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Abstract The present paper concerns the investigation
of the stress, temperature and magnetic fields in an
isotropic elastic cylinder in a primary magenetic field
when the curved surface of the cylinder subject to
certain boundary conditions.The system of fundamental
equations is solved by means of a finite difference
method and the numerical calculations are carried out
for the temperature, the components of displacement
and the components of stresses with time and through
the thickness of the cylinder. The results indicate that
the effects of inhomogeneity and magnetic field are very
pronounced.

1
Introduction
The dynamical problem of magneto-thermoelasticity has
received much attention in the literature during the past
decade. In recent years the theory of magneto-thermo-
elasticity which deals with the interactions among strain,
temperature and electromagnetic fields has drawn the
attention of many researchers because of its extensive
uses in diverse field, such as geophysics for under-
standing the effect of the Earth’s magnetic field on
seismic waves, damping of acoustic waves in a magnetic
field, emissions of electromagnetic radiations from
nuclear devices, development of a highly sensitive
superconducting magnetometer, electrical power
engineering, optics etc. The thermal stress problem in a
finite circular cylinder has attracted the attention of
numerous investigators [1–3]. Stress functions method
of plane stress thermoelastic problem in a multiply
connected region of variable thickness, has been
investigated by Sugano [4]. The rotation of non-homo-
geneous composite infinite cylinder was investigated by
El-Nagaar, et al. [5]. Abd-Alla, et al. [6] have investigated
the thermal stress in an infinite circular cylinder of
orthotropic material. El-Naggar, et al. [7] studied the
thermal stresses in a rotating non-homogeneous
orthotropic hollow cylinder. Janele, et al. [8] studied
the finite amplitude spherically symmetric wave

propagation in a compressible hyperelastic solid. Knopoff
[9] and Nowacki [10] adressed these types of problems
at the begining. Kaliski [11] investigated the wave
equations of thermo-electric-magneto-elasticity. Suhbi
[12] studied magneto-thermo-viscoelastic interactions in
a body having cylindrical geometry. Mukhopadhyay
and Roychoudhurj [13] discussed magneto-thermo-elastic
interactions in an infinite isotropic elastic cylinder
subjected to a periodic loading.

In the present paper, we have investigated the
generation of stress, temperature and magnetic field in
an infinite isotropic elastic cylinder placed in a constant
primary magnetic field. The governing equations for
the non-homogeneous in an isotropic elastic solid are
obtained in conservation form. These equations are
solved using a numerical method which uses relation
from the characteristics theory of finite difference
scheme. This scheme is easier to implement than the
method of characteristic discussed by Haddow and
Mioduchowski [14, 15]. Numerical results are presented
for the variation of temperature, displacement and
stresses with the time t and through the thickness of the
cylinder. The effects of inhomogeneity and the magnetic
field are very pronounced.

2
Formulation of the problem
Let us consider an infinite isotropic elastic solid cylinder
with internal radius a and external radius b. (r, h, z) are
taken as the cylindrical coordinates with z-axis as the axis
of the cylinder. The cylinder is placed in a constant pri-
mary magnetic field HO, acting in the direction of the
z-axis. Assuming the medium to be non-ferromagnetic
and ferroelectric and ignoring the Thompson effect, the
simplified Maxwell’s equations of electro-dynamics for
perfectly conducting elastic medium are:

r�~hh ¼~jj; ð2:1aÞ

r �~EE ¼ �l
@~hh

@t0
; ð2:1bÞ

r �~hh ¼ 0 ð2:1cÞ
r �~EE ¼ 0 ð2:1dÞ

~EE ¼ �l
@~uu

@t0
� ~HH

� �
ð2:1eÞ

~hh ¼ r� ð~uu� ~HHÞ; ð2:1fÞ
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where ~HH is the magnetic field,~EE is the electric field,~jj is the
current density,~uu is the mechanical displacement, and~hh is
the perturbed magnetic,

~HH ¼ Ho
�!þ ~hh:

The corresponding equations for the adjoining free
space are

r� ho!¼ eo @Eo!

@t0
; ð2:2aÞ

r � Eo!¼ �lo @ho!

@t0
; ð2:2bÞ

r � ho!¼ 0 ð2:2cÞ

r � Eo!¼ 0 ð2:2dÞ
where superscript o refers to values for the free space. The
stress equations of motion in the absence of body forces are:

rij;j þ sij;j ¼ q€uui; ð2:3Þ
where Maxwell’s electro-magnetic stress tensorsij is given by

sij ¼ lðhiHj þ hjHi � hkHkdijÞ ð2:4Þ
and the mechanical stress tensor rij is given by

rij ¼ kDdij þ 2l0eij � cT0dij; ð2:5Þ

eij ¼
1

2
ðui;j þ uj;iÞ;

eii ¼ D; i; j ¼ 1; 2; 3 :

