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Abstract The laminar mixed convection boundary-layer
flow of a viscous and incompressible fluid past a hori-
zontal circular cylinder, which is maintained at a constant
heat flux and is placed in a stream flowing vertically up-
ward has been theoretically studied in this paper. The
solutions for the flow and heat transfer characteristics are
evaluated numerically for different values of the mixed
convection parameter k with the Prandtl number Pr = 1
and 7, respectively. It is found, as for the case of a heated
or cooled cylinder, considered by Merkin [5], that assisting
flow delays separation of the boundary-layer and can, if
the assisting flow is strong enough, suppress it completely.
The opposing flow, on the other side, brings the separation
point nearer to the lower stagnation point and for suffi-
ciently strong opposing flows there will not be a boundary-
layer on the cylinder.

a radius of the cylinder, m
Cf local skin friction coefficient
g acceleration due to gravity, m/s2

Gr Grashof number
k thermal conductivity, W/m K
Pr Prandtl number
Re Reynolds number
qw heat flux, W/m2

T fluid temperature, K
u, v non-dimensional velocity components along x

and y directions, respectively
ue(x) non-dimensional velocity outside boundary-layer
U¥ free stream velocity, m/s

x, y non-dimensional Cartesian coordinates along the
surface of the cylinder and normal to it,
respectively

b thermal expansion coefficient, K–1

k mixed convection parameter
h non-dimensional temperature
m kinematic viscosity, m2/s
w non-dimensional stream function
¢ differentiation with respect to y
– dimensional variables
w condition at the wall
¥ ambient condition

1
Introduction
Mixed convection flow past horizontal cylinders is im-
portant in situations encountered in the areas of geo-
thermal power generation and drilling operation when the
free stream velocity and the induced buoyancy velocity are
of comparable order and has received much attention. It
continues to be one of the most important problems also
due to its fundamental nature as well as many engineering
applications. In spite of the fact that a good number of
theoretical and experimental studies were carried out in
the past on mixed convection flow, it seems that most of
these studies are limited to cases in which the forced flow
is directed upward (assisting flow).

It appears that the first theoretical study on mixed
convection flow from bodies in the existence of a bound-
ary-layer has been carried out by Acrivos [1] who obtained
values of the local Nusselt number for the case of a stag-
nation flow when the Prandtl number Pr fi 0 or Pr fi
¥. Joshi and Sukhatme [2] used a series solution method
to study the boundary-layer flow in this problem for both
cases of assisting and opposing flow, respectively. Their
study was limited to the region from the lower stagnation
point up to the point of boundary-layer separation only.
Nakai and Okazaki [3] studied the problem of mixed
convection from a circular cylinder for the cases when
both the Reynolds number Re and Grashof number Gr are
very small and also when either forced convection or free
convection is dominant. Their results were found to agree
reasonably with experimental data for the case of assisting
flow but a considerable difference was found in the case of
opposing flow. Sparrow and Lee [4] considered the as-
sisting flow regime of this problem and obtained a simi-
larity solution of the boundary-layer equations using an
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approximate expression for the velocity variation outside
the boundary-layer. The local Nusselt number distribution
was only obtained in the region upstream of the point of
boundary-layer separation (from the lower stagnation
point up to an angle of 70�). Merkin [5] has studied the
same problem by obtaining a numerical solution to the
boundary-layer equations based on the assumption that
Re � 1 and Gr � 1 with Pr = 1. The solution was again
restricted to the region preceding the point of boundary-
layer separation since the boundary-layer equations are
not valid beyond that point. Badr [6, 7] studied the mixed
convection heat transfer from an isothermal horizontal
circular cylinder based on the solution of the full Navier-
Stokes and energy equations. Both the cases of assisting
and opposing flows were considered. The velocity and
thermal boundary layers are developed in time until
reaching the steady state conditions. Recently, Aldos et al.
[8, 9] investigated the effect of a radial magnetic field on
the flow and heat transfer characteristics of mixed con-
vection boundary-layer flow from a horizontal circular
cylinder with variable surface temperature. Two sets of
transformations were used, one for forced convection-
dominated flow and the other for free convection-domi-
nated flow, respectively. The results were obtained nu-
merically using the local nonsimilarity method and the
coordinate perturbation method. It should be noted to this
end that the unsteady boundary-layer flow from a hori-
zontal circular cylinder has been studied by Katagiri and
Pop [10], and Ingham and Merkin [11].

