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Abstract The phenomenon of dispersion (transverse and
longitudinal) in packed beds is summarized and re-
viewed for a great deal of information from the litera-
ture. Dispersion plays an important part, for example, in
contaminant transport in ground water flows, in misci-
ble displacement of oil and gas and in reactant and
product transport in packed bed reactors. There are
several variables that must be considered, in the analysis
of dispersion in packed beds, like the length of the
packed column, viscosity and density of the fluid, ratio
of column diameter to particle diameter, ratio of column
length to particle diameter, particle size distribution,
particle shape, effect of fluid velocity and effect of tem-
perature (or Schmidt number). Empirical correlations
are presented for the prediction of the dispersion coef-
ficients (DT and DL) over the entire range of practical
values of Sc and Pem, and works on transverse and
longitudinal dispersion of non-Newtonian fluids in
packed beds are also considered.

Keywords Packed beds Æ Dispersion Æ Longitudinal
dispersion Æ Transverse dispersion Æ Mass transfer

List of symbols

a Radius of soluble cylinder
b Width of slab
C Concentration of solute
�C Concentration of the outflowing central solu-

tion
C0 Bulk concentration of solute
C* Equilibrium concentration of solute (i.e. solu-

bility)
CS Concentration of solute in outlet
d Average diameter of inert particles
D Diameter of packed bed

DL Longitudinal dispersion coefficient
Dm Molecular diffusion coefficient
D¢m Apparent molecular diffusion coefficient

(=Dm/s)
DT Transverse dispersion coefficient
E(h) Distribution function for residence times
F(h) (C � C0)/(CS � C0)
k Average mass transfer coefficient over soluble

surface
L Length
n Total mass transfer rate
N Local flux of solute
p Variable of Eq. 13 or Eq. 18
Pef Peclet number defined by Eq. 42
PeL(0) Asymptotic value of PeL when Re fi 0
PeL (¥) Asymptotic value of PeL when Re fi ¥
PeT (0) Asymptotic value of PeT when Re fi 0
PeT (¥) Asymptotic value of PeT when Re fi ¥
Q Volumetric flow rate
r Radial co-ordinate
R Column radius
Ri Injector tube radius
t Time
�t Mean residence time
T Absolute temperature
tc Time of contact (=L/u)
U Superficial fluid velocity
u Average interstitial fluid velocity
x, y, z Cartesian coordinates

Greek letters

ai Roots of different equations
bn Positive root of Bessel function of first kind, of

order 1
e Bed voidage
/r Accumulation of solute
l Dynamic viscosity
h Dimensionless time
hc Dimensionless time of contact (=DT tc/R

2)
q Density
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s Tortuosity
nc Variable defined by Eqs. 17d–e

Dimensionless groups

Pea Peclet number based on longitudinal disper-
sion coefficient (=uL/DL)

Pem Peclet number of inert particle (=ud/Dm)
Pe¢m Effective Peclet number of inert particle (=ud/

D¢m)
PeL Peclet number based on longitudinal disper-

sion coefficient (=ud/DL)
PeT Peclet number based on transversal dispersion

coefficient (=ud/DT)
Re Reynolds number (=q Ud/l)
Sc Schmidt number (=l/q Dm)

Functions

J0(x) Bessel function of first kind of zero order
J1(x) Bessel function of first kind of first order

1 Introduction

The problem of solute dispersion during underground
water movement has attracted interest from the early
days of this century [131], but it was only since the 1950s
that the general topic of hydrodynamic dispersion or
miscible displacement became the subject of more sys-
tematic study. This topic has interested hydrologists,
geophysicists, petroleum and chemical engineers, among
others, and for some time now it is treated at length in
books on flow through porous media [11, 121]. Some
books on chemical reaction engineering [25, 53, 147]
treat the topic of dispersion (longitudinal and lateral) in
detail and it is generally observed that the data for liq-
uids and gases do not overlap, even in the ‘‘appropriate’’
dimensionless representation.

Since the early experiments of Slichter [131] and
particularly since the analysis of dispersion during solute
transport in capillary tubes, developed by Taylor [139]
and Aris [3, 4], a lot of work has been done on the
description of the principles of solute transport in
porous media of inert particles (e.g. soils) and in packed
bed reactors [11, 45].

Gray [58], Bear [11] and Whitaker [149] derived the
proper form of the transport equation for the average
concentration of solute in a porous medium, by using
the method of volume or spatial averaging, developed by
Slattery [130].

Brenner [20] developed a general theory for deter-
mining the transport properties in spatially periodic
porous media in the presence of convection, and showed
that dispersion models are valid asymptotically in time
for the case of dispersion in spatially periodic porous
media, while Carbonell and Whitaker [27] demonstrated
that this should be the case for any porous medium.

These authors presented a volume-average approach for
calculating the dispersion coefficient and carried out
specific calculations for a two-dimensional spatially
periodic porous medium. Eidsath et al. [49] have com-
puted axial and lateral dispersion coefficients in packed
beds based on these spatially periodic models, and have
compared the results to available experimental data. The
longitudinal dispersion coefficient calculated by Eidsath
et al. shows a Peclet number dependence that is too
strong, while their transverse dispersion. However, in
soils or underground reservoirs, large-scale nonunifor-
mities lead to values of dispersion coefficients that differ
much from those measured in packed beds, and for these
cases spatially periodic models cannot be expected to
provide excellent results without modifications.

There have been other attempts at correlating and
predicting dispersion coefficients based on a probabilis-
tic approach [39, 59, 70, 120] where the network of pores
in the porous medium is regarded as an array of cylin-
drical capillaries with parameters governed by proba-
bility distribution functions.

Dispersion in porous media has been studied by a
significant number of investigators using various exper-
imental techniques (see Tables in Appendix). However,
measurements of longitudinal and lateral dispersion are
normally carried out separately, and it is generally
recognised that ‘experiments on lateral dispersion are
much more difficult to perform than those on longitu-
dinal dispersion’ [121].

When a fluid is flowing through a bed of inert parti-
cles, one observes the dispersion of the fluid in conse-
quence of the combined effects of molecular diffusion
and convection in the spaces between particles. Gener-
ally, the dispersion coefficient in longitudinal direction is
superior to the dispersion coefficient in radial direction
by a factor of 5, for values of Reynolds number larger
than 10. For low values of the Reynolds number (say,
Re<1), the two dispersion coefficients are approximately
the same and equal to molecular diffusion coefficient.

The detailed structure of a porous medium is greatly
irregular and just some statistical properties are known.
An exact solution to characterize the flowing fluid through
one of these structures is basically impossible. However,
by themethodof volumeor spatial averaging, it is possible
to obtain the transport equation for the average concen-
tration of solute in a porous medium [11, 149].

At a ‘‘macroscopic’’ level, the quantitative treatment
of dispersion is currently based on Fick’s law, with the
appropriate dispersion coefficients; cross-stream disper-
sion is related to the transverse dispersion coefficient,
DT, whereas streamwise dispersion is related to the
longitudinal dispersion coefficient, DL.

If a small control volume is considered, a mass bal-
ance on the solute, without chemical reaction, leads to
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2 Longitudinal dispersion

Over the past five decades, longitudinal dispersion in
porous media has been measured and correlated exten-
sively for liquid and gaseous systems. Many publications
are available for a variety of applications including,
packed bed reactors [30, 48, 64, 96, 141] and soil column
systems [11, 106, 110, 111].

One of the first results published about longitudinal
dispersion in packed beds of inertial particles was in the
1950s by Danckwerts [37], who published his celebrated
paper on residence time distribution in continuous
contacting vessels, including chemical reactors, and thus
provided methods for measuring axial dispersion rates.
The author studied dispersion along the direction of flow
for a step input in solute concentration (CS) in a bed of
Raschig rings (with length L), crossed by water (C0) with
a value of Re(=q Ud/l) approximately equal to 25 and
obtained a PeL(=ud/DL) value of 0.52.

Kramers and Alberda [91] followed Danckwerts’s
study with a theoretical and experimental investigation
by the response to a sinusoidal input signal. These au-
thors proposed that packed beds could be represented as
consecutive regions of well-mixing rather than a se-
quence of stirred tanks (mixing-cell model) and sug-
gested a PeL @ 1, for Re fi ¥. McHenry and Wilhelm
[100] assumed the axial distance between the mixing-cells
in a packing to be equal to particle diameter and showed
that PeL must be about 2 for high Reynolds number.
The difference in the two results may be explained on the
basis of experimental results of Kramers and Alberda
[91] that are obtained with L/D � 4.6, a value signifi-
cantly less than L/D > 20 [63]. Klinkenberg et al. [87]
and Bruinzeel et al. [23] show that transverse dispersion
can be neglected for a small ratio of column diameter to
length and large fluid velocity.

