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Abstract. We consider certain decomposition fields in extensionB,gZ) by the Carlitz
module and give formulas for their genera and numbers of rational places, suitable for
automatic computations. By extensive calculations we found some function fields which
have more rational places than the known examples of the respective genus.

1. Introduction

In the last years the interest in the maximal number of points of a curve of genus
over the finite fieldF, has vastly increased. One is interested in the number

C smooth, absolutely irreducible,
Ny(g) := max{ #C(F,) | .

projective curve of genug overlF,

On the one hand there are different upper bound®/dg). The most famous one
is the Weil-bound

Ny(g) <q+ 1+ 28/q].

On the other hand for every pajg, g) one can get a lower bound fo¥, (g) by
constructing a curve of gengsoverF, with enough rational points. An overview

of the different methods is given in [GV0OQ]. There the authors give tables for
g = 2,4,8,16, 32,64,128 3,9,27,81 andg < 50 of the best known results

at that time. These tables are regularly updated and can be found in [GVNet]. To
construct function fields with many rational places we have used methods of type
Il in the numbering of [GVO00]. That means we used methods from class field
theory based on Drinfeld modules of rank one. Thereby we followed the strategy of
A.Kellerin [Ke01] and used her formulas on the genus of special types of function
fields. A more detailed deduction of these formulas can be found in [KeNet]. In
most cases we cannot give the exact number of rational places in our function fields
but we are able to give lower bounds.
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2. Cyclotomic extensions of K

First we introduce some notations closely following [Ke01]. pet N be a prime,
IF, a finite field with characteristip, K = IF,(Z) the rational function field irZ,
andL a finite extension oK. For a finite galois extensiol | L and a place of L,
the number of places @ overp is denoted by (p, M|L), e(p, M|L) denotes the
ramification index, and (p, M|L) the residue class degree.

Definition 2.1. Let n € F,[T] be a monic polynomial. Then there exists a unique
factorisation of n in irreducible polynomials, namely:

s
n=[1r
v=1

with s, r, inN and p, € F,[T] monic, irreducible and pairwise different polyno-
mials of degree > 1. We write for short

d, :=degpy), qv = qdu’
v n
m=plL o myi= = and  @(n) := #(Fy[T1/(n))*.
In the whole article we will not distinguish between an elemert I, [T'] and
its classf +n-F,[T1inF,[T1/(n). The correct meaning will always be clear from
the context. Note that for dég) > 2 different polynomials of degree one remain
different inF, [T/ (n).
With every polynomiah of F,[T] we associate a polynomia), € F,(Z)[X]
by the following rules:

Definition 2.2. 1. pr(X) = ZX + X4,

2. pri(X) = pr(pri-1(X)),

3. pf+g(X) = pr(X) + pg(X) forall f, g €Fy[T],
4. per(X) =c - pr(X) forall c € Fq.

We definek (n) as the splitting field op, (X) over[F,(Z) and calln the con-
ductor of the extensioi (n)|K . In other words K (n) is obtained fronf, (Z) by
adjoining then-torsion of the Carlitz-modulg (cf. [Go96, Chapter 3]). We denote
Gal(K (n), K) by G(n).

Hayes proved in [Ha74] the following fundamental theorem on the structure of
these extensions:

Theorem 2.3. 1. The extension K (n)|K is galois and abelian with Galois group
G(n) = (F4[T1/(n)*.

2.Let n = p" be a primary polynomial, then the extension K (n)/K is totally
ramifiedin p = (p) and unramified in all other finite placesq # p, q # co.

3. Let K, (n) be the fixed field of the embedding IF;‘; — (F,[T1/(n))*. Then the
place oo of K istotally splitin K (n) and any place of K1 (n) over oo istotally
ramified in the extension K (n)| K 4 (n).

4. Let n bethe product of s primary factorsinF, [T']. Then K (n) isthe compositum
of thefilds K (p}’), v =1,...,s,and all these K (p,’) arelinearly digjoint.
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5. Let O(n) betheintegral closure of F,[Z]in K (n) and x a primitive root of p,,.
Then

On) = (Fg[ZDI2] .

