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Abstract. In [CH3], Caporaso and Harris derive recursive formulas counting nodal plane
curves of degreed and geometric genusg in the plane (through the appropriate number of
fixed general points). We rephrase their arguments in the language of maps, and extend them
to other rational surfaces, and other specified intersections with a divisor. As applications,
(i) we count irreducible curves on Hirzebruch surfaces in a fixed divisor class and of fixed
geometric genus, (ii) we compute the higher-genus Gromov–Witten invariants of (or equiv-
alently, counting curves of any genus and divisor class on) del Pezzo surfaces of degree at
least 3. In the case of the cubic surface in (ii), we first use a result of Graber to enumeratively
interpret higher-genus Gromov–Witten invariants of certainK-nef surfaces, and then apply
this to a degeneration of a cubic surface.

1. Introduction

In [CH3] Caporaso and Harris used degeneration methods and subvarieties of the
Hilbert scheme to give recursions for the number of degreed geometric genusg
plane curves through 3d + g − 1 general points (theSeveri degreesof the plane).
We recast their methods in the language of stable maps, and generalize to different
surfaces and multiple point conditions on a divisor.

The first application is counting curves on any Hirzebruch surface (i.e. rational
ruled surface) of any genus and in any divisor class, i.e. computing Severi degrees
for these surfaces.

The second application is computing genusg Gromov–Witten invariants of (all
but two) del Pezzo surfaces. These invariants are of recent interest because of the
Virasoro conjecture ([EHX], a generalization of Witten’s conjecture, see [Ge2] and
[LiuT] for more information) giving relations among them, yet surprisingly almost
no higher genus invariants of any variety are known. (By [GP], all invariants ofPn

are known. By the methods of [Ge1], resp. [BP], there is some hope of computing
genus 1, resp. genus 2, invariants of some other varieties.) These invariants are
known to be enumerative on Fano surfaces (Sect. 4), so once again the problem is
one of counting curves, in this case, plane curves with fixed multiple points.
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In order to count curves on a cubic surface, we need a result possibly of indepen-
dent interest, enumeratively interpreting invariants on certain non-Fano surfaces,
whereK is still numerically effective. The key technical step here is due to Graber.

More speculatively, there should be a good algebraic definition of relative
Gromov–Witten invariants, loosely counting curves with prescribed intersection
with a fixed divisor, meeting various homology classes (in the same way as reg-
ular Gromov–Witten invariants loosely count curves meeting various homology
classes). See [Ru] for a discussion in the symplectic category (and [LiRu], espe-
cially p. 11, for more detail; also [IPa]). The numbers given here and in [CH3]
(as well as the genus 0 numbers of [V1] and [Ga]) should be examples, although
relative invariants in general shouldn’t be enumerative).

As far as possible, we rely on analogous results of [CH3]. An example of the
recursion in action is given in Sect. 8.3.

There has been a great deal of earlier work on such problems, and a brief
catalogue of some of the highlights is given in Sect. 10.

1.1. Maps vs. Hilbert scheme

There seems to be an advantage in phrasing the argument in terms of maps. Many
of the proofs of [CH3] essentially involve maps, and the one exception is the
multiplicity calculation for “Type II components”, which in any case can also be
proved using maps (see Sect. 6.2). The arguments seem shorter as a result, although
the content is largely the same. The disadvantage is that one needs more machinery
(the compactification of the space of stable maps, Deligne–Mumford stacks), and
one must worry about other components of the moduli space, parametrizing maps
not of interest. The arguments here could certainly be phrased in terms of Hilbert
schemes, and in the end it is probably a matter of personal taste.

1.2. Publication history

This article is a completely rewritten version of two preprints (including some
extensions, most notably Sect. 9.2), math.AG/9709003 (“Counting curves of any
genus on rational ruled surfaces”) and math.AG/9709004 (“Genusg Gromov–
Witten invariants of Del Pezzo surfaces: Counting plane curves with fixed multiple
points”). They were also Mittag-Leffler preprints (Reports No. 28 and 27 of 1996/7
respectively).

2. Definitions and preliminary results

2.1. Conventions

2.1.1. Combinatorial conventions.We follow the combinatorial conventions of
[CH3]. For any sequenceα = (α1, α2, . . . ) of nonnegative integers with all but
finitely manyαi zero, set

|α| = α1 + α2 + α3 + . . . ,
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Iα = α1 + 2α2 + 3α3 + . . . ,

I α = 1α12α23α3 . . . ,

and
α! = α1!α2!α3! . . . .

The zero sequence will be denoted 0.
We denote byek the sequence that is zero except for a 1 in thekth term (so that

any sequenceα = (α1, α2, . . . ) is expressible asα = ∑
αkek). By the inequality

α ≥ α′ we meanαk ≥ α′
k for all k; for such a pair of sequences we set

(
α

α′

)
= α!

α′!(α − α′)! =
(

α1

α′
1

)(
α2

α′
2

)(
α3

α′
3

)
. . . .

2.1.2. Geometric conventions.We work over the complex numbers. Byscheme,
we mean scheme of finite type overC. By variety, we mean a separated integral
scheme. Bystackwe mean Deligne-Mumford stack. All morphisms of schemes
are assumed to be defined overC, and fibre products are overC unless otherwise
specified. Iff : C → X is a morphism of stacks andY is a closed substack ofX,
then definef −1(Y ) asC ×X Y ; f −1Y is a closed substack ofC.

Forn ≥ 0, letFn be the Hirzebruch surface, or rational ruled surface,PP1(O ⊕
O(n)). Recall that the Picard group ofFn is isomorphic toZ2, with generators
corresponding to the fiber of the projective bundleF and a sectionE of self-
intersection−n; E is unique ifn > 0. Let S be the classE + nF . (This class is
usually denotedC, but we use nonstandard notation to prevent confusion with the
source of a map(C, π).) The canonical divisorKFn

is equivalent to−(S+E+2F).
A family of n-pointed nodal curves over a base scheme or stackS (or ann-

pointed nodal curve overS) is a proper flat morphismπ : C → S whose geometric
fibers are reduced and pure dimension 1, with at worst ordinary double points as
singularities, along withn sectionspi : S → C whose images are disjoint and lie
in the smooth locus ofπ . (There is no connectedness condition.) IfX is a scheme,
then afamily of maps of pointed nodal curves toX overS (or amap of a pointed
nodal curve toX overS) is a morphismρ : C → X × S overS, whereπ : C → S

is a family of pointed nodal curves overS. A pointed nodal curve(with no base
specified) is a pointed nodal curve over SpecC, and amap of a pointed nodal curve
to X is a map over SpecC.

2.2. Stable maps and Gromov–Witten invariants

A stable mapto a smooth projective varietyX is a mapπ from a connected pointed
nodal curve toX such thatπ has finite automorphism group. Thearithmetic genus
of a stable map is defined to be the arithmetic genus of the nodal curveC. If
[C] ∈ H2(C) is the fundamental class ofC, then we sayπ∗[C] ∈ H2(X) is the
classof the stable map.

A family of stable mapsis a family of maps of pointed nodal curves toX whose
fibers over maximal points are stable maps. LetMg,n(X, ζ ) be the stack whose
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category of sections of a schemeS is the category of families ofn-pointed stable
maps toX over S of classζ and arithmetic genusg, with n marked points. For
definitions and basic results, see [FP]. It is a fine moduli stack of Deligne-Mumford
type. There is a “universal map” overMg,n(X, ζ ) that is a family of maps of nodal
curves. There is an open substackMg,n(X, ζ ) that is a fine moduli stack of maps
of smoothcurves. There are “evaluation” morphisms

ev1, . . . , evn : Mg,n(X, ζ ) → X;
evi takes the point(C, p1, . . . , pn, µ) ∈ Mg,n(X, ζ ) to the pointµ(pi) in X.

(Genusg) Gromov–Witten invariants were defined by Kontsevich and Manin
([KM] Sect. 2). We recall their definition, closely following the discussion in [FP]
Sect. 7 of the genus 0 case. There is avirtual fundamental class([LiT], [BF], [B])

[Mg,n(X, ζ )]vir ∈ A
∫
ζ c1(TX)+(dimX−3)(1−g)+n

X.

For given arbitrary classesγ1, . . . , γn ∈ H ∗X,

Ig,D(γ1 · · · γn) =
∫
Mg,n(X,D)

ev∗
1(γ1) ∪ · · · ∪ ev∗

n(γn) ∪ [Mg,n(X, ζ )]vir (1)

is called agenusg Gromov–Witten invariant. They are deformation-invariant. If
the classesγi are homogeneous, this will be nonzero only if the sum of their
codimensions is the “expected dimension” ofMg,n(X, ζ ).

By variations of the arguments in [FP] (p. 79):

(I) If D = 0, Ig,D(γ1 · · · γn) is non-zero only if
i) g = 0 andn = 3, in which case it is

∫
X

γ1 ∪ γ2 ∪ γ3, or
ii) g = 1, n = 1, andγ1 is a divisor class, in which case it is(γ1 · cdimX−1

(T X))/24. (The author is grateful to T. Graber for pointing out this fact,
which follows from a straightforward obstruction calculation. This second
case is the only part of the argument that is not essentially identical to the
genus 0 presentation in [FP].)