Considering radial vibrations of the medium, the only
non-zero displacement is ur = u(r, t¢), so that

err ¼
@u

@r
; ehh ¼

u

r
; ezz ¼ 0: ð2:6Þ

The field components in the medium and in the con-
tacting free space are then obtained from equations (2.1),
(2.2) and (2.4) as:

~EE ¼ �l 0;�Ho
@u

@t0
; 0

� �
; ð2:7aÞ

~jj ¼ 0;� @hz

@r
; 0

� �
; ð2:7bÞ

~hh ¼ 0; 0;�Ho
@u

@r
þ u

r

� �� �
; ð2:7cÞ

Eo!¼ 0;Eo
2; 0

� �
; ð2:7dÞ

ho!¼ 0; 0; ho
z

� �
: ð2:7eÞ

The stress equations of motion (2.3) then reduce to

@rrr

@r
þ 1

r
ðrrr � rhhÞ þ

@srr

@r
¼ q

@2u

@t02
ð2:8Þ

where

rrr ¼ k
@u

@r
þ u

r

� �
þ 2l0

@u

@r
� cT0; ð2:9aÞ

rhh ¼ k
@u

@r
þ u

r

� �
þ 2l0

u

r
� cT0; ð2:9bÞ

srr ¼ lH2
o

@u

@r
þ u

r

� �
; ð2:9cÞ

where u is the component of displacement in the
radial direction, eij are the strain components, T¢ is
the absolute temperature, k and l¢ are Lame’s constants,
c = (3k+ 2l¢)at, at is the coefficient of linear thermal
expansian, l is the magnetic permeability and t¢ is the
time. The heat conduction equation in the presence of
heat sources can be written in the following form

@2T0

@r2
þ 1

r

@T0

@r
� 1

k1

@T0

@t0
¼ � Q

k2
; ð2:10Þ

where k1 and k2 are the thermal diffusivity and thermal
conductivity respectively, Q is the intensity of applied
heat source.

The elastic constants k and l¢, magnetic permeability l
and density q are taken as a power functions of the radial
coordinate.

We characterize the non-homogeneity of the material
by

k ¼ Lr2m l0 ¼ v0r2m l ¼ vr2m q ¼ qor2m; ð2:11Þ

where L, v¢, v and qo are constants (the values of k, l¢, l
and q in homogeneous matter) and m is a rational num-
ber. Substituting from equations (2.11) into equa-
tions (2.9) we obtain the stress-displacement relations are

rrr ¼ r2m L
@u

@r
þ u

r

� �
þ 2v0

@u

@r

� �
� c0T0

� �
; ð2:12aÞ

rhh ¼ r2m L
@u

@r
þ u

r

� �
þ 2v0

u

r

� 	
� c0T0

� �
; ð2:12bÞ

srr ¼ r2mvH2
o

@u

@r
þ u

r

� �
ð2:12cÞ

where c¢ = (3L + 2v¢).
Using (2.12) we have from (2.8) the displacement

formulation of the equation of motion;

@2u

@r2
þ a1

r

@u

@r
� a2

u

r2
� c0

g
2m

r
T0 þ @T0

@r

� �
¼ qo

g
@2u

@t02
:

ð2:13Þ
It is convenient to introduce the following non-

dimensionalization scheme

bðU;RÞ ¼ ðu; rÞ;

t0 ¼ b

v
t;

626



T ¼ T0

To
: ð2:14Þ

where To is a reference temperature and v is the di-
mensionless velocity. In terms of these non-dimensional
variables, equations (2.10) and (2.13) can be rewritten in
more convenient form as.

@2T

@R2
þ 1

R

@T

@R
þ a

Q

k2
¼ a0

@T

@t
; ð2:15Þ

@2U

@R2
þ a1

R

@U

@R
� a2

U

R2
� a3

2m

R
T þ @T

@R

� �
¼ a4

@2U

@t2
:

ð2:16Þ

where

a ¼ b2

To
; a0 ¼ vb

k1
; a1 ¼ 2mþ 1;

a2 ¼ 1� 2mðLþ vH2
oÞ

g
;

a3 ¼
c0To

g
; a4 ¼

qov2

g
; g ¼ Lþ 2v0 þ vH2

o :

The stress components induced by the temperature T
are related to displacement component U by

rRR ¼ ðbRÞ2m L
@U

@R
þ U

R

� �
þ 2v0

@U

@R

� �
� c0ToT

� �
;

ð2:17Þ

rhh ¼ ðbRÞ2m L
@U

@R
þ U

R

� �
þ 2v0

U

R

� �
� c0ToT

� �
; ð2:18Þ

Assume that the intensity of the applied heat source is
taken to be in the following form

Q ¼ et expð�bRÞ
R

; ð2:19Þ

where b being a nonnegative constant, t is the time and e a
constant.

