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Abstract Similarity solution of the laminar boundary
layer equations corresponding to an unsteady stretching
surface have been studied. The governing time-depen-
dent boundary layer are transformed to ordinary dif-
ferential equations containg Prandtl number and
unsteadiness parameter. The effect of various governing
parameters such as Prandtl number and unsteadiness
parameter which determine the velocity and temperature
profiles and heat transfer coefficient are studied.

1 Introduction

The continuous moving surface heat transfer problem
has many practical applications in industrial manufac-
turing processes.

Since the pioneering work of Sakiadis [1, 2], various
aspects of the problem have been investigated by many
authors. Most studies have been concerned with con-
stant surface velocity and temperature (see, Tsou et al.
[3]), but for many practical applications the surface
undergoes stretching and cooling or heating that cause
surface velocity and temperature variations. Crane [4],
Vleggaar [5] and Gupta and Gupta [6] have analysed the
stretching problem with a constant surface temperature,
while Soundalgekar and Ramana [7] investigated the
constant surface velocity case with a power- law tem-
perature variation. Grubka and Bobba [8] have analysed
the stretching problem for a surface moving with a linear
velocity and with a variable surface temperature.

Ali [9] has reported flow and heat characteristics on
a stretched surface subject to power-law velocity and

temperature distributions. The flow field of a stretch-
ing wall with a power-law velocity variation was dis-
cussed by Banks [10]. Recently, Ali [11] and
Elbashbeshy [12] extended Banks’s work for a porous
stretched surface for different values of the injection
parameter. Even more recently, Elbashbeshy [13] have
analysed the stretching problem which was discussed
by Elbashbeshy [12] to include an uniform porous
medium.

The present work is to study the heat transfer over an
unsteady stretching surface. This has not been studied in
the literature. It may be remarked that the present
analysis is an extension of and a complement to the
earlier paper [12]

2 Formulation of the problem

Consider an unsteady, two dimensional laminar flow on
a continuous stretching surface with surface temperature
Tx and velocity Ux = bx(1– ct]–1 (see, Anderson et. [14])
where b (is the stretching rate) and c are positive con-
stant.

The x- axis runs along the continuous surface in the
direction of the motion and y- axis is perpendicular to it.

The conservation equations of the laminar boundary
layer are
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with the associated boundary conditions

y ¼ 0; u ¼ Uxðx; tÞ; v ¼ 0; T ¼ Txðx; tÞ
y !1; u ¼ 0; T ¼ T1
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where u and v are the velocity components in the x and y
directions, T is the temperature inside the boundary
layer, m is the kinematic viscosity, a is the thermal dif-
fusivity and t is the time and T¥ is the free stream
temperature.

The equation of continuity is satisfied if we choose a
stream function w(x, y) such that

u ¼ @w
@y

; v ¼ � @w
@x

The mathematical analysis of the problem is simplified
by introducing the following dimensionless coordinates:
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Substituting (5) – (7) into Eqs (2) and (3) we obtain

f 000 þ ff 00 � f 02 � A f 0 þ 1

2
gf 00

� �
¼ 0 ð8Þ

P�1r h00 þ 2f 0hþ f h0 � A
2
ð3hþ gh0Þ ¼ 0 ð9Þ

where Pr = m/a is the Prandtl number and A is dimen-
sionless measure of the unsteadiness. The primes denote
differentiation with respect to g.

The boundary conditions (4) now becomes

g ¼ 0; f ¼ 0; f 0 ¼ 1; h ¼ 1
g!1; f 0 ¼ 0; h ¼ 0

�
ð10Þ

3 Numerical method

The transformed momentum Eq. (8) and the energy
Eq. (9) subject to the boundary condition (10) were
integrated numerically by the well-known fourth-order
Runge-Kutta-Merson method. The half interval method
was used to search for f ¢(0) until f ¢(g) decayed expo-
nentially to zero full stop. The Gaussian elimination
method was used to solve the energy equation, and the
algorithm was modified following Chow [15]. The solu-
tion provided f ¢¢, and h and the forward finite difference
equation was employed to obtain h¢(0) for uniform
temperature boundary conditions. The numerical results
were found to depend upon g¥ and step size. A step size
of Dg = 0.1 gave sufficient accuracy for a Prandtl
number of 1.0. The value of g¥ was chosen as large as
possible between 4 to 14 depending upon the Prandtl
number and unsteadiness parameter without causing

numerical oscillation in the values of f ¢, f ¢¢ and h. The
computation was carried out on an IBM compatible 586
PC.

