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Abstract In this paper, we study the instabilities, which
can occur when a horizontal sparsely filled porous layer
saturated with a binary mixture with fast chemical reaction
is heated from below or from above. Analytic expressions
are found for the criteria for the onset of stationary and
oscillatory convection in binary mixtures with chemical
reaction. The reaction is assumed to be fast compared with
the diffusion rate. We find that both a stationary instability
and an oscillatory instability can occur as the first bifur-
cation, depending on the sign and the value of the heat of
reaction. The effect of the Prandtl number, the separation
parameter and the porous parameter are shown graphi-
cally. Some of the known results are derived as special
cases.

List of symbols
A average specific heat

a wave number

ax, ay

wave numbers in x and y directions respectively

C concentration field

Ceq concentration at the equilibrium state

Cp specific heat at constant pressure

d layer thickness

F porous parameter, d2

k

� �

~gg acceleration due to gravity

k permeability of the porous medium

Pr Prandtl number, m
j

� �

p pressure

pc chemical potential
~qq velocity vector, (u, v, w)

R thermal Rayleigh number, aT gd4 �TTz

mj

� �

T Temperature field
�TTz applied temperature gradient

t time

tr relaxation time of chemical reaction

X dimensionless parameter, d2

js1

� �

x, y, z
space coordinates

Greek symbols
aC coefficient of solute expansion

aT coefficient of thermal expansion

e porosity of the medium

j thermal diffusivity

l fluid viscosity

le effective Brinkman viscosity

k average heat conductivity

m kinematics viscosity of fluid

q fluid density

/ heat of reaction

r growth rate

g dimensionless parameter, (/s2/s1)

w chemical reaction parameter, (/aC/aT)

x frequency

Other symbols

�2 @2

@x2 þ @2

@y2 þ @2

@z2

�1
2 r2 � @2

@z2

Subscripts
o reference value

f fluid

s solid

Superscripts
* dimensionless quantity

¢ deviation from the conduction state

1
Introduction
Convective instability in a porous media has been studied
with great interest for more than half a century. Convec-
tion, driven by buoyancy, has found increased applications
in underground coal gasification, solar energy conversion,
oil reservoir simulation, ground water contaminant
transport, geothermal energy extraction and many other
areas. In the beginning, interest was mainly focussed on
problems in which the driving force was due to the applied
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temperature/concentration gradients at the boundaries of
the system. Recently, the focus is also on the study of
convective instabilities in reactive fluids.

In recent years there has been considerable interest,
from various branches of fluid mechanics and condensed
matter physics, in systems that show an oscillatory insta-
bility as the first bifurcation. The reasons for considering
the instability in a porous medium are twofold. First, a
porous medium is often used as a catalyst enhancing the
rate of reaction. On the other hand, use of a porous me-
dium significantly simplifies the descriptions of an average
hydrodynamic flow and allows us to consider realistic
boundary conditions for the velocity. Therefore, the con-
sidered system is expected to be a convenient object for
studying the nonlinear behavior above the critical level.

The stability of a binary mixture without chemical re-
action is studied extensively in case of viscous fluid [1–3]
as well as in porous medium [4–7]. The effect of fast
chemical reaction on the stability of a binary liquid mix-
tures with and without porous medium is studied by
Steinberg and Brand [8] and Gitterman and Steinberg [9].

The instability in binary mixtures can lead to stationary
convection as well as to oscillatory convection. The sta-
tionary convection occurs when heating is done either
from below or from above depending on the sign of the
thermal diffusion coefficient, whereas the oscillatory one
occurs just when heating is from below. A qualitatively
similar behavior was predicted for binary mixtures with
chemical reactions. The reasons for the similarity is based
on the fact that in a system subject to a temperature gra-
dient the chemical reaction produces a concentration
gradient like the thermal diffusion effect in a nonreactive
binary mixture. The direction of the concentration gradi-
ent with respect to the temperature gradient depends on
the properties of the reaction under consideration [10].
Correspondingly, the stability of the system also depends
on the reaction under consideration. For example, in the
case of dissociating fluids, [11], the behavior of the system
is similar to one of a nonreactive binary mixture with
normal thermal diffusion effect (j<0). But there are also
reactions, as, for example, polymerization that produces
the same concentration distribution as the abnormal
thermal diffusion effect (j>0). In the latter case one should
expect stationary convection when heated from above and
an oscillatory one when heated from below. This me-
chanism is called chemically driven instability since only
the effect of a chemical reaction on the stability of the
system is considered. The thermal diffusion usually has
much smaller influence on the stability than a chemical
reaction and can be neglected.