Brenner [19] presented the solution of a mathematical
model of dispersion for a bed with finite length, L, and
the most relevant conclusion of his work was that for
Pea(=uL/DL) ‡ 10, the equations obtained by Danc-
kwerts [37] for an input step in solute concentration and
Levenspiel and Smith [96] for a pulse in solute concen-
tration, that assumed an infinite bed, are corrected.

Hiby [78] proposed a better empirical correlation to
cover the range of Reynolds numbers to 100. The author
reported experimental results with the aid of photo-
graphs to compare the two dispersion mechanisms pre-
sented above—diffusional model in turbulent flow and
the mixing-cell model.

Sinclair and Potter [128] used a frequency–response
technique applied to the flow of air through beds of glass
ballotini in a Reynolds number range between 0.1 and
20. A further investigation in the intermediate Reynolds
number region has been carried out by Evans and
Kenney [51] who used a pulse response technique in beds
of glass spheres and Raschig rings.

Experiments reported by Gunn and Pryce [68]
showed that longitudinal dispersion coefficients given by

the theoretical equation for the diffusional model and
the theoretical equation for the mixing-cell model are
very similar. The authors also showed that neither the
mixing-cell model nor the axially dispersed plug-flow
model could describe axial dispersion phenomena.

As it may verify, the description of solute transport in
packed beds by dispersion models has been studied since
the 1950s and has long attracted the attention of engi-
neers and scientists (see Tables 1 and 2).

Typically, the boundary conditions adopted by the
vast majority of the investigators reported above have
corresponded to the semi-infinite bed, i.e. L is sufficiently
large (L/D > 20). Dispersion of the given tracer was
measured at two points in the outlet and the distortion
of a tracer forced by a pulse input [13, 26, 132], fre-
quency response[40, 46, 91, 100, 135] and step input [37,
78, 101, 108]. Figure 1 illustrates some experimental
data points for longitudinal dispersion in liquid and
gaseous systems.

2.1 Experimental techniques

Since the development of the dispersion approximation
for the study of solute transport in capillary tubes by
Taylor [139], the flow of the tracer is described by dis-
persion due to molecular diffusion and radial velocity
variations. In packed beds, with D/d > 15, the
assumption of flat velocity profiles and porosity is rea-
sonable as pointed out by Akehata and Sato [2] and
Gunn [63] and later showed by the experimental studies
of Stephenson and Stewart [133] and Gunn and Pryce
[68], that suggested D/d > 10.

Imagine a packed bed of uniform porosity (e), con-
tained in a long column of length L along which the
liquid flows at a superficial velocity U (the interstitial
velocity is then u=U/e) and initial concentration of
solute C0, in which a tracer with continuously injection
and concentration of solute CS, is dispersed in radial and
axial direction. Taking a small control volume inside this
boundary layer, a material balance on the solute, with
length d z and width d r, leads to differential Eq. 1 [63].
Klinkenberg et al. [87] and Bruinzeel et al. [23] show
that transverse dispersion can be neglected in compari-
son with axial dispersion for a small ratio of column
diameter to length (D/L) and large fluid velocity. The
partial differential equation describing tracer transport
in the bed reduces to
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@2C
@z2
� u

@C
@z
¼ @C
@t
; ð2Þ

where z measures length along the bed, and if L is suf-
ficiently large (semi-infinite bed), the appropriate
boundary conditions are

C ¼ C0 0 � z � L t ¼ 0; ð3aÞ

uCS ¼ uC � DL
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z ¼ 0 t > 0; ð3bÞ
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@C
@z
¼ 0 z ¼ L t > 0: ð3cÞ

For a step input, the concentration at the outlet of the
bed (z=L) can be obtained by Carslaw and Jaeger [28],
who give the exact solution of the equivalent heat-
transfer problem. However, a study developed by Har-
rison et al. [73] showed that the boundary conditions
developed by Danckwerts [37], for an infinite system,
hold adequately for a finite system provided uL/DL ‡ 10.
So, for a step input (from C0 to CS), the concentration at
the outlet of the bed (z=L) is known [37] to be given if L
is sufficiently large, by
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Rifai et al. [115] and Ogata and Banks [107] showed
that the solution of Eq. 2 with the boundary conditions
and initial condition given by Eq. 3a–c is
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However, Ogata and Banks [107] showed that for large
molecular Peclet numbers (say, uL/DL > 100), the
advection dominates and the second term in the right-
hand side can be neglected, with an error lesser than 5%,
and Eq. 6 reduces to Eq. 4.

2.2 Parameters influencing longitudinal disper-
sion—Porous medium

Perkins and Johnston [110] in their article review showed
some of the variables that influence longitudinal and
radial dispersion. However, before attempting in the
parameters influencing dispersion, it is important to
consider the effect of the packing of the bed on disper-
sion coefficients. Gunn and Pryce [68] and Roemer et al.
[118] showed that when particles in packed beds are not
well-packed, the dispersion coefficient is increased.
Experimental results of Gunn and Pryce [68] showed
that different re-packing of the bed gave deviations of
15% in transverse Peclet values. These experiments
confirm that fluid mechanical characteristics are not
only defined by the values of the porosity and tortuosity
(easy to reproduce), but depend on the quality of
packing in the bed.

The effect of radial variations of porosity and velocity
on axial and radial transport of mass in packed beds was
analytically quantified by Choudhary et al. [31], Lerou
and Froment [95], Vortmeyer and Winter [146] and
Delmas and Froment [42].

A rigorous measurement of the porosity in a packed
bed is fundamental to minimize the errors in the exper-
imental measurements, because the porosity between the
inert particles of the bed helps the diffusion of a tracer
and gradually increases dispersion.

A more coherent interpretation of the experimental
data may be obtained through the use of dimensional
analysis. As a starting point, it is reasonable to accept
the functional dependence

DL ¼ / L;D; u; d; q; l;Dmð Þ ð7Þ
for randomly packed beds of mono-sized particles with
diameter d, where q and l are the density and viscosity
of the liquid, respectively, and Dm is the coefficient of

Fig. 1 Some experimental data
points for axial dispersion in
liquid and gaseous systems
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molecular diffusion of the solute. Making use of Buck-
ingham’s p theorem, Eq. 7 may be rearranged to give

DL

Dm
or PeL ¼ U

L
D
;
D
d
;

ud
Dm

;
l

qDm

� �
ð8Þ

and it is useful to define Pem=ud/Dm and Sc =l/q Dm.
This result suggests that experimental data be plotted as
(DL/Dm) versus Pem.

2.2.1 Effect of column length

One first aspect to be considered, as a check on the
experimental method (infinite medium), is the influence
of the length of the bed (L) on the measured value of
longitudinal dispersion. In reality, if an experimental
method is valid, values of the dispersion coefficient
measured with different column lengths, under otherwise
similar conditions, should be equal, within the repro-
ducibility limits.

The dependence of the axial dispersion coefficient on
the position in packed beds was first examined by Taylor
[139]. The author showed that, in laminar flow, disper-
sion approximation would be valid if the following
equation is satisfied,

h ¼ Dmt
R2

>> 0:14; ð9Þ

where R is the tube radius. Carbonell and Whitaker [27]
concluded that the axial dispersion coefficient becomes
constant if the following expression is satisfied

h ¼ 1� e
e

� �2 Dmt
d2

>> 1: ð10Þ

Han et al. [69], see Fig. 2, showed that values of the
longitudinal dispersion coefficient, for uniform-size
packed beds, measured at different positions in the bed

are function of bed location unless the approximate
criterion

L
d

1

Pem

1� e
e

� �2

� 0:3 or h ¼ Dmt
d2
� 0:15 ð11Þ

is satisfied. The authors showed that for Pem < 700,
longitudinal dispersion coefficients were nearly identical
for all values of x=L, and for Pem > 700 observed an
increase in the value of dispersion coefficients with
increasing distance down the column.