All of the above studies are for a cylinder with constant
surface temperature. However, an important practical and
experimental circumstance in many convective flows is
that generated adjacent to a surface dissipating heat uni-
formly. The aim of the present paper is therefore, to study
the steady mixed convection boundary-layer flow past a
horizontal circular cylinder subjected to a constant surface
heat flux. The formulation follows closely that proposed by
Merkin [5] and the transformed nonsimilar boundary-
layer equations are solved numerically using a very effi-
cient technique known as the Keller-box method. The
numerical results have been obtained for several values of
the mixed convection parameter k and two values of the
Prandtl number Pr, namely, Pr = 1 and 7, respectively. The
results refer to the skin friction coefficient, the wall tem-
perature distribution, the position of the boundary-layer
separation, as well as to the velocity and temperature
profiles near the lower stagnation point. Results were given
in the form of tables and graphs, as well. Such tables are
very important because they can serve as a reference
against which other exact or approximate solutions can be
compared in the future.

2
Mathematical formulation
Consider the problem of a horizontal circular cylinder of
radius a that is maintained at a constant surface heat
flux qw and is placed in a constant free stream tem-
perature T¥. It is assumed that the constant free stream
velocity is (1/2)U¥, so that the velocity outside the
boundary-layer is �ueð�xÞ ¼ U1 sinð�x=aÞ: It is also as-
sumed that the free stream velocity is directed vertically

upward with qw > 0 for assisting flow and qw < 0 for
opposing flow, respectively. The cylinder is considered to
be long enough so that the end effects can be neglected
and accordingly the flow field can be assumed two-di-
mensional. Under these assumptions along with the
Boussinesq and boundary-layer approximations, the
basic equations are:

@�u

@�x
þ @�v

@�y
¼ 0 ð1Þ

�u
@�u

@�x
þ �v

@�u

@�y
¼ �ue

d�ue

d�x
þ m

@2�u

@�y2
þ gbðT � T1Þ sin

�x

a

� �
ð2Þ

�u
@T

@�x
þ �v

@T

@�y
¼ m

Pr

@2T

@�y2
ð3Þ

subject to the boundary conditions:

�u ¼ �v ¼ 0;
@T

@�y
¼ � qw

k
on �y ¼ 0 ð4aÞ

�u! �ueð�xÞ; T ! T1; as �y!1 ð4bÞ
where �x is the coordinate measured along the surface of
the cylinder starting from the lower or upper stagnation
point, respectively, and �y is the distance measured normal
to it, ð�u; �vÞ are the velocity components along the ð�x; �yÞ
axes, and T, m, g, b, k and Pr are the local fluid tempera-
ture, kinematic viscosity, gravitational acceleration, coef-
ficient of thermal expansion, thermal conductivity and
Prandtl number, respectively.

The above equations can be non-dimensionalised using
the following new variables:

x ¼ �x=a; y ¼ Re1=2ð�y=aÞ; u ¼ �u=U1; v ¼ Re1=2ð�v=U1Þ

ueðxÞ ¼ �ueð�xÞ=U1; h¼ ðqwa=kÞRe1=2ðT � T1Þ
ð5Þ

where Re = U¥ a/m is the Reynolds number. Substituting
variables (5) into Eqs. (1)–(3) leads to the following
non-dimensional equations:

@u

@x
þ @v

@y
¼ 0 ð6Þ

u
@u

@x
þ v

@u

@�y
¼ ue

due

dx
þ @

2u

@y2
þ kh sin x ð7Þ

u
@h
@x
þ v

@h
@y
¼ 1

Pr

@2h
@y2

ð8Þ

and the boundary conditions (4) become:

u ¼ v ¼ 0;
@h
@y
¼ �1 on y ¼ 0 ð9aÞ

u! ueðxÞ; h! 0 as y!1 ð9bÞ
where k is the mixed convection parameter, which can be
written as:
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k ¼ gbqwa2Re�1=2=ðkU2
1Þ ¼

Gr

Re5=2
ð10Þ

in terms of the Grashof number Gr = gbqwa4/(km2). We
notice that k > 0 for aiding flow (qw > 0) and k < 0 for
opposing flow (qw < 0), respectively.

3
Solution procedure
To solve Eqs. (6)–(8), subject to the boundary condi-
tions (9), we assume the following variables:

w ¼ xFðx; yÞ; h ¼ hðx; yÞ ð11Þ
where w is the stream function defined in the usual way
as:

u ¼ @w
@y

; v ¼ � @w
@x

ð12Þ

Using (11) and (12) in Eqs. (6)–(8), we get, after some
algebra, the resulting equations:

@3F

@y3
þ F

@2F

@y2
� @F

@y

� �2

þ sin x cos x

x
þ k

sin x

x
h

¼ x
@F

@y

@2F

@x@y
� @F

@x

@2F

@y2

� �
ð13Þ

1

Pr

@2h
@y2
þ F

@h
@y
¼ x

@F

@y

@h
@x
� @F

@x

@h
@y

� �
ð14Þ

subject to the boundary conditions:

F ¼ @F

@y
¼ 0;

@h
@y
¼ �1 on y ¼ 0 ð15aÞ

@F

@y
! sin x

x
; h! 0 as y!1 ð15bÞ

It can be seen that near the lower stagnation point of
the cylinder, i.e. x � 0, Eqs. (13) and (14) reduce to the
following ordinary differential equations:

F000 þ FF00 � F02 þ 1þ kh ¼ 0 ð16Þ

1

Pr
h00 þ Fh0 ¼ 0 ð17Þ

subject to the boundary conditions:

Fð0Þ ¼ F0ð0Þ ¼ 0; h0ð0Þ ¼ �1 ð18aÞ

F0 ! 1; h! 0 as y!1 ð18bÞ
where primes denote differentiation with respect to y.

In practical applications, the physical quantities of
principal interest are the local wall temperature and the
skin friction coefficient, which are defined, in non-
dimensional form, as:

hðx; 0Þ ¼ hwðxÞ; Cf ¼ x
@2F

@y2

� �
y¼0

ð19a; bÞ

For large values of k (� 1), a solution of Eqs. (16) and
(17) can be found using the transformation:

FðyÞ ¼ k1=5f ðgÞ; hðyÞ ¼ k�1=5gðgÞ; g ¼ k1=5y ð20Þ

Substituting (20) into Eqs. (16) and (17) they become:

f 000 þ ff 00 � f 02 þ g þ k�4=5 ¼ 0 ð21Þ

1

Pr
g 00 þ fg0 ¼ 0 ð22Þ

subject to the boundary conditions:

f ð0Þ ¼ f 0ð0Þ ¼ 0; g0ð0Þ ¼ �1 ð23aÞ

f 0 ! k�2=5; g ! 0 as g!1 ð23bÞ
where primes now denote differentiation with respect to
g.

