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Abstract Numerical methods are used to investigate the
transient, forced convection heat/mass transfer from a
finite flat plate to a steady stream of viscous, incom-
pressible fluid. The temperature/concentration inside the
plate is considered uniform. The heat/mass balance
equations were solved in elliptic cylindrical coordinates
by a finite difference implicit ADI method. These solu-
tions span the parameter ranges 10 £ Re £ 400 and
0.1 £ Pr £ 10. The computations were focused on the
influence of the product (aspect ratio) · (volume heat
capacity ratio/Henry number) on the heat/mass transfer
rate. The occurrence on the plate’s surface of heat/mass
wake phenomena was also studied.

List of symbols

cP Heat capacity
C Concentration of the transferring species
D Diffusion coefficient of the transferring species in

the fluid phase
L Plate length
Pr Fluid phase Prandtl (Schmidt) number, Pr= m/a

(D)
Re Reynolds number based on plate length, Re =

U¥ L/m
t Time
T Temperature
x Streamwise (horizontal) coordinate
X Non-dimensional streamwise coordinate, X = x/

L
y Transverse (vertical) coordinate
Y Non-dimensional transverse coordinate, Y = y/

L

Z Dimensionless temperature/concentration de-
fined by the relations, ZðpÞ ¼

TðpÞ�T1
Tp;0�T1 or

Zp ¼ Cp�C1 N
Cp;0�C1 N ; Z ¼ C�C1

Cp;0=N�C1

Greek symbols

a Thermal diffusivity of the fluid phase
e Aspect ratio
g Elliptical cylindrical coordinate defined by Eq. 1
m Kinematic viscosity of the fluid phase
q Density
s Dimensionless time or Fourier number, s = 4 t a

(D)/ L2

x Dimensionless vorticity
n Elliptical cylindrical coordinate defined by Eq. 1
w Dimensionless stream function
N (qp cP,p)/(qc cP c) or Henry number

Subscripts

c Refers to the continuous (fluid) phase
p Refers to plate
0 Initial conditions
¥ Large distance from the plate

1 Introduction

In 1961, Perelman [1] used for the first time the phrase
‘‘conjugate heat transfer’’ to describe the heat transfer
between an internally heated semi-infinite flat plate and
a fluid in laminar flow in which the interface temper-
ature is unknown. Variations of the problem originally
formulated in Ref. [1] were solved analytically or
numerically in Refs. [2–25] (in agreement with the aims
of this work, we restricted the citation only to the
forced convection analysis). Except for Pozzi and
coworkers [16, 23, 24], the analysis of the mathematical
models used in Refs. [1–25] reveals the following main
characteristics:
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– the flow is steady and laminar;
– in the fluid phase and inside the plate, a steady tem-

perature profile is considered; in almost all cases, the
boundary layer assumptions were used to model the
heat transfer in the fluid; the temperature in the plate
was calculated by solving the heat conduction equation
or considering simplified models (one-dimensional,
linear variation in the direction normal to the inter-
face—assumption used for the first time by Luikov [4]).

A steady temperature profile inside the plate and in
the fluid phase can be achieved only if a heat/mass
source is present in the system. Note that a constant
temperature for one of the unwetted sides of the plate
indicates the presence of a heat source.

Pozzi and coworkers [16, 23, 24] (and the references
cited herein), focussed on the unsteady conjugate heat
transfer problem. The plate is considered semi-infinite.
At the initial time, a fluid at rest is impulsively acceler-
ated to a constant speed. The initial temperature field is
uniform and equal in both the fluid and the solid. The
unwetted side of the plate is kept at a constant temper-
ature [16, 23] or it is considered adiabatic [24]. The fluid
flow is laminar and compressible. The physico-mathe-
matical model is based on: (a) an integral formulation of
the boundary layer equations in the fluid phase; (b) the
conduction equation in the solid; the heat transfer in the
axial direction is neglected (one dimensional, linear
variation in the direction normal to interface). However,
we think that Pozzi and co-workers are closer to Refs.
[1–25] than to the present work.