The purpose of this paper is to present the results of a
linear stability analysis of the chemically driven instability
of a reactive binary mixture in a sparsely packed porous
medium as this study is not carried out so far. In order to
study the effect of chemical reaction on the hydrodynamic
stability and to obtain an analytical solution, we make two
approximations. First, we neglect the effect of thermal
diffusions since, its influence on the stability is much
smaller than that of a chemical reaction. Thus, we consider
only chemically driven instability. Second, we assume that
rate of chemical reaction in a porous medium subjected to

external temperature gradient is fast, compared with the
diffusion rate. In this approximation, the linear stability
analysis is simplified considerably and it becomes possible
to carry out the analysis analytically for realistic boundary
conditions.

2
Mathematical formulation
We consider a horizontal porous layer saturated with a
reactive binary mixture, of depth d and of infinite extent in
the horizontal (x, y) plane, subject to a vertical gradient of
temperature in the gravitational field ~gg. In the Boussinesq
approximation, the hydrodynamic equations for the flow
through a sparsely packed porous medium are given by
([9, 12]).

r �~qq ¼ 0; ð1Þ

@~qq

@t
þ~qq � r~qq ¼ �rp

q0

þ q
q0

~gg � l
q0k

~qqþ le

q0

r2~qq; ð2Þ

A
@T

@t
þ~qq � rT ¼ jr2T þ C � Ceq

s1
; ð3Þ

@C

@t
þ~qq � rC ¼ �C � Ceq

s2
; ð4Þ

q ¼ q0½1� aTðT � T0Þ þ aCðC � C0Þ�; ð5Þ

where

s1 ¼ trqCp T
@pc

@T

� �

P;C

" #�1

and s2 ¼ qtr:

Here A = qCp/(qCp)f, j= k/(qCp) where qCp = (1 – e)(qCp)s

+ e(qCp)f and k= (1 ) e)ks + ekf are the average specific

heat and heat conductivity respectively; the indices s and f
corresponds to solid and fluid respectively and e is the
porosity of the medium, tr is the relaxation time of the
chemical reaction, Cp is the specific heat at constant
pressure, Ceq is the concentration in equilibrium state, pc is
the chemical potential, j is the renormalized thermal dif-
fusivity containing contribution from the porous medium
and the fluid, k is the permeability of the porous medium,
l is the fluid viscosity and le is the effective viscosity. In
general the effective Brinkman viscosity will be different
from the fluid viscosity. However for simplicity we assume
that both are equal (le = l). The equation (4) is written
down in the approximation of a chemical reaction fast
compared with the diffusion rate. We also set A equal to 1
for simplicity in our further discussion.

It is well known that in the convection free steady state,
in contrast to nonreactive fluids, the temperature and
concentration gradients depend in the general case of re-
active fluids on the vertical coordinate z. This makes the
stability analysis considerably more difficult for an ana-
lytical approach. However, in the case of a fast chemical
reaction considered here, equations (1)–(4) admit the
following stationary solution.
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~qq ¼ 0; rT0 ¼ ��TTzĝg; C ¼ CeqðTÞ; ð6Þ

where �TTz denotes the applied temperature gradient which
can have either sign and ĝg ¼~gg=j~ggj. For a small tempera-
ture difference across the porous layer saturated with
liquid, we expand the law of mass action Ceq = Ceq(T) into
a power series around the appropriate value of concen-
tration C0 and temperature T0 on the lower boundary as

Ceq ¼ C0 þ /ðT � T0Þ; ð7Þ

where / is the parameter which indicates the nature of
heat of reaction. The equation (7) yields

rC0 ¼ /rT0; ð8Þ

and for the density gradient we obtain

dq
dz
¼ �qaT 1þ /

aC

aT

� �
dT

dz
: ð9Þ

The parameter (/aC/aT) determines the contribution to
the density distribution made by the chemical reaction. It
is similar to the separation parameter –(j/T)(aC/aT) in a
binary mixture without chemical reaction. Here the pa-
rameter / can be either positive or negative depending on
the reaction under consideration.

