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Abstract Free convection flow from an isothermal
horizontal circular cylinder immersed in a fluid with
viscosity proportional to an inverse linear function of
temperature is studied. The governing boundary layer
equations are transformed into a non-dimensional form
and the resulting nonlinear system of partial differential
equations is reduced to local non-similarity equations
which are solved numerically by a very efficient implicit
finite difference method together with Keller box
scheme. Numerical results are presented by velocity and
viscosity profiles of the fluid as well as heat transfer
characteristics, namely the local heat transfer rate and
the local skin-friction coefficients for a wide range of
viscosity parameter � (= 0.0, 0.5, 1.0, 2.0, 3.0, 4.0)
and the Prandtl number Pr (=1.0, 7.0, 10.0, 15.0, 20.0,
30.0).

Nomenclature

a Radius of the circular cylinder
Cp Specific heat at constant pressure
Cf Local skinfriction
f Dimensionless stream function
g Acceleration due to gravity
Gr Grashof number
k Thermal conductivity
Nu Local Nusselt number
Pr Prandtl number
qw Heat flux at the surface

T Temperature of the fluid in the boundary layer
Tw Temperature at the surface
u, v The dimensionless x and y component of the

velocity
û; t̂ The dimensional x̂ and ŷ component of the

velocity
x, y Axis in the direction along and normal to the

surface

Greek symbols

b Volumetric coefficient of thermal expansion
w Stream function
sw Shearing stress
� Viscosityvariation parameter
c Constant
q Density of the fluid
m¥ Reference kinematic viscosity
l (T) Viscosity of the fluid
l¥ Dynamic viscosity of the ambient fluid
h Dimensionless temperature function

Subscript

w Wall conditions
¥ Ambient temperature
x Differentiation with respect to x

Superscript

¢ Differentiation with respect to y

1 Introduction

Natural convection flow of a viscous incompressible
fluid from a horizontal circular cylinder represents an
important problem, which is related to numerous engi-
neering applications. Sparrow and Lee [17] looked at the
problem of a vertical stream over a heated horizontal
circular cylinder. They obtained a solution by expanding
velocity and temperature profiles in powers of x, the co-
ordinate measuring distance from the front stagnation
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point on the cylinder. The exact solution is still out of
reach due to the non-linearity in the Navier–Stokes
equations. It appears that Merkin [13, 14], was the first
who presented a complete solution of this problem using
Blasius and Gortler series expansion methods along
with an integral method and a finite-difference scheme.
Also the problem of free convection boundary layer flow
on a cylinder of elliptic cross-section was studied by
Merkin [15]. Ingham [7] investigated the boundary layer
flow on an isothermal horizontal cylinder. Hossain and
Alim [3] have investigated natural convection–radiation
interaction on boundary layer flow along a vertical
thin cylinder. Hossain et al. [4], have studied radiation–
conduction interaction on mixed convection from a
horizontal circular cylinder. Recently, Nazar et al. [16],
have considered the problem of natural convection flow
from the lower stagnation point to the upper stagnation
point of a horizontal circular cylinder immersed in a
micropolar fluid.

All the above studies were confined to a fluid with
constant viscosity. However, it is known that this
physical property may change significantly with tem-
perature. For instance, the viscosity of water decreases
by about 240% when the temperature increases from
10�C (l = 0.00131 kg m�1 s�1) to 50�C (l =
0.000548 kg m�1 s�1). To predict accurately the flow
behavior, it is necessary to take into account this vari-
ation of viscosity. Gray et al. [2] and Mehta and Sood
[12], have shown that when this effect is considered, the
flow characteristics may substantially be changed com-
pared to constant viscosity. Kafoussius and Williams [9]
and Kafoussius and Rees [8], have investigated the effect
of temperature dependent viscosity on the mixed con-
vection flow from a vertical flat plate. Recently Hossain
et al. [5, 6] have investigated the natural convection flow
from a vertical wavy cone and a vertical wavy surface,
respectively, with variable viscosity proportional to an
inverse linear function of temperature. Also Lings and
Dybbs [11] studied the natural convection with variable
viscosity proportional to an inverse linear function of
temperature.