A solution of Eqs. (21) and (22) is sought in the form of
series:

f ¼ f0ðgÞ þ k�2=5f1ðgÞ þ k�4=5f2ðgÞ þ . . .

g ¼ g0ðgÞ þ k�2=5g1ðgÞ þ k�4=5g2ðgÞ þ . . .
ð24Þ

for k� 1, where the functions f0(g) and g0(g) are given by
the equations:

f 0000 þ f0f 000 � f 020 þ h0 ¼ 0 ð25Þ

1

Pr
h000 þ f0h

0
0 ¼ 0 ð26Þ

subject to boundary conditions:

f0ð0Þ ¼ f 00ð0Þ ¼ 0; h00ð0Þ ¼ �1; ð27aÞ

f 00 ! 0; h0 ! 0 as g!1 ð27bÞ

We notice that Eqs. (25)–(27) describe the free con-
vection boundary-layer flow from the lower stagnation
point x � 0 of a horizontal circular cylinder with a con-
stant surface heat flux. The equations for the functions
fi(g) and gi(g) (i ‡ 1) can be written as:

f 000i þ
Xi

j¼0

ð fi�jf
00

j � f 0i�j f 0j Þ þ hi þ d2i ¼ 0 ð28Þ

1

Pr
h00i þ

Xi

j¼0

fi�jh
0
j ¼ 0 ð29Þ

fið0Þ ¼ f 0i ð0Þ ¼ 0; h0ið0Þ ¼ 0 ð30aÞ

f 0i ! d1i; hi ! 0 as g!1 ð30bÞ
where d1i and d2i are the Kronecker delta operators.

On solving Eqs. (25) and (26) for f0(g) and g0(g), and
Eqs. (28) and (29) for fi(g) and gi(g) (i = 1 and 2), we can
express the reduced skin friction F¢¢(0) and the reduced
wall temperature distribution h(0) valid for large values of
k (� 1) as:
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F00ð0Þ ¼ k3=5½f 000 ð0Þ þ k�2=5f 001 ð0Þ þ k�4=5f 002 ð0Þ þ . . .�
hð0Þ ¼ k�1=5½g0ð0Þ þ k�2=5g1ð0Þ þ k�4=5g2ð0Þ þ . . .�

ð31Þ

4
Results and discussion
Equations (13) and (14) subject to the boundary condi-
tions (15) have been solved numerically using a very
efficient implicit finite-difference method known as the
Keller-box scheme along with the Newton’s linearization
technique as described by Cebeci and Bradshaw [12]. The
numerical solution starts at the lower stagnation point of
the cylinder x � 0 with the initial profiles as given by
Eqs. (16) and (17) subject to the boundary conditions (18)
and proceed round the cylinder up to the boundary-layer
separation point. The actual value of k which first gives no
separation is difficult to determine exactly. It has to be
found by successive integrations of the equations. A fur-
ther difficulty is encountered as the numerical solution
indicates that very close to the point x = p, there is an
increase in the skin friction coefficient Cf and a decrease in
the surface (wall) temperature distribution hw(x) for so-
lutions with k near this value (which first gives no sepa-
ration). For the position of the boundary-layer separation
points xs, decreasing from the upper stagnation point to
the lower stagnation point, they are determined, likewise,
by successive integrations of the equations, given certain
values of k. The numerical results also show that, in those
cases when the boundary-layer separates, Cf fi 0 and
hw(x) fi hs („ 0) as x fi xs in a singular way (Merkin
[5]). In addition, for each case we have to check for sin-
gularity as well in determining the separation points xs.
For example, in the case of Pr = 1, the numerical solution
indicates that the value of k which first gives no separation
lies between k = 0.34 and k = 0.35, and x = p is the first
boundary-layer separation point. At the point x = p, when
we take k = 0.35, the numerical solution indicates that
there is no separation, but for k = 0.34, we encounter
singularity in the numerical solution. Hence, there exist
no separation for values of k ‡ 0.35. Therefore, we
conclude that the value of k which first gives no separation
lies between k = 0.34 and k = 0.35. However, the value of
k = 0.35 is determined and chosen after few trials. The
other points of boundary-layer separation are determined
in a similar way.

Representative results for the non-dimensional wall
temperature distribution hw(x) and the skin friction coef-
ficient Cf have been obtained at different positions x with
various values of the mixed convection parameter k when
Pr = 1 and 7, respectively.

