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Abstract The hyperbolic heat conduction process in a
hollow sphere with its two boundary surfaces subject to
sudden temperature changes is solved analytically by
means of integration transformation. An algebraic
analytical expression of the temperature profile is ob-
tained. Accordingly, the non-Fourier hyperbolic heat
propagation in hollow spherical medium is analyzed and
possible hyperbolic anomalies are discussed.

List of symbols

a Thermal diffusivity (m2 s�1)
c Velocity of thermal propagation (m s�1)
f1, f2 Source functions of F1, F2

F1, F2 Intermediate functions
H( ) Heaviside’s unit step function
In( ) Modified Bessel function of the first kind and

order n
l Mean free path of molecule (m)
L( ) Laplace transform
L( )
�1 Inverse Laplace transform

p Dimensionless quantity to designate position
of the wave front

q Heat flux (W m�2)
r Radial or spatial coordinate (m)
ri Inner radius (m)
ro Outer radius (m)
rc Relative thickness of the hollow sphere

(=ri/ro)
s Laplace transformed variable
S Heat source (W m�3)
t Time (s)

T Temperature (K)
T0 Initial temperature (K)
Twi Temperature of inner surface (K)
Two Temperature of outer surface (K)
Tc Relative temperature change

(=(Twi � T0)/Two � T0))
v Velocity of phonon or electron (m s�1)

Greek symbols

b Intermediate function
e Dimensionless characteristic time (=as/ro

2)
g Dimensionless position (=r/ro)
k Thermal conductivity, (W m�1 K�1)
h Dimensionless temperature (=(T � T0)/

(Two � T0))
s Thermal characteristic (or relaxation) time (s)
n Dimensionless time (=at/ro

2)

Superscripts

� Laplace transformed function
fi Vector

1 Introduction

Heat always conducts from warmer objects to cooler
ones. Empirically, the heat conduction rate is related to
the spatial temperature difference and the composition
of material. Fourier (1,768–1,830) pondered this phe-
nomenon and proposed the well-known and later widely
used Fourier’s law of heat conduction,

q r; tð Þ ¼ �krT r; tð Þ; ð1Þ

which states that heat flux q is directly proportional to
the temperature gradient � T. The proportionality k is
the thermal conductivity of material. The negative sign
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ahead of k indicates that the two vectors, heat flux and
temperature gradient take opposite directions.

There is a broad experimental basis for the Fourier’s
law, and in this sense it is just a phenomenological
description of regular thermal processes where the
thermal time scale is comparatively long and the heat
flux density is not very large. Fourier’s law elucidates
such a thermal case in which temperature difference (�
T) and heat propagation (q) take place concurrently,
thus itself implies an infinite speed of propagation of a
thermal disturbance, indicating that a local change of
temperature causes an instantaneous perturbation at
each point in the medium. This is physically unreason-
able.

Substituting the Fourier’s law into the law of con-
servation of energy, the change rate in the amount of
heat in a spatial infinitesimal can be determined by
finding the summation of the net flow-in heat flux and
the heat generation (S), illustrated as,

r2T r; tð Þ þ 1

k
S r; tð Þ ¼ 1

a
@T r; tð Þ
@t

: ð2Þ

This is the traditional parabolic heat conduction model,
which describes the diffusion way of thermal propaga-
tion.

Although the Fourier’s law may still be sufficiently
accurate for engineering problems under regular
conditions, the fundamental assumptions of an
instantaneous response and a quasi-equilibrium ther-
modynamic transition behind the model need to be
carefully examined when extended to problems
involving a high heat flux or a sudden temperature
change, and/or a micro (even nano) temporal/spatial
scale. An equilibrium state in thermodynamic transi-
tions, first of all, needs time to be established. For a
physical process occurring in a much shorter time
interval than that required for attaining equilibrium,
the equilibrium concept becomes an approximate
description of the physical process, and in this case,
the diffusion theory based on a local equilibrium
hypothesis becomes invalid. For example, when ap-
plied to the problem of reflectivity change resulting
from short-pulse laser heating on a multi-layer metal
film [1], diffusion theory predicts a reversed trend for
the surface reflectivity when compared to the experi-
mental data. The response time in this particular
problem is of the order of a picosecond, comparable to
the phonon–electron thermal relaxation time. The
metal lattice and the hot electron gas simply cannot
reach thermodynamic equilibrium in such a short
period of time, which is the main cause for the failure
of the diffusion theory. In some nanoscale systems,
such as semiconductor devices based on the GaAs
MESFETs or Si MOSFETs, the characteristic size of
the device is of the order of nanometer, which is
comparable to or even smaller than the mean free path
of the energy carriers. The validity of the classic
Fourier law needs carefully examining therein.