(II) If γ1 = 1 ∈ A0X, Ig,D(γ1 · · · γn) is zero unlessD = 0, g = 0, n = 3, in
which case it is

∫
X

γ2 ∪ γ3.
(III) If γ1 ∈ A1X andD 6= 0, then by the divisorial axiom ([KM] 2.2.4 or [FP]

p. 79),Ig,D(γ1 · · · γn) = (∫
D

γ1
) · Ig,D(γ2 · · · γn).

In light of these three observations, in order to compute the genusg Gromov–
Witten invariants for a surface, we need only computeIg,D(γ n) whereγ is the
class of a point. It is immediate that ifD is the class of an exceptional curve,
Ig,D(∅) = δg,0.

2.2.1. Quasi-stable mapsDefinequasi-stable mapsin the same way as stable
maps, except the source curve is not required to be connected. ForX, ζ , g, n as
before, there is a fine moduli stackMg,n(X, ζ )′ (of finite type) parametrizing genus
g, n-pointed quasi-stable maps toX, with image in classζ ; Mg,n(X, ζ ) is a union
of connected components ofMg,n(X, ζ )′. All constructions for stable maps carry
through for quasi-stable maps.
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More precisely, letM(X)′ be the stack whose category of sections of a scheme
S is the category of families of quasi-stable maps toX overS. More conveniently,
it is the choice of a finite étale coverT → S and a family ofstablemaps toX over
T . This stack naturally splits intoMg,n(X, ζ )′, which are unions of connected
components ofM(X)′. For example,M3(pt, 0)′ has two components, both of
dimension 6. One is isomorphic toM3(pt, 0), and the other is isomorphic to
(M2(pt, 0) × M2(pt, 0))/(Z/2Z).

2.3. The surface in question

Throughout this paper, assume:

P1. X is a smooth rational surface andE ∼= P1 is a divisor onX.
P2. The surfaceX \ E is minimal, i.e. contains no (-1)-curves.
P3. The divisor classKX + E is negative on every curve onX.
P4. If D is an effective divisor such that−(KX + E) · D = 1, thenD is smooth.

Note that there is a natural identificationA1
Q

X ∼= H 2(X, Q) as for such a

surfaceh1,0(X) = h2,0(X) = 0. PropertiesP3.andP4.would hold if−(KX + E)

were very ample, which is true in all cases of interest here. Useful examples of such
(X, E) include whenX = P2 andE is a line (Sect. 7) or a conic (Sect. 9), or when
X is a Hirzebruch surface andE is the “section at infinity” (Sect. 8). PropertyP2.
could be removed and other properties could be weakened by modifying the results
very slightly, but there seems to be no benefit to doing so.

2.4. The stacksV D,g(�, β) andV D,g(�, β)con

SupposeS is a finite index set,� = {(qs, ms)}s∈S is a set of ordered pairs with
qs ∈ E andms a positive integer, andβ is a sequence of non-negative integers with
all but finitely manyβi zero. LetD be a divisor class onX andg be an integer.

Let V D,g(�, β) be the (stack-theoretic) closure inMg,|S|(X, D)′ (where the
marked points are labelledps , s ∈ S) of quasi-stable mapsπ : (C, {ps}) → X

such that each component ofC maps birationally to its image inX andπ−1(E)

consists of distinct smooth points (ofC): {ps}s∈S and{ri,j }1≤j≤βi
, with

π∗(E) =
∑

s

msps +
∑
i,j

iri,j ,

andπ(ps) = qs . ClearlyV D,g(�, β) is empty if
∑

ms + Iβ 6= D · E.
DefineV D,g(�, β)con similarly, exceptC is required to be connected (so the

closure can be taken inMg,|S|(X, D)). ThenV D,g(�, β)con is a union of connected
components ofV D,g(�, β).

Let α(�) be the sequence
∑

mses . Example: IfX = P2, E is a line,D is d

times the class of a line, and{qs} are general points ofE, thenV D,g(�, β) is a
map-theoretic analogue of the Severi varietyV d,g(α(�), β)(�) of [CH3].
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For convenience, let

ϒ = ϒD,g(β) := −(KX + E) · D + |β| + g − 1.

We will see thatV D,g(�, β) is a stack of pure dimensionϒ (Theorem 3.1).

2.4.1. Enumerative relevance and transversality.Suppose

C −→ X × B

π ↘ ↙
B

is a family of maps of nodal curves, withB irreducible. Let theintersection di-
mensionof the family (denoted idimB) be the largest numbern of points onX

such that for a general setS of n points ofX there is a map in the family whose
image containsS. Note that idimB ≤ dimB. If equality holds, we say the family
is enumeratively relevant; otherwise it isenumeratively irrelevant.

Let η : C → X be the induced map. Then ifq is a general point ofX, η−1q

is pure dimension dimB − 1, and by Sard’s theoremη−1q is reduced. Define the
Weil divisorHq := π∗η−1q. AsX is rational, the Weil divisor class is independent
of q (so long asq is chosen so thatη−1q is pure dimension dimB − 1); denote this
classH .

This divisor can be intersected with any irreducible substackB ′ of B: repeat the
same construction, using the universal family overB. Hence we have a “moving
lemma”, andH is naturally an element ofA1B (in the operational Chow ring ofB,
see [V2] Section 3.10 for more complete arguments). Note that ifB is enumeratively
irrelevant, thenH dimB [B] = 0.

We say the family has property (†) if for the map(C, π) corresponding to a
general point ofB, π∗C has no multiple components. If the family has property
(†), each component ofHq appears with multiplicity 1, and the map corresponding
to a general point of each component ofHq has property (†) (not difficult, see
[V2] Section 3.10). Hence by induction, if the family satisfies (†), the degree of
H dimB [B] is the number of maps whose image passes through dimB general points
of X.

2.4.2. Enumerative invariants.Define

ND,g(�, β) =
{

0 if V D,g(�, β) = ∅,

degH dimV D,g(�,β)[V D,g(�, β)] otherwise.

If V D,g(�, β) has property (†), thenND,g(�, β) counts maps inV D,g(�, β)

whose image passes throughϒ general points ofX. DefineND,g(�, β)con simi-
larly.

For a given set{ms}s∈S , ND,g(�, β) is constant for generally chosen{qs}s∈S ;
let this number beND,g(α, β), whereα = α(�) = ∑

ems . DefineND,g(α, β)con

similarly.
The recursions of this paper forND,g(�, β) andND,g(�, β)con (Theorems

6.7 and 6.8 respectively) correspond to specializing one of the divisorsHq by
specializingq to be a point ofE.
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3. Dimension counts

In this section, we prove a key dimension count (Theorem 3.1) and a bound on
intersection dimension (Proposition 3.4).

Theorem 3.1.Let V be a component ofV D,g(�, β), and suppose(C, {ps}, π) is
the map corresponding to a general point ofV .

(a) dimV ≤ ϒ = ϒD,g(β) = −(KX + E) · D + |β| + g − 1.

(b) If dimV = ϒ , thenC is smooth, and the mapπ is unramified.
(c) Conversely, ifC is smooth andπ is unramified, thendimV = ϒ .
(d) If dimV = ϒ andqs 6= qs′ for each(s, s′) such thatps andps′ lie on different

components ofC, thenV has property (†).

Note that the hypotheses of (d) are satisfied ifV is a component ofV D,g(�, β)con

or the{qs} are distinct (and dimV = ϒ). HenceND,g(�, β)con is enumerative,
and by (b) counts irreducible (not just connected) curves.

We use the following lemma, which appears (in a different guise) in Section
2.2 of [CH3]: (a) is contained in Corollary 2.4 and part (b) is Lemma 2.6. Part (a)
was proven earlier by E. Arbarello and M. Cornalba in [AC], Sect. 6.

Lemma 3.2 (Arbarello–Cornalba, Caporaso–Harris).Let V be an irreducible
substack ofMg(Y, β)′ whereY is smooth, such that if(C, π) corresponds to a
general point ofV thenC is smooth andπ mapsC birationally onto its image. Let
N = coker(TC → π∗TY ), and letNtors be the torsion subsheaf ofN . Then:

(a) If (C, π) corresponds to a general point ofV thendimV ≤ h0(C, N/Ntors).
(b) Assume further thatY is a surface. Fix a smooth curveG in Y and points

{qi,j } ⊂ G, and assume that

π∗G =
∑
i,j

ipi,j +
∑
i,j

iri,j

with π(pi,j ) = qi,j if (C, π) corresponds to a general point ofV . Then

dimV ≤ h0(C, N/Ntors(−
∑
i,j

ipi,j −
∑
i,j

(i − 1)ri,j ))

= h0(C, N/Ntors(−π∗G +
∑
i,j

ri,j )).

Lemma 3.3.Let V be a component ofV D,g(�, β) whose general point corre-
sponds to a mapπ : C → X whereC is a smooth curve (not necessarily irre-
ducible). ThendimV ≤ ϒ . If π is not unramified then the inequality is strict.

