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Abstract An analysis is developed to study the unsteady
mixed convection flow over a vertical cone rotating in an
ambient fluid with a time-dependent angular velocity in the
presence of a magnetic field. The coupled nonlinear partial
differential equations governing the flow have been solved
numerically using an implicit finite-difference scheme.
The local skin friction coefficients in the tangential and
azimuthal directions and the local Nusselt number increase
with the time when the angular velocity of the cone
increases, but the reverse trend is observed for decreasing
angular velocity. However, these are not mirror reflection
of each other. The magnetic field reduces the skin friction
coefficient in the tangential direction and also the Nusselt
number, but it increases the skin friction coefficient in the
azimuthal direction. The skin friction coefficients and the
Nusselt number increase with the buoyancy force.
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Nomenclature
Roman letters
Cfx skin friction coefficient in the x-direction
Cfy skin friction coefficient in the y-direction
Cp specific heat at constant pressure, kJôñkgã 1ôñK
Ec Eckert number
E electric field
f dimensionless stream function
G, H similarity velocity functions, môñsã 1

Gr Grashof number
H, h total enthalpy and static enthalpy, respectively
Ha Hartman number
k thermal conductivity, W Æ m)1 Æ K
M magnetic parameter
Ma Mach number

L characteristic length, m
Nu Nusselt number
Pr Prandtl number
Re Reynolds number
St Stanton number
t dimensional time
t* dimensionless time
T temperature, K
u, v, w velocity components, môñsã 1

V characteristic velocity, môñsã 1

x, y, z curvilinear coordinates system

Greek letters
Cfx skin friction coefficient in the x-direction
a semi-angle of the cone
b pressure gradient parameter
c ratio of specific heats
g, n transformed co-ordinates
l dynamic viscosity, kgÆm)1Æs)1

m konematic viscosity, m2Æs)1

c density, kgÆm)3

w dimensional stream function, m2Æs)1

X angular velocity of the cone
X0 angular velocity of the cone at t=0
u(t) a continuous function of time

Subscripts
i initial conditions at the wall
w condition at the wall
¥ condition in the free stream

1
Introduction
The study of flow and (or) heat transfer over a rotating
body has several practical applications. Such a study is
important in the design of turbines and turbo-machines, in
estimating the flight path of rotating wheels and spin-
stabilized missiles and in the modelling of many
geophysical vortices. When an axisymmetric body rotates
in a forced flow field, the fluid near the surface of the body
is forced outward in the radial direction due to the action of
the centrifugal force. This fluid is then replaced by the fluid
moving in the axial direction. Thus the axial velocity of the
fluid in the vicinity of a rotating body is higher than that of
a stationary body. This increase in the axial velocity en-
hances the convective heat transfer between the body and

Heat and Mass Transfer 39 (2003) 297–304

DOI 10.1007/s00231-002-0400-1

297

Received: 3 April 2001
Published online: 29 November 2002
	 Springer-Verlag 2002

H.S. Takhar (&)
Department of Engineering, Manchester Metropolitan University,
Manchester, M1 5GD, U.K
E-mail: h.s.takhar@mmu.ac.uk

A.J. Chamkha
Department of Mechanical Engineering,
Kuwait University, P.O. Box. 5969, Safat 13060, Kuwait

G. Nath
Department of Mathematics,
Indian Institute of Science, Bangalore, India



the fluid. This principle has been used to develop practical
systems for increasing heat transfer. For example, Hickman
[1] showed the utility of rotating condensers for sea-water
distillation and space-craft power plants in a zero-gravity
environment. Ostrach and Braun [2] investigated the
possibility of cooling the nose-cone of re-entry vehicles by
spinning the nose. Rotating heat exchangers are
extensively used by the chemical and automobile indus-
tries. The investigation of flow and heat transfer in rotating
systems done prior to 1958 has been reported by
Dorfman [3], while Kreith [4] reviewed the work done up to
1968.