2.2.2 Ratio of column diameter to particle diameter

It is well-known (e.g. [145]) that the voidage of a packed
bed (and therefore, the fluid velocity) is higher near a
containing flat wall. The effects of radial variations of
porosity and velocity on axial and radial transport of
mass in packed beds were analytically quantified by
several investigators like Choudhary et al. [31], Lerou
and Froment [95], Vortmeyer and Winter [146] and
Delmas and Froment [42].

Schwartz and Smith [123] were the first to present
experimental data showing zones of high porosity
extending two or three particle diameters from the
containing flat wall. The results indicated that unless D/d
> 30 important velocity variations exist across the
packed bed. Other studies showed that the packed bed
velocity profiles significantly differ from flows with large
diameter particles in small diameter tubes [24, 35].

Hiby [78] showed that the effect of D/d is not signif-
icant in the measured longitudinal dispersion coefficient
when the ratio is greater than 12.

Stephenson and Stewart [133] showed that the area of
high fluid velocities limits to the area of high porosities,
and this area does not extend more than a particle
diameter of the wall and the assumption of a flat velocity
profile is reasonable. This work confirms the earlier

Fig. 2 Effect of bed length on
DL
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experiments reported by Roblee et al. [117], Schuster
and Vortmeyer [122] and Vortmeyer and Schuster [145].

A similar effect was observed in measuring pressure
drops across packings, so an empirical rule can be
considered that the variations, in radial position, of the
fluid velocity, porosity and dispersion coefficient can be
negligible, if D/d > 15 [2, 63].

2.2.3 Ratio of column length to particle diameter

Strang and Geankoplis (1958) and Liles and Geankoplis
(1960) make much of the effect of L/d but the evidence
from fluid mechanical studies [67] was that the effect is
confined to a dozen layers of particles and is not very
important.

Experimental results of Guedes de Carvalho and
Delgado [62] presented in Fig. 3 with two different
spherical particles diameter and the same length of the
packed bed showed that longitudinal dispersion coeffi-
cient does not increased with particle diameter as long as
the condition D/d > 15 is satisfied (see Vortmeyer and
Schuster [145] and Ahn et al. [1], for wall effects).

2.2.4 Particle size distribution

Another aspect of dispersion in packed beds that needs
to receive attention is the effect of porous medium
structure. In a packed bed of different particle sizes, the
small particles accumulate in the interstices between
large particles, and porosity tends to decrease.

Raimondi et al. [114] and Niemann [105] studied the
effect of particle size distribution on longitudinal dis-
persion and concluded that DL increases with a wide
particle size distribution. Eidsath et al. [49] indicated a
strong effect of particle size distribution on dispersion.
As the ratio of particle diameters went from a value of
2 to 5, the axial dispersion increased by a factor of 1.5,

and radial dispersion decreased by about the same
factor.

Han et al. [69] showed that for a size distribution with
a ratio of maximum to minimum particle diameter equal
to 7.3, longitudinal dispersion coefficient are 2 to 3 times
larger than the uniform-size particles (see Fig. 3).

Wronski and Molga [152] studied the effect of particle
size non-uniformities on axial dispersion coefficients
during laminar liquid flow through packed beds (with a
ratio of maximum to minimum particle diameter equal
to 2.13) and proposed a generalized function to deter-
mine the increase of the axial dispersion coefficients in
non-uniform beds relative to those obtained in uniform
beds.

Guedes de Carvalho and Delgado [62] obtained the
same conclusion in their experiments, with ballotini and
a ratio of maximum to minimum particle diameter equal
to 3.5 in comparison with glass ballotini that have the
same size.

2.2.5 Particle shape

The effect of particle shape on longitudinal dispersion
has been studied by several investigators, like Bernard
and Wilhelm [14], Ebach and White [46], Carberry and
Bretton [26], Strang and Geankopolis [135], Hiby [78],
Klotz [88] and more recently, Guedes de Carvalho and
Delgado [62]. The authors have used beds of spheres,
cubes, Raschig rings, sand, saddles and other granular
materials, and have concluded that generally longitudi-
nal dispersion coefficient tend to be greater with packs of
nonspherical particles than with packs of spherical
particles of the same size.

Figure 4 shows that particle shape is a significant
parameter, with higher values of DL (i.e. lower PeL)
being observed in packed beds of sand and Raschig rings
comparatively with the results obtained with spherical
beds. Therefore, increased particle sphericity correlates

Fig. 3 Effect of particle size
distribution on DL
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with decreased dispersion, with a sphericity defined as
the surface area of a particle divided by the surface area
of a sphere of volume equal to the particle.

2.3 Parameters influencing longitudinal disper-
sion—Fluid properties

2.3.1 Viscosity and density of the fluid

Some investigators, like Hennico et al. [77], used glyc-
erol and obtained significant effect of viscosity, at large
Reynolds number, on axial dispersion coefficient. In
vertical miscible displacements, if a less viscous fluid
displaced another fluid, viscous fingers will be formed
[110]. However, if a more viscous fluid displaced a dif-
ferent fluid, the dispersion mechanisms are unaffected
but the situation tends to reduce convective dispersion.
This leads to increased dispersion relative to the more
viscous fluid displacing a less viscous one.

The importance of density gradients has recently
been investigated by Benneker et al. [12] and their
experiments showed that axial dispersion coefficient is
considerably affected by fluids with different densities
due the action of gravity forces. Fluid density creates
similar effects to fluid viscosity. In a displacement with
a denser fluid above the less-dense fluid, gravity forces
cause redistribution of the fluids. However, if a denser
fluid is on the bottom, usually, a stable displacement
occurs.

2.3.2 Fluid velocity

The first two groups of Eq. 8 have importance only
when D/d is less than 15 and L/D is so small that the
characteristics of dispersion are affected by changing
velocity distributions. So, for packed beds, we will usu-
ally have DL/Dm=F (Pem, Sc).

In order to understand the influence of fluid velocity
on the dispersion coefficient, it is important to consider
the limiting case where u fi 0. If DL was defined based
on the area open to diffusion (see Eq. 2), in the limit u
fi 0, solute dispersion is determined by molecular dif-
fusion, with DL=D¢m=Dm/s (s being the tortuosity
factor for diffusion and it is equal to

ffiffiffi
2
p

as suggested by
125].

As the velocity of the fluid is increased, the contri-
bution of convective dispersion becomes dominant over
that of molecular diffusion [150] and DL=ud/PeL (¥),
where u is the interstitial fluid velocity and PeL (¥) @ 2
for gas or liquid flow through beds of (approximately)
isometric particles, with diameter d [24, 85].

Assuming that the diffusive and convective compo-
nents of dispersion are additive, the same authors sug-
gest that DL=D¢m+ud/PeL (¥), which may be written in
dimensionless form [63] as

DL

Dm
¼ 1

s
þ 1

2

ud
Dm

or
1

PeL
¼ 1

s
e

ReSc
þ 1

2
: ð12Þ

This equation is expected to give the correct asymp-
totic behaviour, in gas and liquid flow through packed
beds, at high and low values of Pem(=ud/Dm). For ga-
ses, this is confirmed in Fig. 5, but for liquids (Fig. 6),
the data do not cover the extreme conditions.

But these figures show that Eq. 12 is inaccurate over
part of the intermediate range of Pem. In the case of gas
flow, shown in Fig. 6, significant deviations are observed
only in the range 0.6 < Pem < 60, as pointed out by
several of the authors [48, 63, 78, 142]. The experimental
values of PeL (=ud/DL) are generally higher than pre-
dicted by Eq. 12. Several equations have been proposed
to represent the data in this intermediate range and the
equations of Hiby [78], Edwards and Richardson [48],
Evans and Kenney [51], Scott et al. [124], Langer et al.
[93] and Johnson and Kapner [86] are shown to fit the
data points reasonably well (see Fig. 5).

Fig. 4 Effect of particle shape
on axial dispersion
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With liquids, deviations from Eq. 12 occur over the
much wider range 2 < Pem < 106, the experimental
values of PeL being significantly lower than predicted by
that equation. The difference in the behaviour between
gases and liquids has to be ascribed to the dependence of
PeL on Sc(=l/q Dm).

2.3.3 Fluid temperature (or Schmidt number)

The coefficient of longitudinal dispersion for gas flow (Sc
@ 1) is predicted with good accuracy by Eq. 12, except in
the approximate range 0.5 < Pem < 100, where ex-
perimental values may be more than twice those given by
the equation, as confirmed by Fig. 5.