The present study was undertaken in order to inves-
tigate the natural convection flow of a viscous incom-
pressible fluid over an isothermal horizontal circular
cylinder. The viscosity l(T) of the fluid is assumed to be
temperature dependent. The surface temperature Tw of
the cylinder is higher than that of the ambient fluid
temperature T¥. It has been assumed that the viscosity
of the fluid is inversely proportional to a linear function
of temperature. A semi-empirical formula for the vis-
cosity versus temperature had been used by Lings and
Dybbs [11]. The governing partial differential equations
are reduced to locally non-similar partial differential
forms by adopting appropriate transformations. The
transformed boundary layer equations were solved
numerically using very efficient finite-difference scheme
known as Keller box technique [10]. Effect of viscosity-
variation parameter �, on the velocity and viscosity
distribution of the fluid as well as on the local rate of

heat transfer in terms of the Nusselt number Nu and the
local skin-friction are shown graphically for fluids hav-
ing Prandtl number, Pr ranging from 1.0 to 30.0.

2 Formulation of problem

Consideration is given to a steady two-dimensional
laminar free convective flow of a viscous and incom-
pressible fluid over a uniformly heated horizontal cir-
cular cylinder of radius a. We assume that the fluid
viscosity is temperature dependent. It is assumed that
the surface temperature of the cylinder is Tw, where Tw

> T¥. Here, T¥ is the ambient temperature of the fluid,
the configuration considered is as shown in Fig. 1.

Under the usual Bousinesq approximation, the
equations governing the flow are

@û
@x̂
þ @t̂
@ŷ
¼ 0; ð1Þ

q û
@û
@x̂
þ t̂

@û
@ŷ

� �
¼ @

@ŷ
l
@û
@ŷ

� �
þ qgb T � T1ð Þ sin x̂

a

� �

ð2Þ

û
@T
@x̂
þ t̂

@T
@ŷ
¼ k

qCp

@2T
@y2

; ð3Þ

The boundary conditions of Eqs. 1, 2, 3 are

û ¼ t̂ ¼ 0; T ¼ Tw; at ŷ ¼ 0; ð4aÞ

û! 0; T ! T1 as ŷ !1; ð4bÞ

where û; t̂ð Þ are velocity components along the x̂; ŷð Þ
axes, g is the acceleration due to gravity, q is the density,
k is the thermal conductivity, b is the coefficient of
thermal expansion, l(T) is the viscosity of the fluid
depending on the fluid temperature T.

Out of the many forms of viscosity variation, which
are available in the literature, we will consider the fol-
lowing form proposed by Lings and Dybbs [11]:

l ¼ l1
1þ c T � T1ð Þ ; ð5Þ

Fig. 1 The flow model and coordinate system
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where c is a constant and l¥ is the viscosity of the
ambient fluid.

We now introduce the following non-dimensional
variables:

x ¼ x̂
a
; y ¼ Gr

1
4

ŷ
a

� �
; u ¼ qa

l1
Gr

1
2û;

t ¼ qa
l1

Gr�
1
2t̂; h ¼ T � T1

Tw � T1
; Gr ¼ gb Tw � Tð Þa3

m21
;

ð6Þ

where m¥(=l¥/q) is the reference kinematic viscosity and
Gr is the Grashof number and h is the non-dimensional
temperature.

Substituting variables (Eq. 6) into Eqs. 1, 2, 3 leads
to the following non-dimensional equations

@u
@x
þ @v
@y
¼ 0; ð7Þ

u
@u
@x
þ t

@u
@y
¼ e

1þ ehð Þ2
@u
@y
@h
@y
þ 1

1þ eh
@2u
@y2
þ h sin x; ð8Þ

u
@h
@x
þ t

@h
@y
¼ 1

Pr

@2h
@y2

: ð9Þ

With the boundary conditions (Eq. 4) become

u ¼ t ¼ 0; h ¼ 0 at x ¼ 1; for any y; ð10aÞ

u ¼ t ¼ 0; h ¼ 1 at y ¼ 0, x > 0; ð10bÞ

u! 0; h! 1 as y !1, x > 0: ð10cÞ

In Eq. 8 the viscosity variable parameter � is defined as

e ¼ c Tw � T1ð Þ: ð11Þ

To solve Eqs. 7, 8, 9, subject to the boundary conditions
(Eq. 10), we assume the following variables

w ¼ xf x; yð Þ, h ¼ h x; yð Þ; ð12Þ

where w is the non-dimensional stream function de-
fined in the usual way as

w ¼ xf x; yð Þ, h ¼ h x; yð Þ; u ¼ @w
@y

; t ¼ � @w
@x

:

ð13Þ

Substituting (Eq. 12) into Eqs. 8 and 9 we get the fol-
lowing transformed equations:

1

1þ eh
@3f
@y3
þ f

@2f
@y2
� @f

@y

� �2

þ e

1þ ehð Þ2
@h
@y
@2f
@y2
þ h sin x

x

¼ x
@f
@y

@2f
@x@y

� @
2f
@y2

@f
@x

� �
; ð14Þ

1

Pr

@2h
@y2
þ f

@h
@y
¼ x

@f
@y
@h
@x
� @h
@y
@f
@x

� �
: ð15Þ

The transformed boundary conditions may be written
as:

f ¼ @f
@y
¼ 0; h ¼ 1 at x ¼ 0; any y; ð16aÞ

f ¼ @f
@y
¼ 0; h ¼ 1 at y ¼ 0, x > 0, ð16bÞ

@f
@y
! 0; h! 0 as y !1, x > 0. ð16cÞ

It can be seen that near the front stagnation point of
the cylinder i.e. x � 0, Eqs. 14 and 15 reduce to the
following ordinary differential equations:

1

1þ eh
@3f
@y3
þ f

@2f
@y2
� @f

@y

� �2

� e

1þ ehð Þ2
@h
@y
@2f
@y2
þ h ¼ 0;

ð17Þ

1

Pr

@2h
@y2
þ f

@h
@y
¼ 0: ð18Þ

Subject to the boundary conditions

f 0ð Þ ¼ @f
@y

0ð Þ ¼ 0; h 0ð Þ ¼ 1; ð19aÞ

@f
@y
! 0; h! 0 as y !1: ð19bÞ

In practical applications, the physical qualities of
principal interest are the rate heat transfer and the skin-
friction coefficients, which can be written, in non-
dimensional form as

Nu ¼ aGr�1=4

k Tw � T1ð Þ qw; Cf ¼
Gr�3=4a2

l1m1
sw; ð20Þ

where

where qw ¼ �k
@T
@ŷ

� �
ŷ¼0
; sw ¼ l

@û
@ŷ

� �
ŷ¼0
: ð21Þ

Using the variables (Eq. 6), (Eq. 12) and the boundary
condition (Eq. 16b), we get the following expressions for
the local Nusselt number and friction factor:

Nu ¼ � @h
@y

x; 0ð Þ; ð22Þ

Cf ¼
x

1þ e
@2f
@y2

x; 0ð Þ: ð23Þ

We also discuss the effect of the viscosity-variation
parameter � and the Prandtl number, Pr, on the velocity
and viscosity distribution. The values of the velocity and
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viscosity distribution are calculated from the following
relations:

u ¼ @f
@y

x; yð Þ; l
l1
¼ 1

1þ eh
: ð24Þ

3 Results and discussion

Equations 14 and 15 subject to the boundary conditions
(Eq. 16) were solved numerically using a very efficient
implicit finite-difference together with Keller box, which
is described by Cebeci and Bradshaw [1]. The numerical
solutions start at the lower stagnation point of the cyl-
inder, x= 0, with initial profiles as given by Eqs. 17 and
18 along with the boundary conditions (Eq. 19) and
proceed around the cylinder up to the rear stagnation
point, x = p. Solutions are obtained for fluids having
Pr = 1.0, 7.0, 10.0, 15.0, 20.0, 30.0 and for a wide range
of values of the variable viscosity parameter �= 0.0, 0.5,
2.0, 2.0, 3.0 and 4.0.

Since values of @h=@y x; 0ð Þ and @2f
�
@y2 ðx; 0Þ are

known from the solutions of the coupled Eqs. 14 and 15,
numerical values of the local heat transfer rate, Nu from
Eq. 22 and the local skin-friction coefficients Cf from
Eq. 23 are calculated. Numerical values of @h=@y x; 0ð Þ
and @2f

�
@y2 ðx; 0Þ are depicted in Tables 1 and 2,

Figs. 2 and 3.