The problem of forced convection from isothermal
and non-isothermal disks rotating in an ambient fluid
was investigated by Sparrow and Gregg [5] and Hartnett
[6], respectively. Tien and Tsugi [7], and Koh and Price
[8] have presented a theoretical analysis of the forced
flow and heat transfer past a rotating cone. The influence
of the Prandtl number on the heat transfer on rotating
non-isothermal disks and cones was investigated by
Hartnett and Deland [9]. The effect of the axial magnetic
field on the flow and heat transfer over a rotating disk
was considered by Sparrow and Cess [10]. Tarek et al.
[11] have obtained an asymptotic solution of the flow
problem over a rotating disk with a weak axial magnetic
field. Lee et al. [12] have studied the flow and heat
transfer over a rotating body of revolution (sphere).
Wang [13] has investigated the flow and heat transfer on
rotating cones, disks and axi-symmetric bodies with
concentrated heat sources. The similarity solution of the
mixed convection from a rotating vertical cone in an
ambient fluid was obtained by Hering and Grosh [14] for
Prandtl number Pr = 0.7 and by Himasekhar et al. [15]
for a wide range of Prandtl numbers. Thacker et al. [16]
have studied the free convection from a disk rotating in a
vertical plane in the presence of an axial magnetic field.
All these studies deal with steady flows. In many practical
problems, the flow could be unsteady due to the angular
velocity of the spinning body which varies with time or
due to the impulsive change in the angular velocity of the
body. The unsteady boundary layer flow of an impul-
sively-started translating and spinning rotational sym-
metric body has been investigated by Ece [17], who
obtained the solution for small time. The corresponding
heat transfer problem has been considered by Ozturk and
Ece [18]. The general tendency of the positive buoyancy
force is to increase the heat transfer while the magnetic
field tends to reduce it. Further the reduction of the
angular velocity of the body with increasing time also
reduces the heat transfer. Therefore it is interesting as
well as useful to study the combined effects of the
buoyancy force and the magnetic field on a rotating body
where the angular velocity decreases with increasing
time.

In this paper, we have studied the unsteady mixed
convection flow over a rotating vertical cone in the pres-
ence of a magnetic field. The unsteadiness in the flow field
is due to the angular velocity of the cone which varies
arbitrarily with time. The coupled nonlinear parabolic
partial differential equations governing the mixed con-
vection flow have been solved numerically using an im-

plicit finite-difference scheme similar to that of Blottner
[19]. The steady-state results for the surface shear stresses
and heat transfer are compared with those of Himasekhar
et al. [15] and Sparrow and Cess [10]. One possible ap-
plication of this work is in nuclear reactors where the
cooling process can be made more efficient by the com-
bined effects of the magnetic field and the time-dependent
rotation of the body. Another possible application is in the
cooling of the nose-cone of a re-entry vehicle by the
rotation of the cone.

2
Analysis
Let us consider the unsteady, laminar, non-dissipative,
constant property, incompressible boundary-layer mixed
convection flow of an electrically-conducting fluid over a
heated vertical cone rotating in an ambient fluid with
time-dependent angular velocity, X(t*) = X0u(t*), t* =
(X0 sin a) t, around the axis of the cone. The magnetic
field B is applied in the z-direction (normal direction)
and the gravity g acts downward parallel to the axis of
the cone. The physical model and the coordinate system
are shown in Fig. 1. We have employed the rectangular
curvilinear fixed coordinate system (x, y, z), where x is
measured along a meridional section, the y-axis is along
a circular section, and the z-axis is normal to the cone
surface. Let u, v and w be the velocity components along
the x (tangential), y (circumferential or azimuthal) and z
(normal) directions, respectively. The wall temperature
Tw varies linearly with the distance x and the ambient
temperature T¥ is a constant. The cone surface is as-
sumed to be electrically-insulated. Also the flow is taken
to be axisymmetric. The magnetic Reynolds number is
assumed to be small (Rem = l0r VL > 1 where l0 and r
are the magnetic permeability and the electrical con-
ductivity, and V and L are the characteristic velocity and
length, respectively). Under these conditions, it is possi-
ble to neglect the induced magnetic field in comparison
to the applied magnetic field. Since there is no applied
or polarization voltage imposed on the flow field, the
electric field E = 0. Hence, only the magnetic field

Fig. 1. Physical model and coordinates system
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contributes towards the Lorentz force. Under the above
assumptions and using the Boussinesq approximation,
the boundary-layer equations governing the mixed
convection flow on the rotating cone [7, 10, 15, 20] are
given by;