When there is no heat/mass source in the system, the
conjugate problem must be rewritten and solved as an
unsteady one. One of the boundary cases of the conju-
gate problem is the transfer from a body with uniform
properties (temperature/concentration) (the so-called
external problem).

The aim of this paper is to analyse the unsteady heat/
mass transfer from a flat plate with uniform tempera-
ture/concentration. From our knowledge, this problem
was not investigated until now. The influence of the
product (physical properties ratio) · (aspect ratio) on
the heat/mass transfer rate is investigated at Re = 10.0,
40.0, 100.0 and 400.0 (Re is the plate Reynolds number).
For each Re number, three values of the fluid phase
Prandtl number, Pr = 0.1, 1.0 and 10.0, were consid-
ered. The appearance and the development of the ther-
mal/mass wake phenomenon are studied.

2 Model equations

Consider the steady, laminar, two-dimensional motion
of Newtonian fluid at zero incidence past a hot or cold
flate plate occupying the region—L/2 £ x £ L/2, �e
L £ y £ 0.0. The plate has finite length L and thick-
ness e L. The free stream velocity and concentration/
temperature are denoted by U¥ and C¥/ T¥, respectively.
The sides of the plate located at y = �e L and x

= ±(L/2) are insulated. Assume that there are no gra-
dients within the plate at each instant of time (the con-
centration/temperature inside the plate is uniform). Due
to the complexities of the problem, we consider also
valid the following statements:

– the effects of buoyancy and viscous dissipation are
negligible;

– the physical properties of the material of the plate and
the fluid are considered to be uniform, isotropic and
constant;

– no emission or absorption of radiant energy;
– no phase change;
– no chemical reaction inside the plate or in the sur-

rounding fluid;
– no pressure diffusion or thermal diffusion.

For purposes of obtaining a numerical solution to
this problem, it is convenient to use the elliptical cylin-
drical coordinate system. Denote by X = x/L and Y =
y/L the dimensionless cartezian coordinates. The ellip-
tical cylindrical coordinate system (n, g) is defined by

X ¼ 1

2
cosh n cos g; Y ¼ 1

2
sinh n sin g ð1Þ

This transformation maps the upper half of the
XY—plane (which by symmetry is all that need to be
considered) into the semi-infinite strip n ‡ 0, 0 £ g £ p.
The plate transforms to n = 0, with leading edge at g =
p and trailing edge at g = 0. In the elliptical cylindrical
coordinate system, the nondimensional governing
equations are:

– fluid motion
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where J = (1/8)(cosh 2n � cos 2g).

The boundary conditions to be satisfied are:

– interface (n = 0)

w ¼ 0; Zp ¼ Z ð4aÞ

– free stream (n = ¥)

w! 1

2
sinh n cosg, x! 0, Z! 0.0 ð4bÞ
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– symmetry axis (g = 0, p)

w ¼ x ¼ 0;
@Z
@g
¼ 0:0 ð4cÞ

The dimensionless initial conditions are:

s ¼ 0:0; Zp ¼ 1:0; Zðn > 0Þ ¼ 0:0 ð5Þ

The dimensionless variables Zp and Z have a double
signification, dimensionless concentration–dimension-
less temperature (the assumptions practiced in this
work are those usually employed in the analysis of the
analogy between heat and mass transfer). For the
simplicity and clarity of the presentation, in the
remainder of this work, we will use only the terminol-
ogy specific to heat transfer. This does not mean that
the implication of the present results in mass transfer
should be ignored.

The physical quantities of interest are the plate tem-
perature Zp, the local Nusselt number, Nug, and the
average Nusselt number, Nu. Considering as driving
force the difference between the plate temperature and
the free stream temperature, the local and average Nu
numbers are given by

Nug ¼ �
1

Zp

1

1=2 sin g
@Z
@n

����
n¼0

ð6aÞ

Nu ¼ � 1

Zp

Zp

0

@Z
@n

����
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dg ð6bÞ

3 Method of solution

The energy balance equations and the Navier–Stokes
equations were solved numerically. The finite difference
method was used for discretization.