Proof. Note that by the definition ofV D,g(�, β), π is a birational map fromC to
its image inX, so we may invoke Lemma 3.2. The mapTC → π∗TX is injective
(as it is generically injective, and there are no nontrivial torsion subsheaves of
invertible sheaves). Define the normal sheafN (of π ) andNtors as in Lemma 3.2.
The mapπ is unramified if and only ifNtors = 0. By propertyP3., the divisor
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−π∗(KX+E)+∑
ri,j is positive on each component ofC, so by Kodaira vanishing

or Serre duality

H 1(C, OC(KC − π∗(KX + E) +
∑

ri,j )) = 0.

As N/Ntors is a subsheaf of the invertible sheafOC(−π∗KX + KC),

h0(C, N/Ntors(−π∗E +
∑

ri,j ))

≤ h0(C, OC(−π∗KX + KC − π∗E +
∑

ri,j )) (2)

= χ(C, OC(−π∗KX + KC − π∗E +
∑

ri,j ))

= −(KX + E) · D + |β| + g − 1

= ϒ.

If C′ is a component ofC with −π∗(KX + E) · C′ = 1, thenπ : C′ → X is an
immersion (hence unramified) by propertyP4. Thus ifNtors 6= 0, then it is non-zero
when restricted to some componentC′′ for which −π∗(KX + E) · C′′ ≥ 2. Let
p be a point onC′′ in the support ofNtors. Then−π∗(KX + E) + ∑

ri,j − p is
positive on each component ofC, so by the same argument as above,N/Ntors is a
subsheaf ofOC(−π∗KX + KC − p), so

h0(C, N/Ntors(−π∗E +
∑

ri,j ))

≤ h0(C, OC(−π∗KX + KC − π∗E +
∑

ri,j − p))

= ϒ − 1.

Therefore, equality holds at (2) only ifNtors = 0, i.e.π is an immersion. By Lemma
3.2(a), the result follows. ut
Proof of Theorem 3.1.Suppose dimV ≥ ϒ . Let the normalizations of the com-
ponents ofC beC(1), C(2), . . . , C(s), sopa(

∐
k C(k)) ≤ pa(C) with equality

if and only if C is smooth. Letβ = ∑s
k=0 β(k) be the partition ofβ induced by

C = ∪s
k=1C(k), let g(k) be the arithmetic genus ofC(k), and let

ϒ(k) = (KX + E) · π∗[C(k)] + |β(k)| + g(k) − 1.

By the definition ofV D,g(�, β), π mapsC(k) birationally onto its image.
By Lemma 3.3,C moves in a family of dimension at most

s∑
k=1

ϒ(k) =
s∑

k=1

(−(KX + E) · π∗[C(k)] + |β(k)| + g(k) − 1)

= −(KX + E) · D + |β| + pa

(∐
C(k)

)
− 1

≤ −(KX + E) · D + |β| + pa(C) − 1 (3)

= ϒ.

This proves part (a).
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If dim V = ϒ , then equality must hold in (3), soC is smooth, and by Lemma
3.3,π is unramified, proving (b).

For part (c), letN be the normal sheaf to the mapπ (which is invertible asπ is
unramified). Asπ∗E contains no components ofC,

N(−KC) = OC(−π∗(KX + E)) ⊗ OC(π∗E).

is positive on every component ofC by propertyP3., so N is nonspecial. By
Riemann-Roch,

h0(N) = −KX · D + degKC − g + 1 = −KX · D + g − 1.

Requiring the curve to remainms-fold tangent toE at the pointps ofC (whereπ(ps)

is required to be the fixed pointqs) imposes at mostms independent conditions.
Requiring the curve to remaini-fold tangent toE at the pointri,j of C imposes at
most(i − 1) independent conditions. Thus

dimV ≥ −KX · D + g − 1 −
∑

ms − Iβ + |β|
= −(KX + E) · D + |β| + g − 1

as
∑

ms + Iβ = D · E, completing the proof of (c).
For (d), we need only prove that two components ofC have distinct images

in X. It suffices to show that if(C(i), π(i)) is the general map in a component
of V D,g(i)(�(i), β(i))con of dimensionϒ(i) := ϒD,g(i)(�(i), β(i)) (i = 1, 2),
and{q(1)s}s∈S(1) ∩ {q(2)s}s∈S(2) = ∅, thenπ(1)(C(1)) 6= π(2)(C(2)) as sets. If
ϒ(i) > 0 for i = 1 or 2 (i.e. one of the images “moves”) then the result is clear.
Otherwise, fori = 1, 2, −(KX + E) · D ≥ 1 (by propertyP3.), |β(i)| ≥ 0, and
g(i) − 1 ≥ −1. Asϒ(i) = 0 is the sum of these three terms, equality must hold in
each case, soD is smooth (propertyP4.) and rational (g(i) = 0). Also,D meetsE
(or elseD2 = −2−(KX +E) ·D = −1, violating propertyP2.), so (as|β(i)| = 0)
�(i) is non-empty. Henceπ(1)(C(1)) meetsE at different points thanπ(2)(C(2)),
proving (d). ut

Fix an index setS. Let V be an irreducible substack ofMg,|S|(X, D)′, and let
π : C → X be the map corresponding to a general point of a component ofV .
Assume thatπ∗E = ∑

msps +∑
iri,j whereπ(ps) is required to be a fixed point

qs of E asC varies. (In particular, no component ofC is mapped toE.) Defineβ

by βi = #{ri,j }j and� = {(qs, ms)}s∈S .

Proposition 3.4.The intersection dimension ofV is at mostϒD,g(�, β). If equality
holds thenV is a component ofV D,g(�, β).

The main obstacle to proving this result is that the mapπ may not map compo-
nents ofC birationally onto their image: the mapπ may collapse components or
map them multiply onto their image.

Proof. If necessary, pass to a dominant generically finite cover ofV that will allow
us to distinguish components ofC. (Otherwise, monodromy onV may induce a
nontrivial permutation of the components ofC.)
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For convenience, first assume thatC has no contracted rational or elliptic com-
ponents. We may replaceC by its normalization; this will only make the bound
worse. (The map from the normalization ofC is also a quasi-stable map.) We may
further assume thatC is irreducible, as−(KX + E) · D + |β| + g − 1 is additive.

SupposeC maps with degreem to the irreducible curveD0 ⊂ X. Then the
mapπ : C → D0 factors through the normalizatioñD of D0. Let r be the total
ramification index of the morphismC → D̃. By Theorem 3.1(a),

idim V ≤ dimV

≤ −(KX + E) · D0 + |β| + g(D̃) − 1

= − 1

m
(KX + E) · π∗[C] + |β| + 1

m
(g(C) − 1 − r/2)

≤ −(KX + E) · π∗[C] + |β| + g(C) − 1

where we use the Riemann–Hurwitz formula for the mapC → D̃ and the fact
(propertyP3.) that−(KX + E) · D0 > 0. Equality holds only ifm = 1, so by
Theorem 3.1, equality holds only ifV is a component ofV D,g(�, β) for someg,
�, β.

If C has contracted rational or elliptic components, replaceC with those com-
ponents of its normalization that are not contracted elliptic or rational components
(which reduces the genus ofC) and follow the same argument.ut

4. Enumerative interpretation
of higher-genus Gromov–Witten invariants ofK-nef surfaces

In this section, we interpret higher-genus Gromov–Witten invariants of someK-nef
surfaces. By Sect. 2.2, we need only concern ourselves with point conditions. For
convenience, we make a definition.

4.1. Almost Fano surfaces

SupposeX is a smooth surface, andKX is positive on all curves ofX except for a
rationalG ⊂ X with G2 = −2 (soKX · G = 0). Then we say(X, G) is almost
Fano.

One example is ifX is the blow-up of a Fano surface at a point lying on exactly
one (-1)-curveE, andG is the proper transform ofE, e.g.X = P2 blown up at 6
distinct points on a smooth conicC, G the proper transform ofE (see Sect. 9.2).

By essentially the same argument as that of Proposition 3.4, one shows:

Proposition 4.1.LetX be a smooth rational surface with nonzero effective divisor
D. SupposeM is an irreducible component ofMg(X, D) with general map(C, π).
If
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(a) X is Fano, or
(b) (X, G) is almost Fano, and no component ofC is mapped with positive degree

to G, then

idim M ≤ −KX · D + g − 1. (4)

If equality holds, thenπ is unramified,C is smooth, andπ mapsC birationally
onto its image.

4.2. Fano surfaces

It is known that the higher-genus Gromov–Witten invariants of a Fano surface
X are enumerative. The author is unaware of a reference in the literature, so for
completeness the argument is sketched here.

By the preceding Proposition, the only components ofMg(X, D)whose images
can meet

n := c1(TX) · D + (dimX − 3)(1 − g) = −KX · D + g − 1

general points ofX is the closureM of the locus of unramified maps from smooth
curves. LetM′ := M ×Mg(X,D)

Mg,n(X, D) be the “nth universal curve over

M,” a component ofMg,n(X, D) of dimension 2n. Then by Proposition 4.1, (1)

reduces to an integral over this componentM′
, where[M′]vir = [M′]. By Sard’s

theorem, ifq1, . . . , qn are general points ofX, ∩iev
−1qi is a reduced scheme of

dimension 0, and the intersection lies in the open set corresponding to unramified
maps. Hence ifγ is the class of a point, the genusg Gromov–Witten invariant
Ig,D(γ n) counts unramified genusg maps toX.