Continuity : ux þ x�1uþ wz ¼ 0; ð1Þ

Momentum:

utþuuxþwuz�v2=x¼ muzzþgbcosaðT�T1Þ�rB2u=q;

ð2Þ

vt þ uvx þ wvz þ uv=x ¼ mvzz � rB2v=q; ð3Þ

Energy : Tt þ uTx þ wTz ¼ ðm=PrÞTzz: ð4Þ

The initial conditions are given by the steady-state
equations;

uðx; z; 0Þ ¼ uiðx; zÞ; vðx; z; 0Þ ¼ viðx; zÞ;wðx; z; 0Þ
¼ wiðx; zÞ;Tðx; z; 0Þ ¼ Tiðx; zÞ: ð5Þ

The boundary conditions on the surface are the no-slip
conditions and far away from the surface the conditions
are given by the ambient conditions;

uðx;0; tÞ¼wðx;0; tÞ¼ 0; vðx;0; tÞ¼X0xsina/ðt�Þ;
Tðx;0; tÞ¼TwðxÞ;

uðx;1; tÞ¼ vðx;1; tÞ¼ 0; Tðx;1; tÞ¼T1;

uð1;z; tÞ¼ vð1;z; tÞ¼ 0; Tð1;z; tÞ¼T1; z> 0:

ð6Þ

Here T is the temperature; b is the coecient of the volu-
metric expansion; a is the semi-vertical angle of the cone; m
is the kinematic viscosity; c is the density of the fluid; t and
t*(t* = X0t sina) are the dimensional and dimensionless
times, respectively; X0 is the angular velocity of the cone at
t = 0; Pr is the Prandtl number; u(t) is a continuous
function having a continuous first-order derivative; the
subscripts t, x and z denote partial derivatives with respect
to t, x and z, respectively; the subscript i denotes initial
conditions; and the subscripts w and ¥ denote wall and
ambient conditions, respectively.

It is convenient to transform Eqs.(1, 2, 3, 4) into the (g,
t*) system by applying the following transformations;

g¼ðX0 sina=mÞ1=2z; t� ¼ ðX0xsinaÞt; uðx;z; tÞ
¼�2�1ðX0 sinaÞH0ðg; t�Þ/ðt�Þ;

vðx;z; tÞ¼ ðX0xsinaÞGðg; t�Þ/ðt�Þ; wðx;z; tÞ

¼ ðmX0 sinaÞ1=2Hðg; t�Þ/ðt�Þ;
Tðx;z; tÞ�T1¼ ðTw0�T1Þhðg; t�Þ; TW�T1

¼ðTw0�T1Þx=L;

GrL¼ gbcosaðTw�T1ÞL3=m2; ReL¼X0L2 sina=m;

k¼GrL=Re2
L;

M¼Ha=ReL; Ha¼ rB2L2=l;

ð7Þ

where Tw0 is the wall temperature at time t*=0. We find
that Eq.(1) is identically satisfied and Eqs.(2, 3, 4) reduce
to the following system of equations,

H000 � /HH00 þ 2�1/ðH0Þ2 � 2/G2 � 2/�1kh�MH0

� /�1ðd/=dt�ÞH0 � @H0=@t� ¼ 0; ð8Þ

G00 � /ðHG0 �H0GÞ � ðMþ /�1d/=dt�ÞG� @G=@t� ¼ 0;

ð9Þ

h00 � PrðHh0 � 2�1H0hÞ/� Pr @h=@t� ¼ 0: ð10Þ

The boundary conditions (6) can be rewritten as;

Hð0; t�Þ ¼ H0ð0; t�Þ ¼ 0; Gð0; t�Þ ¼ hð0; t�Þ ¼ 1;

H0ð1; t�Þ ¼ Gð1; t�Þ ¼ hð1; t�Þ ¼ 0:
ð11Þ

The initial conditions (i.e., conditions at t* = 0) are
given by the steady state equations obtained from (8, 9,
(10) by putting u =1, du/dt* = ¶Ḣ/¶t* = ¶G/¶t* = 0 when
t* = 0. The steady-state equations are;