In order to check the accuracy of the present method,
the value of g0(0) for Pr = 1 has been calculated. Thus, we
have obtained the value g0(0) = 1.9963, which is in excel-
lent agreement with those found by Merkin [13], g0(0)
= 1.9963, and by Yih [14], g0(0) = 1.9964, respectively.
Further, the values of F¢¢(0) and h(0) obtained by numer-
ically solving Eqs. (16) and (17) subject to the boundary
conditions (18) for Pr = 1 and 7, and some values of k are

presented in Tables 1 and 2. The values obtained from the
asymptotic series (31) for k (�1) are also included in these
tables and they show good agreement with the numerical
values even at moderate values of k. We are therefore
confident that the results presented in this paper are very
accurate.

Tables 3–6 show values of hw(x) and Cf at different
positions x and different values of k for Pr = 1 and 7,
respectively. The variation of hw(x) and Cf with x is also
illustrated in Figs. 1–4. It can be seen from these tables
and figures that the values of both hw(x) and Cf re lower for
Pr = 7 than for Pr = 1 when the parameters x and k are
fixed. We can also conclude from these tables and figures
that, as it is expected, the boundary-layer separates from
cylinder for some negative values of k (opposing flow)
and also for some positive values of k (assisting flow).
Opposing flow brings the separation point close to the
lower stagnation point and for sufficiently large negative
values of k or sufficiently strong opposing flow, there will
not be a boundary-layer on the cylinder. Increasing k
delays the separation and that separation can be sup-
pressed completely in the range 0 < x < p for sufficiently
large values of k (> 0). Moreover, the numerical solutions
indicate that the value of k which first gives no separation
lies between 0.34 and 0.35 for Pr = 1, while for Pr = 7 the
value of k (> 0) lies between 1.49 and 1.50, respectively.

The variation of the separation point xs with k is plotted
in Figs. 5 and 6 for Pr = 1 and 7, respectively. These
figures show that for each value of Pr there is a value of
k = k0(< 0) below which a boundary-layer separation is
not possible. The reason is that for k < 0 the opposing flow
is strong enough and the free convection boundary-layer
would start at x = p (the upper stagnation point), and for

Table 1. Values of F¢¢(0) and h(0) for various values of k and Pr = 1

k Numerical, Eqs. (16)–(18) Series (31)

F¢¢(0) h(0) F¢¢(0) h(0)

–1.2 –0.4394 2.1923
–1.0 –0.1186 2.1687
–0.8 0.1596 2.1545
–0.6 0.4924 2.0547
–0.4 0.7998 1.9046
–0.2 1.0340 1.8157
0.0 1.2336 1.7517
0.2 1.4117 1.7018
0.4 1.5747 1.6608
0.6 1.7263 1.6260
0.8 1.8690 1.5958
1.0 2.0042 1.5692 1.9771 1.4447
1.4 2.2570 1.5239 2.2113 1.4294
1.8 2.4913 1.4863 2.4269 1.4050
2.2 2.7110 1.4542 2.6280 1.3800
2.6 2.9190 1.4262 2.8174 1.3560
3.0 3.1171 1.4015 3.0002 1.3340
4.0 3.5784 1.3500 3.4137 1.3057
5.0 4.0019 1.3088 3.8001 1.2500
6.0 4.3967 1.2746 4.1506 1.2202
7.0 4.7686 1.2455 4.4807 1.1888
8.0 5.1217 1.2201 4.8004 1.1612
9.0 5.4591 1.1977 5.1046 1.1404
10.0 5.7730 1.1770 5.4023 1.1200
20.0 8.5370 1.0482 7.9200 1.0035
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sufficiently small values of k, there comes a point where
the flow of the free stream upwards cannot overcome the
tendency of the fluid next to the cylinder to move down-
wards under the action of the buoyancy forces (Merkin
[5]). This is an unstable situation and whether a boundary-

layer can exist at all on the cylinder for k < k0 is still an
open question.

