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Abstract. In [CH3], Caporaso and Harris derive recursive formulas counting nodal plane
curves of degre€ and geometric genusin the plane (through the appropriate number of
fixed general points). We rephrase their arguments in the language of maps, and extend them
to other rational surfaces, and other specified intersections with a divisor. As applications,
(i) we count irreducible curves on Hirzebruch surfaces in a fixed divisor class and of fixed
geometric genus, (ii) we compute the higher-genus Gromov—Witten invariants of (or equiv-
alently, counting curves of any genus and divisor class on) del Pezzo surfaces of degree at
least 3. In the case of the cubic surface in (ii), we first use a result of Graber to enumeratively
interpret higher-genus Gromov-Witten invariants of cerfainef surfaces, and then apply

this to a degeneration of a cubic surface.

1. Introduction

In [CH3] Caporaso and Harris used degeneration methods and subvarieties of the
Hilbert scheme to give recursions for the number of degrgeometric genug

plane curves throughd3+ ¢ — 1 general points (th8everi degreesf the plane).

We recast their methods in the language of stable maps, and generalize to different
surfaces and multiple point conditions on a divisor.

The first application is counting curves on any Hirzebruch surface (i.e. rational
ruled surface) of any genus and in any divisor class, i.e. computing Severi degrees
for these surfaces.

The second application is computing geguSromov—Witten invariants of (all
but two) del Pezzo surfaces. These invariants are of recent interest because of the
Virasoro conjecture ([EHX], a generalization of Witten's conjecture, see [Ge2] and
[LiuT] for more information) giving relations among them, yet surprisingly almost
no higher genus invariants of any variety are known. (By [GP], all invarianis of
are known. By the methods of [Ge1l], resp. [BP], there is some hope of computing
genus 1, resp. genus 2, invariants of some other varieties.) These invariants are
known to be enumerative on Fano surfaces (Sect. 4), so once again the problem is
one of counting curves, in this case, plane curves with fixed multiple points.
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In order to count curves on a cubic surface, we need a result possibly of indepen-
dent interest, enumeratively interpreting invariants on certain non-Fano surfaces,
whereK is still numerically effective. The key technical step here is due to Graber.

More speculatively, there should be a good algebraic definition of relative
Gromov-Witten invariants, loosely counting curves with prescribed intersection
with a fixed divisor, meeting various homology classes (in the same way as reg-
ular Gromov-Witten invariants loosely count curves meeting various homology
classes). See [Ru] for a discussion in the symplectic category (and [LiRu], espe-
cially p. 11, for more detail; also [IPa]). The numbers given here and in [CH3]
(as well as the genus 0 numbers of [V1] and [Ga]) should be examples, although
relative invariants in general shouldn't be enumerative).

As far as possible, we rely on analogous results of [CH3]. An example of the
recursion in action is given in Sect. 8.3.

There has been a great deal of earlier work on such problems, and a brief
catalogue of some of the highlights is given in Sect. 10.

1.1. Maps vs. Hilbert scheme

There seems to be an advantage in phrasing the argument in terms of maps. Many
of the proofs of [CH3] essentially involve maps, and the one exception is the
multiplicity calculation for “Type Il components”, which in any case can also be
proved using maps (see Sect. 6.2). The arguments seem shorter as a result, although
the content is largely the same. The disadvantage is that one needs more machinery
(the compactification of the space of stable maps, Deligne—-Mumford stacks), and
one must worry about other components of the moduli space, parametrizing maps
not of interest. The arguments here could certainly be phrased in terms of Hilbert
schemes, and in the end it is probably a matter of personal taste.

1.2. Publication history

This article is a completely rewritten version of two preprints (including some
extensions, most notably Sect. 9.2), math.AG/9709003 (“Counting curves of any
genus on rational ruled surfaces”) and math.AG/9709004 (“GenGsomov—
Witten invariants of Del Pezzo surfaces: Counting plane curves with fixed multiple
points”). They were also Mittag-Leffler preprints (Reports No. 28 and 27 of 1996/7
respectively).

2. Definitions and preliminary results
2.1. Conventions

2.1.1. Combinatorial conventions.We follow the combinatorial conventions of
[CH3]. For any sequence = («1, a2, ...) of nonnegative integers with all but
finitely manye; zero, set

| =1 +a2+az+...,
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Ia = o1+ 202 + 303+ ...,
% = 1%12%23% |

and

The zero sequence will be denoted 0.

We denote by, the sequence that is zero exceptdd. in thek™ term (so that
any sequence = (a1, o2, ...) Is expressible a8 = ) ayex). By the inequality
o > o’ we meary; > «; for all k; for such a pair of sequences we set

a) o! N CAYCAYEE
() = e = (@) ) E) -

2.1.2. Geometric conventionsWe work over the complex numbers. Bgheme

we mean scheme of finite type ov€r By variety, we mean a separated integral
scheme. Bystackwe mean Deligne-Mumford stack. All morphisms of schemes
are assumed to be defined o&rand fibre products are ov€runless otherwise
specified. Iff : C — X is a morphism of stacks aridis a closed substack of,
then definef ~1(Y) asC xx Y; f~1Y is a closed substack .

Forn > 0, letF, be the Hirzebruch surface, or rational ruled surfé#e(O &
O(n)). Recall that the Picard group @, is isomorphic toZ2, with generators
corresponding to the fiber of the projective bundieand a sectiornE of self-
intersection—n; E is unique ifn > 0. Let S be the clas€ + nF. (This class is
usually denoted”, but we use nonstandard notation to prevent confusion with the
source of amapC, m).) The canonical divisoKF, is equivalentte-(S+ E 4 2F).

A family of n-pointed nodal curves over a base scheme or sta¢kr ann-
pointed nodal curve ove¥) is a proper flat morphism : C — S whose geometric
fibers are reduced and pure dimension 1, with at worst ordinary double points as
singularities, along witl sectionsp; : § — C whose images are disjoint and lie
in the smooth locus of. (There is no connectedness condition X Ifs a scheme,
then afamily of maps of pointed nodal curvesXoover S (or amap of a pointed
nodal curve taX overS) is amorphisnp : C — X x S overS,wherer : C — S
is a family of pointed nodal curves ovér A pointed nodal curvéwith no base
specified) is a pointed nodal curve over Sfieand amap of a pointed nodal curve
to X is a map over Spec.

2.2. Stable maps and Gromov-Witten invariants

A stable mapo a smooth projective variety is a mapr from a connected pointed
nodal curve taX such thatr has finite automorphism group. Thathmetic genus
of a stable map is defined to be the arithmetic genus of the nodal cur¥e
[C] € H2(C) is the fundamental class @f, then we sayr,[C] € H2(X) is the
classof the stable map.

A family of stable mapis a family of maps of pointed nodal curvesXovhose
fibers over maximal points are stable maps. Hg.,n(x, ) be the stack whose
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category of sections of a scherfigs the category of families of-pointed stable
maps toX over S of class¢ and arithmetic genug, with n marked points. For
definitions and basic results, see [FP]. Itis a fine moduli stack of Deligne-Mumford
type. There is a “universal map” ovﬁg’,,(x, ¢) that is a family of maps of nodal
curves. There is an open substabk, ,, (X, ¢) that is a fine moduli stack of maps

of smoothcurves. There are “evaluation” morphisms

evy, ..., ev, :ﬂg,n(X, ’) — X;

ev; takes the pointC, p1, ..., pn, ) € mg,n(X, ¢) to the pointu(p;) in X.
(Genusg) Gromov-Witten invariants were defined by Kontsevich and Manin

([KM] Sect. 2). We recall their definition, closely following the discussion in [FP]

Sect. 7 of the genus 0 case. There \grtual fundamental clasgLiT], [BF], [B])

[Men(X, O € Ale aaT)+AMX =3 A-g)+n 5

For given arbitrary classes, ... ,y, € H*X,

Ig,D(Vl"'Vn):/‘i evi(y) U+ Uevs(yn) UM (X, 01" (1)
Mg n(X,D)
is called agenusg Gromov—-Witten invariantThey are deformation-invariant. If
the classes; are homogeneous, this will be nonzero only if the sum of their
codimensions is the “expected dimension’ﬂg,n(x, o).

By variations of the arguments in [FP] (p. 79):

() 1 D=0,Igp(y1L---vn) is non-zero only if
i) g¢=0andn =3, inwhich caseitigy y1Uy2U ys3, or
i) ¢ =1,n =1, andy, is a divisor class, in which case it {$1 - cgimx—1
(T X))/24. (The author is grateful to T. Graber for pointing out this fact,
which follows from a straightforward obstruction calculation. This second
case is the only part of the argument that is not essentially identical to the
genus 0 presentation in [FP].)
(M) 1f y1=1¢€ A°X, I, p(y1---yn) is zero unlesd = 0,¢g = 0,n = 3, in
which case itisfy y2 U ya.
(I If y1 € AYX andD # 0, then by the divisorial axiom ([KM] 2.2.4 or [FP]
P. 79 Ie o1 vn) = ([pr1) - Le.p(2- - va).

In light of these three observations, in order to compute the gei@®mov—
Witten invariants for a surface, we need only compiitg (y") wherey is the
class of a point. It is immediate that 1D is the class of an exceptional curve,
I, p(B) = &;.0.