For liquid flow, a large number of data are available,
that were obtained with different solutes in water at near

ambient temperature, corresponding to the values of Sc
in the range 500 < Sc < 2,000. Most of the data re-
ported in the literature, for this range of Sc, are shown in
Fig. 6, and they form a ‘‘thick cloud’’ running parallel to
the line defined by Eq. 12, though somewhat below it (at
approximately, 0.3 < PeL < 2).

In recent years, data on longitudinal dispersion have
been made available for values of Sc between the two
extremes of near ideal gas (Sc @ 1) and cold water (Sc >
550). Such data were obtained with either supercritical
carbon dioxide (1.5 < Sc < 20) or heated water (55 <
Sc < 550) and they are displayed in Fig. 7.

Figure 7 shows a consistent increase in PeL with a
decrease in Sc and it may be seen that the dependence is
slight for the higher values of Sc (say for Sc of order 750
and above). At the lower end of the range of Pem
investigated, there seems to be a tendency for PeL to

Fig. 5 Data on axial dispersion
in gas flow

Fig. 6 Data on axial dispersion
in liquid flow
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become independent of Sc, even if the values of DL are
still significantly above Dm. In the intermediate range,
100 < Pem < 5,000, values of PeL are very nearly
constant, for each value of Sc. The convergence of the
different series of points at about Pem @ 20 seems to
suggest that PeL is insensitive to Sc below this value of
Pem, for the range of Sc presented.

A good additional test of the consistency of the data
of Guedes de Carvalho and Delgado [62] is supplied by
the plot in Fig. 8, where it may be seen that all the series
of points converge at high Re, as would be expected for
turbulent flow. The agreement with the data of Jacques
and Vermeulen [85] and Miller and King [101], for cold
water, is worth stressing.

Recently, some workers have measured axial disper-
sion for the flow of supercritical carbon dioxide through
fixed beds and this provides important new data in the
range 1.5 < Sc < 20. However, the various authors fail
to recognize the direct dependence of PeL on Sc.
Catchpole et al. [29] represent their data and those of

Tan and Liou [138] in a single plot (their Fig. 3) of PeL
vs. Re. The majority of points are in the range 1 < Re <
30 and the data of both groups, together, define a hor-
izontal cloud with mid line at about PeL @ 0.8, spreading
over the approximate range 0.3 < PeL < 1.1.

The data of Yu et al. [153] are for 0.01 < Re < 2 and
2 < Sc < 9. It is worth referring here that the modelling
work of Coelho et al. [34] gives theoretical support to
experimental findings for low Re, both for spherical and
non-spherical particles. No influence of Sc on PeL is de-
tected; but unfortunately, the results are not very con-
sistent, particularly in the range 1< Pem< 20, where the
scatter is high and the values of PeL are much too low.

Figure 9 shows that for low values of Pem (Stokes
flow regime), there seems to be a tendency for PeL to
become independent of Sc. The values of PeL reported
by Miller and King [101], for 6 < Pem < 100, are much
too low; this may be because the particles used in most
experiments are too small (particle sizes of 55 lm and
99 lm) and this is known to yield enhanced dispersion

Fig. 7 Dependence of PeL on
Pem for different values of Sc

Fig. 8 Dependence of PeL on
Re for different values of Sc

287



coefficients, possibly due to particle agglomeration [65,
78]. The data reported by Miyauchi and Kikuchi [102]
and plotted in Fig. 9, for 6 < Pem < 300, are higher
than our experimental data.

There are considerable experimental difficulties in the
measurement of longitudinal dispersion in the liquid
phase at small Reynolds number, because the usual
method of obtaining low Reynolds number is to reduce
particle size and this is known to yield enhanced dis-
persion coefficients.

2.4 Correlations

It is worth considering here the predicting accuracy of
alternative correlations (see Fig. 10). Gunn [64] admit-
ted the existence of two regions in the packing, one of
fast flowing and the other of nearly stagnant fluid, to
deduce the following expression for the longitudinal
dispersion coefficient in terms of probability theory

1

PeL
¼ ePem

4a21ð1� eÞ ð1� pÞ2

þ ePem
4a21ð1� eÞ

� �2
pð1

� pÞ3 exp � 4ð1� eÞa21
pð1� pÞePem

� �
� 1

� �
þ 1

sPem
; ð13Þ

where a 1 is the first zero of equation J0 (U)=0 and p is
defined, for a packing of spherical particles, by

p ¼ 0:17þ 0:33� exp � 24

Re

� �
for spheres; s ¼

ffiffiffi
2
p

;

ð14aÞ

p ¼ 0:17þ 0:29� exp � 24

Re

� �

for solid cylinders; s ¼ 1:93;

ð14bÞ

p ¼ 0:17þ 0:20� exp � 24

Re

� �

for hollow cylinders; s ¼ 1:8:

ð14cÞ

Tsotsas and Schlunder [141] deduced an alternative
correlation for the prediction of PeL. The authors
defining two zones in a simple flow model consisting of a
fast stream (central zone in the model capillary) and a
stagnant fluid, but the mathematical expressions asso-
ciated with it are a little cumbersome,

1

PeL
¼ 1

s
1

Pez,1
þ 1

Pe0m
1� n2c
� 	" #

þ 1

32

Dc

d

� �2

Per, 1n2cf1ðncÞ þ Pe0mf2ðncÞ
h i

; ð15Þ

where the longitudinal and radial Peclet number of the
fast stream is

1

Pez,1
¼ 1

Pe01
þ 1

1:14ð1þ 10=Pe01Þ
ð16aÞ

1

Per,1
¼ 1

Pe01
þ 1

8
ð16bÞ

Pe01 ¼
u1d
D0m

ð16cÞ

and u1=u/nc
2 is the interstitial velocity of the fast stream,

with n c (the dimensionless position of the velocity jump,
i.e. the ratio between the radius of the zone of high
velocities and the radius of packed bed) equal to

Re � 0:1! nc ¼ 0:2þ 0:21 expð2:81yÞ ð17aÞ

Re � 0:1! nc ¼ 1� 0:59 exp½�f ðyÞ� ð17bÞ
with

Fig. 9 Dependence of PeL on
Pem for Stokes flow regime
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y ¼ log Reð Þ þ 1; ð17cÞ

f ðyÞ ¼ y 1� 0:274y þ 0:086y2
� 	

: ð17dÞ

Finally, the distributions functions f1 (n c) and f2 (nc) are
defined by:

f1ðncÞ ¼ 1� n2c
� 	2

; ð17eÞ

f2ðncÞ ¼ 4n2c � 3� 4 lnðncÞ � n4c : ð17fÞ

In Fig. 11, the lines corresponding to the correlations
of Gunn [64] and of Tsotsas and Schlunder [141] are
represented, for the higher and lower values of Sc in our
experiments (Sc = 57 and Sc = 1930), as well as for gas
flow (Sc = 1). It may be seen that the correlation of
Gunn [64] is not sensitive to changes in Sc, for Pem <
103, and the correlation of Tsotsas and Schlunder [141]
is much too sensitive to variations in Sc; however, this
correlation describes dispersion in gas flow with good
accuracy.

Figure 11 shows Guedes de Carvalho and Delgado
[62] experimental data, at different Schmidt numbers,
the experimental data of Jacques and Vermeulen [85]
and representative data of experimental points with gas
flow, together with the fitted curve

1

PeL
¼ Pem

5
ð1� pÞ2 þ Pe2m

25
pð1� pÞ3

exp � 5

pð1� pÞPem

� �
� 1

� �
þ 1

sPem

ð18Þ

with

p ¼ 0:48

Sc0:15
þ 1

2
� 0:48

Sc0:15

� �
exp � 75Sc

Pem

� �
: ð19Þ

It will be clear to the reader that Eq. 18 was closely
inspired by Eq. 13, but the dependence of p on Sc was
modified. As will be obvious from the plots, each curve
is not a ‘‘best fit’’ for the points it tries to represent, but
nevertheless, the values of PeL given by Eqs. 18 and 19
will seldom differ by more than 20% from those deter-
mined experimentally. It is important to bear in mind
that Eqs. 18 and 19 is recommended only for random
packings of ‘‘isometric’’ spherical particles which are
well-packed.