Following Merkin [5], we can show that the separation
of the boundary-layer will not occur for k > 1/hw(x). To do
it, we see from Eq. (13), that we get on y = 0

@3w
@y3

� �
y¼0

þðkhwðxÞ þ cos xÞ sin x ¼ 0 ð32Þ

Though (¶2w/¶y2)y=0 = 0 at x = xs, the streamwise
velocity component ¶w/¶y will be positive near y = 0 and
so (¶3w/¶y3)y=0 ‡ 0 at x = xs. We thus have from Eq. (32)
that (k hw(x) + cos x) sin x £ 0, which cannot hold in the
range 0 £ x £ p for k > 1/hw(x).

Finally, Figs. 7–10 illustrate the velocity and tempera-
ture profiles near the lower stagnation point (x � 0) for Pr
= 1 and 7, and for several values of k. It is seen from these
figures that, as it is expected, the temperature profiles
increase and the velocity profiles decrease when the
parameter k decreases. However, these profiles are smaller
for Pr = 7 than for Pr = 1. In addition, we notice that for
k > 0 (aiding flow) there is an overshoot of the velocity
profiles from the free stream velocity, which is smaller for
higher Prandtl number. However, the value of k (> 0) for
which this overshoot takes place is higher for Pr = 7 than
for Pr = 1.

5
Conclusions
In this paper we have studied the problem of steady mixed
convection boundary-layer flow over a horizontal circular
cylinder with a constant surface heat flux, which is im-
mersed in a viscous and incompressible fluid. We have
sought to determine how the mixed convection parameter
k and the Prandtl number Pr affect the flow and heat
transfer characteristics as well as the position of the
boundary-layer separation point xs. Solutions of the
transformed non-similar boundary-layer equations are
obtained numerically using the Keller-box method. From
this study we can draw the following conclusions:

Table 2. Values of F¢¢(0) and h(0) for various values of k and Pr = 7

k Numerical, Eqs. (16)–(18) Series (31)

F¢¢(0) h(0) F¢¢(0) h(0)

–2.5 –0.0251 1.1696
–2.4 0.0101 1.1672
–2.2 0.2436 1.0740
–2.0 0.4159 1.0156
–1.8 0.5401 0.9807
–1.6 0.6459 0.9543
–1.4 0.7391 0.9331
–1.2 0.8238 0.9155
–1.0 0.9015 0.9005
–0.8 0.9748 0.8871
–0.6 1.0441 0.8752
–0.4 1.1100 0.8644
–0.2 1.1730 0.8545
0.0 1.2336 0.8455
0.2 1.2919 0.8371
0.4 1.3484 0.8293
0.6 1.4030 0.8220
0.8 1.4562 0.8152
1.0 1.5079 0.8087 1.4953 0.6662
1.4 1.6075 0.7969 1.6010 0.7055
1.8 1.7028 0.7861 1.7014 0.7206
2.2 1.7943 0.7764 1.7967 0.7260
2.6 1.8824 0.7674 1.8875 0.7267
3.0 1.9676 0.7591 1.9744 0.7250
4.0 2.1697 0.7407 2.1773 0.7164
5.0 2.3590 0.7250 2.3640 0.7059
6.0 2.5379 0.7113 2.5382 0.6953
7.0 2.7081 0.6992 2.7024 0.6853
8.0 2.8710 0.6883 2.8583 0.6759
9.0 3.0275 0.6785 3.0072 0.6672
10.0 3.1785 0.6695 3.1501 0.6591
20.0 4.4811 0.6074 4.3634 0.6014