2.2.1. Quasi-stable mapsDefine quasi-stable maps the same way as stable
maps, except the source curve is not required to be connecte&’,Rorg, n as
before, there is a fine moduli staa_Mg,n(X, ¢)’ (offinite type) parametrizing genus
g, n-pointed quasi-stable maps Xg with image in clasg; ﬂg’n(x, ¢)isaunion
of connected components ﬁg,n(x, ¢)'. All constructions for stable maps carry
through for quasi-stable maps.
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More precisely, lef\(X)’ be the stack whose category of sections of a scheme
S is the category of families of quasi-stable maptoverS. More conveniently,
it is the choice of a finite étale covér— S and a family ofstablemaps toX over
T. This stack naturally splits intﬂg,n(x, Z)’, which are unions of connected
components ofM(X)'. For example M3(pt, 0) has two components, both of
dimension 6. One is isomorphic t83(pt, 0), and the other is isomorphic to
(Ma(pt, 0) x Ma(pt, 0))/(Z/2Z).

2.3. The surface in question

Throughout this paper, assume:

P1. X is a smooth rational surface amd= P! is a divisor onX.

P2. The surfaceX \ E is minimal, i.e. contains no (-1)-curves.

P3. The divisor clasKx + E is negative on every curve ox.

P4. If D is an effective divisor such that(Kx + E) - D = 1, thenD is smooth.

Note that there is a natural identificatioﬁfbx ~ H2(X,Q) as for such a

surfaceht0(X) = h%9(X) = 0. Propertie$3.andP4.would hold if — (K x + E)

were very ample, which is true in all cases of interest here. Useful examples of such
(X, E) include whenX = P2 andE is a line (Sect. 7) or a conic (Sect. 9), or when

X is a Hirzebruch surface anfll is the “section at infinity” (Sect. 8). ProperB2.

could be removed and other properties could be weakened by modifying the results
very slightly, but there seems to be no benefit to doing so.

2.4. The stack¥ 2-¢(2, g) and VP-8(Q, p)con

SupposeS is a finite index set2 = {(gs, ms)}ses iS @ set of ordered pairs with
gs € E andmg a positive integer, anf is a sequence of non-negative integers with
all but finitely manyg; zero. LetD be a divisor class oX andg be an integer.

Let VP:8(Q, B) be the (stack-theoretic) closure M, s/(X, D)’ (where the
marked points are labelleg;, s € S) of quasi-stable maps : (C, {ps}) - X
such that each component 6fmaps birationally to its image iX andz ~1(E)
consists of distinct smooth points (69: {ps}ses and{r; j}1<;<p;, with

T*(E) = stps + Ziri,j,
s ij

andr (ps) = gs. ClearlyvVP-8(Q, B) is empty if} ms + I8 # D - E.

Define V28 (2, B)°°" similarly, exceptC is required to be connected (so the
closure can be takenﬁgm (X, D)). Thenv?-¢(Q, B)%"is a union of connected
components o 2-8(, B).

Let a(2) be the sequencE. mye;. Example: IfX = P2, E is a line,D is d
times the class of a line, ar{g,} are general points of, thenV?:¢(2, g) is a
map-theoretic analogue of the Severi varity? («(2), 8)(2) of [CH3].
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For convenience, let
T=""%B):=—(Kx+E)-D+|Bl+g—1.

We will see thatV ?-2($2, B) is a stack of pure dimension (Theorem 3.1).

2.4.1. Enumerative relevance and transversalitguppose

C — X X B

TN 4
B

is a family of maps of nodal curves, with irreducible. Let thantersection di-
mensionof the family (denoted idinB) be the largest number of points onX
such that for a general sstof n points of X there is a map in the family whose
image contains. Note that idimB < dim B. If equality holds, we say the family
is enumeratively relevanbtherwise it issnumeratively irrelevant

Letn : C — X be the induced map. Thengfis a general point ok, n~1¢
is pure dimension din® — 1, and by Sard’s theorenT 14 is reduced. Define the
Weil divisor H,, := 7.~ 1q.As X is rational, the Weil divisor class is independent
of ¢ (so long ag; is chosen so that 14 is pure dimension din® — 1); denote this
classH.

This divisor can be intersected with any irreducible subsiiaif B: repeat the
same construction, using the universal family oBertHence we have a “moving
lemma”, andH is naturally an element of1 B (in the operational Chow ring d#,
see [V2] Section 3.10 for more complete arguments). Note tikasiEnumeratively
irrelevant, therH9m B[ B] = 0.

We say the family has property (%) if for the mé&g, =) corresponding to a
general point ofB, 7,.C has no multiple components. If the family has property
(f), each component @f, appears with multiplicity 1, and the map corresponding
to a general point of each componentf has property (f) (not difficult, see
[V2] Section 3.10). Hence by induction, if the family satisfies (1), the degree of
HYm B[ B]isthe number of maps whose image passes througtBdjeneral points
of X.

2.4.2. Enumerative invariants.Define

0 if vP&(Q, B) =9,

D,g Q — .
A {deng'mV"*g«Z,ﬁ)[vD,g(Q,ﬁ)] otherwise.

If VP:8(2, B) has property (1), thew ?-8(2, B) counts maps inV?-¢(Q, )
whose image passes throuihgeneral points o . Define NP-¢(Q, B)°°" simi-
larly.

For a given setm,}ses, NP:4(Q2, B) is constant for generally chosép }scs;
let this number bV -8 (a, B), wherea = a() = Y e, . Define N P& (a, B)°ON
similarly.

The recursions of this paper fov?-2(2, B) and NP:¢(Q, )" (Theorems
6.7 and 6.8 respectively) correspond to specializing one of the dividprby
specializingg to be a point ofE.
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3. Dimension counts

In this section, we prove a key dimension count (Theorem 3.1) and a bound on
intersection dimension (Proposition 3.4).

Theorem 3.1.Let V be a component of ©:¢(Q2, 8), and supposéC, {p,}, ) is
the map corresponding to a general pointiof

@) dimV <Y =T12$(B) = —(Kx + E)- D+ Bl + g — 1.

(b) If dimV = 7, thenC is smooth, and the map is unramified.

(c) Conversely, ifC is smooth andr is unramified, themimV = 1.

(d) If dimV = Y andg, # g, for each(s, s’) such thatp; and p, lie on different
components of', thenV has property ).

Note that the hypotheses of (d) are satisfiadig§ acomponent of 28 (Q2, g)°°"
or the{g,} are distinct (and din¥ = ). HenceNP-¢(Q, p)°°"is enumerative,
and by (b) counts irreducible (not just connected) curves.

We use the following lemma, which appears (in a different guise) in Section
2.2 of [CH3]: (a) is contained in Corollary 2.4 and part (b) is Lemma 2.6. Part (a)
was proven earlier by E. Arbarello and M. Cornalba in [AC], Sect. 6.

Lemma 3.2 (Arbarello—Cornalba, Caporaso—Harris).Let V be an irreducible
substack omg(Y, B) whereY is smooth, such that ifC, =) corresponds to a
general point o thenC is smooth andr mapsC birationally onto its image. Let
N = cokenT¢ — 7*Ty), and letNiors be the torsion subsheaf of. Then:

(a) If (C, 7) corresponds to a general point &f thendim V < h%(C, N/ Niors).
(b) Assume further that is a surface. Fix a smooth curv@ in Y and points
{9i,j} C G, and assume that

7*G = Zip,',j 4+ Zir,”j
iJ iJ
with 7 (p; ;) = ¢;,j if (C, ) corresponds to a general point &f. Then

dimV < h%(C, N/Neors(—= Y _ipij — Y (i = Dri j)
i,j i,j
= h%(C, N/Neors(—7*G + Y _ri. ).
i,J

Lemma 3.3.Let V be a component oV ?-¢(Q, 8) whose general point corre-
sponds to a map : C — X whereC is a smooth curve (not necessarily irre-
ducible). ThedimV < Y. If = is not unramified then the inequality is strict.

Proof. Note that by the definition of -2 (2, 8), = is a birational map fron€ to

its image inX, so we may invoke Lemma 3.2. The map — 7*Tx is injective

(as it is generically injective, and there are no nontrivial torsion subsheaves of
invertible sheaves). Define the normal sh&afof =) and Niors as in Lemma 3.2.

The mapr is unramified if and only ifNios = 0. By propertyP3,, the divisor
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—*(Kx+E)+)_ r; jis positive on each component@fso by Kodaira vanishing
or Serre duality

HYC,Oc(Kc —n*(Kx + E)+ Y _rij)) =0.
As N /Niorsis a subsheaf of the invertible she&df (—7*Kx + K¢),

hO(C, N/Niors(—m*E + Y _7i.}))
< h%C, Oc(—n*Kx + Kc —n*E+ Y _ri})) (2)

= X(C.Oc(—n*Kx + Kc —n*E+ Y 5 }))
=—(Kx+E)-D+|fl+g—1
=17.