The earliest experimental evidences of the existence of
non-Fourier heat conduction were obtained in some
special materials at extremely low temperature. Peshkov
[2] experimentally studied non-Fourier heat conduction
in liquid helium II and measured a thermal propagation
speed of about 19 m/s at a temperature of 1.4 K, an
order of magnitude smaller than the speed of sound
under the same condition. Non-Fourier heat conduction
phenomena in some other materials at low temperature
have also been verified, such as in NaF crystals (10–
20 K) by Jackson and Walker [3] and in Bismuth
(1.2–4.0 K) by Narayanmurti and Dynes [4].

Accounting for the lagging response in time between
the heat flux vector and the temperature gradient, Tzou
[5] provided a macroscopic formulation to describe the
non-equilibrium thermodynamic transition which can be
expressed by,

q r; t þ sð Þ ¼ �krT r; tð Þ; ð3Þ

with s being the phase-lag in time, i.e. the thermal
relaxation time, an intrinsic thermal property of the
medium. Equation 3 indicates that due to insufficient
time of response, the temperature gradient established at
time t yields a heat flux vector at a later time t+s. By
applying a Taylor’s series expansion and ignoring the
second and higher order derivatives, a hyperbolic energy
equation reads as,

r2T r; tð Þ þ 1

k
S r; tð Þ þ s

@S r; tð Þ
@t

� �

¼ 1

a
@T r; tð Þ
@t

þ s
@2T r; tð Þ
@t2

� �
: ð4Þ

This is the so-called hyperbolic non-Fourier heat con-
duction model [6] from which the thermal propagation is
deduced to have a wave nature.

Much effort has been spent to obtain solutions of
the hyperbolic heat conduction equation under differ-
ent conditions, and to develop mathematical and
numerical techniques that would accurately predict the
non-Fourier temperature profiles for a wide range of
physical, geometric and boundary conditions. The re-
lated works are listed as follows: (1) Mikic [7], Bau-
meister and Hamill [8], Amos and Chen [9] obtained
the temperature distribution due to a step change in
temperature at the boundary of a semi-infinite medium
bounded by a plane surface. (2) Glass et al. [10],
Orlande and Özisik [11], Maurer and Thompson [12]
found solutions of the hyperbolic heat conduction
equation in a semi-infinite solid bounded by a plane
surface with subjection of time-dependent heat fluxes.
(3) Vick and Özisik [13] provided an analytical solu-
tion in a semi-infinite planar medium with thermal
disturbance generated by a time-dependent heat
source. (4) Taitel [14] gave an analytical solution for a
thin layer subjected to a step change of temperature on
its both sides. (5) Özisik and Vick [15] gave an ana-
lytical solution in a finite slab with insulated bound-
aries where a volumetric energy source was used. (6)
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Frankel et al. [16] and Hector et al. [17] studied
hyperbolic propagation of thermal signals in an infinite
plane slab. In their treatments, no heat generation
occurred within the slab and one of the surfaces was
insulated. On the other surface, a time-dependent heat
flux was prescribed, which was either a uniform rect-
angular [16] or non-uniform and axisymmetric [17]
heat pulse. (7) Gembarovic and Majernik [18] gave an
analytical solution for a finite slab under a heat pulse
boundary condition. (8) Tang and Araki [19] presented
an analytical solution to the hyperbolic heat conduc-
tion equation in a finite medium under periodic surface
heating. (9) Carey and Tsai [20] gave a numerical
solution for a thin layer subjected to a step change of
temperature on one side. Glass et al. [21, 22] gave
numerical solutions for a finite medium with surface
radiation and temperature-dependent conductivity,
respectively. (10) Barletta [23], Barletta and Pulvirenti
[24], Wilhelm and Choi [25] reported analytical solu-
tions of 1-D radial hyperbolic thermal propagation in
infinite solid medium. The analytical model that
Barletta [23] considered is an infinite solid medium
bounded internally by a circular cylindrical surface
subject to a time-dependent heat flux, while an infinite
long solid cylinder with outer boundary surface pre-
scribed by a time-dependent heat flux was considered
by Barletta and Pulvirenti [24]. Wilhelm and Choi [25]
studied hyperbolic thermal propagation caused by a
linear heat source in a very long cylinder. (11) Kim
et al. [26] and Hector et al. [17] solved the 2-D
hyperbolic heat conduction equation in a cylinder of
finite length. (12) Zhang and Liu [27] studied non-
Fourier effects in a spherical solid medium with either
a sudden temperature change or a time-dependent
pulsed heat flux prescribed on the boundary surface.
(13) Frankel et al. [28] analytically studied the hyper-
bolic thermal propagation process in a planar multi-
layer solid medium. (14) Tzou [29–32] obtained 3-D
analytical solutions of hyperbolic heat conduction
problems with thermal disturbances produced by
moving heat source or moving crack. (15) Sadd and
Didlake [33], Lebon and Casas-Vazquez [34], Mullis
[35] handled some relatively more complicated hyper-
bolic thermal cases in which phase transition processes
were assumed. (16) Barletta and Zanchini [36] analyt-
ically studied the 3-D hyperbolic propagation in a
solid bar with rectangular cross sections. Thermal
disturbances originated from the time-dependent heat
fluxes prescribed on its boundary surfaces. A com-
presensive understanding about the hyperbolic heat
conduction can be gotten from the review articles
made by Joseph and Preziosi [37, 38].