6. IF, isthefull constant field of K (n)|K.
Proof. In [Ha74].

Remark 2.4. The theorem shows that the splitting fields®f have many of the
properties of the cyclotomic fields ov€r. Therefore they are called)clotomic
extensions of the rational function field. The field K (n) is the analogue of the
maximal real extension d@ which is contained in the cyclotomic extension. The
integral closure?(n) could be compared with the ring of integétk;,, ] for some
primitive m-th root of unity¢,,.

In the same paper Hayes also proves the following theorem:

Theorem 2.5. Let P(T) € [F,[T] be a monic irreducible polynomial, n € Fy[T]
monic and gcd(n, P) = 1. Then the Artin symbol of the place P(Z) - Fy[Z] in
Gal(K (n), K) isthemap given by pp. So after identification of Gal(K (n), K) with
(Fy[T1/(n))* theArtinsymbol of theideal P(Z)-F,[Z]istheclass P(T)+nlF,[T].

Remark 2.6. (i) Note the use of the indeterminatésandZ in the theorem.

(i) For everya € IF; the idealsP(Z) - Fy[Z] and(a P(2)) - F,[Z] are equal. So
one could wonder why in Theorem 2i5T) + nlF,[T] and noto P(T) + nlF,[T]
corresponds taP(Z) - F,[Z]. The answer lies in Definition 2.2. If we put there
pr(X) = ZX + X7 with some fixed8 e ]F;, Theorem 2.3 would remain valid.
But in 2.5 the Artin symbol ofP(Z) - F,[Z] would bey P(T) + nF,[T] with

y € F, depending orB and P(Z). By choosing8 = 1 we get thay = 1 for all
P(2).

3. Thesubfields

We will take a closer look at some subfieldsiofr)|K . From now on we make the
following assumptions:

nmonic, degn)>2 ¢>3, gcdT?—T,n) =1

The casg = 2 was already treated in [Ke01]. We take the following six subgroups
of Gal(K (n), K):

Subgr:= {{1},(T), (T, T — 1), IFZ, (IE‘;, T),(F:, T, T —1)}.

Because of our assumptions these are actually subgrodp@:dt= (F,[T]/(n))*
andFy # {1}. For everyH € Subgr letk ()" be the corresponding subextension
of K(n)|K, S1(n, H) the set of all places (finite and infinite) &f(n)" of degree
one overk, andg (n, H) the genus ok (n)".
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4. Thegenus of the subextensions

Forn € F,[T]andH < Subgr, A. Keller gives explicit formulas for(n, H) in
[KeO1] and [KeNet]. For the convenience of the reader we will state them below.
The formulas 4.3 and 4.4 are not in [Ke01] but in [KeNet].

We use the notation of Definition 2.1. L¢te F,[T] be a monic polynomial
prime toT andT — 1. We defineG (f) := (F,[T1/f)* and

er(f) =#T)c(), er+(f) :==#T,F; )G
er,Ta(f) =#T)or) "(T-L)gp), erra(f) =#T,T-L)gp,

er,r-1+(f) =T, T-L)gp NFy,  erra+(f):=#T,T-1F; ).
and fors = 1 we pute,(m,) := 1 ande,(m,) := 1.

Genus Formula 4.1.

g (1) =1+ <p(n)< +Z—+Z %)
v=1
Genus Formula 4.2.

1 1 -2
g0 =14 —— (g(n, W -1-3 (w(n)Z —+diq - 2)))

fors =1and

g(n, IF*) =1+ L (g(n {1 —-1- —(p( )—i) fors > 1.

Genus Formula4.3.

B 1 w(n)
g(n,<T>)—l+eT(n)( (n, {1})—1—§[q_1(er+(n)—l)
+ Y @m)d, - ay(Kr (n))D
v=1
with
ry—1
er(n) — o_1 er(n) P
»(K = —14(gy—1 R e ()
av(Krm) = = —1+( )(c;q eT(mvpg)) q
Genus Formula 4.4.
w\y o, em
g(n, <T,Fq))—1+eT’+(n)(g(n {1 -1 2[q (g—-2

+ D e(my)d, -aU(KT,An))D
v=1
with

ry—1

av(Kr () = <21 (Z qs’lL(")> —q)

er, +(my) a1 et +(my,p%)
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Genus Formula 4.5.