H000 �HH00 þ 2�1ðH0Þ2 � 2G2 � 2kh�MH0 ¼ 0; ð12Þ

G00 � ðHG0 � H0GÞ �MG ¼ 0; ð13Þ

h00 � PrðHh0 � 2�1H0hÞ ¼ 0; ð14Þ
with boundary conditions

Hð0Þ ¼ H=ð0Þ ¼ 0;Gð0Þ ¼ hð0Þ ¼ 1;H=ð1Þ ¼ G=ð1Þ
¼ h=ð1Þ ¼ 0: ð15Þ

Here g and t* are the transformed coordinates; H¢, G
and H are the dimensionless velocity components along
the tangential, azimuthal and normal directions, respec-
tively; ö¡ is the dimensionless temperature; GrL is the
Grashof number; ReL is the Reynolds number; k is the
dimensionless buoyancy parameter; M is the dimension-
less magnetic parameter; Ha is the Hartmann number; L is
the characteristic length; l is the coefficient of viscosity;
and a prime denotes a derivative with respect to g. Here we
have taken a linear variation of the wall temperature Tw

with the distance x, because the governing equations(8, 9,
10) become independent of x. Hence the number of
independent variables becomes two instead of three.

It may be remarked that the steady-state Eqs.(12, 13,
14) in the absence of the magnetic field (M = 0) are
identical to those of Himasekhar et al. [15] if we replace H¢
by -2F and k by Gr/Re2. Further, Eqs.(12, 13, 14) in the
absence of the buoyancy force (k = 0) and for the constant
wall temperature case are the same as those of Sparrow
and Cess [10] if we omit the term Pr H¢ h/2, which is the
contribution due to the linear variation of the wall
temperature with the distance x.

The quantities of physical interest are the local skin
friction coefficients in the tangential and azimuthal
directions and the local heat transfer coefficient in terms of
Nusselt number and these are given by;
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Cfx¼ 2lð@u=@zÞz¼0=½qðX0xsinaÞ2� ¼Re�1=2
x /ðt�ÞH00ð0; t�Þ;

Cfy¼�2lð@v=@zÞz¼0=½qðX0xsinaÞ2�

¼�Re�1=2
x /ðt�ÞG0ð0; t�Þ;

Nux¼�xð@T=@zÞz¼0=ðTw�T1Þ¼�Re1=2
x hð0; t�Þ;

ð16Þ
where Cfx and Cfy are the local skin friction coecients in the
tangential and azimuthal directions, respectively; Nux is
the local Nusselt number; and Rex (Rex = X0 x2 sin a/m)
is the local Reynolds number. Here both the coecients and
the Reynolds number are based on the initial velocity.

3
Method of solution
The coupled nonlinear parabolic partial differential Eqs.(8,
9, 10) under boundary conditions (11) and initial condi-
tions (12, 13, 14, 15) have been solved numerically using
an implicit, iterative tri-diagonal finite-difference scheme
similar to that of Blottner [19]. All the first-order deriva-
tives with respect to t* are replaced by two-point backward
difference formulae of the form,

@R=@t� ¼ ðRi;j � Ri�1;jÞ=Dt� ð17Þ
where R represents the dependent variables H or G or h
and i and j are node locations in the t* and g directions,
respectively. First, the third-order partial dierential
Eq.(8) is converted into a second-order partial dierential
equation by substituting H¢ = N. Then the second-order
partial dierential equations for N, G and h are discretized
using three-point central dierence formulae, while first-
order derivatives with respect to g are discretized by
employing the trapezoidal rule. At each line of constant
t*, we get a system of algebraic equations. We evaluate
the nonlinear terms at the previous iteration and solve
the system of algebraic equations iteratively by using the
Thomas algorithm (see Blottner [19]). The same proce-
dure is repeated for the next t* value and the problem is
solved line by line until the desired t* value is reached. A
convergence criterion based on the relative dierence
between the current and previous iterations is employed.
When this dierence reaches 10)5, the solution is assumed
to have converged and the iterative process is termi-
nated.