The pursuit of analytical solutions for the hyperbolic
heat conduction equations is of intrinsic scientific
interests. In the present study, an analytical expression
of the temperature profile in a hollow sphere with sud-
den temperature changes on its free surfaces is derived.
According to this expression, hyperbolic heat propaga-

tion behaviors in hollow spherical objects are analyzed
and discussed.

2 Model description

A radial one-dimensional heat conduction process is
considered for a hollow sphere (as shown in Fig. 1)
with an inner radius ri and outer radius ro and with
constant thermal properties and uniform initial tem-
perature distribution T0. The thermal disturbance is
caused by sudden temperature changes on its inner
surface (from T0 to Twi) and outer surface (from T0 to
Tw0); no heat source is involved and heat convection
and radiation are disregarded (solid medium or fluid
medium restricted in a narrow space). The hyperbolic
heat conduction equation is employed as the governing
equation and the following formulation (in dimen-
sionless form) yields,

@2h g; nð Þ
@g2

þ 2

g
@h g; nð Þ
@g

¼ @h g; nð Þ
@n

þ e
@2h g; nð Þ
@n2

; ð5Þ

with initial conditions,

h g; 0ð Þ ¼ 0;
@h
@n

����
n¼0
¼ 0; rc � g � 1

� �
; ð6Þ

and boundary conditions,

h rc; n
� �

¼ Tc; h 1; nð Þ ¼ 1; n > 0ð Þ; ð7Þ

where

h ¼ T � To

Tw0 � To
; g ¼ r

ro
; n ¼ at

r2o
; e ¼ as

r2o
; rc ¼

ri
ro

and Tc ¼
Twi � T0

Tw0 � T0
:

The thermal relaxation time s can be expressed as,
s=3a/v2=a/c2. Because the velocity v of phonon or

Fig. 1 Computational model
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electron equals to l/s, where l is the mean free path of
molecule, the dimensionless parameter e can also be
defined as e=l2/3r0

2, i.e. the ratio of thermal length scale
to the characteristic physical length scale.