We now discuss the boundary conditions to equa-
tions (1)–(4). There are two types of boundary conditions
for the concentrations. For theoretical calculations, it is
convenient to require an equilibrium concentration at the
boundaries, but this is hardly realizable experimentally. A
more realistic condition is that of impermeable bound-
aries through which there exists zero mass flux. For
convenience, we therefore assume that the concentrations
on the boundaries are constant. The velocity boundary
conditions depend on whether the boundaries are both
rigid or both free, and whether one is rigid and the other
is free. The qualitative results are the same in all cases,
although the critical Rayleigh numbers are different.
Hence, we consider the simplest case, that of free
boundaries.

For the deviations from the basic heat conduction state,
we then find the following nonlinear equations

@~qq

@t
þ~qq � r~qq ¼ �rp

q0

þ ðaTT0 þ aCC0Þĝg � m
k
~qqþ mr2~qq;

ð10Þ

@T0

@t
þ~qq � rT0 � �TTzð~qq � ĝgÞ ¼ jr2T þ C � Ceq

s1
; ð11Þ

@C0

@t
þ~qq � rC0 � /�TTzð~qq � ĝgÞ ¼ �

C � Ceq

s2
; ð12Þ

The boundary conditions for these equations as dis-
cussed above are

w ¼ 0;
@2w

@z2
¼ 0; T0 ¼ 0; C0 ¼ 0 at z ¼ 0; d;

ð13Þ

where prime denotes the deviation from the steady state
solution equation (6).

3
Linear stability analysis
Linearizing the hydrodynamic equations (10)–(12) for the
deviation from the heat conduction state, we obtain the
following linear equations:

@~qq0

@t
¼ �rp0

q0

þ ðaTT0 þ aCC0Þ~gg � m
k
~qq0 þ mr2~qq0; ð14Þ

@T0

@t
� �TTzð~qq � ĝgÞ ¼ jr2T0 þ C � Ceq

s1
; ð15Þ

@C0

@t
� /�TTzð~qq � ĝgÞ ¼ �

C � Ceq

s2
; ð16Þ

We eliminate p¢ form equation (14) and render the
resulting equation and equations (15) and (16) dimen-
sionless by setting

w� ¼ d

j
w0; t� ¼ j

d2
t; ðx�; y�; z�Þ ¼ 1

d
ðx; y; zÞ;

T� ¼ T0

rT0j jd ; C� ¼ C0

rC0j jd ;

Pr ¼ m
j
; R ¼ gaT

�TTzd4

jm
; F ¼ d2

k
;

to obtain (on dropping asterisks)

@

@t
þ F þr2

� �
r2w ¼ RPr�1 r2

1T þ ð/aC=aTÞr2
1C

� �
;

ð17Þ

@

@t
� Pr�1r2 þ /d2

js1

� �
T ¼ wþ /d2

js1

� �
C; ð18Þ

@

@t
þ d2

js2

� �
C ¼ wþ d2

js2

� �
T; ð19Þ

where r2
1 ¼ @2

@x2 þ @2

@y2

� �
:

The dimensionless groups that appear are Pr, the Pra-
ndtl number, R, the thermal Rayleigh number and F, the
porous parameter. The porous parameter F is the recip-
rocal of the Darcy number Da.

4
Method of solution
We now assume the solutions for the equations (17)–(19)
in the form

w x; y; z; tð Þ
T x; y; z; tð Þ
C x; y; z; tð Þ

2

4

3

5 ¼
W
T
C

2

4

3

5ert sin pz cos axx cos ayy: ð20Þ

Substituting (20) into (17)–(19) we get the following
equations

ðrþ p2 þ a2 þ FÞðp2 þ a2ÞW ¼ RPr�1a2ðT þ wCÞ;
ð21Þ
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rþ Pr�1ðp2 þ a2Þ þ /d2

js1

� �
T ¼ W þ /d2

js1
C; ð22Þ

rþ d2

js2

� �
C ¼ W þ d2

js2
T; ð23Þ

where a2 = ax
2 + ay

2 and w= /aC/aT is the analog of the
separation parameter. We eliminate W, Tand C from the
equations (21)–(23), to obtain an expression for the ther-
mal Rayleigh number, R