4
Results and discussion
The partial differential Eqs.(8, 9, 10) under the boundary
conditions (11) and the initial condition Eqs.(12, 13, 14,
15) are solved numerically by using an implicit finite-dif-
ference method described earlier. The results have been
obtained for both increasing and decreasing angular ve-
locities (u(t*) = 1 + et*2, e = ±0.2, 0 £ t* £ 2) for several
values of the parameters k ( 0 £ k £ 10), M (0 £ M £
4), and Pr (0.7 £ Pr £ 10).

In order to assess the accuracy of our method, we have
compared the steady-state results for the surface shear
stresses in the tangential and azimuthal directions
()H¢¢(0), G¢(0)), and the surface heat transfer ()h¢(0)) in

the absence of the magnetic field (M = 0) with those of
Himasekhar et al. [15] and found them in excellent
agreement. We have also compared the surface shear
stresses and heat transfer ()H¢¢(0), )G¢(0), )h¢(0)), and
ambient velocity )H(¥) for the steady-state case in the
absence of the buoyancy force (k=0) with those of Sparrow
and Cess [10] and the results are found to be in very good
agreement. Since the maximum difference between our
results and those of refs. [10, 15] is about 1%, the com-
parison is not shown here.

The effect of the magnetic parameter M on the local
skin friction coefficients in the tangential and azimuthal
directions (2)1 Rex

1/2 Cfx, 2)1 Rex
1/2 Cfy) and the local

Nusselt number (Rex
)1/2 Nux) for increasing and de-

creasing angular velocities (u(t*) = 1 + et*, e = ±0.2) when
k = 1, Pr = 0.7, 0 £ t* £ 2 is shown in Figs.2, 3, 4,
respectively. The effect of the time variation is more
pronounced for large t*(t* > 1). For a fixed M, the skin
friction coefficients and the Nusselt number increase with
an increasing angular velocity, but the reverse trend is
observed for a decreasing angular velocity. However, these
are not a mirror reflection of each other. When the angular
velocity increases with time, the skin-friction coefficients
(2)1 Rex

1/2 Cfx, 2)1 Rex
1/2 Cfy) and the Nusselt number

(Rex
)1/2 Nux) for M=2 increase by about 57%, 100%and

5.5% respectively, as t* increases from zero to 2. Since an
increase in the angular velocity with time directly affects
the tangential velocity, the skin friction coefficient in the
tangential direction is most affected. However, the effect of
an increase in the angular velocity on the energy equation
is rather indirect. Hence the Nusselt number is weakly
affected. When the angular velocity decreases with time,
the skin friction coefficient in the tangential direction for
M=0 ( without the magnetic field) becomes negative for
t* > 1.75. However this does not imply separation, since
we are dealing with the unsteady flow. For M=4 and for

Fig. 2. Effect of the magnetic parameter M on 2)1 Rex
1/2 Cfx for

u(t*) = 1 + et*2, e = ±0.2
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increasing angular velocity, the skin friction coefficient in
the tangential direction increases by about 88% when t*
increases from zero to 2, whereas it decreases by about
93% for the decreasing angular velocity. The skin friction
coefficients and the Nusselt number are found to be
strongly dependent on M for all t*. The skin friction
coefficient in the tangential direction (2)1 Rex

1/2 Cfx) and
the Nusselt number (Rex

)1/2 Nux) decrease with increasing
M, but the skin friction coefficient in the azimuthal
direction (2)1 Rex

1/2 Cfy) decreases. The reason for this
behaviour can be explained as follows. When the body

rotates, fluid near the surface of the body is forced out-
ward along the tangential direction due to the action of the
centrifugal force. This fluid is then replaced by the fluid
moving in the normal direction. Thus, there is a close
relationship between the tangential and normal velocities.
Since the magnetic field is applied normal to the velocity
H, there is however, an x-component of the magnetic force
(see Eq.(8)) which opposes the tangential velocity H¢. The
resultant reduction in the tangential velocity H¢ with
increasing M is reflected in the reduction of the normal
velocity H (see Figs.8 and 9). Since there is less fluid flow,
the change from the inflow velocity H to the outflow
velocity H¢ takes place closer to the surface of the cone.
Thus, the inflow velocity remains constant within smaller
distances from the surface as the magnetic parameter M
increases. Consequently, the gradient of the velocity in the
tangential direction and hence the skin friction coefficient
in the tangential direction decrease with increasing M.
Since the normal velocity H decreases with increasing M,
as mentioned earlier, the temperature h increases with
M (see Fig.11). Hence, the temperature gradient and the
Nusselt number also decrease. Since the magnetic field
induces the Lorentz force in the azimuthal direction which
opposes the velocity G, it is reduced everywhere and the
boundary layer is thinned as M increases (see Fig.10). This
results in an increase in the gradient of the velocity G and,
hence, in the skin friction coefficient in the azimuthal
direction with increasing M.