3 Analytical solution

Applying the Laplace transformation to Eq. 5 with
respect to the variable n and taking into account initial
conditions Eq. 6, a subsidiary equation yields,

@2~h g; sð Þ
@g2

þ 2

g
@~h g; sð Þ
@g

� sþ es2
� �

~h g; sð Þ ¼ 0; ð8Þ

with boundary conditions,

~h rc; s
� �

¼ Tc

s
; ~h 1; sð Þ ¼ 1

s
: ð9Þ

After a series of manipulations, the solution of Eq. 8
restricted by the conditions shown in Eq. 9 is easily
obtained,

Replacing the denominators inside the braces of
Eq. 10 with a series of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2
p

as,

1

1� exp �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2
p

1� rc
� �� �

¼
X1
n¼0

exp �2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2

p
1� rc
� �h i

; ð11Þ

it yields,

g~h g; sð Þ ¼ 1

s

X1
n¼0

exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2

p
2n� 2nrc � gþ 1
� �h in

� Tcrc exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2

p
2nþ 2� g� 2nþ 1ð Þrc
� �h i

þ Tcrc exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2

p
2nþ g� 2nþ 1ð Þrc
� �h i

� exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2

p
2nþ gþ 1� 2 nþ 1ð Þrc
� �h io

:

ð12Þ

The inverse Laplace transform gives for the tempera-
ture response in the hollow sphere the following
expression,

gh g; nð Þ ¼ L�1 g~h g; sð Þ
h i

¼ L�1 s~b g; sð Þ
h i

¼ @b g; nð Þ
@n

; ð13Þ

where,

~b g; sð Þ ¼ 1

s2
X1
n¼0

exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2

p
2n� 2nrc � gþ 1
� �h in

� Tcrc exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2

p
2nþ 2� g� 2nþ 1ð Þrc
� �h i

þ Tcrc exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2

p
2nþ g� 2nþ 1ð Þrc
� �h i

� exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2

p
2nþ gþ 1� 2 nþ 1ð Þrc
� �h io

:

ð14Þ

The source function b (g,n) is determined from,

b g; nð Þ ¼ L�1 ~b g; sð Þ
h i

¼ L�1 F1 g; sð ÞF2 sð Þ½ �

¼ f1 g; nð Þ � f2 nð Þ ¼
Zn

0

f1 g; n0ð Þf2 n� n0ð Þdn0 ð15Þ

with,

F1 g; sð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2
p

�
X1
n¼0

exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2

p
2n� 2nrc� gþ 1
� �h in

� Tcrc exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2

p
2nþ 2� g� 2nþ 1ð Þrc
� �h i

þ Tcrc exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2

p
2nþ g� 2nþ 1ð Þrc
� �h i

� exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2

p
2nþ gþ 1� 2 nþ 1ð Þrc
� �h io

;

ð16Þ

F2 sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2
p

s2
: ð17Þ

Since the source functions f1 (g, n) and f2(n) can be
determined from a table of inverse Laplace transforms,
finally, the expression for the hyperbolic temperature
propagation in the hollow sphere yields,

g~h g; sð Þ ¼ 1

s

exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2
p

g� 1ð Þ
� �

� Tcrc exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2
p

gþ rc � 2
� �� �

1� exp �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2
p

1� rc
� �� �

( )

þ 1

s

Tcrc exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2
p

rc � g
� �� �

� exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2
p

2rc � g� 1
� �� �

1� exp �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ es2
p

1� rc
� �� �

( )
: ð10Þ
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Taking the limiting situation: rc fi 0, i.e. ri fi 0 or
ro fi ¥, the above expression goes back to the form of
the temperature solution for a solid sphere [27]. The
reliability of this solution is further examined by con-
sidering another limit situation, s fi 0, i.e. e fi 0. In
this situation, the hyperbolic heat conduction should
degenerate to be the corresponding parabolic one.