Standard analysis used in the study of convective
instability gives the criteria for the stationary instability
(i.e., when r = 0) as

R ¼ Xðp2 þ a2Þ2 p2 þ a2 þ Fð Þ
a2 Xð1þ wÞð1þ gÞ þ wPr�1ðp2 þ a2Þ½ � ; ð25Þ

where

X ¼ d2

js2
; g ¼ /s2

s1
:

In the absence of chemical reaction and single com-
ponent fluid equation (25) reduces to

R ¼ ðp
2 þ a2Þ2 p2 þ a2 þ Fð Þ

a2
: ð26Þ

The minimum value occurs at a = ac where ac is given by
equation

ac ¼
1

4
� p2 þ F
� �

þ 9p4 þ 10p2F þ F2
� �1=2

n o
: ð27Þ

These are the values given by Rudraiah [13].
Further in the absence of porous media i.e. for a clear

viscous fluid layer heated from below equation (26) re-
duces to

R ¼ ðp
2 þ a2Þ3

a2
: ð28Þ

In this case the critical value of R equal to 27p4

4 occurs at
ac ¼ p=

ffiffiffi
2
p

. These are the results of classical Rayleigh
Benard problem for clear viscous fluid with free-free
boundaries.

Next we obtain the oscillatory Rayleigh number ROsc

and the oscillatory frequency from equation (24) respec-
tively (i.e., when r = ix, x is real and positive) as

and

x2¼
�ROsca2Pr�1 d2

js2
ð1þwÞ 1þ/s2

s1

� �
þwPr�1ðp2þa2Þ

h i
þ d2

js2
Q

n o

Pðp2þa2Þ ;

ð30Þ

where ROsc represents the thermal Rayleigh number for
oscillatory case and

P ¼ Pr�1ðp2 þ a2Þ þ ðd2=js2Þð1þ /s2=s1Þ þ ðF þ p2 þ a2Þ;
Q ¼ Pr�1ðp2 þ a2Þ2ðd2=js2ÞðF þ p2 þ a2Þ:

The expressions for the oscillatory instability and the
oscillatory frequency are simplified considerably if we
assume X > 1. With this assumption, equations (29) and
(30) reduces to

ROsc¼
ðp2þa2Þ3ðFþp2þa2ÞPr�1þðp2þa2Þ2ðFþp2þa2Þ2

 �

a2 ðp2þa2ÞðPr�1þ1þwÞþð1þwÞF½ � ;

ð31Þ

x2¼x2
c ¼

� ðROsca2
cðPr�1Þ2wÞ

� �

ðPr�1þ1Þðp2þa2
cÞþF

� � : ð32Þ

Minimizing equation (25) with respect to a2 yields the
cubic equation in a2 as

wPr�1ða2Þ3þ wPr�1p2þ2Xð1þwÞð1þgÞ
� �

ða2Þ2þðp2þFÞ
� ð1þwÞð1þgÞX�wPr�1p2
� �

ða2Þ
�ðp2þFÞp2 ð1þwÞð1þgÞXþwPr�1p2

� �
¼0:

ð33Þ
Solving the equation (33) for a2 gives the critical wave
number ac

2. Further substituting this critical wave number
ac

2 into the equation (25) yields the critical Rayleigh
number Rc for stationary instability.

Similarly on minimizing equation (31) with respective
to a2 yields the fourth order equation in a2 as

a0ða2Þ4 þ a1ða2Þ3 þ a2ða2Þ2 þ a3ða2Þ þ a4 ¼ 0; ð34Þ

where

a0 ¼ 2ðPr�1 þ 1ÞðPr�1 þ 1þ wÞ;

a1 ¼ ðPr�1 þ 1Þ 5p2ðPr�1 þ 1þ wÞ þ 3Fð1þ wÞ
� �

þ FðPr�1 þ 2ÞðPr�1 þ 1þ wÞ;

a2 ¼ ðPr�1 þ 1Þ 3p4ðPr�1 þ 1þ wÞ þ 5p2Fð1þ wÞ
� �

þ ðPr�1 þ 2ÞF p2ðPr�1 þ 1þ wÞ þ 2Fð1þ wÞ
� �

;

a3 ¼ ðPr�1 þ 1Þ p4ð1þ wÞF � p6ðPr�1 þ 1þ wÞ
� �

þ ðPr�1 þ 2ÞF p2ð1þ wÞF � p4ðPr�1 þ 1þ wÞ
� �

þ ðFÞ2 ð1þ wÞF � p2ðPr�1 þ 1þ wÞ
� �

;