The effect of the buoyancy parameter k on the local
skin friction coefficient in the tangential and azimuthal
directions (2)1 Rex

1/2 Cfx, 2)1 Rex
1/2 Cfy) and the local

Nusselt number (Rex
)1/2 Nux) is presented in Figs.5, 6, 7

for u(t*) = 1 + e t*2, e = ±0.2, M = 1, Pr = 0.7. Since the
positive buoyancy force (k > 0) implies favourable
pressure gradient, the fluid gets accelerated, which results
in thinner momentum and thermal boundary layers.

Fig. 4. Effect of the magnetic parameter M on 2)1 Rex
)1/2 Nux for

u(t*) = 1 + et*2, e = ±0.2

Fig. 5. Effect of the buoyancy parameter k on 2)1 Rex
1/2 Cfx for

u(t*) = 1 + et*2, e = ±0.2

Fig. 3. Effect of the magnetic parameter M on 2)1 Rex
1/2 Cfy for

u(t*) = 1 + et*2, e = ±0.2
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Consequently, the velocity and temperature gradients are
increased and, hence, the skin friction coefficients and the
Nusselt number also increase with k.

The effect of the time variation is found to be more
pronounced on the skin friction in the tangential direction
(2)1 Rex

1/2 Cfy) than on the skin friction coefficient in the
azimuthal direction (2)1 Rex

1/2 Cfx) and the Nusselt
number (Rex

)1/2 Nux), because the change in of the
angular velocity with time strongly affects the tangential
velocity. For k=5, the skin friction coefficient in the
tangential direction (2)1 Rex

1/2 Cfy) increases by about

77% when the time t* increases from zero to 2. On the
other hand for decreasing angular velocity, the tangential
skin friction decreases by about 88% when t* increases
from zero to 2. When the angular velocity decreases with
time the skin friction in the tangential direction (2)1 Rex

1/2

Cfy) < 0 when k < 1 and t* > t0*). However as mentioned
earlier this does not imply flow separation.

The effect of the magnetic parameter M on the normal,
tangential and azimuthal velocities (H, H¢, G) and on the

Fig. 6. Effect of the buoyancy parameter k on 2)l1 Rex
1/2 Cfy for

u(t*) = 1 + et*2, e = ±0.2

Fig. 7. Effect of the buoyancy parameter k on Rex
)1/2 Nux for

u(t*) = 1 + et*2, e = ±0.2

Fig. 8. Effect of M on the velocity profiles )H (g, t*) for u(t*) = 1
+ et*2, e = )0.2

Fig. 9. Effect of M on velocity profiles )H¢ (g, t*) for u(t*) = 1 +
et*2, e = )0.2
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temperature (h) for u(t*) = 1 + et*2, e = )0.2, t* = k = 1, Pr =
0.7, is shown in Figs.8, 9, 10, 11. It can be seen from these
figures that the velocities (H, H¢, G) decrease with increasing
M, but the temperature (h) increases. The reason for this
trend has been explained earlier.

The effect of the buoyancy k on the velocity and tem-
perature profiles (H, H¢, G, h) for u(t*) = 1 + e t*2, e = )0.2,
t* = M = 1 Pr = 0.7, is presented in Figs.12, 13, 14, 15. Since
the buoyancy parameter k accelerates the fluid in the

buoyancy layer, both the momentum and the thermal
boundary layers are reduced. This enhances the normal and
tangential velocities (H, H¢), but reduces the azimuthal ve-
locity (G) and the temperature (h).