2.5 Dispersion in packed beds flowing
by non-Newtonian fluids

Hilal et al. [81], Edwards and Helail [47], Payne and
Paker [109] and Wen and Yin [148] reported results of
axial dispersion coefficients for the flow of two polymer
solutions through a packed bed and their results were
similar to the corresponding Newtonian results. Wen
and Fan (1973) correlate the previous results for packed
beds with the following expression:

Pe ¼ Ud
DL

� �
¼ 0:2þ 0:011Re0:48n with Ren ¼

qdnU2�n

m
;

ð20Þ
where m is the power law consistency coefficient. Note
that Eq. 26 for n=1 (Newtonian fluids) reduces to the
correlation obtained by Chung and Wen [32], for New-
tonian fluid through packed beds.

3 Transverse dispersion

Generally, transverse dispersion coefficients are mea-
sured in non-reactive conditions, because the rate of

Fig. 10 Comparison between
data and correlations presented
in literature
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mass transfer, observed experimentally, is directly
related to the coefficient of transverse dispersion in the
bed.

The most popular technique for the measurement of
transverse dispersion consists in feeding a continuous
stream of tracer from a ‘‘point’’ source somewhere in the
bed (usually along the axis, if there is one) and mea-
suring the radial variation of tracer concentration at one
or more downstream locations.

The first study of mass transfer by radial dispersion in
gaseous systems was carried out by Towle and Sher-
wood [140]. The results presented were very important
for packed bed dispersion because they showed that
dispersion was not influenced by the tracer molecular
weight.

Bernard and Wilhelm [14] reported the first mea-
surements, in liquid systems, of experimental values of
transverse dispersion coefficients in packed beds of inerts
by a Fickian model. The authors took into account the
wall-effect condition and their experiments suggested
that for high values of Reynolds number, the value of
PeT is constant and between 11 and 13.

Baron [8] proposed a new model of radial dispersion
in which a particle of tracer executes a simple random-
walk displacement of ±1/2 particle diameter to give a
transversal Peclet number between 5 and 13, when Re
fi ¥. The basis for this prediction is the random-walk
theory, in which a statistical approach is employed. This
method does not take into account the effects of radial
variations in velocity and void space. Latinen [94] has
extended the random-walk concept to three dimensions
and predicted a value of 11.3, for PeT (¥).

Klinkenberg et al. [87] solved Eq. 2 for anisotropic
dispersion, but considered that dispersion occurs in an
infinite medium. In the same work were considered the
particulate cases of isotropic dispersion (DT=DL) and
longitudinal dispersion neglected.

Plautz and Johnstone [112] used the equation derived
by Wilson [151], for heat transfer, and suggested a PeT
between 11 and 13, for Re fi ¥. Fahien and Smith [52]
assumed that for Reynolds numbers in the range be-
tween 40 and 100, the Peclet number is independent of
fluid velocity and equal to 8. The authors were the first
to consider that the tracer pipe can be of significant
diameter compared to the diameter of the bed.

Dorweiler and Fahien [44] used the equation derived
by Fahien and Smith [52] to study the mass transfer in
laminar and transient flows. The results showed that for
Re < 200, the Peclet number based on the transverse
dispersion coefficient is a linear function of the fluid
velocity; and for Re > 200, at room temperature, the
Peclet number is constant as also shown by Bernard and
Wilhelm [14], Plautz and Johnstone [112] and Fahien
and Smith [52]. The authors have demonstrated a dif-
ference in the Peclet number with radial position. The
transversal Peclet number is constant from the axis to
0.8 times the radius and then rises near the wall.

Hiby and Schummer [79], and later Roemer et al.
[118], presented the solution of the mass balance equation
(Eq. 1), considering the tracer pipe to be of significant
diameter compared to the diameter of the packed bed.

Saffman [120] considered the packed bed as a net-
work of capillary tubes randomly orientated with respect
to the main flow. At high Peclet number and at very long
time, Saffman found that the dispersion never becomes
truly mechanical, with zero velocity of the fluid at the
capillary walls, the time required for a tracer particle to
leave a capillary would become infinite as its distance
from the walls goes to zero. The author proposed that
DT=(3/16) ud when Re fi ¥, but this prevision of
transverse dispersion coefficient is higher than observed
experimentally.

Hiby [78] and Blackwell [16] presented an experi-
mental technique in which they divided the sampling

Fig. 11 Comparison between
experimental data and Eqs. 18
and 19
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region into two annular regions and calculated the
transversal dispersion coefficient from the averaged
concentrations of each of the two samples.

The experimental data points of Wilhelm [150] sug-
gested that PeT (¥)=12, for beds of closely sized parti-
cles, and this value is accepted for the majority of the
investigators [15, 33, 63, 78, 150].

Roemer et al. [118] studied radial mass transfer in
packed beds at low flow rates, Re < 100. The authors
considered the tracer pipe to be of significant diameter
compared to the diameter of the bed (‘‘finite source’’
model) and longitudinal and transverse dispersion are
equal. In this work, the authors compared the values of
PeT obtained with two methods (‘‘instantaneous finite
source’’ and ‘‘point source’’) and concluded that the
values of PeT obtained with the ‘‘point source’’ method
were 10% less that the values obtained with the
‘‘instantaneous finite source’’ method. The authors
estimated that neglecting the longitudinal dispersion in
calculations of DT, for low values of Reynolds numbers,
can cause errors of 10%.

Coelho and Guedes de Carvalho [33] developed a new
experimental technique, based on the measurement of
the rate of dissolution of planar or cylindrical surfaces,
buried in the bed of inert particles and aligned with the
flow direction. This alternative technique is simple to
use, allows the determination of the coefficient of
transverse dispersion in packed beds over a wide range
of flow rates, and it is easily adaptable to work over a
range of temperatures above ambient, as shown by
Guedes de Carvalho and Delgado [60] and Delgado and
Guedes de Carvalho [41].

In recent years, nuclear magnetic resonance has been
used to determine both diffusion and dispersion coeffi-
cients [9, 55], with significant advantages, but this tech-
nique were limited to low fluid velocities.

It is important to remember that, at high Reynolds
numbers, the main mechanism of transverse dispersion
is the fluid deflection caused by deviations in the flow
path caused by the particles in the bed (axial dispersion
is caused by differences in fluid velocity in the flow), i.e.
dispersion is caused by hydrodynamic mechanisms
(macroscopic scale) and not by molecular diffusion
(Brownian motion).

The result is a poor mixture at the ‘‘microscopic
scale’’. In fact, there are detected different values of
solute concentration over a distance of the order of a
particle diameter or less, what explains the convenience
of use of an efficient averaging procedure [63]. This is
probably one of the reasons that explain the difference
observed in some experimental results of dispersion (see
Fig. 12). Gunn and Pryce [68] showed that the standard
deviation without repacking in the measurement of PeT
was 5%, while when the bed was repacked each time of
measurement, the standard deviation found was 15%.

3.1 Experimental techniques

The transverse dispersion coefficient can be determined
by plotting (% composition: C10 and C90) versus (dis-
tance from 50% composition) on arithmetic-probability
paper (Perkins and Johnston, 110]. The dispersion
coefficient can be calculated by

DT ¼
u
L

C90 � C10

3:625

� �2

: ð21Þ

The most widely used techniques for the measure-
ment of lateral dispersion are the continuous point
source and the instantaneous finite source methods
[116], which rely on the injection of tracer in a flowing

Fig. 12 Some experimental
data points for transverse
dispersion in liquid and gaseous
systems
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liquid, followed by tracer detection at several points,
downstream of the injection point. If at time t=0, a
tracer is injected into the porous medium from an
injector for the continuous point source method, the tip
of the injector is taken as the tracer origin. For the
instantaneous finite source method, the origin lays just
down-gradient of the tracer injector.

Several authors like Roemer et al. [118] and Gunn
and Pryce [68] used the solution of Eq. 1 when the axial
dispersion coefficient is taken equal to radial dispersion
coefficient. However, in this paper, we only consider
experimental techniques where longitudinal dispersion is
neglected.

3.1.1 ‘‘Instantaneous finite source’’ method

The method adopted by some authors like Dorweiler
and Fahien [44] and Fahien and Smith [52] is based that
the tracer is fed into the main stream at a point on the
axis on the column.

The analytical model for an instantaneous finite
source in one dimension is first presented by Crank [36].
Baetsle [5] extended the model to three-dimensional
dispersion. Hunt [84] and Sun [136] provided the three-
dimensional solution to the advection–dispersion equa-
tion [5] using different mathematical analysis. Van Ge-
nuchten and Alves [143] presented a number of
analytical solutions of the one-dimensional convective–
dispersive solute transport equation.

