 0.5 1 2 5

c1 3.147 3.0541 2.9392 2.7171 2.114
c2 10.1309 10.1106 10.0887 10.0569 10.0605
c3 16.8679 16.8604 16.8533 16.8468 16.8888
c4 23.4873 23.4848 23.4834 23.4862 23.5392
c5 30.022 30.0217 30.0228 30.0292 30.0835
c6 36.4963 36.4972 36.4993 36.507 36.559
c7 42.9279 42.9292 42.9317 42.9399 42.9885
c8 49.3287 49.3302 49.3329 49.3409 49.3859

Table 3 The first eight eigenvalues for FGM hollow cylinder (b/
a = 2)

m2 = m1

0.1 0.5 1 2 5

c1 1.4107 1.3328 1.2387 1.0621 0.6303
c2 4.8398 4.8226 4.8064 4.7923 4.9018
c3 8.1344 8.1259 8.1187 8.1153 8.1958
c4 11.4028 11.3983 11.395 11.3966 11.4668
c5 14.6544 14.6521 14.6511 14.6556 14.7206
c6 17.8919 17.891 17.8914 17.8977 17.9589
c7 21.1169 21.1169 21.1183 21.1256 21.1836
c8 24.3312 24.3318 24.3337 24.3415 24.3965
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4 Conclusion

In this paper, an analytical solution for transient heat

conduction of functionally graded thick hollow cylinder

is presented in axisymmetry conditions. The material

properties through the thickness of the shell are assumed

to be nonlinear with a power law distribution. The

temperature distribution of functionally graded cylin-

drical shells are investigated for various power function

exponent m1 and m2. The results of this procedure can be

outlined as:

1. The trend of the variation of the first eight eigen-

values of functionally graded thick hollow cylinder

for various power law exponents and infinite length

Fig. 2 The effects of eigenvalue numbers on results

Fig. 3 History of temperature radial distribution for
m1 = m2 = 0.5 and b/a = 1.5

Fig. 1 Radial distribution of temperature for = 0.5 and b/a = 1.5
Fig. 4 Radial distribution of temperature for t = 0.5 and b/a = 2

Fig. 5 History of temperature radial distribution for
m1 = m2 = 0.5 and b/a = 2
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show that the accuracy of the results can be in-

creased by using more number of eigenvalues.

2. The transient temperature distribution in func-

tionally graded thick hollow cylinder is obtained

analytically in closed form. This distribution can be

useful in determining the thermal stress fields. The

optimization of heat conduction can be carried out

by using this form of solution.
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