Table 3. Values of the wall
temperature distribution hw(x)
for Pr = 1 and various values
of k

x k

–0.8 –0.6 –0.4 –0.2 0.0 0.2 0.34 0.35 0.5 1.0 5.0

0.0 2.1545 2.0547 1.9046 1.8157 1.7517 1.7018 1.6723 1.6704 1.6427 1.5692 1.3088
0.2 2.2201 2.0763 1.9169 1.8248 1.7593 1.7083 1.6783 1.6763 1.6482 1.5737 1.3112
0.4 2.1424 1.9513 1.8500 1.7799 1.7260 1.6946 1.6925 1.6632 1.5859 1.3177
0.6 2.3066 2.0135 1.8935 1.8147 1.7556 1.7216 1.7193 1.6879 1.6060 1.3282
0.8 2.1186 1.9597 1.8660 1.7984 1.7604 1.7579 1.7232 1.6343 1.3429
1.0 2.3257 2.0584 1.9376 1.8567 1.8125 1.8096 1.7701 1.6714 1.3619
1.2 2.2138 2.0369 1.9337 1.8802 1.8768 1.8303 1.7179 1.3852
1.4 2.5487 2.1783 2.0348 1.9668 1.9625 1.9058 1.7747 1.4131
1.6 2.4007 2.1692 2.0771 2.0715 1.9994 1.8427 1.4457
1.8 3.0241 2.3543 2.2183 2.2107 2.1147 1.9228 1.4836
2.0 2.6307 2.4019 2.3905 2.2561 2.0160 1.5272
2.2 3.1515 2.6456 2.6272 2.4285 2.1233 1.5775
2.4 2.9770 2.9443 2.6361 2.2456 1.6359
2.6 3.4284 3.3670 2.8801 2.3847 1.7053
2.8 4.0043 3.8906 3.1585 2.5455 1.7914
3.0 4.4986 3.4782 2.7441 1.9079
p 5.3220 3.7806 2.9456 2.0365
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Table 4. Values of the local
skin friction coefficient Cf for
Pr = 1 and various values of k

x k

–0.8 –0.6 –0.4 –0.2 0.0 0.2 0.34 0.35 0.5 1.0 5.0

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2 0.0170 0.0917 0.1547 0.2020 0.2421 0.2778 0.3009 0.3025 0.3259 0.3963 0.7947
0.4 0.1456 0.2816 0.3788 0.4600 0.5319 0.5783 0.5815 0.6282 0.7688 1.5595
0.6 0.1051 0.3550 0.5084 0.6331 0.7422 0.8121 0.8170 0.8871 1.0973 2.2683
0.8 0.3475 0.5721 0.7447 0.8926 0.9866 0.9931 1.0868 1.3656 2.8983
1.0 0.2097 0.5537 0.7827 0.9725 1.0912 1.0993 1.2168 1.5626 3.4311
1.2 0.4360 0.7410 0.9773 1.1218 1.1316 1.2729 1.6832 3.8535
1.4 0.1585 0.6175 0.9094 1.0811 1.0927 1.2578 1.7288 4.1575
1.6 0.4095 0.7774 0.9786 0.9920 1.1806 1.7064 4.3397
1.8 0.0408 0.5955 0.8296 0.8448 1.0560 1.6278 4.4002
2.0 0.3817 0.6544 0.6713 0.9028 1.5074 4.3411
2.2 0.1565 0.4765 0.4950 0.7414 1.3595 4.1643
2.4 0.3212 0.3404 0.5904 1.1959 3.8695
2.6 0.2107 0.2282 0.4617 1.0222 3.4503
2.8 0.1488 0.1614 0.3553 0.8347 2.8888
3.0 0.1078 0.2539 0.6147 2.1391
p 0.0303 0.1590 0.4068 1.4046