The Navier–Stokes equations being uncoupled from
the energy balance equations can be solved indepen-
dently of them. Equation 2a was discretized with the
central second order accurate finite difference scheme. A
double discretization (upwind and central finite differ-
ence schemes), necessary for the defect correction itera-
tion, was used for Eq. 2b. Numerical experiments were
made with the discretization steps D n = D g = p/64, p/
128 and p/256. The algorithm employed is the nested
defect-correction iteration [26, 27].

The main problem in solving numerically the present
Navier–Stokes equations is the boundary conditions at
infinity. Dennis and Dunwoody [28] and Robertson
et al. [29] analysed in detail this problem. Useful dis-
cussions about this aspect can be viewed in Ref. [30] for
a similar flow problem.

Some ideas in solving the steady, laminar flow past a
finite flat plate were lent from the steady, laminar flow
past a circular cylinder. A reference study in this field
may be considered [31]. According to Ref. [31], at n¥, the
boundary conditions

@ŵ
@n
¼ @x
@n
¼ 0:0 ð7Þ

provide accurate results at moderate Re values. In (7),
ŵ ¼ w� 1=2 sinh n sin g is the deviation from the uni-
form flow.

In this work, both relations (4b) and (7) were used as
boundary conditions at infinity. In each case, a carefully
investigation of the influence of these boundary condi-
tions on the solutions was made. The comparison be-
tween the solutions calculated with boundary conditions
(4b) and (7) had shown that the only practical result of
using (7) is to decrease the values of n¥ necessary to
provide an accurate solution in the region near to the
body.

The mathematical model Eqs. 3a and b is a system
formed by a 2D parabolic partial differential equation
(PDE) that describes the heat transfer in the fluid phase
and an ordinary differential equation (ODE) that de-
scribes the energy balance of the plate. Equation 3a was
discretized with the exponentially fitted scheme [32]. The
discretization steps in both spatial directions are equal
and took the values p/64, p/129 and p/256. The discrete
parabolic equation was solved by the implicit ADI
method. The ODE was integrated by an explicit modi-
fied Euler algorithm. The integral from relation (3b) was
calculated by the Newton 3/8 rule using the values of ¶Z/
¶n |n=0 available at time s. The time step was variable
and changed from the start of the computation to the
final stage. The initial and final values of the time step
depend on the parameter values.

4 Results

The dimensionless Eqs. 2 and 3 and the boundary and
initial conditions (4) and (5) depend on four dimen-
sionless parameters: Re,Pr, e and N . The first question
discussed in this section is the selection of the numerical
values of these parameters.

Four values of the Re number were used: Re = 10.0,
40.0, 100.0 and 400.0. We considered Re = 400.0 as
superior boundary in order to avoid a disturbing in-
crease in the numerical errors. At very small values of
the product Re Pr, the system has a distinct behaviour
and deserves a distinct analysis. For this reason, values
of the Re number smaller than 10.0 were not used in this
work.

The forced convection heat transfer from a flat plate
is usually studied for three distinct sets of Pr values, e.g.
Pr fi 0.0, Pr � 1.0 and Pr� 1.0. In this work, for each
Re value, Pr takes the values, Pr = 0.1, 1.0 and 10.0.

For a heat transfer process, the dimensionless
parameter N is the ratio (plate/surrounding medium) of
the thermodynamic quantity volume heat capacity (for a
mass transfer process this parameter is the Henry
number, also called distribution coefficient). For brevity,
N will be referred as the thermodynamic ratio. In the
mathematical model Eqs. 2–5, the thermodynamic ratio
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and the aspect ratio e appear only as the product e N in
relation (3b). Thus, we may consider the product e N as a
single parameter. Values of e N in the range 10�2 –102

cover the situations of practical interest and allow the
study of asymptotic behaviour.

The first task in any numerical work is to validate the
code’s ability to reproduce published results accurately.
A comparison of the present results for the drag coeffi-
cient, CD, with published solutions, over the entire range
of Reynolds numbers considered, is shown in Table 1.
Unfortunately, there are no data in literature to verify
the accuracy of the present heat transfer computations.
One of the tests that can be made consists of the
numerical solving of the forced convection heat transfer
from a plate with constant temperature. For this prob-
lem, a comparison of the present average Nu values with
published solutions is also shown in Table 1. For both
CD and Nu, Table 1 shows that the present numerical
results are in good agreement to the published results.