Replacing the Bessel functions in Eq. 18 with the
following series,

I0ðzÞ ¼
ezffiffiffiffiffiffiffi
2pz
p 1þ 1

8z
þ 9

2!ð8zÞ2
þ � � �

" #
; ð19Þ

I1ðzÞ ¼
ezffiffiffiffiffiffiffi
2pz
p 1� 3

8z
� 15

2!ð8zÞ2
� � � �

" #
; ð20Þ

and taking into account the approximation equalities
below as well as the original limit condition e fi 0,

1

2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � ð2n� 2nrc � gþ 1Þ2e

q

¼ n
2e
� ð2n� 2nrc � gþ 1Þ2

4n
þ OðeÞ; ð21Þ

1

2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � ð2n� 2nþ 1ð Þrc � gþ 2Þ2e

q

¼ n
2e
� ð2n� 2nþ 1ð Þrc � gþ 2Þ2

4n
þ OðeÞ; ð22Þ

1

2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � ð2n� 2nþ 1ð Þrc þ gÞ2e

q

¼ n
2e
� ð2n� 2nþ 1ð Þrc þ gÞ2

4n
þ OðeÞ; ð23Þ

1

2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � ð2n� 2 nþ 1ð Þrc þ gþ 1Þ2e

q

¼ n
2e
� ð2n� 2 nþ 1ð Þrc þ gþ 1Þ2

4n
þ OðeÞ; ð24Þ

it yields,

ghðg;nÞ¼
X1
n¼0

Zn

0

1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0ðn�n0Þ

p

� e�ð2n�2nrc�gþ1Þ2=4n0 �Tcrce
�ð2n� 2nþ1ð Þrc�gþ2Þ2=4n0

h

þTcrce
�ð2n� 2nþ1ð ÞrcþgÞ2=4n0

�e�ð2n�2 nþ1ð Þrcþgþ1Þ2=4n0
i
dn0; ð25Þ

Equation 25 is consistent to the analytical expression,
obtained in the work by Carslaw and Jaeger [39], for the
Fourier heat conduction in hollow spherical medium.

4 Hyperbolic heat propagation behaviors

Utilizing Eq. 18, numerical calculations were performed
to display the temperature profile induced by the sudden
temperature changes on the boundary surfaces of this

gh g; nð Þ ¼e
�n
2e

X1
n¼0

I0
1

2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 2n� 2nrc � gþ 1

� �2
e

q� �
H n�

ffiffi
e
p

2n� 2nrc � gþ 1
� �� �	

� TcrcI0
1

2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 2n� ð2nþ 1Þrc � gþ 2

� �2
e

q� �
H n�

ffiffi
e
p

2n� ð2nþ 1Þrc � gþ 2
� �� �

þ TcrcI0
1

2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 2n� ð2nþ 1Þrc þ g

� �2
e

q� �
H n�

ffiffi
e
p

2n� ð2nþ 1Þrc þ g
� �� �

� I0
1

2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 2n� 2ðnþ 1Þrc þ gþ 1

� �2
e

q� �
H n�

ffiffi
e
p

2n� ð2nþ 1Þrc þ gþ 1
� �� �


þ 1

2e
e
�n
2e

X1
n¼0

Zn

0

I0
1

2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0

2 � 2n� 2nrc � gþ 1
� �2

e
q� �

H n0 �
ffiffi
e
p

2n� 2nrc � gþ 1
� �� �	

� TcrcI0
1

2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0

2 � 2n� ð2nþ 1Þrc � gþ 2
� �2

e
q� �

H n0 �
ffiffi
e
p

2n� ð2nþ 1Þrc � gþ 2
� �� �

þ TcrcI0
1

2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0

2 � 2n� ð2nþ 1Þrc þ g
� �2

e
q� �

H n0 �
ffiffi
e
p

2n� ð2nþ 1Þrc þ g
� �� �

� I0
1

2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n02 � 2n� 2ðnþ 1Þrc þ gþ 1

� �2
e

q� �
H n0 �

ffiffi
e
p

2n� ð2nþ 1Þrc þ gþ 1
� �� �


� I0
n� n0

2e

� �
þ I1

n� n0

2e

� �� �
dn0

ð18Þ
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hollow sphere. Hyperbolic heat propagation behaviors
are to be explored in two ways: temperature wave and
time-delay phenomenon of heat propagation.