R ¼
p2 þ a2ð Þ rþ p2 þ a2 þ Fð Þ rþ d2

js2

� �
rþ Pr�1ðp2 þ a2Þ þ /d2

js1

� �
� /d4

j2s1s2

h i

a2Pr�1 rð1þ wÞ þ d2

js2
ð1þ /s2=s1Þð1þ wÞ þ wPr�1ðp2 þ a2Þ

h i ð24Þ

ROsc ¼
ðp2 þ a2Þ Pr�1ðp2 þ a2Þ d2

js2

� �
1þ /s2

s1

� �� �
Pr�1ðp2 þ a2Þd2=js2 þ p2 þ a2 þ Fð ÞP½ �

a2Pr�1 ð1þ wÞ p2 þ a2 þ Fð Þ þ Pr�1ðp2 þ a2Þ½ � ; ð29Þ
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a4 ¼ � ðPr�1 þ 1Þ p8ðPr�1 þ 1þ wÞ þ p6ð1þ wÞF
� �


þ ðPr�1 þ 2ÞF p6ðPr�1 þ 1þ wÞ þ p4ð1þ wÞF
� �

þ ðFÞ2 p4ðPr�1 þ 1þ wÞ þ p4ð1þ wÞF
� ��

:

We solve equation (34) for a2 which gives the critical
wave number ac

2 and substituting this critical wave
number into the equation (31) yields the critical Rayleigh
number (ROsc)c for the oscillatory instability. Substituting
this critical wave number and critical Rayleigh number of
oscillatory instability into the equation (32) gives the
critical frequency for oscillatory case.

5
Conclusions
In the present study we have employed a linear stability
analysis for chemically driven instabilities in a binary
mixture with a chemical reaction that is fast compared
with the diffusion rate. Analytical expressions have found
for the onset of stationary, oscillatory instabilities and
oscillatory frequency, which depend on the rate and the
heat of reaction. The critical wave number also depends
strongly on these quantities.

The region of stationary instability for different values
of the porous parameter F is shown in Figure 1. We ob-
serve from this figure that an increase in the value of the
porous parameter increases the critical Rayleigh number
of the stationary mode.

Figure 2 illustrates the variation of critical Rayleigh
number with chemical reaction parameter w for different

Fig. 1. Variation of critical Rayleigh number Rc with chemical
reaction parameter w for different values of porous parameter F

Fig. 2. Variation of critical Rayleigh number Rc with chemical
reaction parameter w for different values of Pr

Fig. 3. Variation of critical Rayleigh number Rc with chemical
reaction parameter w for different values of g
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values of Prandtl number Pr for stationary case. We find
from this figure that an increase in the value of the Prandtl
number Pr increases the critical Rayleigh number hence
increases the region of marginal stability.The effect of the
parameter g on the stationary instability is shown in Fig. 3.
We find that an increase in the value of g decreases the
critical Rayleigh number of the stationary state. Hence its
effect is destabilizing.

Figures 4 and 5 show the variation of critical Rayleigh
number with chemical reaction parameter w for different
values of the porous parameter F and the Prandtl number
Pr for oscillatory case. We observe from Fig. 4 that for
fixed value of the Prandtl number Pr an increase in the
value of the porous parameter F increases the critical
Rayleigh number for oscillatory state. It can be seen from
Fig. 5 that for fixed value of the porous parameter F an
increase in the value of Prandtl number Pr decreases the
region of stable state for oscillatory mode. We can also
observe from these figures that the effect of increasing the
value of chemical reaction parameter w is to decrease the
critical Rayleigh number for both stationary and oscilla-
tory state. Thus the effect of w is to destabilize the system.
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