The main problem of this work is the influence of e N
on heat transfer. We will try to hit two targets: (1) first,
to extend the results obtained at cylinder [35] (i.e. the
heat/mass transfer from a cylinder with uniform tem-
perature/concentration) and sphere [36–38] to a new
geometry; secondly, to provide new results of interest for
the flat plate. At this point, we think that the following
aspect should be emphasized. For the sphere and cyl-
inder, the geometry of the body influences the transfer
only by means of the dimensionless groups Reynolds,
Peclet, and so on. For the flat plate, a geometric
parameter, the aspect ratio e, appears explicitly in the
mathematical model and influences directly the transfer.
As example: for a metallic sphere/cylinder in a fluid
environment, N takes values greater or considerably
greater than one; for a metallic flat plate, e N can take,
theoretically at least, any value.

The time variation of plate temperature at Re = 40.0
and Pr = 1.0 is plotted in Fig. 1. The curves obtained
for the other Re and Pr numbers have the same shape
and for this reason were not presented. The asymptotic
(i.e. the values corresponding to s fi ¥) values of the

average Nu numbers are presented in Table 2 and plot-
ted in Fig. 2. The presence of the superscript * in a cell
indicates that the time variation of Nu does not reach a
frozen value (in the other cases, the time variation of
average Nu stabilizes to a constant, frozen value). The
values depicted in this case correspond to the integration
final, when the time variation of Nu becomes small. The
last column of Table 2 shows the values provided by the
plate with constant temperature.

Thermal wake phenomenon is described by the
transfer inversion point, TrIP [35, 37]. The TrIP steady
values, measured from the trailing edge, are plotted in
Fig. 3, only for Re = 10.0 and 100.0. At Re = 40.0 and
400.0, the wake phenomenon is similar to that presented
at Re = 100.0. We must mention that the wake phe-
nomenon for flat plate was also reported in Ref. [39].

The present results and the sphere’s/cylinder’s results
have some common and some distinct features. The
common features, that express the general characteris-
tics of the influence of the thermodynamic ratio (for the
present case, e N rather than N) on the time variation of
plate temperature and asymptotic values of the average
Nu numbers, are:

Table 1 Comparison of CD and average Nu with previous studies

Re Authors CD Pr Authors Nu

10 Dennis and Dunwoody [28] 0.748 1.0 Dennis and Smith [33] 2.694
Present 0.741 1.0 Present 2.64

40 Dennis and Dunwoody [28] 0.316 0.7 Dennis and Smith [33] 4.377
1.0 4.89

Robertson et al. [29] 0.316 0.7 Robertson et al. [29] 4.32
Present 0.31 0.7 Present 4.28

1.0 4.81
100 Dennis and Dunwoody [28] 0.188 0.7 Dennis and Smith [33] 6.75

1.0 7.55
Robertson et al. [29] 0.186 0.7 Robertson et al. [29] 6.74
Vynnycky et al. [22] 0.166 1.0 Vynnycky et al. [22] 6.76
Present 0.18 0.7 Present 6.47

1.0 7.34
400 Van Dyke [34] 0.0797 1.0 Dennis and Smith [33] 14.84

Present 0.0806 1.0 Present 14.16

Fig. 1 Variation of the plate dimensionless temperature with
dimensionless time at Re = 40.0 and Pr = 1.0
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– the heat transfer rate is strongly influenced by e N ; the
increase in e N increases the average Nu number;

– independently of the e N value, for a given Re number,
the increase in Pr increases Nu; also, at a given Pr
number, the increase in Re increases Nu; the increase

in Re by a given number with the simultaneously de-
crease in Pr by the same number (i.e. the product Re
Pr remains constant) leads to the increase in Nu (the
aspect observed only at cylinder is not present here).