Numerical values of @h=@y x; 0ð Þ and @2f
�
@y2 ðx; 0Þ

are depicted in Tables 1 and 2, respectively, for Pr=1.0,
and the results of Merkin [13] and Nazar et al. [16] show
excellent agreement among these three solutions.

Figure 2a and b deals with the effect of viscosity-
variation parameter � (=0.0, 0.5, 1.0, 2.0, 4.0) for Pr =
7.0 on the rate of heat transfer and the local skin-friction
coefficient respectively. From Fig. 2a it is seen that the
rate of heat transfer, @h=@y x; 0ð Þ increases monotoni-
cally with the increase of the viscosity-variation
parameter �. We also observe that the value of
@h=@y x; 0ð Þ reaches to some minimum values at x = p,
the rear stagnation point of the cylinder for every values
of �. For � = 0.0, 0.5, 1.0, 2.0 and 4.0 the minimum
values attained by the rate of heat transfer @h=@y (x, 0)
are 0.2681, 0.2852, 0.2955, 0.3092 and 0.3312, respec-
tively. From these we may conclude that these minimum
values increase with the increase of the viscosity-varia-
tion parameter �. Figure 2b shows that for increasing
values of �, the local skin-friction coefficients decrease.
The decreasing values of @2f

�
@y2 ðx; 0Þ converge to

individual finite values for every values of �. For �= 0.0,
0.5, 1.0, 2.0 and 4.0 the limiting values of @2f

�
@y2 ðx; 0Þ

are 0.1368, 0.1220, 0.1103, 0.0949 and 0.0813 respec-
tively.

The effects of Pr, on the rate of heat transfer,
@h=@y x; 0ð Þ and the skin-friction, @2f

�
@y2 ðx; 0Þ are

illustrated in Fig. 3a and b respectively while � = 3.0.
Figure 3a reveals that, increase in the value of Pr leads

Table 1 Numerical values of @h=@y (x, 0) for different values of
curvature parameter x while Pr = 1.0 and � = 0.0

� @h
@y (x, 0)

x Merkin [13] Nazar et al. [15] Present

0.0 0.4214 0.4214 0.4241
p/6 0.4161 0.4161 0.4161
p/3 0.4007 0.4005 0.4005
p/2 0.3745 0.3741 0.3740
2p/3 0.3364 0.3355 0.3355
5p/6 0.2825 0.2811 0.2812
p 0.1945 0.1916 0.1917

Table 2 Numerical values of @2f =@y2 (x, 0) for different values of
curvature parameter x while Pr = 1.0 and � = 0.0

@2f
@y2

(x, 0)

x Merkin [13] Nazar et al. [15] Present

p/6 0.4151 0.4148 0.4145
p/3 0.7558 0.7542 0.7539
p/2 0.9579 0.9545 0.9541
2p/3 0.9756 0.9698 0.9696
5p/6 0.7822 0.7740 0.7739
p 0.3391 0.3265 0.3264

Fig. 2 a Heat transfer rate
distribution. b Friction factor
distribution
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to increase the values of the rate of heat transfer.
Opposite effects on the local skin-friction is observed
due to increase of the value of Prandtl number. We may
also observe that the absolute maxima of the local skin-
friction shifts towards the middle of the surface.

4 Conclusions

The effect of temperature-dependent viscosity on the
natural convection boundary layer flow from an iso-
thermal horizontal circular cylinder has been investi-
gated theoretically. Numerical solutions of the equations
governing the flow are obtained by using a very efficient
implicit finite difference method together with Keller box
scheme. From the present investigation the following
conclusions may be drawn.

1. The velocity distribution increases and the viscosity
of the fluid decrease at the middle of the surface for
increasing value of viscosity-variation parameter �.

2. Increasing the value of the viscosity-variation
parameter � leads to an increase in the local heat
transfer rate and to a decrease the local skin-friction.

3. It has been observed that the velocity distribution
and skin-friction decrease as well as the viscosity
distribution and the rate of heat transfer increase
with an increase of Pr.

4. The results have demonstrated that the assumption of
constant fluid properties may introduce severe errors
in the prediction of surface friction factor and heat
transfer rate.
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