If C"is a component of with —7z*(Kx + E) - C' = 1, thenr : C’ — X is an
immersion (hence unramified) by propeR#. Thus if Niors # 0, then itis non-zero
when restricted to some componefit for which —z*(Kx + E) - C” > 2. Let
p be a point onC” in the support ofViors. Then—z*(Kx + E) + > ri j — pis
positive on each component 6f so by the same argument as abaVg Niors is a
subsheaf 0O¢(—n*Kx + K¢ — p), SO

hO(C, N/Niors(—*E + Y _1i.}))
< h%C,Oc(—n*Kx + Kc —n*E+ Y _ri;j— p))
=71 -1
Therefore, equality holds at (2) onlyAfios = O, i.e.7r is animmersion. By Lemma
3.2(a), the result follows. O

Proof of Theorem 3.1Suppose din¥V > Y. Let the normalizations of the com-
ponents ofC beC(1), C(2), ..., C(s), Sop.(][; C(k)) < pa(C) with equality
if and only if C is smooth. Let8 = >";_, B(k) be the partition of8 induced by
C =U;_,C(k), letg(k) be the arithmetic genus @f(k), and let

Y (k) = (Kx + E) - m[C)] + B + g(k) — 1.
By the definition ofV P-2(Q, B), = mapsC (k) birationally onto its image.

By Lemma 3.3C moves in a family of dimension at most

> Tk =D (—(Kx + E) - m[Ch)] + |B(K)] + g(k) — 1)
k=1

k=1

~(kx+E)-D+1Bl+pa ([ [C0) -1
~(Kx + E)- D+ |B] + pa(C) — 1 ®)
=T.

IA

This proves part (a).
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If dim V = 7, then equality must hold in (3), 96 is smooth, and by Lemma
3.3, 7 is unramified, proving (b).

For part (c), letvV be the normal sheaf to the map(which is invertible asr is
unramified). Ast*E contains no components 6f,

N(—=Kc¢) = Oc(—n*(Kx + E)) ® Oc(7"E).

is positive on every component @f by propertyP3., so N is nonspecial. By
Riemann-Roch,

WO(N)=—Kx-D+degkc —g+1=—Kx-D+g—1

Requiring the curve to remaiin, -fold tangent tak at the pointp; of C (wherer (p;)

is required to be the fixed poigt) imposes at most,; independent conditions.
Requiring the curve to remainfold tangent toE at the point; ; of C imposes at
most(i — 1) independent conditions. Thus

dimV > —Kx-D+g—1-> ms—IB+|B|
=—(Kx+E) - D+|fl+g—-1

asd mg+ I = D - E, completing the proof of (c).

For (d), we need only prove that two componentsofave distinct images
in X. It suffices to show that ifC (i), 7 (i)) is the general map in a component
of VP2 (Q (@), B(i))°" of dimensionY (i) := Y22 (Q@), BG()) (i = 1,2),
and{g(Ds}ses N {g2)s}ses@ = ¥, thenz(1)(C (D) # 7(2)(C(2)) as sets. If
Y () > 0fori = 1 or 2 (i.e. one of the images “moves”) then the result is clear.
Otherwise, fori = 1,2, —(Kx + E) - D > 1 (by propertyP3), |8(i)| > 0, and
g() —1> —1.AsY (i) = O0is the sum of these three terms, equality must hold in
each case, sD is smooth (propert{?4) and rational ¢(i) = 0). Also, D meetsE
(orelseD? = —2— (Kx +E)- D = —1, violating property2), so (ag(i)| = 0)
Q (i) is non-empty. Hence (1) (C (1)) meetsE at different points than (2)(C(2)),
proving (d). O

Fix an index ses. Let V be an irreducible substack 8, 5;(X, D)’, and let
m : C — X be the map corresponding to a general point of a componetVit of
Assumethatt*E = ) myps+ ) ir; j Wheren (py) is required to be a fixed point
gs of E asC varies. (In particular, no component 6fis mapped tat.) Defineg
by Bi = #{r; ;}; andQ = {(gs, my)}ses-

Proposition 3.4. The intersection dimension bfis at mostr 2-¢ (R, B). If equality
holds thenV is a component of 2:¢(2, ).

The main obstacle to proving this result is that the mapay not map compo-
nents ofC birationally onto their image: the map may collapse components or
map them multiply onto their image.

Proof. If necessary, pass to a dominant generically finite covér tifat will allow
us to distinguish components 6f. (Otherwise, monodromy ol may induce a
nontrivial permutation of the components©f)
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For convenience, first assume tidahas no contracted rational or elliptic com-
ponents. We may replaag by its normalization; this will only make the bound
worse. (The map from the normalization@fis also a quasi-stable map.) We may
further assume that is irreducible, as-(Kx + E) - D + |B| + g — 1 is additive.

SupposeC maps with degree: to the irreducible curvédg C X. Then the
mapn : C — Dg factors through the normalizatiab of Dg. Let r be the total
ramification index of the morphisii — D. By Theorem 3.1(a),

<dimV

< —(Kx +E)- Do+ || +g(D) — 1

_%(KX + E) -l Cl+ B + %(g(C) -1-r/2
—(Kx + E) - m[C]+ |Bl + 8(C) — 1

idim Vv

IA

where we use the Riemann—Hurwitz formula for the ntap> D and the fact
(propertyP3.) that—(Kx + E) - Do > 0. Equality holds only ifm = 1, so by
Theorem 3.1, equality holds only ¥ is a component o¥ -2 (2, B) for someg,
Q, B.

If C has contracted rational or elliptic components, replaceith those com-
ponents of its normalization that are not contracted elliptic or rational components
(which reduces the genus 61 and follow the same argumentno

4. Enumerative interpretation
of higher-genus Gromov-Witten invariants of K -nef surfaces

In this section, we interpret higher-genus Gromov-Witten invariants of gomef
surfaces. By Sect. 2.2, we need only concern ourselves with point conditions. For
convenience, we make a definition.

4.1. Almost Fano surfaces

SupposeX is a smooth surface, aridy is positive on all curves ok except for a
rationalG c X with G2 = —2 (S0Kx - G = 0). Then we sayX, G) is almost
Fano

One example is iX is the blow-up of a Fano surface at a point lying on exactly
one (-1)-curveE, andG is the proper transform af, e.g.X = P2 blown up at 6
distinct points on a smooth conit, G the proper transform af (see Sect. 9.2).

By essentially the same argument as that of Proposition 3.4, one shows:

Proposition 4.1.Let X be a smooth rational surface with nonzero effective divisor
D. Supposé/ is anirreducible component g#l, (X, D) with general magC, ).
If
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(a) X is Fano, or
(b) (X, G) is almost Fano, and no component®fs mapped with positive degree
to G, then

idmM < —-Kx-D+g—1 4

If equality holds, thenr is unramified,C is smooth, andr mapsC birationally
onto its image.

4.2. Fano surfaces

It is known that the higher-genus Gromov—Witten invariants of a Fano surface
X are enumerative. The author is unaware of a reference in the literature, so for
completeness the argument is sketched here.

By the preceding Proposition, the only componentz?tg(X, D) whose images
can meet

n:=c1(Tx) -D+WdimX —-3)(l—g)=—-Kx-D+g—1

general points o is the closureM of the locus of unramified maps from smooth
curves. LetM := M X, (X, D) M, (X, D) be the 7™ universal curve over

M,” a component omg,n(x, D) of dimension 2. Then by Proposition 4.1, (1)

reduces to an integral over this compongt, where[ M 1M = [M']. By Sard’s
theorem, ifg1, ... , ¢, are general points of, N;ev—1g; is a reduced scheme of
dimension 0, and the intersection lies in the open set corresponding to unramified
maps. Hence ify is the class of a point, the gengsGromov—Witten invariant

I, p(y™) counts unramified genysmaps toX.

4.3.

In [K1], p. 22-23, Kleiman gives an enumerative interpretation for a particular
genus 0 Gromov-Witten invariant @, due to Abramovich and Bertram. See
Sect. 8.2 for their formula (ABO) and a generalization. This interpretation suggests
the following result.

Theorem 4.2.Suppos€X, G) is almost FanoD is an effective divisor o (not
a multiple ofG), andy is the class of a point. Let := —Kx - D + g — 1. Then
the Gromov-Witten invariant, p(y") is the number of stable maps: C — X
with 7,[C] = D, where

(i) the unionC” of components af not mapping tat is connected, and
(i) any other componenty of C maps isomorphically td&, and Cq intersects
C \ Cp at one point, which is contained i@i”.
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Proof. Suppose\ is a component of\M, (X, D) with idim A > n (the only
components that could contribute to the Gromov—Witten integral (1)). Restrict to
an open subset df” so that the universal cur¢kcan be writter? = C'UC”, where

C’ corresponds to the union of components (of the general curve) mapping with
positive degree t&, andC” corresponds to the union of the remaining components.
Suppose the curv@’ corresponding to a general (closed) poirtihass connected
components, maps 16 with total degreé, and meet€”, the curve corresponding

to a general pointi€”, ats points. Thenp,(C’) > 1 — ¢ and (asC is connected)

s >1,S0

8= pa(C)+ pa(C") =1+ 5> pa(C")+5 —1 > pa(C").

Let M be the component ok, (X, D — kG)' induced by(C”, |¢»). Then
by Proposition 4.1(b),

idim N = idim M
< —Kx - (D—kG) + pa(C") -1
<—-Kx-D+g-1

=n.

As equality holds, ifM is any component of\_/lg(X, D) with idim M > n, then
idim M = n, and the general map is as described in the statement of the theorem
except thatin (i), all we know is thaiy is rational and must map 6 with degree
atleast 1.