S L 1o B
gn (T, T-1)) =1+ P (g(n, {1h-1 2|:q—1 (er,r—1.+(m)—1)
+ Y @my)d, - av<KT,T1<n)>D,

v=1
with
er,7—1(n) e er,T—1(n)
WKr o) = I gty g, — 1) 30 et LN
wKrrat) = T4 );‘“ er.7—1my p%)

Genus Formula 4.6.

1 1] ¢(n)
g(n, (T,T—l,IFZ))=1+—<g(n,{1})—1——[ (g—2)
er,7—1,4+(n) 2lg-1
S
+Y _e(m)d, - av(KT,T_1,+<n>)]),
v=1
with
er,7—1,+(n) .1 e q¢ Yerr_14+(n)
ay(Krr-1,4(n) = ——"————¢q,"  +(@ -1 Z —
er,7—1,4(my) = er,7—1,4 (my ps

5. The number of rational places
For a place of K (n)? |F,(Z) we define the placg of K as

- |pNTF,[Z], pfinite
P oo p infinite

and

N1:={p € S1(n, H) | e(p. K(n)|K) = 1,p # oo},
N2 :={p € S1(n, H) | e(p, K()|K) = 1, p = oo},
Nz :={p € S1(n, H) | e(p, K(m)|K) > 1, p # oo},
Ng:={p € S1(n, H) | e(p, K(n)|K) > 1, p = oo}.

These sets are pairwise disjoint afydn, H) decomposes into

S1(n, H) = N1 U N2 U N3 U Ng.

93
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Now we analyse the size of the séfs. Sinceq > 2 we get by Theorem 2.3 that
N> is the empty set. Furtheron we get by 2.3 and 2.5

#Ny = > [Km™ : K]
a€ly, n(x)x=q#0,(T—a)eH

=#aeF, | n(x)x=a #0, (T —a) € H}-[Km) : K]
=#aeF, | (T—a)eH} - [Km: K]

For N4 we have
#Ny = #{p e S1(n, H) | e(p, K(n)|K) > 1, p = o0}

2% #p € Sa(n, H) | p = 00)
KW K]
— e(oo, KmMIK)

which forIFj < H specializes to #4 = [K (n)" : K] by Theorem 2.3. So we get
an explicit lower bound for & (n, H).

Definition 5.1. Letn € F,[T]monic,gcd(T?~T,n) = 1,degn) > 1, H € Subgr
Then

#(N1U Ng), H= FZ, (Fz, T), (F;;, T,T-1)

r(n, H) :=

By the previous arguments we directly get the following lemma:

Lemmab.2. Let n € F,[T] monic, gcd(T2 — T, n) = 1, degn) > 1, H € Subgr
Then

[Km)# :F,(Z2)] - #la eF, | (T —a) € H},
if H={1},(T),(T, T — 1)

r(n,H) =
(K :F(2)]- L+#aeF, | (T —a) € HY),
it H=F;, (F:, T), (F;, T, T — 1)

Proof. Clear by the preceding argumentsa
In some cases we even have equality betwégenH) and #51(n, H).

Lemma5.3. Let n € F,[T] monig degn) > 1, gcd(7? — T,n) = 1, H €

{F;, (Fs, T), (F}, T, T — 1)}. Then we have
r(n, H) =#S51(n, H).

Proof. There are no zeros afin F,. So by Theorem 2.3 the sik is empty. O
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6. Results

The above formulas have been derived and written down since they are suitable
for automatic calculations. By extensive computationsgfoe 4, 8, 16, 32, 64,
3,9, 27, 5, 25 we got the following results which beat those given in [GVNet].

There are lots of symmetries in our construction and so we got the same re-
sults for quite a lot of different conductons We always give the smallest one in
lexicographical order.

Ifthere is no entry in the tables [GVNet] resp. [ShNet] for a [g&jt, g), we only
mention results that beat the Drinfeld—VIadut bound. That means that the number
of rational places is greater thgn (ﬁ — 1). This bound seems poor for small
and so we especially got many resultslfgg, because there are a lot of gaps in the
corresponding table. For some values;df; = 4, 32, 64) we didn't get any new
result.