4.3.

In [K1], p. 22–23, Kleiman gives an enumerative interpretation for a particular
genus 0 Gromov–Witten invariant ofF2, due to Abramovich and Bertram. See
Sect. 8.2 for their formula (AB0) and a generalization. This interpretation suggests
the following result.

Theorem 4.2.Suppose(X, G) is almost Fano,D is an effective divisor onX (not
a multiple ofG), andγ is the class of a point. Letn := −KX · D + g − 1. Then
the Gromov–Witten invariantIg,D(γ n) is the number of stable mapsπ : C → X

with π∗[C] = D, where

(i) the unionC′′ of components ofC not mapping toE is connected, and
(ii) any other componentC0 of C maps isomorphically toE, and C0 intersects

C \ C0 at one point, which is contained inC′′.
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Proof. SupposeN is a component ofMg(X, D) with idim N ≥ n (the only
components that could contribute to the Gromov–Witten integral (1)). Restrict to
an open subset ofN so that the universal curveC can be writtenC = C′ ∪C′′, where
C′ corresponds to the union of components (of the general curve) mapping with
positive degree toG, andC′′ corresponds to the union of the remaining components.
Suppose the curveC′ corresponding to a general (closed) point inC′ hast connected
components, maps toG with total degreek, and meetsC′′, the curve corresponding
to a general point inC′′, ats points. Thenpa(C

′) ≥ 1 − t and (asC is connected)
s ≥ t , so

g = pa(C
′) + pa(C

′′) − 1 + s ≥ pa(C
′′) + s − t ≥ pa(C

′′).

Let M be the component ofMpa(C′′)(X, D − kG)′ induced by(C′′, π |C′′). Then
by Proposition 4.1(b),

idim N = idim M
≤ −KX · (D − kG) + pa(C

′′) − 1

≤ −KX · D + g − 1

= n.

As equality holds, ifM is any component ofMg(X, D) with idim M ≥ n, then
idim M = n, and the general map is as described in the statement of the theorem
except that in (ii), all we know is thatC0 is rational and must map toG with degree
at least 1.

But by a result of Graber ([G] Sects. 3.2 and 3.3, and Proposition 3.5) if any
C0 maps with degree greater than 1, this component does not contribute to the
invariant; the integral (1) is 0. ut
Remark 4.3.The image of any map inMg(X, kG) (k > 0) must lie inG. The
construction of[Mg(X, kG)]vir depends only on the first-order neighborhood of
G, so we can computeIg,kG(·) whenX = F2 andG = E. WhenF2 is deformed
to F0, the classkE deforms to a non-effective class, soIg,kG(·) = 0.

Remark 4.4.Section 2.2, Theorem 4.2, and the Remark above give an enumerative
interpretation of all genusg Gromov–Witten invariants on an almost Fano surface.

5. Identifying potential components

Fix D, g, �, β, and letq be any point ofE not in {qs}. Let Hq be the Weil divisor
onV D,g(�, β) corresponding to maps whose image containq. In this section, we
will derive a list of subvarieties (call thempotential components) in which each
component ofHq of intersection dimensionϒ − 1 appears. We will see in the next
section that each potential component actually appears inHq .

The potential components come in two classes. First, one of the “moving tan-
gencies”ri,j could map toq. Call such componentsType I potential components.

Second, the image could degenerate to containE as a component. Call such
componentsType II potential components. For any sequenceγ ≥ 0 and subset
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S′′ ⊂ S (inducing�′′ ⊂ �), let g′′ = g − |γ | + 1. Define the Type II component
K(�′′ ⊂ �, β, γ ) as the closure inMg,|S|(X, D)′ of points representing maps
π : C′ ∪ C′′ → X where

K1. the curveC′ maps isomorphically toE, and contains the points{ps′ }s′∈S\S′′ ,
K2. the curveC′′ is smooth, each component maps birationally onto its image,

and there exist distinctri,j ∈ C′′ (1 ≤ j ≤ βi) andti,j ∈ C′′ (1 ≤ j ≤ γi)
such that

π(ps) = qs and (π |C′′)∗(E) =
∑

s′′∈S′′
ms′′ps′′ +

∑
iri,j +

∑
iti,j ,

K3. the intersection of the curvesC′ andC′′ is {ti,j }i,j , and
K4. the pointsqs′ (s′ ∈ S \ S′′) are distinct.

The stackK(�′′ ⊂ �, β, γ ) is empty unless
∑

s′′∈S′′ ms′′ + I (β + γ ) =
(D − E) · E. The genus ofC′′ is g′′, and there is a degree

(
β+γ

β

)
rational map

K(�′′ ⊂ �, β, γ ) 99K V D−E,g′′
(�′′, β + γ )

corresponding to “forgetting the curveC′”.

Theorem 5.1.Let K be an irreducible component ofHq with intersection dimen-
sionϒ − 1. Then

I. K is a component ofV D,g(�′, β − ek), where�′ = � ∪ {(q, k)}, or
II. K is a component ofK(�′′ ⊂ �, β, γ ) for someγ and�′′.

This is the analogue of [CH3] Theorem 1.2. The approach is the same.

Proof. Let (C0, {ps}, π0) be the map corresponding to a general point ofK.
Let

5 : (C, {ps}) −→ X × B

↘ ↙
B

be a smooth irreducible one-parameter family of pointed quasi-stable maps (with
total spaceC) with point 0 ∈ B and an isomorphism of the fiber over 0 with
(C0, {ps}, π0), such that the image of the induced mapB → Mg,|S|(X, D)′ lies
in V D,g(�, β), but not inK. The total space of the familyC is a surface, so the
pullback of the divisorE to this family has pure dimension 1. The components of
5−1E not contained in a fiberCt (t ∈ B) must intersect the general fiber and thus
be the sectionsps or multisections coming from theri,j . Thereforeπ−1

0 E consists
of components ofC and points that are limits of theps or ri,j . In particular:

(*) The number of zero-dimensional components ofπ−1
0 E not mapped to any

qs is at most|β|, and
(**) If there are exactly|β| such components, the multiplicities ofπ∗

0E at these
points must be given by the sequenceβ.
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Case I. If C contains no components mapping toE, then

π∗
0E =

∑
iai,j +

∑
ibi,j

where{ai,j }i,j are the points mapped to{ps}s∈S ∪ {q}, {bi,j } are the rest, and the
second sum is over alli, 1 ≤ j ≤ β ′

i for some sequenceβ ′. By (*), |β ′| ≤ |β| − 1.
Then by Proposition 3.4,

idim K ≤ −(KX + E) · D + |β ′| + g − 1

≤ −(KX + E) · D + |β| − 1 + g − 1

= ϒ − 1.

Equality must hold, so|β ′| = |β| − 1 andK is of the formV D,g(�′, β − ek) for
some�′, k. The setπ−1

0 E consists of|S|+ |β| points ({ps}, the preimage ofq, and
{bi,j }). This is also true ofπ−1E for a general map(C, π) in V D,g(�, β), so the
multiplicities at these points must be the same as for the general map (i.e.π∗

0E has
multiplicity ms atps , etc.) soK must be as described in I.

Case II. If otherwise a component ofC maps toE, assume first that no components
of C are contracted to a point ofE. SayC = C′ ∪ C′′ whereC′ is the union of
irreducible components ofC mapping toE andC′′ is the union of the remaining
components. Definem by π0∗[C′] = mE, so π0∗[C′′] = D − mE. Let s =
#(C′ ∩ C′′).

Thenpa(C
′) ≥ 1 − m, so

pa(C
′′) = g − pa(C

′) + 1 − s ≤ g + m − s.

Assume(π0|C′′)∗E = ∑
iai,j +∑

ibi,j whereπ(ai,j ) are fixed points ofE asC′′
varies (as(C, π) varies inK), and the second sum is over alli and 1≤ j ≤ β ′′

i for
some sequenceβ ′′. By (*), |β ′′| ≤ |β| + s.

There is an open substackU ⊂ K (containing 0) such that the universal map
overU may be written

5 : (C′ ∪ C′′, {ps}) −→ X × U

↘ ↙
U

where for allt ∈ U , 5t(C′
t ) ⊂ E, and5t(C′′

t ) has no component mapping toE,
and the fiber over 0 has the given isomorphism with(C0, {ps}, π0). Let K ′ be the
family (C′′, 5|C′′). By Proposition 3.4 (applied to the familyK ′):

idim K = idim K ′

≤ −(KX + E) · (D − mE) + |β ′′| + pa(C
′′) − 1

≤ (−(KX + E) · D − 2m) + (|β| + s) + (g + m − s) − 1

= (−(KX + E) · D + |β| + g − 1) − 1 − (m − 1)

= ϒ − 1 − (m − 1)

≤ ϒ − 1. (5)
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In the third line, we used propertyP1.: E is rational, so(KX + E) · E = −2.
Equality must hold, som = 1 and|β ′′| = |β| + s. By (**), the multiplicity of

π∗
0E at the|β| points ofC′′ not inC′ ∪ {π−1

0 qs} is given by the sequenceβ. Let γ
be the sequence given by the multiplicities of(π0|C′′)∗E at thes pointsC′ ∩ C′′.
DefineS′′ ⊂ S by S′′ = {s′′ ∈ S|ps′′ ∈ C′′} (inducing�′′ ⊂ �). The remaining
zero-dimensional components ofπ−1

0 E (aside from the|β| points ri,j ) must be
{ps′′ }s′′∈S′′ , and the multiplicity ofπ∗

0E atps′′ must bems′′ .
Suppose the pointr ∈ E appears in� exactlyn times, sayqs = r for 1 ≤ s ≤ n.