Tracer concentration should be low enough to avoid
density-induced flow effects. The tracer should be con-
served (i.e. not destroyed) in the experiment and the dis-
tribution of flow rates at the outlet must be the same as in
the feed so as not to induce complications in the flow field.

Radial dispersion may be evaluated by injecting a
steady flow of a tracer at a point of a test section col-
umn. For a boundary layer, which is thin in comparison
with the length of the axial distance (L), longitudinal
dispersion will be negligible. Taking a radial co-ordi-
nate, r, to measure the distance to the axis of the bed and
a co-ordinate z, to measure the distance along the
average flow direction, the differential mass balance on
the solute reads

DT

r
@

@r
r
@C
@r

� �
¼ u

@C
@z
; ð22Þ

where DT is the radial dispersion coefficient. Fahien and
Smith [52] solved the differential dispersion Eq. 22 with

z ¼ 0 0\r\Ri C ¼ C0; ð23aÞ

z ¼ 0 Ri\r\R C ¼ 0; ð23bÞ

all z r ¼ R; r ¼ Ri
@C
@r
¼ 0 ð23cÞ

and the solution of Eq. 22 with the boundary conditions
of (23a–c) is

C
C0
¼ 1þ2R

Ri

X1
n¼1

J1 bnRi=Rð ÞJ0 bnr=Rð Þ
bnJ 2

0 bnð Þ
z
R
exp � b2

n

PeT

z
R

� �
;

ð24Þ
where J0 and J1 are the Bessel functions of the first kind,
of order 0 and 1, respectively, and the bn are the positive
roots of the Bessel function of the first kind, of order 1.

3.1.2 ‘‘Continuous point source’’ method

This method is based on the measurement of radial mass
exchange between two coaxial portions of a packed bed,
along which liquid flows, parallel to the axis; the feed to
the central portion is water containing a small amount
of sodium chloride and that too the outer portion is pure
water.

Klinkenberg et al. [87] derived an analytical solution
for Eq. 22, neglecting the effect of injector radius (see
Fig. 13), with the boundary conditions given by

z ¼ þ1 all R C ¼ C0; ð24aÞ

z ¼ �1 all R C ¼ 0; ð24bÞ

all z r ¼ R; r ¼ 0
@C
@r
¼ 0 ð24cÞ

and the solution of Eq. 22 with the boundary conditions
(24a–c) is

C
C0
¼ 1þ

X1
n¼1

J0 bnr=Rð Þ
J 2
0 bnð Þ

exp �b2
nDTz
R2u

� �
; ð25Þ

where J0 is the Bessel function of the first kind, of order
0, and the bn are the positive roots of the Bessel function
of the first kind, of order 1.

Plautz and Johnstone [112] and Sinclair and Potter
[128] used Eq. 22 for an infinite case, where no boundary
is present, of mass diffusion from a point source. The
result with axial dispersion neglected was given by
Carslaw and Jaeger [28]

C
C0
¼ R2u

4DTz
exp � r2u

4DTz

� �
: ð26Þ

This solution includes a simplification possible when z/r
> 5 (axial dispersion neglected).

Blackwell [16] assumes the effect of radius injector
and gives the analytical solution to the differential

Fig. 13 Schematic diagram of test section for radial dispersion
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equation describing transverse dispersion in the absence
of longitudinal dispersion. Hiby and Schummer [79]
presented a solution of Eq. 22 that considered the tracer
pipe to be of significant diameter compared to the
diameter of the bed (see Fig. 14), and the boundary
conditions adopted were

z > 0 r ¼ R
@C
@r
¼ 0; ð27aÞ

z ¼ 0 r\Ri C ¼ C0; ð27bÞ

z ¼ 0 Ri\r\R C ¼ 0: ð27cÞ

On the assumption that DT and u are independent of
position, the solution of Eq. 22 following Hiby and
Schummer [79] gives, for the resulting outlet average
concentration in the inner stream of liquid,

�C
C0
¼ 4
X1
n¼0

J2
1 bnRi=Rð Þ
b2

nJ 2
0 bnð Þ

exp � Ld
PeT

bn

R

� �2
" #

; ð28Þ

where J0 and J1 are the Bessel function of the first kind,
of orders 0 and 1, respectively, and the bn are the posi-
tive roots of the Bessel functions of the first kind, of
order 1. The measurement of �C and C0 provides a
method for the determination of PeT (and therefore of
DT), since all other parameters in the equation are
known.

Harleman and Rumer [71] and Han et al. [69] con-
sider a steady-state experiment in a rectangular column.
The authors solved the differential equation with the
boundary conditions,

C ¼ C0 x ¼ 0 0\y\þ1; ð29aÞ

C ¼ 0 x ¼ 0 �1\y\0; ð29bÞ

@C
@y
¼ 0 all x y ! �1 ð29cÞ

and the solution obtained for a step input in concen-
tration, is

C
C0
¼ 1

2
1� erf

ffiffiffiffiffiffiffiffi
PeT
Ld

r
y
2

 !" #
: ð30Þ

3.1.3 Mass transfer from a flat surface aligned
with the flow

Coelho and Guedes de Carvalho [33] developed a new
experimental technique, based on the measurement of
the rate of dissolution of planar or cylindrical surfaces,
buried in the bed of inert particles and aligned with the
flow direction.

Figure 15a sketches a section through a packed bed
along which liquid is flowing, close to a flat wall, part of
which (0 < x< L) is slightly soluble. Liquid flow will be
taken to be steady, with uniform average interstitial
velocity u, and if the concentration of solute in the liquid
fed to the bed is C0 and the solubility of the solid in the
wall is C*, a mass transfer boundary layer will develop,
across which the solute concentration drops from C C*,
at y=0, to C fi C0, for large y.

The question of how large is meant by a ‘‘large y’’
needs some clarification. Obviously, if L were only of
the order of a few particle diameters, and u were large,
the concentration of solute would fall to C0 over a
distance of less than one particle diameter. In that case,
flow in the bulk of the packed bed would have little
influence on the mass transfer process, which would be
dominated by diffusion in a thin layer of liquid, adja-
cent to the soluble surface. Already for large L and low
u, the thickness of the mass transfer boundary layer will
grow from zero, at x = 0, to a value of several particle
diameters, at x = L and the process of mass transfer
will then be determined by a competition between
advection and dispersion in the bulk of the bed. Now it
is well-known [145] that the voidage of a packed bed
(and therefore the fluid velocity) is higher near a con-
taining flat wall, but in the case of Guedes de Carvalho
and Delgado [60] experiments, it may be considered
that such a non-uniformity will have negligible effect.
For one thing, we work with bed particles of between
0.2 and 0.5 mm and therefore the region of increased
voidage will be very thin. Furthermore, because the
inert particles making up the bed indent the soluble
surface slightly, as dissolution takes place (and this
slight indentation is easily confirmed when the piece of
soluble solid is removed from within the bed), there is
in fact virtually no near wall region of higher voidage.
Confirmation of these assumptions is given by the re-
sults of the experiments described below.

Fig. 14 Sketch of boundary conditions proposed by Hiby and
Schummer [79]
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Taking a small control volume inside this boundary
layer (see Fig. 15b), with side lengths d x, d y and unity
(perpendicular to the figure), it is possible to perform a
mass balance on the solute, for the steady state. If the
boundary layer is thin, compared to the length of the
soluble slab, longitudinal dispersion is likely to be neg-
ligible, since the surface y=0, 0 < x < L, is a surface of
constant concentration (C C*).

Noting that the surface y=0, 0 < x < L, is a surface
of constant concentration, along which ¶2 C/¶x2=0 and
axial dispersion will be negligible, for a boundary layer
which is thin in comparison with the length of the sol-
uble slab. (A conservative criterion for this approxima-
tion to be valid is L/d > 20). For a slab, the equation of
diffusion in one dimension is

u
@C
@x
¼ DT

@2C
@y2

ð31Þ

to be solved with

C ¼ C0 x ¼ 0 y > 0; ð32aÞ

C ¼ C� x > 0 y ¼ 0; ð32bÞ

C ! C0 x > 0 y !1: ð32cÞ
The solution is

C � C0

C� � C0
¼ erfc

y

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DTx=u

p
 !