According to Eq. 18, the dimensionless temperature h
is dependent on five parameters: g (position), n (time), e
(property of material), Tc (thermal disturbance) and rc
(geometry). Keeping Tc=1 and rc=0.6, several groups

of temperature variation curves at different positions
(g=0.9, 0.7, 0.8) for different materials (e=0.01, 0.1,
0.35) are plotted, as shown in Fig. 2. For the material of
e=0.01, the temperature in the hollow sphere gradually
approaches the final thermal equilibrium value (1.0) and
no very evident wave characteristic is detected. How-
ever, for the temperature curves of e=0.1 and 0.35, a
complete different temperature variation trace is dis-
played. The temperature variations in the hollow
spherical medium take on very pronounced character-
istic of heat wave. The two heat waves, originated from
the inner and outer boundary surfaces respectively,
interact each other in the interior of the hollow sphere:
at the central plane of the hollow sphere (g=0.8), the
two heat waves arrive simultaneously, a temperature
jump or drop is caused by the interaction of the two heat
waves, as shown in Fig. 2c; while at the positions of
g=0.7 or g=0.9, one heat wave arrives earlier than the
other, the temperature increases or decreases owing to
the earlier arriving heat wave, then further increases or
decreases by the later arriving one, as Fig. 2a, b signify.

Also from Fig. 2, if one pays attention to the tem-
poral variation of temperature in the hollow sphere, it
can be discovered that the temperature wave rapidly
attenuates along with the advance of time evolution.
After n>4.0 or so, no evident temperature wave can be
detected any more and all the curves gradually approach
the final thermal equilibrium value (1.0). Accordingly,
the hyperbolic heat propagation is an instantaneous
behavior, i.e., heat wave only exist in a short time instant
after a thermal disturbance.

Comparing the temperature curves shown in Fig. 2a,
b, it can be found out that the temperature waves have
similar appearance, whereas the amplitudes of temper-
ature variation are clearly different. At the position of
g=0.7 (close to the inner boundary surfaces), relatively
larger temperature wave amplitudes are exhibited than
the temperature curves at the position of g=0.9
(near the outer boundary surface). Closer to the inner

Fig. 2 Dimensionless temperature h versus dimensionless time n for
Tc=1 and rc=0.6 (a g=0.9; b g=0.7; c g=0.8)

Fig. 3 Dimensionless temperature h versus dimensionless time n for
Tc = �1 and rc=0.6 at position of g=0.8
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boundary surface, smaller is the cross sectional area and
larger is the heat flux.

Figure 3 shows the temperature variations at position
of g=0.8 in the hollow spheres of three different mate-
rials (e=0.01, 0.1, 0.35, respectively) with rc=0.6 still. In
contrast to Fig. 2c in which Tc=1, here Tc = �1, i.e.,
the two boundary surfaces have opposite temperature
changes. Thus the two temperature disturbance signals,
to some extent, offset each other in the hollow sphere
and the temperature wave takes much smaller ampli-
tude.

From Eq. 18, the time-delay amount of hyperbolic
temperature propagation is deduced to be directly pro-
portional to e1/2. The time-delay phenomenon of the
hyperbolic heat propagation can be extracted from
Fig. 4, in which a group of curves display the temperature
distributions in the hollow sphere at several time instants
(n=0.04, 0.1, 0.3 and 0.46). Again, Tc and rc are kept as
1.0 and 0.6 respectively. A relaxation time s is specified to
give e=0.2. During the early time of this thermal case
(n=0.04), although temperatures at the regions close to
the two boundary surfaces have increased, in some inte-
rior region of the hollow sphere it still sticks at the initial
value (0.0). The existence of this kind of thermal static
region indicates the time-delaying propagation of ther-
mal disturbance. With the time advance, the two heat
waves, respectively originated from the two boundary
surfaces encounter and interfere each other.

In order to check the influence of rc on the hyperbolic
heat propagation in the hollow sphere, a few calcula-
tions for hollow spheres of different wall thicknesses
have been carried out with respect to two different
materials (e=0.5, 0.1). The temperature observation
point is set at the central plane of the hollow sphere.
Various rc values (rc=0.1 or 0.9) are realized by varying
ri while keeping ro as a constant. The two boundary
surfaces are subject to a same amount of temperature
jump (Tc =1). Results are shown in Fig. 5. Larger rc is,
i.e., the wall of the hollow sphere is thinner, stronger and

faster (high frequency) temperature fluctuation is
observed. More evident or more lasting hyperbolic
thermal propagation behavior can be detected in the
hollow spherical medium of thinner wall.