But by a result of Graber ([G] Sects. 3.2 and 3.3, and Proposition 3.5) if any
Co maps with degree greater than 1, this component does not contribute to the
invariant; the integral (1) is 0.0

Remark 4.3The image of any map iﬂg(x, kG) (k > 0) must lie inG. The
construction of[ﬂg(X, kG)]VIr depends only on the first-order neighborhood of
G, SO we can computg, ;g (-) whenX = F, andG = E. WhenF; is deformed

to IFo, the class E deforms to a non-effective class, 50,6 (-) = 0.

Remark 4.4Section 2.2, Theorem 4.2, and the Remark above give an enumerative
interpretation of all genug Gromov-Witten invariants on an almost Fano surface.

5. ldentifying potential components

Fix D, g, @, 8, and letg be any point off notin{g,}. Let H, be the Weil divisor
onV2:8(Q, B) corresponding to maps whose image contaim this section, we
will derive a list of subvarieties (call themotential componen}sn which each
component off, of intersection dimensioif — 1 appears. We will see in the next
section that each potential component actually appeat in
The potential components come in two classes. First, one of the “moving tan-
gencies’r; ; could map tgg. Call such componeni®ype | potential components
Second, the image could degenerate to conkaas a component. Call such
componentsType Il potential component&or any sequencg > 0 and subset
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§” C § (inducingQ” C Q), letg” = g — |y| + 1. Define the Type Il component
K(Q" C Q,B,y) as the closure inV, 5(X, D)’ of points representing maps
7:C'UC” — X where

K1. the curveC’ maps isomorphically t&, and contains the poinfg, }ycs\ s,

K2. the curveC” is smooth, each component maps birationally onto its image,
and there exist distinat ; € C” (1 < j < gi)andy ; € C" (1< j <)
such that

w(ps)=qs and (xlc)*(E)= Y mgpy+ Y irij+ Y iti),

s"eS”

K3. the intersection of the curve® andC” is {1; ;}; j, and
K4. the pointsgy (s’ € S\ S”) are distinct.

The stackK (Q” C ,B,y) is empty unles)_ gmy + I(B + y) =
(D —E)- E.Thegenus o€” is g”, and there is a degre{é?’) rational map

K@@' CQ By) - VPR Q@ B+y)
corresponding to “forgetting the cureg”.

Theorem 5.1.Let K be an irreducible component &f, with intersection dimen-
sionY — 1. Then

I. K is a component oF 2-4(Q, B — ex), whereQ' = Q U {(q, k)}, or
Il. K is a component ok (2" C Q, 8, y) for somey andQ”.

This is the analogue of [CH3] Theorem 1.2. The approach is the same.

Proof. Let (Co, {ps}, mo) be the map corresponding to a general poinkof
Let
IM: (C,{ps}) — X x B

N v
B

be a smooth irreducible one-parameter family of pointed quasi-stable maps (with
total spaceC) with point 0 € B and an isomorphism of the fiber over 0 with
(Co, {ps}, o), such that the image of the induced map—> ﬂg,m(x, D)’ lies
in vP:8(Q, B), but not inK . The total space of the familg is a surface, so the
pullback of the divisoIE to this family has pure dimension 1. The components of
I11E not contained in a fibeg, (r € B) must intersect the general fiber and thus
be the sectiong, or multisections coming from the ; Thereform0 E consists
of components of® and points that are limits of thﬁs orr; ;. In particular:

(*) The number of zero-dimensional components@f‘E not mapped to any
gs is at most 8|, and

(**) Ifthere are exactlyg| such components, the multiplicitiesaf E at these
points must be given by the sequerftce
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Case | If C contains no components mappingAothen

JTékE=Ziai,j+Zibi’j

where{q; ;}; ; are the points mapped {@;};es U {¢}, {b;,;} are the rest, and the
second sumis over al] 1 < j < g/ for some sequengg. By (*), |8'| < 8| — 1.
Then by Proposition 3.4,

idmK < —(Kx+E)-D+|8|+g—1
—(Kx+E)-D+|Bl—1+g—1
=T -1

IA

Equality must hold, s¢8’| = || — 1 andK is of the formV 2-4(Q, B — ¢;) for
some’, k. The selno‘lE consists of S| + | 8| points { ps}, the preimage of, and
{b; ;}). This is also true oft ~1E for a general magC, =) in VP-8(2, B), so the
multiplicities at these points must be the same as for the general mag;(Eehas
multiplicity m; at p,, etc.) soK must be as described in |.

Casell If otherwise a component &f maps toE, assume first that no components
of C are contracted to a point d&f. SayC = C’ U C” where(’ is the union of
irreducible components af mapping toE andC” is the union of the remaining
components. Define: by no,[C'] = mE, song[C"] = D — mE. Lets =
#C' NC).

Thenp,(C') > 1—m, so

Pa(C")=g—Pa(C/)+1—S <g+m-—sy.

Assume(mo|c)*E =) ia; j+ Y ib; j Wheren (a; ;) are fixed points oF asC”
varies (agC, ) varies inK), and the second sum is over alind 1< j < g for
some sequenc®’. By (*), |87 < |B| + s.

There is an open substaék C K (containing 0) such that the universal map
overU may be written

m: Cul’,{psh) — XxU

N v
U

where for allz € U, I1,(C;) C E, andI1,(C;") has no component mapping &
and the fiber over 0 has the given isomorphism Wi, {p;}, 70). Let K’ be the
family (C”, I1|¢»). By Proposition 3.4 (applied to the family’):

idim K = idim K’

< —(Kx +E)-(D—mE)+|B"| + pa(C") = 1
<(—(Kx+E)-D-2m)+ (Bl +s)+(g+m—s)—1
=(-Kx+E) -D+|fl+g-D—-1-(m—-1)
=T—-1—-(m-1)

<T-1 (5)

A
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In the third line, we used properBL1. E is rational, sdKx + E) - E = —2.

Equality must hold, sex = 1 and|8”| = |B| + s. By (**), the multiplicity of
n§ E at the|B| points of C” notinC" U {nglqs} is given by the sequenge Lety
be the sequence given by the multiplicities(af|c~)*E at thes pointsC’ N C”.
DefineS” ¢ Sby S” = {s” € S|py» € C"} (inducing” C 2). The remaining
zero-dimensional components mglE (aside from thgg| pointsr; ;) must be
{ps7}s7es7, and the multiplicity otz E' at p,» must bem .

Suppose the poimte E appears iif2 exactlyn times, say;;, = rforl <s < n.
Forageneral maf, =) in V2-2(Q, B), 7 ~1(z) isalength: subscheme, supported
at{ps}1<s<n. Inthislimit, the mapro|cr — E'is animmersion, s@ro|c) ~1(r) has
length 1. Thus at most one of thig,}1<s<, can lie onC’. ThusK is a component
of K(Q" c @, B, y) for someQR” andy .

Finally, if a component of” is contracted to a point of, follow the same
argument but discard the contracted components (so the new source curve has
arithmetic genug’ < g, andg;, defined to be the number of; on the new source
curve, is at mosg;). Then at (5), we have

idimK <128 ) -1 <1P8p) -1
Hence suctK are enumeratively irrelevant.c

There are other (enumeratively irrelevant) components of the diviganot
counted in Theorem 5.1. For example, supp&ise- P? and E is a line L, and
g1 and g are distinct points ofe. If D = 2L, ¢ = 0, Q = {(q1, D), (g2, D},
B = 0, thenV?-8(Q, B) is a three-dimensional family (generically) parametriz-
ing conics through 2 fixed pointg, g2 of L. One component ofl, (generically)
parametrizes a line uniai; this is a Type |l potential component. The other (gener-
ically) parametrizes degree 2 maps frihto L; it has intersection dimension 0.

Remark 5.2Theorem 5.1 also describes component&lpon V-8 (Q, g)con.

6. Multiplicities and recursions

We next compute the multiplicities df, along each componetk described in
Theorem 5.1.

6.1. Type | components

Proposition 6.1. The componenk = V2:¢(Q/, B — e;) appears with multiplic-
ity k.

The proof is essentially that of the analogous proposition in [CH3] (Theo-
rem 1.3a, Proposition 4.5, Subsect. 4.3). Only one minor change is necessary:
consider the natural map

o VP8, p) --»

Ok (Z i/3i)
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that is a morphism where the divisaRs = {r; j}1<;<g; are defined (with; ; asin
the definition ofvV 2-¢(Q2, B)), given by

C,m) > Zin(Ri).

Then [CH3] Lemma 4.6 should be replaced by:
Lemma 6.2.The differentialio is surjective at a general point & .

The proof is essentially the same.

6.2. Type Il components

6.2.1. Versal deformation spaces of tachodegle first recall facts about versal
deformation spaces from tacnodes, following [CH1] and [CH3] Section 4. Let
(C, p) be anm™ order tacnode, that is, a curve singularity equivalent to the origin
in the plane curve given by the equatip(y + x™) = 0.

The miniversal deformation space(@, p) is an étale neighborhood of the ori-
ginin A2*~1with co-ordinatesyo, . . ., a,—2, andby, . . ., b,,_1, and the “universal
curve”w : S — A is given by

Y2+ yx™ +agy +arxy + - - -+ am_2x™ 2y + bo + bix + - - -+ by_1x™ 1 = 0.