For a general map(C, π) in V D,g(�, β),π−1(z) is a lengthn subscheme, supported
at{ps}1≤s≤n. In this limit, the mapπ0|C′ → E is an immersion, so(π0|C′)−1(r) has
length 1. Thus at most one of the{ps}1≤s≤n can lie onC′. ThusK is a component
of K(�′′ ⊂ �, β, γ ) for some�′′ andγ .

Finally, if a component ofC is contracted to a point ofE, follow the same
argument but discard the contracted components (so the new source curve has
arithmetic genusg′ < g, andβ ′

i , defined to be the number ofri,j on the new source
curve, is at mostβi). Then at (5), we have

idim K ≤ ϒD,g′
(β ′) − 1 < ϒD,g(β) − 1.

Hence suchK are enumeratively irrelevant.ut
There are other (enumeratively irrelevant) components of the divisorHq not

counted in Theorem 5.1. For example, supposeX = P2 andE is a lineL, and
q1 andq2 are distinct points ofE. If D = 2L, g = 0, � = {(q1, 1), (q2, 1)},
β = 0, thenV D,g(�, β) is a three-dimensional family (generically) parametriz-
ing conics through 2 fixed pointsq1, q2 of L. One component ofHq (generically)
parametrizes a line unionL; this is a Type II potential component. The other (gener-
ically) parametrizes degree 2 maps fromP1 to L; it has intersection dimension 0.

Remark 5.2.Theorem 5.1 also describes components ofHq onV D,g(�, β)con.

6. Multiplicities and recursions

We next compute the multiplicities ofHq along each componentK described in
Theorem 5.1.

6.1. Type I components

Proposition 6.1.The componentK = V D,g(�′, β − ek) appears with multiplic-
ity k.

The proof is essentially that of the analogous proposition in [CH3] (Theo-
rem 1.3a, Proposition 4.5, Subsect. 4.3). Only one minor change is necessary:
consider the natural map

σ : V D,g(�, β) 99K
∣∣∣OE

(∑
iβi

)∣∣∣
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that is a morphism where the divisorsRi = {ri,j }1≤j≤βi
are defined (withri,j as in

the definition ofV D,g(�, β)), given by

(C, π) →
∑

i

iπ(Ri).

Then [CH3] Lemma 4.6 should be replaced by:

Lemma 6.2.The differentialdσ is surjective at a general point ofK.

The proof is essentially the same.

6.2. Type II components

6.2.1. Versal deformation spaces of tacnodes.We first recall facts about versal
deformation spaces from tacnodes, following [CH1] and [CH3] Section 4. Let
(C, p) be anmth order tacnode, that is, a curve singularity equivalent to the origin
in the plane curve given by the equationy(y + xm) = 0.

The miniversal deformation space of(C, p) is an étale neighborhood of the ori-
gin inA2m−1 with co-ordinatesa0, . . . , am−2, andb0, . . . , bm−1, and the “universal
curve”π : S → 1 is given by

y2 + yxm + a0y + a1xy + · · · + am−2x
m−2y + b0 + b1x + · · · + bm−1x

m−1 = 0.

There are two loci in1 of interest to us. Let1m ⊂ 1 be the closure of the locus
representing a curve withm nodes. It is smooth of dimensionm−1, and corresponds
to locally reducible curves. Let1m−1 ⊂ 1 be the closure of the locus representing
a curve withm−1 nodes. It is irreducible of dimensionm, smooth away from1m,
with m sheets of1m−1 crossing transversely at a general point of1m.

Let m1, m2, . . . be any finite sequence of positive integers, and let(Cj , pj ) be
an(mj )

th order tacnode. Denote the versal deformation space of(Cj , pj ) by 1j ,
and letaj,mj −2, . . . , aj,0, bj,mj −1, . . . , bj,0 be coordinates on1j as above. For
eachj , let 1j,mj

and1j,mj −1 ⊂ 1j be as above the closures of loci in1j over
which the fibers ofπj havemj andmj − 1 nodes respectively. Set

1 = 11 × 12 × . . . ,

1m = 11,m1 × 12,m2 × . . . ,

1m−1 = 11,m1−1 × 12,m2−1 × . . . .

Note that1, 1m and1m−1 have dimensions
∑

(2mj − 1),
∑

(mj − 1) and
∑

mj

respectively.
Let W ⊂ 1 be a smooth subvariety of dimension

∑
(mj − 1) + 1, containing

the linear space1m. Suppose that the tangent plane toW is not contained in the
union of hyperplanes∪j {bj,0 = 0} ⊂ 1. Let κ := ∏

mj/ lcm(mj ). Then:
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Lemma 6.3.With the hypotheses above, in an étale neighborhood of the origin in
1,

W ∩ 1m−1 = 1m ∪ 01 ∪ 02 ∪ · · · ∪ 0κ

where01, . . . , 0κ ⊂ W are distinct reduced unibranch curves having intersection
multiplicity exactlylcm(mj ) with 1m at the origin.

This lemma arose in conversations with J. Harris, and appears (with proof) as
part of [CH3] Lemma 4.3. Results of a similar flavor appear in [V1] Sect. 1 and
[V3] Sect. 2.5, although the proofs are different.

6.2.2. Calculating the multiplicity. SupposeK = K(�′′ ⊂ �, β, γ ) is a Type II
component ofHq (onV D,g(�, β)). Letm1, . . . , m|γ | be a set of positive integers
with j appearingγj times (j = 1, 2,. . . ), so

∑
mi = Iγ .

Proposition 6.4.The multiplicity ofHq alongK is m1 . . . m|γ | = I γ .

The proof of this proposition will occupy us until Sect. 6.3.
Fix general pointss1, . . . , sϒ−1 onX, and letHi be the divisor onV D,g(�, β)

corresponding to requiring the image curve to pass throughsi . By Sard’s Theorem,
the intersection ofV D,g(�, β) with ∩iHi is a curveV and the intersection ofK
with ∩iHi is a finite set of points (non-empty asK has intersection dimension
ϒ − 1). Choose a point(C, π) of K ∩ H1 ∩ · · · ∩ Hϒ−1. The multiplicity ofHq

alongK on V D,g(�, β) is the multiplicity ofHq at the point(C, π) on the curve
V .

For such(C, π) in K(�′′ ⊂ �, β, γ ) there are unique choices of points{ri,j }
onC (up to permutations of{ri,j } for fixed i).

Define the map(C̃, π̃) as follows:C
π→ X factors through

C
ν→ C̃

π̃→ X

whereν is a homeomorphism (a seminormalization) andπ̃ is locally an immersion.
Each node ofC is mapped to a tacnode (of some order) ofC̃, andν : C → C̃ is a
partial normalization. TheñC has arithmetic genus̃g := g + ∑

(mi − 1).
Let Def(C̃, π̃) be the deformations of(C̃, π̃) preserving the incidences tos1,

. . . , sϒ−1 and the tangencies toE (π̃∗E = ∑
msps + ∑

iri,j , π̃(ps) = qs). For
convenience, letN := N

C̃/X
(− ∑

msps − ∑
(i − 1)ri,j ).

Lemma 6.5.The spaceDef(C̃, π̃) is smooth of dimension
∑

(mj − 1) + 1.

Proof. We will show the equivalent result: the vector space of first-order deforma-
tions of(C̃, π̃)preserving the tangency conditions (but not necessarily the incidence
conditionss1, . . . , sϒ−1) has dimensionϒ + ∑

(mi − 1), and is unobstructed.
As (C̃, π̃) is an immersion, letN

C̃/X
= O

C̃
(−π̃∗KX +K

C̃
) be the normal bun-

dle toπ̃ . By propertyP3., asπ̃∗(KX +E −∑
ri,j ) is negative on every component
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of C̃, h1(C̃, N) = 0 so

h0(C̃, N) = χ
(
C̃, N

C̃/X

(
−

∑
msps −

∑
(i − 1)ri,j

))

= deg(π̃∗(−KX − E +
∑

ri,j )) + degK
C̃

− g̃ + 1

= − (KX + E) · D + |β| + g̃ − 1

= − (KX + E) · D + |β| + g +
∑

(mi − 1) − 1

= ϒ +
∑

(mi − 1).