Table 6. Values of the local
skin friction coefficient Cf for
Pr = 7 and various values of k

x k

–2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.49 1.5 2.0 5.0

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2 0.0756 0.1332 0.1753 0.2108 0.2421 0.2707 0.2971 0.3214 0.3219 0.3453 0.4672
0.4 0.2367 0.3242 0.3966 0.4602 0.5178 0.5708 0.6195 0.6205 0.6674 0.9101
0.6 0.2813 0.4233 0.5362 0.6339 0.7213 0.8015 0.8747 0.8762 0.9464 1.3080
0.8 0.4502 0.6112 0.7464 0.8654 0.9734 1.0713 1.0732 1.1667 1.6438
1.0 0.6070 0.7862 0.9393 1.0761 1.1990 1.2014 1.3180 1.9056
1.2 0.5101 0.7471 0.9309 1.1060 1.2540 1.2569 1.3960 2.0869
1.4 0.6277 0.8664 1.0660 1.2392 1.2425 1.4032 2.1869
1.6 0.4266 0.7308 0.9660 1.1639 1.1677 1.3484 2.2100
1.8 0.5466 0.8218 1.0432 1.0474 1.2451 2.1645
2.0 0.3335 0.6548 0.8958 0.9003 1.1102 2.0604
2.2 0.4898 0.7419 0.7466 0.9608 1.9071
2.4 0.3538 0.5995 0.6040 0.8109 1.7109
2.6 0.4814 0.4853 0.6689 1.4720
2.8 0.4091 0.4113 0.5387 1.1802
3.0 0.4520 0.4322 0.8015
p 0.5421 0.3823 0.3979

Table 5. Values of the wall
temperature distribution hw(x)
for Pr = 7 and various values
of k

x k

–2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.49 1.50 2.0 5.0

0.0 1.0156 0.9432 0.9005 0.8696 0.8450 0.8256 0.8087 0.7944 0.7941 0.7812 0.7250
0.2 1.0288 0.9506 0.9060 0.8742 0.8492 0.8291 0.8119 0.7973 0.7970 0.7839 0.7271
0.4 0.9716 0.9215 0.8868 0.8601 0.8386 0.8205 0.8052 0.8049 0.7912 0.7325
0.6 1.0114 0.9488 0.9085 0.8784 0.8546 0.8349 0.8184 0.8181 0.8034 0.7414
0.8 0.9926 0.9414 0.9054 0.8779 0.8557 0.8373 0.8369 0.8208 0.7540
1.0 0.9898 0.9433 0.9098 0.8836 0.8625 0.8621 0.8438 0.7704
1.2 1.0639 0.9961 0.9525 0.9202 0.8949 0.8945 0.8732 0.7908
1.4 1.0720 1.0095 0.9673 0.9359 0.9354 0.9097 0.8155
1.6 1.1927 1.0871 1.0279 0.9872 0.9865 0.9546 0.8448
1.8 1.1983 1.1064 1.0509 1.0499 1.0092 0.8791
2.0 1.3776 1.2097 1.1297 1.1284 1.0748 0.9188
2.2 1.3482 1.2268 1.2250 1.1529 0.9646
2.4 1.5343 1.3441 1.3416 1.2444 1.0176
2.6 1.4790 1.4756 1.3493 1.0801
2.8 1.6021 1.5988 1.4633 1.1572
3.0 1.6139 1.5654 1.2649
p 1.5620 1.6070 1.4095
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Fig. 3. Variation of the local skin friction coefficient Cf for Pr = 7
and various values of k

Fig. 2.Variation of the wall temperature distribution hw(x) for Pr = 1
and various values of k

Fig. 1. Variation of the local skin friction coefficient Cf for Pr = 1
and various values of k

Fig. 4.Variation of the wall temperature distribution hw(x) for Pr = 7
and various values of k

Fig. 5. Variation of the boundary-layer separation point xs with k
for Pr = 1

Fig. 6. Variation of the boundary-layer separation point xs with k
for Pr = 7
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– an increase in the value of Pr leads to a decrease of both
the wall temperature distribution hw (x) and the skin
friction coefficient Cf

– an increase in the value of Pr leads to an increase of the
value of k (< 0) below which a boundary-layer solution
is not possible

– an increase in the value of Pr leads to an increase of the
value of k (> 0) which first gives no separation

– near the lower stagnation point, the temperature pro-
files increase and the velocity profiles decrease when
the parameter k decreases

– there is an overshoot of the velocity profiles near the
lower stagnation point from the free stream velocity
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