ð33Þ

and the flux of dissolution at any point on the slab
surface may be obtained from (33) as

N ¼ �DTe
@C
@y

� �
y¼0
¼ C� � C0ð Þe DT

px=u

� �1=2

: ð34Þ

The instant rate of solid dissolution over the whole
slab surface may now be calculated by integration of the

local flux; taking a width b along the surface of the solid,
perpendicular to the flow direction, there results

n ¼
ZL

0

Nbdx ¼ C� � C0ð ÞebL
4DT

pL=u

� �1=2

ð35Þ

and it is useful to define the coefficient

k ¼ n
ðbLÞðC� � C0Þ

¼ e
4DT

pL=u

� �1=2

: ð36Þ

This result shows how the measurement of the rate of
dissolution of the solid, which is directly related to the
average mass transfer coefficient, may be used to deter-
mine the coefficient of transverse dispersion in the bed.

A simple way of checking the result in Eq. 36 is
afforded by the predicted proportionality between k and
the inverse square root of L. Experiments performed by
Coelho and Guedes de Carvalho [33] with a wide range
of slab lengths, both for the dissolution of benzoic acid
in water and the sublimation of naphthalene in air,
confirm the general validity of the above theory, pro-
vided that the approximate criterion

L
d
� 0:62

ud
Dm

� �
ð37Þ

is observed, where Dm is the molecular diffusion coeffi-
cient of the solute. When the above criterion is not ob-
served, the near wall film resistance to diffusion will have
to be taken into account and approximate ways of doing
this are described byCoelho andGuedes deCarvalho [33].

The similarity between the result given by Eq. 36 and
that obtained by Higbie [80], for gas–liquid mass
transfer by surface renewal, is striking. Equation 36
simply states that the average mass transfer coefficient,
for the soluble wall, is that corresponding to surface
renewal with a time of contact tc=L/u and an apparent
diffusion coefficient DT.

Fig. 15 a Flow along soluble
slab; b Mass transfer boundary
layer
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3.1.4 Mass transfer from a cylinder aligned with the flow

For practical reasons, it proves simpler to perform
experiments in which the dissolving solid is a cylinder,
aligned with the flow direction and it is important to
know the theoretical expressions relating the average
mass transfer coefficient with the coefficient of disper-
sion, DT, for that situation.

Fortunately, under appropriate conditions, easy to
reproduce in the laboratory, the thickness of the mass
transfer boundary layer is small in comparison with the
radius of the dissolving cylinder and under such cir-
cumstances, the analysis presented above, for dissolution
from a flat surface, is still applicable with good accuracy.

However, there are instances in which this simplifi-
cation is not valid and an exact solution may be worked
out in cylindrical co-ordinates, as shown by Coelho and
Guedes de Carvalho [33].

The resulting expression for k is cumbersome to
evaluate, but for small values of the parameter hc=DT

tc/a
2, where tc=L/u is the time of contact between liquid

and solid, a good approximation is

k ¼ e
4DT

ptc

� �1=2

1þ
ffiffiffi
p
p

4
h1=2c �

1

12
hc þ

ffiffiffi
p
p

32
h3=2c � 	 	 	

� �
:

ð38Þ
For higher values of hc, up to hc =0.4, the first four
terms may be used, instead of the infinite series on the
right-hand side of Eq. 38, with an error of less than 1%
in k.

3.2 Parameters influencing transverse
dispersion—Porous medium

3.2.1 Length of the packed column

Han et al. [69] showed that values of the radial disper-
sion coefficient, for uniform-size packed beds, measured
at different positions in the bed are not function of bed
location, i.e. they observed no time-dependent behaviour

for radial dispersion, because transverse dispersion is
caused by mechanical mechanism alone.

An important aspect to be considered, as a check on
the experimental method of Coelho and Guedes de
Carvalho [33], is the influence of the length of the test
cylinder on the measured value of DT. In reality, the two
variables are independent, provided that the criterion
given by Eq. 37 is satisfied (see Fig. 16).

3.2.2 Ratio of column diameter to particle diameter

Several investigators, like Fahien and Smith [52], Lati-
nen [94] and Singer and Wilhelm [129], have studied the
wall effect on transverse dispersion coefficient. The
experiments suggested that in a packing structure char-
acterized by significant variations of void fraction in
radial direction, up to a distance of about two particle
diameters from the wall, a non-uniform radial velocity
profile is induced, with a maximum just near the wall. As
a result, the wall effects occur due to large voidage
fluctuations near the wall. The above investigators, also
showed, that the increase in radial dispersion in the
laminar region would be the same order of magnitude as
in the turbulent region.

3.2.3 Particle size distribution

Eidsath et al. [49] studied the effect of particle size dis-
tribution on dispersion. As the ratio of particle diameter
went from a value of 2 to 5, the radial dispersion de-
creased by a factor of 3, but perhaps the results were a
cause of the simple geometry employed in these com-
putations (packed bed of cylinders). Steady-state mea-
surements of radial dispersion reported by Han et al.
[69], with same void fraction and the same mean particle
diameter, but different particle size range (ratio of
maximum to minimum particle diameter equal to 2.2
and 7.3), showed that there was no evidence to indicate a
change in radial dispersion with particle size distribution
(see Fig. 17a).

Fig. 16 Effect of length of
soluble cylinder on the
measurement of DT
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The effect of a distribution of particle sizes within the
bed, on the radial dispersion coefficient, may be assessed
from Guedes de Carvalho and Delgado [60]. In partic-
ular, lot D was prepared by carefully blending lots B and
E in a proportion of 1:1 (by weight). In Fig. 17b, dis-
persion data obtained with the mixed lot are seen to fall
in between the data for the original separate lots, as
might be expected. Figure 17a shows that in a plot of
DT/Dm vs. Pem, the data for the three lots fall along the
same line, when d (in Pem) is taken to represent the
average particle size in the bed.

3.2.4 Particle shape

Several investigators paid attention to the effect of par-
ticle shape on the radial dispersion coefficient both for
liquid and gaseous systems. England and Gunn [50]
measured the dispersion of argon in beds of solid cyl-
inders and beds of hollow cylinders and have concluded
that DT tend to be greater with packs of hollow cylinders
than with packs of solid cylinders, and these results were
greater than obtained with packs of spherical particles
(see Fig. 18).

The same conclusion, in liquid systems, has been
obtained by Hiby [78], who used packed beds of glass
spheres and Raschig rings, and Bernard and Wilhem
(1950), who used packed beds of cubes, cylinders and
glass spheres. Figure 18 shows that the radial dispersion
coefficient tends to be greater in packed beds of non-
spherical particles.

However, Blackwell [16], List [99], Guedes de Carv-
alho and Delgado [60] and others reported experiments
with packed beds of sand and showed that DT obtained
with ‘‘glass ballotini’’ are very close to those for sand
(not pebble or gravel) and the conclusion seems to be
that particle shape has only a small influence on lateral
dispersion, for random packings of ‘‘isometric’’ parti-
cles.

3.3 Parameters influencing transverse
dispersion—Fluid properties

3.3.1 Viscosity and density of the fluid

An effect of fluid densities and viscous forces on trans-
verse dispersion has been studied by Grane and Garner

Fig. 17 Effect of particle size
distribution on radial
dispersion. a DT/Dm versus Pem;
b DT/Dm versus u
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[57] and Pozzi and Blackwell [113] and the authors
concluded that when a fluid is displaced from a packed
bed by a less viscous fluid, the viscous forces create an
unstable pressure distribution and the less viscous fluid
will penetrate the medium in the form of fingers, unless
the density has an opposing effect.

3.3.2 Fluid velocity

For very low fluid velocities, u, dispersion is the direct
result of molecular diffusion, with DT=D¢m. As the
velocity of the fluid is increased, the contribution of
convective dispersion becomes dominant over that of
molecular diffusion and DT becomes less sensitive to
temperature. According to several authors [15, 33, 63,
78, 150] DT fi ud/PeT(¥), for high enough values of u,
where d is particle size and PeT (¥) @ 12 for beds of
closely sized particles. Assuming that the diffusive and
convective components of dispersion are additive, the
same authors suggest that DT=D¢m+ud/K, which may
be written in dimensionless form as

DT

Dm
¼ 1

s
þ 1

12

ud
Dm

or
1

PeT
¼ 1

s
e

ReSc
þ 1

12
: ð39Þ

This equation has been shown [33] to give a fairly
accurate description of transverse dispersion in gas flow
through packed beds, but it is not appropriate for the
description of dispersion in liquids, over an intermediate
range of values of ud/Dm, as pointed out by several of
the authors mentioned above.