There are two loci imA of interest to us. Let\,, C A be the closure of the locus
representing a curve with nodes. Itis smooth of dimensien—1, and corresponds
to locally reducible curves. Let,,_1 C A be the closure of the locus representing
a curve withm — 1 nodes. It is irreducible of dimensian, smooth away from,,,
with m sheets ofA,,,_1 crossing transversely at a general poingf.

Letmy, mp, ... be any finite sequence of positive integers, anddst p;) be
an (m ;)" order tacnode. Denote the versal deformation spac€ afp;) by A},
and leta; -2, ... ,a;0,bjm;-1, ..., bjobe coordinates on ; as above. For
eachj, letA;,,; andA;,,;—1 C A; be as above the closures of locidy over
which the fibers ofr; havem ; andm ; — 1 nodes respectively. Set

A=A1 X Ao x ...,

A = ALy X Doy X ...,

A1 =A1m—1 X A2 pp—1 X ...

Note thatA, A, andA,,_1 have dimension3_(2m; — 1), ) (m; —1) and)_m;
respectively.

Let W C A be a smooth subvariety of dimensidn(m ; — 1) + 1, containing
the linear space\,,. Suppose that the tangent planelitois not contained in the
union of hyperplanes;{b; 0 = 0} C A. Letk :=[[m;/lcm(m;). Then:
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Lemma 6.3.With the hypotheses above, in an étale neighborhood of the origin in
Ay

WNA_1=A,Ul'tUl2U... Ul

wherel'y, ..., [, € W are distinct reduced unibranch curves having intersection
multiplicity exactlylcm(m ;) with A,, at the origin.

This lemma arose in conversations with J. Harris, and appears (with proof) as
part of [CH3] Lemma 4.3. Results of a similar flavor appear in [V1] Sect. 1 and
[V3] Sect. 2.5, although the proofs are different.

6.2.2. Calculating the multiplicity. Suppose&K = K (" C 2, 8,y) isaTypell
component off, (on vD-2(Q, B)). Letmy, ... , m|,| be a set of positive integers
with j appearing/; times (j =1, 2,... ),s0)_m; = Iy.

Proposition 6.4.The multiplicity ofH, alongK ismy...m, = IV.

The proof of this proposition will occupy us until Sect. 6.3.

Fix general pointsy, ... , sy_1 on X, and letH; be the divisor oV ?-¢(Q, B)
corresponding to requiring the image curve to pass threudy Sard’s Theorem,
the intersection o¥/ 2-2 (2, B) with N; H; is a curveV and the intersection of
with N; H; is a finite set of points (non-empty &S has intersection dimension
T — 1). Choose a pointC, =) of K N H1 N --- N Hy_1. The multiplicity of H,
alongk on V?:8(Q, ) is the multiplicity of H, at the point(C, ) on the curve
V.

For such(C, ) in K (" C @, B, y) there are unique choices of poirjis ;}
on C (up to permutations off; ;} for fixed ).

Define the magC, 7) as follows:C = X factors through
c>e¢ix

wherev is a homeomorphism (a seminormalization) @&nd locally an immersion.
Each node ot is mapped to a tacnode (of some order{ofandv : C — Cis a
partial normalization. Then has arithmetic genug:= g+ > (m; —1).
Let Def(C, 7) be the deformations dfC, 77) preserving the incidences tg,
., sv—1 and the tangencies ® (T*E = ) mgps + Y _iri j, T(ps) = gs). FOr
convenience, leVv := Né/x(_ Y mgps — > (i — Drij).

Lemma 6.5.The spacd®ef(C, 7) is smooth of dimensiop_ (m; — 1) + 1.

Proof. We will show the equivalent result: the vector space of first-order deforma-
tions of(C, ) preserving the tangency conditions (but not necessarily the incidence
conditionssy, ... , sy—1) has dimension’ + ) (m; — 1), and is unobstructed.

As (C, ) is animmersion, IeNé/X = Ox(—7*Kx + K ) be the normal bun-
dle tosr. By propertyP3, ast*(Kx + E — ) _ r; ;) is negative on every component
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of C,h}(C,N)=0so0

h(C, N) = (C‘,Né/x (—stps — Z(i —1)ri,j)>
=deg#*(~Kx — E+ ) _rij) +degks — g +1
= —(Kx+E) - D+|pl+§—1
= —(Kx+E) D+ |Bl+g+) (mi—1)—1

= T—i—Z(m,- - 1.

Thus there ar& + ) (m; — 1) first-order deformations, and a8C,N)=0 they
are unobstructed. o

By the proof of the above lemma{°(C, N) is naturally the tangent space to
Def(C, 7). Now —K x restricted taC’ has degre& x - E = 2+ E2; K restricted
to C’ has degreéy — 2, which is(degK ) plus the length of the scheme-theoretic
intersection ofC’ andC”. Therefore

degN|c =2+ E>+1y —2— > my

s'eS\§”
=D-E—(D—E)-E+1y— Z my
s'eS\S”
—(Zmeip) - (T motipriv)+ir- ¥ m
seS s"eS” s'eS\S”
=0

so the restriction ofV to C’ is the trivial line pundle. y
Also, ifpisageneral point o8 thenk®(C, N(—p)) = h°(C, N) — 1. (Proof:
From aboves!(C, N) = 0. By the same argument, as d&€g + E)|p = —2,
7*(Kx+E—)_r; j+p)isnegative on everycomponent@fsohl(c N(=p)) =
0.Thush®(C, N(—p))—h%C, N) = x(C, N(—p))—x(C, N) = —1.) Thus there
is a section ofV that is nonzero qn?’.
Let 7 be the Jacobian ideal ¢f. In an étale neighborhood of t€, ), there
are natural maps
v & Def(C.7) > A
where the differential of is given by the natural map
HY(C,N) - H%C,N ® (0z/ ). (6)
Lemma 6.6.In a neighborhood of the origin, the morphism
o :Def(C,7) »> A

is an immersion, and the tangent spacesi®ef(C, 7)) containsA,, and is not
contained in the union of hyperplanes{b; o = 0}.
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Proof. From (6), the Zariski tangent space to the divist(b; o = 0) is a subspace
Z of H%(C, N) vanishing at a point of’ (the j" tacnode). ButV|¢ is a trivial
bundle, so this subspace of sectidgfignust vanish on all of”’. As there is a
section ofN that is non-zero orC’, Z has dimension at mo&(C, N) — 1 =
dim Def(C, ) — 1. This proves that is an immersion, and that the tangent space
to o (Def(C, 7)) is not contained iffb; o = 0}.

Finally, if S is the divisor (on DefC, 7)) corresponding to requiring the image
curve to pass through a fixed general pointFgftheno (S) C A,,, as the image
curve must be reducible. Asis an immersion,

> (mi — 1) = dimDef(C, #) — 1
=dimS
= dima(S)
<dimA,, (7)

= Z(Wli -1

so we must have equality at (7), and the linear spage= o () is contained in
o (Def(C, 7)), and thus in the tangent spacestef(C, 7)). O

Therefore the image (Def(C, 7)) satisfies the hypotheses of Lemma 6.3, so
the closure of the inverse image 1 (A,,_1\ A,,) will have[]m;/lcm(m;) reduced
branches, each having intersection multiplicity lem) with ¢ ~1(A,,) and hence
with the hyperplaneH,. Since in a neighborhood aC, ) the varietyV is a

curve birational witho (V) = 6=1(A,,_1 \ A,), we conclude that the divisdi,
containsk (" C ©, B, y) with multiplicity mq - --my,| = I7.

This completes the proof of Proposition 6.4. As an added benefit, we see that
vD-2(Q, B) hasI”/lcm(y) branches at a general point &f(Q” C Q, 8, y),
where lcn(y) is the least common multiple of the se€iff; # 0}.

6.3. Recursions

Theorem 5.1 and Propositions 6.1 and 6.4 give a rational equivalence between
H, and a linear combination of boundary components. Intersecting this equiv-
alence withH ™1 yields the following recursion (the generalization of [CH3]
Theorem 1.1).

Theorem 6.7.1f T = dimV?:¢(Q, B) > 0,
,3+]/ _ ”
NP8(Q, ) =) kNPS(Q, B —er) + IV( >ND E&"(Q" B+ )
P Xk: p k Z B B+vy

where

e inthe first sumQ’ = Q U {(q, k)}, and
e the second sum runs over choicgscC S such that the point§y}ycs\ s are
distinct, andy > 0; also,g” := ¢ — |y| + 1.
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By considering divisors only oV ?-£(2, g)°", we get a recursion for ir-
reducible curves. The proof is identical, except that rather than considering all
maps, we just consider maps from connected curves. The Type | components that
can appear are analogous. The Type Il components consist of maps from curves
C =C()U---UC() whereC(0) maps isomorphically t&, andC (i) intersects
C(j)ifandonlyifij = 0. (In the general case Theorem &(j) intersected” ()
onlyifij =0.)