5
Conclusions
The results indicate that the magnetic field significantly
affects the velocity components and these, in general,

Fig. 10. Effect of M on velocity profiles G (g, t*) for u(t*) = 1 +
et*2, e = )0.2

Fig. 11. Effect of M on temperature profiles h (g, t*) for u(t*) = 1
+ et*2, e = )0.2

Fig. 12. Effect of k on velocity profiles )H (g, t*) for (ut*) = 1 +
et*2, e = )0.2

Fig. 13. Effect of k on velocity profiles )H¢ (g, t*) for u (t*) = 1 +
et*2, e = )0.2

303



decrease with an increasing magnetic field, whereas the
temperature increases. The skin friction coefficient in the
tangential direction and the Nusselt number decrease with

increasing magnetic field, but the skin friction in the
circumferential direction increases. The buoyancy force
enhances the skin-friction coefficients and the Nusselt
number. The effect of the decreasing angular velocity on
the velocity and the temperature fields is not the a mirror
reflection of the increasing angular velocity.

References
1. Hickman KCD (1957) Centrifugal boiler compression still. Ind

Eng Chem 49: 786)800
2. Ostrach S; Brown WH (1958) Natural convection inside a flat

rotating container. NACA TN 4323
3. Dorman LA (1963) Hydrodynamic Resistance and the Heat Loss

of Rotating Solids (Trans. by N Kemmer). Oliver and Boyd,
Edinburgh

4. Kreith F (1968) Convective heat transfer in rotating systems.
Advances in Heat Transfer (Eds. T.V. Irvine and J.P. Hartnett). 5:
129)251

5. Sparrow EM; Gregg JL (1959) Heat transfer from a rotating disk to
fluids of any Prandtl number. J Heat Transfer 81: 249)251

6. Hartnett JP (1959) Heat Transfer from anon-isothermal disk
rotating in still air. J Appl Mech 26: 672)673

7. Tien CL; Tsuji IJ (1965) A theoretical analysis of laminar forced
flow and heat transfer about a rotating cone. J Heat Transfer 87:
184)190

8. Koh TCY; Price JF (1967) Nonsimilar boundary layer heat
transfer of a rotating cone in forced flow. J Heat Transfer 89:
139)145

9. Hartnett JP; Deland EC (1961) The influence of Prandtl number
on the heat transfer from rotating non-isothermal disks and
cones. J Heat Transfer 83: 95)96

10. Sparrow EM; Cess RD (1962) Magnetohydrodynamic flow and
heat-transfer about a rotating disk. J Appl Mech 29: 181)187

11. Tarek MA; Mishkawg El; Hazem AA; Adel AM (1998) Asymptotic
solution for the flow due to an infinite rotating disk in the case of
small magnetic field. Mech Res Comm 25: 271)278

12. Lee M; Jeng DR; Dewitt KJ (1978) Laminar boundary layer
transfer over rotating bodies in forced flow. J Heat Transfer 100:
496)502

13. Wang CY (1990) Boundary layers on rotating cones, disks and
axisymmetric surfaces with concentrated heat source. Acta
Mechnica 81: 245)251

14. Hering RG; and Grosh RH (1963) Laminar combined convection
from a rotating cone. ASME J Heat Transfer 85: 29)34

15. Himasekhar K; Sarma PK; Janardhan K (1989) Laminar mixed
convection from a vertical rotating cone. IntComm Heat Mass
Transfer 16: 99)106

16. Thacker WL; Watson LT; Kumar SK (1990) Magnetohydrody-
namic free convection from a disk rotating in a vertical plane.
Appl Math Modelling 14: 527)535

17. Ece MC (1992) An initial boundary layer flow past a translating
and spinning rotational symmetric body. J Eng Math 26: 415)428

18. Ozturk A; Ece MC (1995) Unsteady forced convection heat
transfer from a translating and spinning body. J Heat Transfer
117: 318)323

19. Blottner FG (1970) Finite-dierence method of solution of the
boundary layer equations. AIAA J 8: 193)205

20. Eringen AC; Maugin GA (1990) Electrodynamic of Continua, Vol
2: Springer Verlag, Berlin

Fig. 14. Effect of k on velocity profiles G (g, t*) for u(t*) = 1 + e
t*2, e = )0.2

Fig. 15. Effect of k on temperature profiles h (g, t*) for u(t*) =
1 + e t*2, e = )0.2
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