The distinct features refer especially to the local ef-
fects of e N variation on average Nu number and to the
wake phenomenon. Table 2 and Fig. 2 show that, except
for the case Re= 10.0 and Pr = 0.1, the influence of e N

Fig. 2 Asymptotic values of the average Nu numbers function of e
N ; a Re = 10.0; b Re = 40.0; c Re = 100.0; d Re = 400.0

Table 2 Asymptotic (s fi ¥) average Nu values

Re Pr e N Zp = 1.0

0.01 0.1 0.2 0.5 1.0 2.0 5.0 10.0 100.0

10.0 0.1 0.004* 0.029* 0.056* 0.135* 0.26* 0.48* 0.88* 1.08 1.24 1.28
1.0 0.077 0.65 1.09 1.75 2.12 2.35 2.51 2.57 2.62 2.64
10.0 0.53 3.05 4.01 4.87 5.22 5.40 5.52 5.56 5.60 5.62

40.0 0.1 0.034* 0.305* 0.56* 1.10 1.50 1.78 1.98 2.05 2.11 2.14
1.0 0.37 2.34 3.21 4.04 4.40 4.59 4.72 4.76 4.80 4.81
10.0 1.95 7.67 8.92 9.82 10.15 10.32 10.43 10.46 10.49 10.51

100.0 0.1 0.12 0.97 1.54 2.27 2.66 2.89 3.04 3.09 3.13 3.15
1.0 0.92 4.56 5.68 6.59 6.95 7.13 7.25 7.29 7.32 7.34
10.0 4.25 13.34 14.64 15.49 15.78 15.94 16.04 16.07 16.09 16.2

400.0 0.1 0.59 3.32 4.34 5.21 5.57 5.76 5.87 5.91 5.95 5.97
1.0 3.50 11.34 12.64 13.52 13.83 13.98 14.08 14.11 14.14 14.16
10.0 13.11 27.83 29.41 30.42 31.05 31.09 31.11 31.11 31.12 31.13

*Unfrozen value
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on average Nu becomes significant when e N < 0.5 (the
influence is less significant in comparison with the sphere
and cylinder). The wake phenomenon has smaller
dimensions in comparison with the sphere and the
cylinder. The behaviour of the system at Re = 10.0 and
Pr = 0.1 is similar to that described in Ref. [40] for a
sphere in creeping flow and small Peclet numbers.

Fig. 3 Steady state position of TrIP on the plate surface, measured
with respect to the trailing edge: a Re = 10.0; b Re = 100.0

Fig. 4 Local Nu numbers at different times for Re = 40.0, Pr =
1.0 and e N = 0.1

Fig. 5 Values of the group Nu/(Re1/2 Pry) function of plate Re
number; symbol * refer to the asymptotic value provided by
boundary layer theory; a Pr = 0.1, y = 1/2, * = 1.128; b Pr= 1.0,
* = 0.664; c Pr = 10.0, y = 1/3, * = 0.678

1100



Concerning the wake phenomenon, there is an
interesting aspect that deserves to be presented. At
sphere and cylinder the thermal wake occurs and
develops from the stagnation points. At the plate, the
thermal wake occurs in a region delimited by the middle
of the plate and the trailing edge (see Fig. 4). In these
moments, there are two TrIPs. With the increase in time,
the wake evolves toward the trailing edge and finally
occupies a region between the trailing edge and a single
TrIP.

The heat transfer from a plate with constant tem-
perature was intensively analysed using boundary layer
theory (BLA). In the context of the present work (i.e. the
same assumptions are valid), when Re fi ¥, the fun-
damental results provided by BLA are [41]:

Nu ¼ 1:128
ffiffiffiffiffiffi
Pr
p ffiffiffiffiffiffi

Re
p

if Pr ! 0.0 ð8aÞ

Nu ¼ 0:664
ffiffi
½

p
3�Pr

ffiffiffiffiffiffi
Re
p

if 0:6\Pr\10:0 ð8bÞ

Nu ¼ 0:678
ffiffi
½

p
3�Pr

ffiffiffiffiffiffi
Re
p

if Pr !1. ð8cÞ

The Reynolds analogy between the fluid flow and the
heat transfer for the flat plate at Pr= 1.0 is expressed by
the relation [41]

ReCD

2:0Nu
! 1:0 when Re!1.