Theorem 6.8.1f T = dim V2-¢(Q, B)°°" > 0, then

ND g(Q ﬂ)con ZkND g(Q/ ﬂ _ ek)COﬂ

TPs(p) —1
t2; (T'ﬂ#(ﬁl), LD (ﬁl))
! i i o o
. l—[ <ﬂ —i_ly )Iﬂl—leDl,gl(Ql" ﬂl + yi)con
i=1 p
(cf. [CH3] Sect. 1.4) where

e in the first sumQ’ = Q U {(¢, k)}, and
o the second sum runs over choiced®f g, @', g, y' (1 <i <1I) where
— D' is a divisor class (with_ D' = D — E),
— g' is a non-negative integer,
— B! andy' are sequences of non-negative integers (Withs’ = 8, y' # 0),
-1 c  (with\ [ [ 2 consisting of distinct pointy,}), and
— o is the order of the symmetry group of the g@b’, g', @', 8%, y")}1<i<-

6.4. Theorems 6.7 and 6.8 as differential equations, following Getzler

Assemble the enumerative invariants (in the case whgteare general) in a gen-
erating function

D.g D, g1 (X" 8 z¥
G:DgZ;ﬁN ’ (a,,B)v w (;)y <?>
(wherew andz are variablesy = (x1, x2,...), y = (y1,y2,...),and
{UD}D effective DAE

generates a semigroup algebra, the Novikov ring). Then Theorem 6.7 is equivalent
to the differential equation

—k k8
(Z )’k— + —res_ P 3>‘k)> G. (8)

The corresponding observation for the plane is due to Getzler ([Gel] Sect. 5.3), and
nothing essentially new is involved here, although the notation is slightly different
from Getzler’s.
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Define the generating function

T

_q [ x¢ Z
Girr = Z NP8 (@, gy st (J) yP <?) .

D.g,a,pB

Then by a simple combinatorial argument (see e.g. W] Chapte6 3% ¢Cir.
Substituting this into (8) yields a differential equation satisfiedsy:

Girr .
dz

3t x4+ Girr | &) —Girr

Vi Vi Hew

d vE
ZkYk—Girr + —res—ge ()]
0Xy w
whereGirr |y, ., y, 4w ISthe same aSir excepty, has been replaced loyi +kw).
(Once again, this should be compared with Getzler's formula [Gel], p. 993.)

7. Application: Caporaso—Harris revisited

If X = P? andE is a line, Theorem 6.7 applied when thg} are distinct points

is the recursion of Caporaso and Harris ([CH3] Sect. 1.4). A minor additional

observation: by inductiony?-¢(Q, g) is independent of the poin{g,} (so long

as they are distinct). This is true of the applications in the next two sections as well.
Computationally, it is simpler to apply Theorem 6.7 when{idag are distinct.

It is always possible to reduce a more complicated enumerative problem to this

case. For example,

Lemma 7.1.Supposs; € E, s; ¢ {¢gs} (i =1, 2, 3), s; distinct. Then

NP2(QU{(s1. D), (s1. D}, B) = NP2(QU {(s1, 1), (s2. D}, B)
— NP2(QU{(s1.2)}. B).
NP8(QU{(s1. D), (51, D, (51, D}, B) = NP B(Q U {(s1. 1), (52, D), (s3, D)}, B)
—3NP#(QU {(s1. 1), (52,2}, B)
+2NP8(Q U {(s1, 3)}, B).

This tells us how to reduce the conditions of a double or triple poinEdn
tangency conditionsWarning:the left side counts curves with multiple points with
labelledbranches at the-fold point; to forget the labelling, one must divide hy)
There are analogous expressions for all other cases where apomE appears
multiply in {g,}. The result still holds whei ?-¢(., .) is replaced byv 2., .)¢o",
The lemma can be proved by induction (@reandg) using Theorem 6.7.

8. Application: Counting curves on Hirzebruch surfaces

Theorems 6.7 and 6.8 count curves of any genus in any divisor cl&ss®he “seed
data” necessary are the cases whetes (2, ) = dimV?:¢(Q, g) = 0. It can be
easily checked (using Theorem 3.1) that the only non-eigty (2, 8)°°"where
Y =0hasD = F,g =0,Q2 = {(pt, 1)}, B = 0; in this caseN 28 (Q, p)°" = 1.
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Hence the only non-empfiy?-¢ (2, ) whereY = 0 has (for some integér> 0)
D=kF,g=1—k,|S|=k,my;=1foralls € S, and|8| = 0. In this case, it
is the order of the symmetry group of the §¢t},

NP&(Q, ) = dedVP4(Q, B)] = %

The following proposition shows that if the poirfis } are distinct N> (2, )
counts nodal curves.

Proposition 8.1.1f X = F,,, the{p,} are distinct, and C, ) is a general curve in
a component o¥ 2-2(Q, B), thenz (C) has at most nodes as singularities.

The proof is easily adapted from that of [CH3] Prop. 2.2 a), and is omitted.

Warning: The proof requires more than propertds—P4. The following ex-
ample shows that the result does not hold for euéfyE) satisfying properties
P1-P4. Let X = P2 andE be a smooth conic (see the next Section). Choose six
distinct pointsa, ..., f on E such that the linesb, c¢d, andef meet at a point.
Thenif L is the class of a line,

yP=8L.8==2(Q = ((a, 1), ..., (f, 1)}, B =0)

consists of a finite number of maps, one of which is the map sending three disjoint
PYs to the linesab, cd, andef .

8.1. Higher genus Gromov-Witten invariants of Hirzebruch surfaces

SupposeX is Fg or F1. As X is Fano, the higher genus Gromov—Witten invariants
are enumerative (Section 4), so for fixgdD £ 0, if y is the class of a point, then
invariant

—Kx-D+g— ) _ { g,0 if (X, D) = (IF1, E)

I p(y NP8, (D - E)e)®°" otherwise

can be recursively calculated by Theorem 6.8FAds deformation-equivalent to
Fo if n is even, o1 if n is odd ([N] p. 9-10), this computes the invariantsatif
F,,.

8.2. Curves irffs in terms of curves if¥g

Let Ng (aS + bF) be the number of irreducible genggurves in clasaS + b F
throug'ﬁ the appropriate number of points. Abramovich and Bertram have proved

a—1 .
b+2
Ng @S+ (a+b)F) = Z( + ’>N§2(as+bF—iE). (ABO)
1
i=0
by degeneratinj> toFg (so the clasa S+ (a+b) F onFp degenerates toS+b F on
F2, [AB1]). Graber has given another proof ([G] Sect. 3.5). From Sect. 4, computing
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Table 1.Number of genug curves in class 2+ kF onF,

Fo Fq Fo Fa Fq
28 0:1 1:1 2:1 31
0:10 1:17 2:24
0: 69 1:177
0: 406
2S+F 0:1 11 2:1 31
0:12 1: 20 2:28
0: 102 (93) | 1:246 (234)
0: 781 (594)
28 4+ 2F 1:1 2:1 31
0:12 1:20 2:28
0:105 (96) | 1: 252 (240)
0: 856 (636)
28+ 3F 2:1 3:1
1:20 2:28
0: 105 (96) | 1: 252 (240)
0: 860 (640)
25 +4AF 3:1
2:28
1: 252 (240)
0: 860 (640)

the invariants off'; in two ways (by deforming td&o, and by Theorem 4.2), this
formula generalizes to higher genus:

S (b+2
Ngo(as+(a+b)F)=Z( l_ >N]§2(a5+bF—iE).
i=0

8.3. Examples

Table 1 gives the number of gengicurves in certain classes on certéin The
number preceding the colons in the table is the genu&/here the number of
irreducible curves is different, it is given in parentheses. Tables 2 and 3 give more
examples; only the total number is given, although the number of irreducible curves
could also be easily computed (using Theorem 6.8). Many of these numbers were
computed by a maple program written by L. Géttsche to implement the algorithm
of Theorem 6.7.

As an example of the algorithm in action, we calculat&®1(%, 0) = 225 on
F1. (This is also the number of two-nodal elliptic plane quartics through 11 fixed
general points.) There are a finite number of such elliptic curves through 11 fixed
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Table 2. Number of (possibly reducible) gengscurves in various classes @i

Class Genus Number Class Genus Number Class Genus Number
38 -2 15 [|3§5+2F O 22647 |3S+3F 0 642434
-1 21 1 14204 1 577430
0 12 2 4249 2 291612
1 1 3 615 3 83057
3S+F O 675 4 41 4 13405
1 225 5 1 5 1200
2 27 6 55
3 1 7 1

Table 3.Number of (possibly reducible) gengscurves in class 8 onFo

Genus -2 -1 0 1 2 314
Number | 280 | 1200 | 2397 | 1440 | 340 | 32 | 1

general points offf'1. We calculate the number by specializing the fixed points to
lie on E one at a time, and following what happens to the finite number of curves.
The divisorE is represented by the horizontal dotted line, and fixed poin#s on
are represented by fat dots. Part of the figure, the calculatioVthat?"-0 (¢, 2¢1)
= 105, has been omitted.
After the first specialization, the curve must cont&inReason: As4- E = 0,
any representative oficontaining a point o must contain all of.) The residual
curve isin class 8+ F. Theorem 6.7 gives

N4S’1(@, 0 = N3S+F’1(@, e1).