Thus there areϒ +∑
(mi −1) first-order deformations, and ash1(C̃, N) = 0 they

are unobstructed.ut
By the proof of the above lemma,H 0(C̃, N) is naturally the tangent space to

Def(C̃, π̃). Now−KX restricted toC′ has degreeKX ·E = 2+E2; K
C̃

restricted
toC′ has degreeIγ −2, which is(degKC′) plus the length of the scheme-theoretic
intersection ofC′ andC′′. Therefore

degN |C′ = 2 + E2 + Iγ − 2 −
∑

s′∈S\S′′
ms′

= D · E − (D − E) · E + Iγ −
∑

s′∈S\S′′
ms′

=
( ∑

s∈S

ms + Iβ

)
−

( ∑
s′′∈S′′

ms′′ + Iβ + Iγ

)
+ Iγ −

∑
s′∈S\S′′

ms′

= 0

so the restriction ofN to C′ is the trivial line bundle.
Also, if p is a general point onC′ thenh0(C̃, N(−p)) = h0(C̃, N)−1. (Proof:

From above,h1(C̃, N) = 0. By the same argument, as deg(KX + E)|E = −2,
π̃∗(KX+E−∑

ri,j +p) is negative on every component ofC̃, soh1(C̃, N(−p)) =
0. Thush0(C̃, N(−p))−h0(C̃, N) = χ(C̃, N(−p))−χ(C̃, N) = −1.) Thus there
is a section ofN that is nonzero onC′.

Let J be the Jacobian ideal of̃C. In an étale neighborhood of the(C, π), there
are natural maps

V
ρ→ Def(C̃, π̃)

σ→ 1

where the differential ofσ is given by the natural map

H 0(C̃, N) → H 0(C̃, N ⊗ (O
C̃
/J )). (6)

Lemma 6.6.In a neighborhood of the origin, the morphism

σ : Def(C̃, π̃) → 1

is an immersion, and the tangent space toσ(Def(C̃, π̃)) contains1m and is not
contained in the union of hyperplanes∪j {bj,0 = 0}.
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Proof. From (6), the Zariski tangent space to the divisorσ ∗(bj,0 = 0) is a subspace
Z of H 0(C̃, N) vanishing at a point ofC′ (thej th tacnode). ButN |C′ is a trivial
bundle, so this subspace of sectionsZ must vanish on all ofC′. As there is a
section ofN that is non-zero onC′, Z has dimension at mosth0(C̃, N) − 1 =
dim Def(C̃, π) − 1. This proves thatσ is an immersion, and that the tangent space
to σ(Def(C̃, π̃)) is not contained in{bj,0 = 0}.

Finally, if S is the divisor (on Def(C̃, π̃)) corresponding to requiring the image
curve to pass through a fixed general point ofE, thenσ(S) ⊂ 1m, as the image
curve must be reducible. Asσ is an immersion,∑

(mi − 1) = dim Def(C̃, π̃) − 1

= dimS

= dimσ(S)

≤ dim1m (7)

=
∑

(mi − 1)

so we must have equality at (7), and the linear space1m = σ(S) is contained in
σ(Def(C̃, π̃)), and thus in the tangent space toσ(Def(C̃, π̃)). ut

Therefore the imageσ(Def(C̃, π̃)) satisfies the hypotheses of Lemma 6.3, so
the closure of the inverse imageσ−1(1m−1\1m) will have

∏
mi/ lcm(mi) reduced

branches, each having intersection multiplicity lcm(mi) with σ−1(1m) and hence
with the hyperplaneHq . Since in a neighborhood of(C, π) the varietyV is a

curve birational withρ(V ) = σ−1(1m−1 \ 1m), we conclude that the divisorHq

containsK(�′′ ⊂ �, β, γ ) with multiplicity m1 · · · m|γ | = I γ .
This completes the proof of Proposition 6.4. As an added benefit, we see that

V D,g(�, β) hasI γ / lcm(γ ) branches at a general point ofK(�′′ ⊂ �, β, γ ),
where lcm(γ ) is the least common multiple of the set #{i|γi 6= 0}.

6.3. Recursions

Theorem 5.1 and Propositions 6.1 and 6.4 give a rational equivalence between
Hq and a linear combination of boundary components. Intersecting this equiv-
alence withHϒ−1 yields the following recursion (the generalization of [CH3]
Theorem 1.1).

Theorem 6.7.If ϒ = dimV D,g(�, β) > 0,

ND,g(�, β) =
∑

k

kND,g(�′, β − ek) +
∑

I γ

(
β + γ

β

)
ND−E,g′′

(�′′, β + γ )

where

• in the first sum,�′ = � ∪ {(q, k)}, and
• the second sum runs over choicesS′′ ⊂ S such that the points{qs′ }s′∈S\S′′ are

distinct, andγ ≥ 0; also,g′′ := g − |γ | + 1.
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By considering divisors only onV D,g(�, β)con, we get a recursion for ir-
reducible curves. The proof is identical, except that rather than considering all
maps, we just consider maps from connected curves. The Type I components that
can appear are analogous. The Type II components consist of maps from curves
C = C(0) ∪ · · · ∪ C(l) whereC(0) maps isomorphically toE, andC(i) intersects
C(j) if and only if ij = 0. (In the general case Theorem 6.7,C(i) intersectedC(j)

only if ij = 0.)

Theorem 6.8.If ϒ = dimV D,g(�, β)con > 0, then

ND,g(�, β)con =
∑

k

kND,g(�′, β − ek)
con

+
∑ 1

σ

(
ϒD,g(β) − 1

ϒD1,g1
(β1), . . . , ϒDl,gl

(βl)

)

·
l∏

i=1

(
βi + γ i

βi

)
Iβi−γ i

NDi,gi

(�i, βi + γ i)con

(cf. [CH3] Sect. 1.4) where

• in the first sum,�′ = � ∪ {(q, k)}, and
• the second sum runs over choices ofDi , gi , �i , βi , γ i (1 ≤ i ≤ l) where

– Di is a divisor class (with
∑

Di = D − E),
– gi is a non-negative integer,
– βi andγ i are sequences of non-negative integers (with

∑
i βi = β, γ i 6= 0),

–
∐

�i ⊂ � (with � \ ∐
�i consisting of distinct points{qs}), and

– σ is the order of the symmetry group of the set{(Di, gi, �i, βi, γ i)}1≤i≤l .

6.4. Theorems 6.7 and 6.8 as differential equations, following Getzler

Assemble the enumerative invariants (in the case where{qs} are general) in a gen-
erating function

G =
∑

D,g,α,β

ND,g(α, β)vDwg−1
(

xα

α!
)

yβ

(
zϒ

ϒ !
)

(wherew andz are variables,x = (x1, x2, . . . ), y = (y1, y2, . . . ), and

{vD}D effective,D 6=E

generates a semigroup algebra, the Novikov ring). Then Theorem 6.7 is equivalent
to the differential equation

∂G

∂z
=

(∑
kyk

∂

∂xk

+ vE

w
rest=0 e

∑
(t−kxk+kwtk ∂

∂yk
)
)

G. (8)

The corresponding observation for the plane is due to Getzler ([Ge1] Sect. 5.3), and
nothing essentially new is involved here, although the notation is slightly different
from Getzler’s.
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Define the generating function

Girr =
∑

D,g,α,β

ND,g(α, β)convDwg−1
(

xα

α!
)

yβ

(
zϒ

ϒ !
)

.

Then by a simple combinatorial argument (see e.g. [W] Chapter 3),G = eGirr .
Substituting this into (8) yields a differential equation satisfied byGirr :

∂Girr

∂z
=

∑
kyk

∂

∂xk

Girr + vE

w
rest=0 e

∑
(t−kxk+Girr |yk 7→yk+kwtk

)−Girr (9)

whereGirr |yk 7→yk+kwtk is the same asGirr exceptyk has been replaced by(yk+kw).
(Once again, this should be compared with Getzler’s formula [Ge1], p. 993.)

7. Application: Caporaso–Harris revisited

If X = P2 andE is a line, Theorem 6.7 applied when the{qs} are distinct points
is the recursion of Caporaso and Harris ([CH3] Sect. 1.4). A minor additional
observation: by induction,ND,g(�, β) is independent of the points{qs} (so long
as they are distinct). This is true of the applications in the next two sections as well.

Computationally, it is simpler to apply Theorem 6.7 when the{qs} are distinct.
It is always possible to reduce a more complicated enumerative problem to this
case. For example,

Lemma 7.1.Supposesi ∈ E, si /∈ {qs} (i = 1, 2, 3), si distinct. Then

ND,g(� ∪ {(s1, 1), (s1, 1)}, β) = ND,g(� ∪ {(s1, 1), (s2, 1)}, β)

− ND,g(� ∪ {(s1, 2)}, β),

ND,g(� ∪ {(s1, 1), (s1, 1), (s1, 1)}, β) = ND,g(� ∪ {(s1, 1), (s2, 1), (s3, 1)}, β)

−3ND,g(� ∪ {(s1, 1), (s2, 2)}, β)

+2ND,g(� ∪ {(s1, 3)}, β).

This tells us how to reduce the conditions of a double or triple point onE to
tangency conditions. (Warning:the left side counts curves with multiple points with
labelledbranches at then-fold point; to forget the labelling, one must divide byn!.)
There are analogous expressions for all other cases where a points1 onE appears
multiply in {qs}. The result still holds whenND,g(·, ·) is replaced byND,g(·, ·)con.
The lemma can be proved by induction (on� andβ) using Theorem 6.7.