Fig. 5 shows that for e N > 0.10, the groups Nu/f
(Re,Pr) tend to an asymptotic value when Re tends to
infinite. At Pr = 0.1, the asymptotic value differs from
that predicted by BLA. However, we think that this re-
sult cannot be considered an invalidation of BLA. We
think that Pr = 0.1 is too higher a value for the limit Pr
fi 0.0. For Pr = 1.0 and 10.0, the asymptotic values

agree well with the BLA values. For e N = 0.1, 0.01 it is
difficult to state that the present numerical results tend
to the BLA asymptotic value.

For the Reynolds analogy, Fig. 6 shows a similar
situation with that described previously. For e N > 0.10
it is obviously that the ratio Re CD/2 Nu tends to unity.
At e N = 0.1, 0.01 (especially for e N = 0.01) the
asymptotic behaviour is difficult to foresee.

5 Conclusions

The physical heat transfer from a flat plate with uniform
temperature was investigated. The flow past the flat
plate was considered steady, laminar at zero incidence.
The plate Re number takes the values 10.0, 40.0, 100.0
and 400.0. For each Re value, the fluid phase Pr number
was considered equal to 0.1, 1.0 and 10.0. The main
aspect analysed was the influence of the product (aspect
ratio) · (thermodynamic ratio) on the transfer rate.

The numerical results presented in the previous sec-
tion show that the heat/mass transfer from a flat plate
with uniform temperature exhibits the same main char-
acteristics as the transfer from a sphere or cylinder with
uniform properties. The influence on the transfer rate of
the thermodynamic ratio, plate Re number and fluid Pr
number follows the same rules. Only the wake phe-
nomenon shows a distinct behaviour.

References

1. Perelman YL (1961) On conjugate problems of heat transfer.
Int J Heat Mass Transfer 3:293

2. Luikov AV, Aleksashenko VA, Aleksashenko AA (1971)
Analytical methods of solution of conjugate problems in con-
vective heat transfer. Int J Heat Mass Transfer 14:1047

3. Sakakibara M, Mori S, Tanimoto A (1973) Effect of wall
conduction on convective heat transfer with laminar boundary
layer. Heat Transfer—Jpn Res 2:94

4. Luikov AV (1974) Conjugate convective heat transfer prob-
lems. Int J Heat Mass Transfer 17:257

5. Chida K, Katto Y (1976) Study of conjugate heat transfer by
vectorial dimensional analysis. Int J Heat Mass Transfer 19:453

6. Chida K, Katto Y (1976) Conjugate heat transfer of continu-
ously moving surfaces. Int J Heat Mass Transfer 19:461

7. Payvar P (1977) Convective heat transfer to laminar flow over a
plate of finite thickness. Int J Heat Mass Transfer 20:431

8. Karvinen R (1978) Some new results for conjugate heat transfer
in a flat plate. Int J Heat Mass Transfer 21:1261

9. Gosse J (1980) Analyse simplifiée du couplage conduc-
tion—convection pour un écoulement à couche limite laminaire
sur une plaque plane. Rev Gen Therm 228:967

10. Sparrow EM, Chyu MK (1982) Conjugate forced convec-
tion—conduction analysis of heat transfer in a plate fin. J Heat
Transfer 104:204

11. Ramadhyani S, Moffat DF, Incropera FP (1985) Conjugate
heat transfer from small isothermal heat sources embedded in a
large substrate. Int J Heat Mass Transfer 28:1945

12. Pozzi A, Lupo M (1989) The coupling of conduction with
forced convection over a flat plate. Int J Heat Mass Transfer
32:1207

13. Mori S, Nakagawa H, Tanimoto A, Sakakibara M (1991) Heat
and mass transfer with a boundary layer flow past a plate of
finite thickness. Int J Heat Mass Transfer 34:2899

Fig. 6 Values of the group Re CD/2 Nu function of plate Re
number

1101
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