After specializing a second poigtto lie on E, two things could happen to
the elliptic curve. First, the limit curve could remain smooth, and pass through the
fixed pointg of E. This will happerW35+F-1({(¢, 1)}, 0) times. Second, the curve
could containE. Then the residual curv€’ is in class & + 2F, and is a nodal
curve intersecting at two distinct points. Of the two nodes of the original curve
C, one goes to the node 6f, and the other tends to one of the intersectio of
with E. The choice of the two possible limits of the node gives a multiplicity of 2
(indicated by the %2" in the figure). Theorem 6.7 gives

1\/3.S'+F,:|.(®7 6‘1) — N3S+F,1({(q’ 1)}’ 0) + 2N25+2F’1(V), 2@1)-

The rest of the derivation is similar.
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N1, 0) =225

N3S+FL(g o) = 225

N3SHEL (pt 1)}, 0) = 185 N25+2F.1(g 2¢1) = 20

N25+2F.0(g 2¢1) = 96+ 9 = 105 N25+2F.1(g o) =30 N25T2F.1({(pt, 1)}, e1) = 20

/ /;x3

N2ST2F.1(((pt,2)},0) = 15 N25H2F1(((pr1, 1), (pra, 1)}, 0) = 17 NSH3F.0(gs, 3eq) = 1
X

NSH3FO(G o1 +ep) =4 NST3F—L(g 3e) =7

Fig. 1. Calculatingn4$-1(4, 0) = 225.

9. Application: Higher-genus Gromov-Witten invariants
of del Pezzo surfaces

In this section, we compute the higher-genus Gromov—Witten invariank of
blown up ats < 6 points. By Section 4, it suffices to count maps through various
numbers of points, i.e. compule p(y") wherey is the class of a point. I is an
exceptional curve, the invariantds o.

9.1. Thecase <5

If D # E is not an exceptional curve, then by blowing down thexceptional
divisors, the invariants count maps with fhultiple points”.

More precisely, le’ be the del Pezzo surface thaffi$ blown up ats points
g1, ..., gs (no 3 collinear). Letx = IP?, H the class of a line, anfl the smooth



78 R. Vakil

Table 4. Numbers of irreducible plane curves with fixed multiple points, or invariants of
Fano surfaces

Nl,o N2,0 N\?’,l NS,O N2370 N4,3 N4,2 N4,l N4,0 N;’z N24’1 N24!0

1 1 1 12 1 1 27 225 620 1 20 96

4,1 4,0 4,0 4,0 5,6 55 54 53 52 51 50
Nygt NjsY Nygo Ny N®6 NS5 NS4 NSSy N N

1 12 1 1 1 48 882 7915 36855 87192 87304

55 54 .53 52 51 50
Ny™ Ny Ny™ Ny Npy™ N;

1 41 615 4235 13775 18132

54 53 52 51 50 5,3 5,2 51 50
N22 N22 N22 N22 N22 N23 N23 N23 N23

1 34 396 1887 3510 1 27 225 620

52 51 50 51 50 53 52 51 50
N3Z Nyt Noi® Nyt Ny N3©° Ng# Ngt Ag

1 20 96 1 12 1 28 240 640

52 51 5,0 51 50 50
N33 N3p N3 Nyp N3p Ny

1 20 96 1 12 1 1

50
Ny

conic throughys, ..., g5. ThenifdH — )" fiE; # Ej,
Lpan-y (/") = N8(Q, (2d = Y fi)er)

whereS2 consists off; copies of(g;, 1) (1 < i < s) andn = idim V47:8(Q, (2d —
> fi)e1) is the appropriate number of point conditions.

Theorem 6.8 calculates these numbers recursively, given “seed data” of the cases
whenY = 0. It can be easily checked (using Theorem 3.1) that the only non-empty
vD:8(Q, p)"whereY = Oisthecas® = H,g = 0,Q = {(pr1, 1), (pt2, 1)} or
{(pt, 2)}, B = 0, in which caseV?-¢(Q, B)°" = 1 (there is only one line through
2 distinct fixed points of a conic, and only one line tangent to a conic at a fixed
point). Theorem 6.7 counts maps from reducible curves, of course. Lemma 7.1
applies here as well, and can be used to simplify calculations.

9.1.1. Examples. If f isthe sequencéy, ..., f, IetN}"g be the genug invari-
ant for classiH — )_ f; E;. For convenience, we indicate repetitions fpfwith
exponents, e.gvg"%z = Nggg. Then Table 4 gives values of*® for d < 5.

It is computationally more convenient to count maps of possibly disconnected
curves, and the results in Table 4 were obtained by first counting such maps and
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theninductively subtracting the maps from reducible curves. A short Maple program
computing these numbers (based on one by Goéttsche) is available from the author.
Table 5 gives all numbers of maps from possibly disconnected curves for degree 6.
We use ‘R” rather than ‘N” to remind the reader that the source may be reducible.
(The generating function for such numbers is the exponential of the Gromov-Witten
potential, see Sect. 6.4.) Note that these values need not be integral, as some such
maps have nontrivial automorphisms.

9.2. The cubic surface,= 6

By deformation-invariance of Gromov-Witten invariants, we can compute the in-
variants on the surfack that isP? blown up along 6 distinct poinig, .. . , gs On

a smooth conic. If G is the proper transform af, (X, G) is almost Fano, and

we can use Theorem 4.2 to compute the invariangs by counting curves. This is

the same as counting irreducible curve®#with fixed multiple points ags, . . . ,

ge and through an appropriate number of other fixed general points, which we can
do using Theorem 6.8 applied (82, C).

As an example, we compute the number of rational sextic curves in the plane
with six nodes at fixed pointg, ... , gs, and passing through five other fixed points
p1,. .., ps, where all the points are in general position. (This is the Gromov-Witten
invariantNg’é0 of the cubic surface, see Sect. 9.1.1 for notation.) [DI] p. 119 gives
this number as 2376, while [GOP] p. 25 gives the number as 3240. Goéttsche and
Pandharipande checked their number using different recursive strategies.

By Theorem 4.2, this invariant is the sum of three contributions.

1. Those (irreducible) rational sextics with six fixed nodes. .. , g lying on a
conic, passing througps, ... , ps. By Theorem 6.8 (and some computation),
this number is 2002.

2. A stable mapr : C — P? whereC has two irreducible rational components
Cp and (1 joined at one pointg mapsC; isomorphically toE, andz maps
Co to an irreducible rational quartic through, . .. , g¢ (which lie on a conic)
and p1, ..., ps. The image of the nod€y N C; is one of the two points
7(Co) N E\ {q1, ..., qgs}. By Theorem 6.8, there are 616 such quartics. There
are two choices for the image of the na@gn C1, so the contribution is 1232.

3. Astable mapr : C — P2 whereC has three irreducible rational components
Co, C1, C2, whereC; andC; interseciCyp, 7 mapsC1 andC, isomorphically to
E, andz mapsCo isomorphically to the conic througpy, ... , ps. There are
12 choices of pairs of images of the nod&sN C1 andCgo N C2, and we must
divide by 2 as exchanging; andC» preserves the stable map. This contribution
is 6.

ThereforeNéJ 6 = 2002+ 1232+ 6 = 3240, in agreement with [GGP].

9.3. An approach for the two remaining del Pezzo surfaces

To count curves oi?? blown up ats = 7 or 8 general pointgy, ... , g5, One
might want to degenerate point conditions to lie on a fixed smooth diitficough
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the s points. Although the surfacé®?, E) does not satisfP1—P4., many of the
arguments carry through without change. Probably the most significant problem
is the calculation of “seed data”, i.e. counting maps whiea- 0. One can check
that this corresponds to counting maps from degteational curves td? with
intersection withE specified by(€2, 8) with 8 = ¢, (there is one “loose” tangency

r, although its position o is actually specified up to a finite number of choices by
the location of the pointg,, asOg (3} msqs + kr) = Og(d)). This can be loosely
thought of as “counting rational curves on a log K3 surface”, and hence potentially
related to [YZ].

10. Earlier results

There has been a great deal of earlier work on counting curves on Hirzebruch or
Fano surfaces, and this is only a partial, brief sketch. Undoubtedly some important
work has been missed.

10.1 The surface®?, Fo andF1 are convex, so the ideas of [KM] allow one to
count (irreducible) rational curves in all divisor classes on these surfaces (see [DI]
for further discussion). Di Francesco and ltzykson calculated the genus 0 Gromov—
Witten invariants of the plane blown up at up to six points in [DI], Sect. 3.3. Kleiman
gave recursions for all del Pezzo surfaces, andfoandF4 ([K1] Sect. 6). Ruan

and Tian gave recursive formulas for the genus 0 Gromov—-Witten invariants of Fano
surfaces, and indicated their enumerative significance ([RuT] Sect. 10). Géttsche
and Pandharipande later derived recursive formulas for the genus 0 Gromov—Witten
invariants of the plane blown up at any number of points ([GOP]).

10.2 The algorithms [CH3] and [R1] count degréegenusg plane curves, and
hence also couﬂvgl(dS) = Nﬁil((d —1)S + F) (as defined in Sect. 8.2).

10.3 Recursions for curves of any genusXn= F; were given in [R1]. The
case offy is similar and was worked out by Ran’s student Y. Choi (manuscript in
preparation). A¥, may be degenerated to a unioni®f 1 andF1 meeting along

a fiber, arguments similar to those in [R1] should count curves orFarifR2]).