8. Application: Counting curves on Hirzebruch surfaces

Theorems 6.7 and 6.8 count curves of any genus in any divisor class onFn.The “seed
data” necessary are the cases whereϒD,g(�, β) = dimV D,g(�, β) = 0. It can be
easily checked (using Theorem 3.1) that the only non-emptyV D,g(�, β)con where
ϒ = 0 hasD = F , g = 0,� = {(pt, 1)}, β = 0; in this case,ND,g(�, β)con = 1.
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Hence the only non-emptyV D,g(�, β) whereϒ = 0 has (for some integerk > 0)
D = kF , g = 1 − k, |S| = k, ms = 1 for all s ∈ S, and|β| = 0. In this case, ifσ
is the order of the symmetry group of the set{qs},

ND,g(�, β) = deg[V D,g(�, β)] = 1

σ
.

The following proposition shows that if the points{qs} are distinct,ND,g(�, β)

counts nodal curves.

Proposition 8.1.If X = Fn, the{ps} are distinct, and(C, π) is a general curve in
a component ofV D,g(�, β), thenπ(C) has at most nodes as singularities.

The proof is easily adapted from that of [CH3] Prop. 2.2 a), and is omitted.
Warning: The proof requires more than propertiesP1.–P4.. The following ex-

ample shows that the result does not hold for every(X, E) satisfying properties
P1.–P4.. Let X = P2 andE be a smooth conic (see the next Section). Choose six
distinct pointsa, . . . , f on E such that the linesab, cd, andef meet at a point.
Then ifL is the class of a line,

V D=3L,g=−2(� = {(a, 1), . . . , (f, 1)}, β = 0)

consists of a finite number of maps, one of which is the map sending three disjoint
P1’s to the linesab, cd, andef .

8.1. Higher genus Gromov–Witten invariants of Hirzebruch surfaces

SupposeX is F0 or F1. As X is Fano, the higher genus Gromov–Witten invariants
are enumerative (Section 4), so for fixedg, D 6= 0, if γ is the class of a point, then
invariant

Ig,D(γ −KX ·D+g−1) =
{

δg,0 if (X, D) = (F1, E)

ND,g(∅, (D · E)e1)
con otherwise

can be recursively calculated by Theorem 6.8. AsFn is deformation-equivalent to
F0 if n is even, orF1 if n is odd ([N] p. 9–10), this computes the invariants ofall
Fn.

8.2. Curves inF2 in terms of curves inF0

Let Ng

Fn
(aS + bF) be the number of irreducible genusg curves in classaS + bF

through the appropriate number of points. Abramovich and Bertram have proved

N0
F0

(aS + (a + b)F ) =
a−1∑
i=0

(
b + 2i

i

)
N0

F2
(aS + bF − iE). (AB0)

by degeneratingF2 toF0 (so the classaS+(a+b)F onF0 degenerates toaS+bF on
F2, [AB1]). Graber has given another proof ([G] Sect. 3.5). From Sect. 4, computing
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Table 1.Number of genusg curves in class 2S + kF onFn

F0 F1 F2 F3 F4

2S 0: 1 1: 1 2: 1 3: 1

0: 10 1: 17 2: 24

0: 69 1: 177

0: 406

2S + F 0: 1 1: 1 2: 1 3: 1

0: 12 1: 20 2: 28

0: 102 (93) 1: 246 (234)

0: 781 (594)

2S + 2F 1: 1 2: 1 3: 1

0: 12 1: 20 2: 28

0: 105 (96) 1: 252 (240)

0: 856 (636)

2S + 3F 2: 1 3: 1

1: 20 2: 28

0: 105 (96) 1: 252 (240)

0: 860 (640)

2S + 4F 3: 1

2: 28

1: 252 (240)

0: 860 (640)

the invariants ofF2 in two ways (by deforming toF0, and by Theorem 4.2), this
formula generalizes to higher genus:

N
g

F0
(aS + (a + b)F ) =

a−1∑
i=0

(
b + 2i

i

)
N

g

F2
(aS + bF − iE).

8.3. Examples

Table 1 gives the number of genusg curves in certain classes on certainFn. The
number preceding the colons in the table is the genusg. Where the number of
irreducible curves is different, it is given in parentheses. Tables 2 and 3 give more
examples; only the total number is given, although the number of irreducible curves
could also be easily computed (using Theorem 6.8). Many of these numbers were
computed by a maple program written by L. Göttsche to implement the algorithm
of Theorem 6.7.

As an example of the algorithm in action, we calculateN4S,1(∅, 0) = 225 on
F1. (This is also the number of two-nodal elliptic plane quartics through 11 fixed
general points.) There are a finite number of such elliptic curves through 11 fixed
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Table 2.Number of (possibly reducible) genusg curves in various classes onF1

Class Genus Number Class Genus Number Class Genus Number

3S −2 15 3S + 2F 0 22647 3S + 3F 0 642434

−1 21 1 14204 1 577430

0 12 2 4249 2 291612

1 1 3 615 3 83057

3S + F 0 675 4 41 4 13405

1 225 5 1 5 1200

2 27 6 55

3 1 7 1

Table 3.Number of (possibly reducible) genusg curves in class 3S onF2

Genus −2 −1 0 1 2 3 4

Number 280 1200 2397 1440 340 32 1

general points onF1. We calculate the number by specializing the fixed points to
lie onE one at a time, and following what happens to the finite number of curves.

The divisorE is represented by the horizontal dotted line, and fixed points onE

are represented by fat dots. Part of the figure, the calculation thatN2S+2F,0(∅, 2e1)

= 105, has been omitted.
After the first specialization, the curve must containE. (Reason: As 4S ·E = 0,

any representative of 4S containing a point ofE must contain all ofE.) The residual
curve is in class 3S + F . Theorem 6.7 gives

N4S,1(∅, 0) = N3S+F,1(∅, e1).

After specializing a second pointq to lie on E, two things could happen to
the elliptic curve. First, the limit curve could remain smooth, and pass through the
fixed pointq of E. This will happenN3S+F,1({(q, 1)}, 0) times. Second, the curve
could containE. Then the residual curveC′ is in class 2S + 2F , and is a nodal
curve intersectingE at two distinct points. Of the two nodes of the original curve
C, one goes to the node ofC′, and the other tends to one of the intersection ofC′
with E. The choice of the two possible limits of the node gives a multiplicity of 2
(indicated by the “×2” in the figure). Theorem 6.7 gives

N3S+F,1(∅, e1) = N3S+F,1({(q, 1)}, 0) + 2N2S+2F,1(∅, 2e1).

The rest of the derivation is similar.
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N4S,1(∅, 0) = 225

N3S+F,1(∅, e1) = 225

N2S+2F,1(∅, 2e1) = 20

N2S+2F,1(∅, e2) = 30 N2S+2F,1({(pt, 1)}, e1) = 20

NS+3F,0(∅, 3e1) = 1N2S+2F,1({(pt1, 1), (pt2, 1)}, 0) = 17N2S+2F,1({(pt, 2)}, 0) = 15

NS+3F,0(∅, e1 + e2) = 4 NS+3F,−1(∅, 3e1) = 7

N2S+2F,0(∅, 2e1) = 96+ 9 = 105

N3S+F,1({(pt, 1)}, 0) = 185

×2

×2
×3

×2

×2

Fig. 1.CalculatingN4S,1(∅, 0) = 225.

9. Application: Higher-genus Gromov–Witten invariants
of del Pezzo surfaces

In this section, we compute the higher-genus Gromov–Witten invariants ofP2

blown up ats ≤ 6 points. By Section 4, it suffices to count maps through various
numbers of points, i.e. computeIg,D(γ n) whereγ is the class of a point. IfD is an
exceptional curve, the invariant isδg,0.

9.1. The cases ≤ 5

If D 6= E is not an exceptional curve, then by blowing down thes exceptional
divisors, the invariants count maps with “s multiple points”.

More precisely, letY be the del Pezzo surface that isP2 blown up ats points
q1, . . . , qs (no 3 collinear). LetX = P2, H the class of a line, andE the smooth
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Table 4. Numbers of irreducible plane curves with fixed multiple points, or invariants of
Fano surfaces

N1,0 N2,0 N3,1 N3,0 N
3,0
2 N4,3 N4,2 N4,1 N4,0 N

4,2
2 N

4,1
2 N

4,0
2

1 1 1 12 1 1 27 225 620 1 20 96

N
4,1
22 N

4,0
22 N

4,0
23 N

4,0
3 N5,6 N5,5 N5,4 N5,3 N5,2 N5,1 N5,0

1 12 1 1 1 48 882 7915 36855 87192 87304

N
5,5
2 N

5,4
2 N

5,3
2 N

5,2
2 N

5,1
2 N

5,0
2

1 41 615 4235 13775 18132

N
5,4
22 N

5,3
22 N

5,2
22 N

5,1
22 N

5,0
22 N

5,3
23 N

5,2
23 N

5,1
23 N

5,0
23

1 34 396 1887 3510 1 27 225 620

N
5,2
24 N

5,1
24 N

5,0
24 N

5,1
25 N

5,0
25 N

5,3
3 N

5,2
3 N

5,1
3 N

5,0
3

1 20 96 1 12 1 28 240 640

N
5,2
3,2 N

5,1
3,2 N

5,0
3,2 N

5,1
3,22 N

5,0
3,22 N

5,0
3,23 N

5,0
4

1 20 96 1 12 1 1

conic throughq1, . . . , qs . Then ifdH − ∑
fiEi 6= Ej ,

Ig,dH−∑
fiEi

(γ n) = NdH,g(�, (2d −
∑

fi)e1)

where� consists offi copies of(qi, 1) (1 ≤ i ≤ s) andn = idim V dH,g(�, (2d −∑
fi)e1) is the appropriate number of point conditions.
Theorem 6.8 calculates these numbers recursively, given “seed data” of the cases

whenϒ = 0. It can be easily checked (using Theorem 3.1) that the only non-empty
V D,g(�, β)conwhereϒ = 0 is the caseD = H ,g = 0,� = {(pt1, 1), (pt2, 1)} or
{(pt, 2)}, β = 0, in which caseND,g(�, β)con = 1 (there is only one line through
2 distinct fixed points of a conic, and only one line tangent to a conic at a fixed
point). Theorem 6.7 counts maps from reducible curves, of course. Lemma 7.1
applies here as well, and can be used to simplify calculations.