From preceding description, the initial condition may
be expressed as

at t ¼ 0 T ¼ 0; U ¼ @U

@t
¼ 0: ð2:20Þ

The boundary condition may be expressed as

at R ¼ a

b
T ¼ 0; U ¼ 0; ð2:21aÞ

at R ¼ 1
@T

@R
¼ 0; U ¼ 0 ð2:21bÞ

3
Numerical Scheme
A finite difference scheme which is a modification of
MacCormack’s scheme is described by wachtman, et al.
[16]. Where it is used to obtain solutions to problem of

thermal stress emanating from cylindrical cavity in a
bounded medium. This scheme is a forwared-backwared
predictor corrector scheme. We take the finite difference
grids with spatial intervals h in the direction R and k as the
time step, and use the subscripts i and n to denote the ith
discrete points in the R direction and the nth discrete time.
A mesh is defined by

Ri ¼ ao þ ih; i ¼ 0; 1; 2; 3; . . . ; j� 1

tn ¼ kn; n ¼ 0; 1; 2; 3; . . . ; k being the time step;

where ao ¼ a
b.

The functions T(R,t), U(R,t) and Q(R,t) may be at any
nodal location

TðRi; t
nÞ ¼ Tn

i ;

UðRi; t
nÞ ¼ Un

i

QðRi; t
n
i Þ ¼ Qn

i :

Thus the heat conduction equation (2.15) may be
expressed in the finite difference as follows:

Tnþ1
i ¼ Tn

i þ
q
a

Tn
iþ1 � 2Tn

i þ Tn
i�1 þ

h
a
bþ h

� �
Tn

iþ1 � Tn
i


 ��

þ dkn
a
bþ h

exp �b
a

b
þ h

� 	� 	�
ð3:1Þ

Also, the equation of motion (2.16) may be expressed in
the finite difference as follows

Unþ1
i ¼ 2Un

i � Un�1
i þ q1

a4

� Un
iþ1 � 2Un

i þ Un
i�1 þ

a1h Un
iþ1 � Un

i


 �
a
bþ ih

�

� a2
h

a
bþ ih

� �2

Un
i � a3h Tn

iþ1 � Tn
i þ

2mh
a
bþ ih

Tn
i

� �#

ð3:2Þ

where

q ¼ k

h2
; d ¼ h2ae

k2
and q1 ¼

k

h

� �2

4
Numerical results and discussion
For computational work, we take cooper as the example,
for which the material constants at To = 27�C are as
follows:

L¼1:387�1012 dyne=cm2; v0 ¼0:448�1012 dyne=cm2;

e¼0:25; b¼0:12

q¼8:93g=cm3; k1¼1:14cm2=s; k2¼0:918cal=s�Ccm

Ho¼1000:000Oersted; at¼1:67�10�8=�C;

v¼0:5gauss=Oersted

Results are presented for cylinder with

a¼0:1; b¼1:0:

627



To study the non-homogeneous case, we assume that m
= 0.5 and for the homogeneous case we assume that m=0.0.
We represented the numerical results graphically.

Figure 1 shows the temperature variation for various
non-dimensional time t. It is noticed that the temperature
increases with the increasing of R in all the contexts of all
three modes and satisfied the boundary conditions.

Figures 2 and 3 show the radial displacement along the
radial direction R at various dimensionless t. From these
figures the radial displacement U decreases and it starts to
increase at the value R=0.4 for the non-homogeneous case
and homogeneous case. It is noticed that the displacement
component decreases with the increase of t under the
effect of the magnetic field.

Figures 4, 5, 6 and 7 show the radial stress dRR and
tangential stress dhh along the radial direction R at various
times t. Also, they show the influence of the non-homo-
geneity of the material constants and the magnetic field on
the stresses dRR and dhh. It will be observed from those
graphs that the radial stress dRR and tangential stresses dhh

decrease with the increase of R for the non homogeneous
case and homogeneous case. It is noticed that they de-
crease with the increase of t.

The variation of stresses and displacement dRR, dhh and
U are due to the effect of inertia and magnetic field. Also,
the influence of the non-homogeneity on displacement and
stresses is very pronounced.

5
Conclusions
Some interesting conclusions can be drawn from the
analysis presented here. The material is elastic and has an
inhomogeneity in the direction perpendicular to the
boundary for the cylinder. A finite difference predictor-
corrector scheme using a relation from characteristic
theory at the inner and outer radii is used to obtain so-
lutions for the non-homogeneous infinite cylinder. Com-
pared with the homogeneous case the inhomogeneities in
which Lame’s constants increase and decrease with the
distance measured from the boundary have respectively

Fig. 1. Temperature distribution at different times

Fig. 2. Radial displacement distribution (m=0.5, m=0.5)

Fig. 3. Radial displacement distribution (m=0, m=0.5)

Fig. 4. Radial stress distribution (m=0, m=0.5)
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amplifying and attenuating effects on both the stress and
displacement. The results are specific for the example
considered, but other examples may have different trends
because of the dependence of the results on the mechanical
and thermal constants of the material.
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Fig. 7. Tangential stress distribution (m=0, m=0.5)

Fig. 6. Tangential stress distribution (m=0.5, m=0.5)

Fig. 5. Radial stress distribution (m=0, m=0.5)
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