10.4. Abramovich and Bertram have proved several (unpublished) formulas count-
ing irreducible rational curves in certain classesgr{[AB2]):

NR (25 +bF) =Np (2S+ (b+2F)

n-1 AB1
_Z<2(n+b)+3>(12(b+2)+<l))’ (AB1)
=\ n-1-1 2

N2 (28) = 2% (n+3) — (210 +3) (2”; 1), (AB2)
n—1
2 2
N @S+bF)=NO (2S+(b+DF) =Y ( mne )12(27 +2).
=1

(AB3)
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Their method for (ABO) (in Section 8.2) and (AB1) is to deform the surfg¢céo
F,_». For (AB2) and (AB3), they relate curves @ to curves or¥,_1.

The author has obtained the formula

Nf;n (28 + bF) = le‘nfl(zs +B+DF)

n—g—1

- J; 2 (|a| —a; - 1) (al, .lél.',an)

X(Z(n-l—b)f+2+g>12a

where the second sum is over all integgrsand sequences such thatla =
n+b— f,la| =b+ 2+ g, b < 1. This generalizes (AB3) above. The author’s
method is to specialize a single point conditionfipthen perform an elementary
transformation to turif, into F,,_1.

10.5 Caporaso and Harris (in [CH1] and [CHZ2]) obtained recursive formulas for
N]gn (aS + bF) whenn < 3, and the remarkable result thﬂgn (25) is the co-

efficientoft” in (1+1)2"*+3/(1—1)3. Coventry has generalized the “rational fibration
method” of [CH2] and found a recursive formula for the number of rational curves
in anyclass inF, ([Co]). E. Kussell has recovered the Gromov—Witten invariants
of P2 blown up at 2 points by the rational fibration method ([Ku]).

10.6 Kleiman and Piene have examined systems with a fixed nusnbienodes
([KP)]). The postulated number éfnodal curves is given (conjecturally) by a poly-
nomial. Vainsencher determined the entire polynomialsfer 6 ([Va]). Kleiman
and Piene extended his work o< 8, and gave new techniques to determine
explicit conditions on the line bundle for the formulas to be enumerative.

10.7. Graber and Pandharipande’s powerful technique of virtual localization ([GP])
can also be used to compute the Gromov-Witten invariarasyfational surface.
(Deform the rational surface so that it is a toric variety.) However, the graph-
theoretic sums involved are extremely cumbersome to calculate in practice, even
in simple cases with the aid of a computer.

Acknowledgement3 he author is especially grateful to J. Harris, A. J. de Jong, D. Abramo-
vich, and T. Graber for numerous conversations. J. Harris in particular suggested the original
motivating problem of Section 8, and his inspiration and support have been invaluable. The
author also thanks R. Pandharipande, E. Getzler, S. Kleiman, and L. Caporaso for helpful
discussions, and D. Watabe and L. Géttsche for advice and computational assistance. Part of
this work was done at the Mittag-Leffler Institute, and the author is grateful to the organizers
ofthe special yearin Quantum Cohomology for this opportunity. This research was supported
by a Sloan Dissertation Fellowship.



Counting curves on rational surfaces 83

References

[AB1] D. Abramovich and A. BertramThe formulal2 = 10+ 2 x 1 and its
generalizations: Counting rational curves dfp, preprint 1998, available at
http://math.bu.edu/people/abrmovic/papers.html

[AB2] D.Abramovich and A. Bertram: personal communication

[AC] E. Arbarello and M. CornalbaSu una congettura di PefrComment. Math. Hel-
vetici 56, 1-38 (1981)

[B] K. Behrend:Gromov-Witten invariants in algebraic geometiiyvent. Math127,
601-617 (1997)

[BF] K. Behrend and B. Fantechthe intrinsic normal condnvent. Math.128 45-88
(2997)

[BP] P. Belorousski and R. Pandharipandedescendent relation in genus &nn.
Scuola Norm. Sup. Pisa Cl. Sci. (4), to appear

[CH1] L. Caporaso and J. HarriBarameter spaces for curves on surfaces and enumer-
ation of rational curvesCompositio Math113 no. 2, 155-208 (1998)

[CH2] L. Caporaso and J. Harri€numerating rational curves: the rational fibration
method Compositio Math113 no. 2, 209-236 (1998)

[CH3] L.Caporaso and J. Harri€ounting plane curves of any genursvent. Math 131,
no. 2, 345-392 (1998)

[Co] D. Coventry: Ph. D. thesis, Oklahoma State University, 1998

[DI1] P. DiFrancesco and C. ItzyksoQuantum intersection ringén The Moduli Space
of CurvesR. Dijkgraaf, C. Faber and G. van der Geer eds., Birkhauser, 1995, pp.
81-148

[EHX] T. Eguchi, K. Hori, C. Xiong:Quantum cohomology and Virasoro algepRhys.
Lett. B402 71-80 (1997)

[FP] W. Fulton and R. Pandharipanddotes on stable maps and quantum cohomaqlogy
in Algebraic geometry Santa Cruz 1995Kollar, R. Lazarsfeld, D. Morrison eds.,
AMS: Providence, 1997

[Ga] A. GathmannGromov—Witten and degeneration invariants: Computation and enu-
merative significancaloctoral thesis, Hannover, 1998

[Gel] E. Getzlerintersection theory o1 4 and elliptic Gromov—Witten invariant.
Amer. Math. Soc10, No. 4, 973-998 (1997)

[Ge2] E. GetzlerThe Virasoro conjecture for Gromov—Witten invarigrits“Algebraic
Geometry: Hirzebruch 70", Contemp. Math. vol. 241, AMS, Providence, RI, 1999,
pp. 147-176

[G6P] L. Géttsche and R. Pandharipand@iae quantum cohomology of blow-upsPsf
and enumerative geometrd. Diff. Geo.48, no. 1, 61-90 (1998)

[G6] L. GottscheA conjectural generating function for numbers of curves on surfaces
Comm. Math. Phys196, 523-533 (1998)

[GP] T. Graber and R. Pandharipantlecalization of virtual classe$nvent. Math 135,
no. 2, 487-518 (1999) and math.AG/9708001

[G] T. Graber:Enumerative geometry of hyperelliptic plane curveseprint 1998,
math.AG/9808084, submitted for publication

[1Pa] E.-N. lonel and T. ParkeGromov—Witten invariants of symplectic syriviath.
Res. Lett5, no. 5, 563-576 (1998) and math.SG/9806013

[K1] S. Kleiman: Applications ofQ H* to enumerative geometrin Quantum Coho-

mology at the Mittag-Leffler Institute 1996-1997 (First Semestriluffi ed.,
available at http://www.math.fsu.edu/"aluffi/eprint.archive.html, paper 97-01



84 R. Vakil

[KP] S. Kleiman and R. Pien&numerating singular curves on surfaces“Algebraic
Geometry: Hirzebruch 70", Contemp. Math. vol. 241, AMS, Providence, RI, 1999,
pp. 209-238

[KM] M. Kontsevich and Y. ManinGromov—Witten classes, quantum cohomology, and
enumerative geometr¢omm. Math. Physl64, no. 3, 525-562 (1994)

[Ku] E. Kussell: Counting rational curves on blow-ups BP, senior thesis, Harvard
College, 1997

[LiIT]  J.Liand G. Tian:Virtual moduli cycles and Gromov—-Witten invariants of algebraic
varieties J. Amer. Math. Socll, no. 1, 119-174 (1998)

[LiRu] A.-M.LiandY.Ruan:Symplectic surgery and Gromov-Witten invariants of Calabi-
Yau 3-folds | preprint 1998, math.AG/9803036 v3

[LiuT] X. Liuand G. Tian:Virasoro constraints for quantum cohomologyDiff. Geom.
50, no. 3, 537-590 (1998)

[N] M. Namba: Families of Meromorphic Functions on Compact Riemann Surfaces
Springer-Verlag LNM 767, 1970

[R1] Z.Ran:Enumerative geometry of singular plane curdesent. Math97, 447—465
(1989)

[R2] Z. Ran: personal communication

[Ru] Y. Ruan:Surgery, quantum cohomology and birational geometreprint 1998,
math.AG/9810039, to appear in Berkeley-Stanford-Santa Cruz symplectic geom-
etry conference proceedings

[RuT] Y. Ruan and G. TianA mathematical theory of quantum cohomology Diff.
Geom .42, 259-367 (1995)

[Va] I. VainsencherEnumeration of:-fold tangent hyperplanes to a surfack Alg.
Geom.4, no. 3, 503-526 (1995)

[V1] R. Vakil: Enumerative geometry of rational and elliptic curves in projective space
J. Reine Angew. Math., to appear

[V2] R. Vakil: Recursions for characteristic numbers of genus one plane cuivkis
for Matematik, to appear

[V3] R. Vakil: Recursions, formulas, and graph-theoretic interpretations of ramified
coverings of the sphere by surfaces of genus 0 areprint 1998, available at
http://front.math.ucdavis.edu/math.C0/9812105, submitted for publication

W] H. Wilf: GeneratingfunctionologyAcademic Press, Inc., New York: 1990

[YZ] S.T.Yau and E. ZaslowBPS states, string duality, and nodal curves onK@clear

Phys. B471, no. 3, 503-512 (1996)