9.1.1. Examples. If f is the sequencef1, . . . , fs , letNd,g
f be the genusg invari-

ant for classdH − ∑
fiEi . For convenience, we indicate repetitions offi with

exponents, e.g.Nd,g
2,2,2 = N

d,g

23 . Then Table 4 gives values ofN
d,g
f for d ≤ 5.

It is computationally more convenient to count maps of possibly disconnected
curves, and the results in Table 4 were obtained by first counting such maps and
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then inductively subtracting the maps from reducible curves.A short Maple program
computing these numbers (based on one by Göttsche) is available from the author.
Table 5 gives all numbers of maps from possibly disconnected curves for degree 6.
We use “R” rather than “N ” to remind the reader that the source may be reducible.
(The generating function for such numbers is the exponential of the Gromov–Witten
potential, see Sect. 6.4.) Note that these values need not be integral, as some such
maps have nontrivial automorphisms.

9.2. The cubic surface,s = 6

By deformation-invariance of Gromov–Witten invariants, we can compute the in-
variants on the surfaceX that isP2 blown up along 6 distinct pointsq1, . . . , q6 on
a smooth conicC. If G is the proper transform ofC, (X, G) is almost Fano, and
we can use Theorem 4.2 to compute the invariants ofX by counting curves. This is
the same as counting irreducible curves inP2 with fixed multiple points atq1, . . . ,
q6 and through an appropriate number of other fixed general points, which we can
do using Theorem 6.8 applied to(P2, C).

As an example, we compute the number of rational sextic curves in the plane
with six nodes at fixed pointsq1, . . . ,q6, and passing through five other fixed points
p1, . . . ,p5, where all the points are in general position. (This is the Gromov–Witten
invariantN6,0

26 of the cubic surface, see Sect. 9.1.1 for notation.) [DI] p. 119 gives
this number as 2376, while [GöP] p. 25 gives the number as 3240. Göttsche and
Pandharipande checked their number using different recursive strategies.

By Theorem 4.2, this invariant is the sum of three contributions.

1. Those (irreducible) rational sextics with six fixed nodesq1, . . . , q6 lying on a
conic, passing throughp1, . . . , p5. By Theorem 6.8 (and some computation),
this number is 2002.

2. A stable mapπ : C → P2 whereC has two irreducible rational components
C0 andC1 joined at one point,π mapsC1 isomorphically toE, andπ maps
C0 to an irreducible rational quartic throughq1, . . . , q6 (which lie on a conic)
and p1, . . . , p5. The image of the nodeC0 ∩ C1 is one of the two points
π(C0) ∩ E \ {q1, . . . , q6}. By Theorem 6.8, there are 616 such quartics. There
are two choices for the image of the nodeC0 ∩ C1, so the contribution is 1232.

3. A stable mapπ : C → P2 whereC has three irreducible rational components
C0, C1, C2, whereC1 andC2 intersectC0, π mapsC1 andC2 isomorphically to
E, andπ mapsC0 isomorphically to the conic throughp1, . . . , p5. There are
12 choices of pairs of images of the nodesC0 ∩ C1 andC0 ∩ C2, and we must
divide by 2 as exchangingC1 andC2 preserves the stable map. This contribution
is 6.

ThereforeN0
6,26 = 2002+ 1232+ 6 = 3240, in agreement with [GöP].

9.3. An approach for the two remaining del Pezzo surfaces

To count curves onP2 blown up ats = 7 or 8 general pointsq1, . . . , qs , one
might want to degenerate point conditions to lie on a fixed smooth cubicE through



Counting curves on rational surfaces 81

the s points. Although the surface(P2, E) does not satisfyP1.–P4., many of the
arguments carry through without change. Probably the most significant problem
is the calculation of “seed data”, i.e. counting maps whenϒ = 0. One can check
that this corresponds to counting maps from degreed rational curves toP2 with
intersection withE specified by(�, β) with β = ek (there is one “loose” tangency
r, although its position onE is actually specified up to a finite number of choices by
the location of the pointsqs , asOE(

∑
msqs + kr) ∼= OE(d)). This can be loosely

thought of as “counting rational curves on a log K3 surface”, and hence potentially
related to [YZ].

10. Earlier results

There has been a great deal of earlier work on counting curves on Hirzebruch or
Fano surfaces, and this is only a partial, brief sketch. Undoubtedly some important
work has been missed.

10.1. The surfacesP2, F0 andF1 are convex, so the ideas of [KM] allow one to
count (irreducible) rational curves in all divisor classes on these surfaces (see [DI]
for further discussion). Di Francesco and Itzykson calculated the genus 0 Gromov–
Witten invariants of the plane blown up at up to six points in [DI], Sect. 3.3. Kleiman
gave recursions for all del Pezzo surfaces, and forF0 andF1 ([K1] Sect. 6). Ruan
and Tian gave recursive formulas for the genus 0 Gromov–Witten invariants of Fano
surfaces, and indicated their enumerative significance ([RuT] Sect. 10). Göttsche
and Pandharipande later derived recursive formulas for the genus 0 Gromov–Witten
invariants of the plane blown up at any number of points ([GöP]).

10.2. The algorithms [CH3] and [R1] count degreed genusg plane curves, and
hence also countNg

F1
(dS) = N

g

F1
((d − 1)S + F) (as defined in Sect. 8.2).

10.3. Recursions for curves of any genus inX = F1 were given in [R1]. The
case ofF0 is similar and was worked out by Ran’s student Y. Choi (manuscript in
preparation). AsFn may be degenerated to a union ofFn−1 andF1 meeting along
a fiber, arguments similar to those in [R1] should count curves on anyFn ([R2]).

10.4. Abramovich and Bertram have proved several (unpublished) formulas count-
ing irreducible rational curves in certain classes onFn ([AB2]):

N0
Fn

(2S + bF) = N0
Fn−2

(2S + (b + 2)F )

−
n−1∑
l=1

(
2(n + b) + 3

n − l − 1

) (
l2(b + 2) +

(
l

2

))
,

(AB1)

N0
Fn

(2S) = 22n(n + 3) − (2n + 3)

(
2n + 1

n

)
, (AB2)

N0
Fn

(2S + bF) = N0
Fn−1

(2S + (b + 1)F ) −
n−1∑
l=1

(
2(n + b) + 2

n − l − 1

)
l2(b + 2).

(AB3)
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Their method for (AB0) (in Section 8.2) and (AB1) is to deform the surfaceFn to
Fn−2. For (AB2) and (AB3), they relate curves onFn to curves onFn−1.

The author has obtained the formula

N
g

Fn
(2S + bF) = N

g

Fn−1
(2S + (b + 1)F )

−
n−g−1∑
f =0

∑ (
α1

|α| − g − 1

)( |α|
α1, . . . , αn

)

×
(

2(n + b) + 2 + g

f

)
I2α

where the second sum is over all integersf and sequencesα such thatIα =
n + b − f , |α| = b + 2 + g, b < α1. This generalizes (AB3) above. The author’s
method is to specialize a single point condition toE, then perform an elementary
transformation to turnFn into Fn−1.

10.5. Caporaso and Harris (in [CH1] and [CH2]) obtained recursive formulas for
N0

Fn
(aS + bF) whenn ≤ 3, and the remarkable result thatN0

Fn
(2S) is the co-

efficient oftn in (1+t)2n+3/(1−t)3. Coventry has generalized the “rational fibration
method” of [CH2] and found a recursive formula for the number of rational curves
in anyclass inFn ([Co]). E. Kussell has recovered the Gromov–Witten invariants
of P2 blown up at 2 points by the rational fibration method ([Ku]).

10.6. Kleiman and Piene have examined systems with a fixed numberδ of nodes
([KP]). The postulated number ofδ-nodal curves is given (conjecturally) by a poly-
nomial. Vainsencher determined the entire polynomial forδ ≤ 6 ([Va]). Kleiman
and Piene extended his work toδ ≤ 8, and gave new techniques to determine
explicit conditions on the line bundle for the formulas to be enumerative.

10.7. Graber and Pandharipande’s powerful technique of virtual localization ([GP])
can also be used to compute the Gromov–Witten invariants ofanyrational surface.
(Deform the rational surface so that it is a toric variety.) However, the graph-
theoretic sums involved are extremely cumbersome to calculate in practice, even
in simple cases with the aid of a computer.
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