Figure 19(a–b) shows that the value of the transverse
dispersion coefficient is seen to increase with fluid
velocity and comparison between the two plots shows
that DT also increases with particle size.

Data on dispersion in randomly packed beds of clo-
sely sized, near spherical particles, lend themselves to
simple correlation by means of dimensional analysis.

Making use of Buckingham’s theorem it may therefore
be concluded that

DT

Dm
¼ U

ud
Dm

;
l

qDm

� �
or PeL ¼ U Re, Scð Þ ð40Þ

and it is useful to make Pem=ud/Dm and Sc =l/q Dm.

3.3.3 Fluid temperature (or Schmidt number)

The dependence of DT on liquid properties and velocity
is best given in plots of PeT vs. Pem, for different values
of Sc. Not surprisingly, Fig. 20 shows that the variation
of PeT with Pem gets closer to that for gas flow as the
value of Sc is decreased. For the lowest Sc tested (Sc =
54; T=373 K), PeT does not differ by more than 30%
from the value given by Eq. 39, with PeT (¥)=12, over
the entire range of Pem. But for the higher values of Sc,
the experimental values of PeT may be up to four times
the values given by Eq. 39.

Delgado and Guedes de Carvalho [41] had studied
the dependence of DT/Dm on Sc, up to Pem @ 1350, and
they reported a smooth increase in DT/Dm with Pem, for
all values of Sc. But the data in Fig. 20 show that there is
a sudden change in the trend of variation of PeT with
Pem, somewhere above Pem @ 1350, a maximum being
reached in the approximate range 1400 < Pem < 1800
(depending on Sc). The fact that the change in trend
corresponds to a much enhanced increase in DT (i.e. a
decrease in PeT), in response to a small increase in u (i.e.
in Pem), strongly suggests a connection with the transi-
tion from laminar to turbulent flow in the interstices of
the packing. The plot of PeT vs. Re, shown in Fig. 21,
seems to support this view, since the maxima in PeT are
reached for 0.3 < Re < 10 (depending on Sc) and this is
the approximate range of values of Re for the transition
from laminar to turbulent flow. The range 1 < Re < 10
is often indicated for that transition (e.g. 11], but Sche-

Fig. 18 Effect of particle shape
on transverse dispersion
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idegger [121] as giving Re = 0.1 for the lower limit of
that transition.

The plot in Fig. 21 also suggests that ‘‘purely
mechanical’’ fluid dispersionwill be observed above about
Re=100; this value is estimated as the convergence of the
data points for liquids with the line representing Eq. 39.
Figure 22 shows the data reported by most other authors
(all for Sc ‡ 540) in a plot of PeT vs. Pem. With the
exception of the data of Hoopes and Harleman [82] and
someof the points ofGrane andGardner [57] andBernard
and Wilhelm [14], general agreement is observed with
Guedes de Carvalho and Delgado [61] data for high Sc.

3.4 Correlations

In this context, it is interesting to consider the predicting
accuracy of some alternative empirical correlations that
have been proposed to represent the experimental data
in liquid flow, as the equation of Gunn [64]:

1

PeT
¼ 1

Pef
þ 1

s
e

ReSc
; ð41Þ

where the fluid-mechanical Peclet number, Pef, is defined
by,

Pef ¼ 40� 29e�7=Re for spheres; s ¼
ffiffiffi
2
p

; ð42aÞ

Pef¼ 11�4e�7=Re for solid cylinders; s¼ 1:93; ð42bÞ

Pef ¼ 9� 3:3e�7=Re for hollow cylinders; s ¼ 1:8:

ð42cÞ
And the empirical equation proposed by Wen and Fan
[147],

Fig. 19 Variation of DT with fluid velocity. a sand size
d=0.297 mm; b sand size d=0.496 mm

Fig. 20 Dependence of PeT on
Pem for different values of Sc
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PeT ¼
17:5

Re0:75
þ 11:4 ðfor high values of PemÞ: ð43Þ

In Fig. 23, the solid line corresponding to Eq. 39, with
PeT (¥)=12, is again represented and so are two dashed
lines corresponding to a correlation proposed by Gunn
[64] for the extreme values of Schmidt number obtained
in Guedes de Carvalho and Delgado [61] experiments.
Comparison with the experimental points shows that the
correlation does not account for the influence of Sc on
PeT, for Pem < 600, and it may seem to be very in-
adequate at low values of Sc, for 600 < Pem < 105. The

empirical correlation proposed by Wen and Fan [147],
for high values of Pem and Sc, is also very inadequate,
because it is only based in the experimental data of
Bernard andWilhelm [14] and on the Hartman et al. [74].

Figure 24 represents the experimental points
obtained by Guedes de Carvalho and Delgado [61],
together with the solid lines represented by Eqs. 44–45,
for the values of Sc indicated in the figure, and which are
seen to represent the data very well, with a maximum
deviation of 20%. For Sc £ 550, experiment shows (see
Fig. 24) that PeT depends both on Pem and Sc and the
following expressions are suggested

Fig. 21 Dependence of PeT on
Re for different values of Sc

Fig. 22 Comparison between
our data points and the results
of other authors for Sc ‡ 540
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1

PeT
¼ 1

s
1

Pem
þ 1

12
� Sc

1500

� �4:8

� sPemð Þ3:83�1:3log10(Sc) ðfor Pem � 1; 600Þ; ð44aÞ

PeT ¼ ð0:058Scþ 14Þ � ð0:058Scþ 2Þ exp � 352Sc0:5

Pem

� �

ðfor;Pem > 1; 600Þ: ð44bÞ

The dividing line between the ascending curves (44a)
and the descending curves (44b) is quoted as Pem @ 1600,

since the exact value of Pem at the point of intersection
of (44a) and (44b) depends on Sc. For Sc < 550, the two
lines always meet in the interval 1400 < Pem < 1750; for
any given value of Pem in this interval, the lower value of
PeT (from those given by Eqs. 44a and 44b) should be
adopted in the representation of PeT vs. Pem. However, if
the line of division between the range of application of
Eq. 44a and that of Eq. 44b is taken, rigidly, at exactly
Pem = 1600, for all Sc < 550, a small discontinuity will
result in the lines PeT vs. Pem at that point, which is
nevertheless negligible in comparison with experimental
uncertainty.

Fig. 23 Comparison between
data and correlations of other
investigators

Fig. 24 Comparison between
experimental data and
Eqs. 44a,b and 45a,b
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For Sc > 550, the equations representing the data
must take into account that PeT is only dependent on
Pem, in the ascending part of the curve PeT vs. Pem and
that PeT only depends on Re (=e Pem/Sc), in the
descending part of the same curve. The following
equations give a good representation of the data for
Sc > 550

1

PeT
¼ 1

s
1

Pem
þ 1

12
� 8:1� 10�3 sPemð Þ0:268

ðfor Pem � 1; 600Þ;
ð45aÞ

PeT ¼ 45:9� 33:9� exp � 15Sc

Pem

� �
ðfor Pem > 1; 600Þ:

ð45bÞ

3.5 Dispersion in packed beds flowing
by non-Newtonian fluids

The only study of the influence of non-Newtonian fluid
in radial dispersion coefficients is reported by Hassell
and Bondi [75]. The authors showed that the quality of
mixing deteriorate with increasing viscosity.

4 Conclusions

The present work increases our knowledge about
dispersion in packed beds by providing a critical
analysis on the effect of fluid properties and porous
medium on the values of axial and radial dispersion
coefficients.

Different experimental techniques are presented in
full detail and the data obtained from these techniques
are very similar. An improved technique for the
determination of the coefficient of transverse disper-
sion in fluid flow through packed beds is described in
more detail, which is based on the measurement of the
rate of dissolution of buried flat or cylindrical sur-
faces.

A large number of experimental data on dispersion
available in the literature for packed beds were
examined to pave the way for the formulation of new
correlations for the prediction of PeT and PeL. The
correlations proposed are shown to be more accurate
than previous correlations and they cover the entire
range of values of Pem and Sc. The longitudinal dis-
persion coefficient can be calculated by Eqs. 18 and 19
and the transverse dispersion coefficient by Eqs. 44
and 45.
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