Figures 2, 4 and 5 all designate a temperature over-
shooting phenomenon: during some time instant at
certain parts in the interior of the hollow sphere, the
temperature is unusual high, even higher than the
temperature of the heated boundary. For awhile, this
unusual phenomenon was ascribed to the extreme non-
equilibrium heat transmission in the hyperbolic heat
propagation regime. The work by Haji-Sheikh et al. [40]
was the first one to point out certain anomalies may exist
in the hyperbolic solutions themselves. In order to
facilitate the following discussions, a dimensionless
quantity p is defined as

p ¼ ct
ro � ri

¼ n

1� rc
� � ffiffi

e
p ; ð26Þ

Fig. 4 Temperature distribution in the hollow sphere of e=0.2 and
rc=0.6 with Tc=1

Fig. 5 Temperature variation at the central plane of hollow spheres
with different wall thicknesses and with Tc=1 (a rc =0.9; b rc
=0.1)
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which is used to indicate the position of the heat wave
front. With respect to Fig. 4 (similar treatment can be
addressed to Figs. 2, 5 also), n=0.04, 0.1, 0.3 and 0.46
give a value of p=0.224, 0.559, 1.677 and 2.57, respec-
tively. For n=0.04, the two heat waves do not yet
encounter, there is a thermal static region existing in the
central part of the hollow sphere. When n=0.46, the
heat waves already travel a round trip in the hollow
sphere—they hit the inner and outer boundary surface
each one time and meet each other at the central plane
inside the hollow sphere three times. According to the
work by Haji-Sheikh et al. [40], every time, the wave hits
the boundary wall, an energy pulse is produced and the
Dirichlet boundary condition may be violated; when the
two heat waves encounter, an energy pulse is produced
too and the overshooting temperature appears. Haji-
Sheikh et al. [40] argued that the hyperbolic heat con-
duction equation, Eq. 4 has some defects, which
implicitly lead to those additional energy pulses mathe-
matically and then form some hyperbolic heat conduc-
tion anomalies, for instance, (1) extremely high
temperature in the heat transfer medium interior; (2)
tightly close to the heated outer boundary surface, often
the temperature gradient is negative whereas the heat is
transported inside from this boundary; (3) close to the
inner boundary surface, where the temperature gradient
is, when n=0.3, slightly positive, whereas the heat is
moving inward.

Haji-Sheikh et al. [40] proposed a general method to
deal with an anomaly by replacing the temperature
discontinuity with an equivalent volumetric heat source
for inclusion in the temperature solution. Chen [41, 42]
derived a new type of equations and named them bal-
listic-diffusive equations, which has the potential of
giving more reasonable non-Fourier temperature repre-
sentations relative to the hyperbolic heat conduction
equation, for the transient heat conduction in nano-
structures. The procedure required to handle the
hyperbolic heat conduction anomalies is lengthy and is
not included in this work.

5 Concluding remarks

An analytical expression of the hyperbolic heat propa-
gation in a hollow sphere with boundary surfaces subject
to sudden temperature changes is obtained. Hyperbolic
heat propagation behaviors exhibited in the medium are
analyzed. The key factor to determine the significance of
non-Fourier effects is the property of material itself,
e=a s /ro

2=l2/3 ro
2. Generally, the hyperbolic heat

conduction is easier to happen in smaller object (or
hollow sphere of thinner wall) made of material of
longer thermal relaxation time. One expression of the
hyperbolic heat propagation is the heat wave, which
attenuates with the advance of time and propagation
distance, and is only an instantaneous behavior—the
wave behaviors diminish along with the time advances.

Besides heat wave, another manifestation way of the
hyperbolic heat propagation is the time-delay phenom-
enon. For the presently investigated hollow sphere, the
time-delay amount of the hyperbolic temperature prop-
agation is directly proportional to e1/2. The temperature
overshooting phenomenon observed in the hyperbolic
heat conduction may be certain anomaly, which is
caused by the hyperbolic heat conduction model itself.
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