4 Result and Discussion

Velocity profiles f ¢(g) and temperature profiles h(g) for
A = 0.8, 1.2 and 2.0 are shown in Figs. 1, 2 and 3
respectively. The temperature gradient h¢(0) at stretch-
ing surface is displayed in Fig. 4. The latter quantity is
of particular importance since the heat transfer between
the stretching surface and the fluid is conventionally
expressed in dimensionless form as a local Nusselt
number.
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Nuffiffiffiffiffi
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where k is the thermal conductivity and

Re ¼
xUx

m

is a local Reynolds number based on the surface velocity
Ux.

Since the fluid motion is driven solely by the
stretching surface, the surface gradient f ¢(0) of the
velocity component u parallel to the surface stretching is
negative and decreases with unsteadiness parameter.
From Table 1, we note that, the surface gradient de-
creases with increasing the unsteadiness parameter while
the rate of heat transfer increases with unsteadiness
parameter and Prandtl number.

Fig. 1 Velocity distribution as a function of g for various values of
A
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The similarity solutions for the dimensionless velocity
in Fig. 1 show that the boundary layer thickness de-
creases with unsteadiness parameter.

The similarity solutions for the dimensionless tem-
perature in Fig. 2 show that h (g) decreases monotoni-
cally with g, i.e. with the distance from the stretching
surface, for all Prandtl numbers. This implies that the
temperature T gradually decreases with g from Tx at
g=0. It is noteworthy that h (g) vanishes at the free
stream g = 4 for sufficiently large Prandtl number.

The thermal boundary layer thickness decreases with
Prandtl number, for all unsteadiness parameter.
Figure 4 reveals that uniformity of lower Prandtl num-
ber for A = 0.8, 1.2 and 2 and the temperature gradients
vanishes at free stream. Moreover, when A tends to zero
the solution approached the numerical solution by Ali
[9] and Grubka et al. [8], we note that, from Table 2, it is
clear that the numerical solution gives good results in
comparison with refs. [8] and [9].

5 Conclusion

The purpose of this paper was to present an exact sim-
ilarity solution for momentum and heat transfer in an
unsteady flow whose motion is caused solely by the
linear stretching of a horizontal stretching surface. The
following results are obtained

1. A new similarity solution for the temperature field
has been obtained, which transforms the time-
dependent thermal energy equation to an ordinary
differential equation.

2. Thermal boundary layer thickness decreases with
unsteadiness parameter and Prandtl number while
the momentum boundary layer thickness decreases
with unsteadiness parameter.

3. The surface gradient is negative and decreases with
unsteadiness parameter.

4. The rate of heat transfer increases with unsteadiness
parameter and Prandtl number.

Fig. 2 Temperature distribution as a function of g for various
values of A

Fig. 4 Variation of the heat transfer coefficient

Fig. 3 Temperature distribution as a function of g for various
values of Pr

Table 1 Comparison of Nuffiffiffiffi
Re
p for A = 0.0 and Pr = 1.0 to previ-

ously published data

Grubka and Bobba [16] Ali [9] present results

1.00000 1.0054 0.99999

Table 2 Nuffiffiffiffi
Re
p and surface gradient –f ¢¢(0) as a function of Prandtl

number and unsteadiness parameter

A 0.8 1.2 2

Pr –h¢(0) –f ¢¢(0) –h¢(0 –f ¢¢(0) –h¢(0) –f ¢¢(0)

0.01 0.1016 1.3321 0.1319 1.4691 0.1723 1.7087
0.1 0.2707 1.3321 0.3576 1.4691 0.4916 1.7087
1.0 0.6348 1.3321 0.9491 1.4691 1.4086 1.7087
10 1.2552 1.3321 2.4177 1.4691 3.9814 1.7087
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