For everyq the conductor ran through those of the lexicographically first
100 000 monic polynomials which are primeX8 — T'. The bound is quite arbi-
trary. Except forg = 25 we got our results for conductors from the first 40 000
monic polynomials.

The finite field[F, is represented aB,[u]/P with a monic, irreducibleP e
Fp[u] of degredF, : F,,]. In the tabled stands for the indekk (n)™ : Fo (D)1, ¢
for the genus(n, H), r for r(n, H), Ib gives the lower bounds ana the upper
bounds from the updated tables in [GVNet] from June 19, 2001. If the value of
meets the upper bound itis printed in bold letters. This occurs in just two cases. The
value ofr is framed ifH € {F, (]F;, T), (IF;‘;, T,T—-1}andgcdn, T7—T) = 1.

In these cases is the exact number of rational places of the subfigla)” by
Lemma 5.3.

Fy P Conductor n H I|\g|lb| r |ub
Fg |ud +u+1|T5+uT*+ (F:.T.T —1)|42|47|120| 126 |161
+T3 4+ WP+ )T+

+W?+ )T + Wl +1)
Fig|u®+u+1|T4+ T2+ w? + )T + 1| (F}. T, T — 1)| 51|50 225|| 255|291
Figlu® 4+ u +1|T* + uT3 + uT2+ (F:.T.T —1)|45|34|161| 180 |213
+u3T + (u + 1)

There are no tables for characteristic 5 in [GV00] and [GVNet]. So we have
used the tables from [ShNet].

Remark 6.1. The most time and space consuming part of the calculations was to
determine the spaff’, T — 1) < (F,[T]/(n))*. For the calculation of the genus we



96 M. Gebhardt

Table 2.
p=3
Fy P Conductor n H Iig|lb| r |ub
Fs3 - TS5 +1 (F:.T) [16]19] 28| 32 |32
F3 - rS+2r3+2r24+7+2 (F;.T) |8|8|15| 16 |18
F3 - 64+ 7242 (F:.T) |20|32| 38 48
F3 - T84+ 7447241 (F:.T) |32|49] 63 67
F3 - 79+ 27 +1 (Fi, T.T —1)|13|42| 48 59
Fg| u2+1 |T6+4+7%+72¢ (Fi.T.T —1)| 7|12| 55 63
+uT +1
Fo| w?+1 |78+ u+DT4+273+ |(F}. 7.7 —1)|20|31|101|| 120|| 127
+2uT? + (u+ 1T+
+(2u2+2u)
Fo7|ul 4+ 2u +1|T*+ T + u?+1) (F:.T) |52|50/299| 312|416
Table 3.
P=q=5
Conductor n H I|g|lb| r |ub
T44+372+2 (Fi.T) |12|8|22| 24 | 29
T4+ 273+ 2T + 4 (Fi,T) |16/ 9|26 32 | 32
TS +471%2 41 (T) 12|20| —| 36 | —
TS+ T44+2T3+ T +3 (T) 12|18 — | 24 | —
TS+374+2r34+212+ 7 +4| (F;.T) |32|29/56| 64 | 73
T®+1 (Fs,T,T —1)|16|25/52| 64 | 66
7642 (Fj.T.T — 1) | 24| 45| 88 104
T8 4+3r3 431247 +4 (F:.T.T —1)|12|19|45 54
76 +473 +1 (Fi.T.T —1)|14|26| — -
764374 4+3712 41 (Fi, T, T —1)|25/44| — | 75 | —
76 + 314+ 413+ 312 +1 (Fi.T.T — 1) |18] 22| 51|[54]| 60
764+ 75+ 273+ 472427 + 4| (F}.T.T - 1)|12|15|35 45
T7+T5+37%+3T +4 (F.T.T —1)|22|40| — |[66]| —
T7+47°+37%+ T2+ 2T + 3| (F}, T, T — 1) | 2550/ 70| 75 | 113
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Table 4.
p=5,q=25,P=u2+2
Conductor n H I g b r ub
T24+3T +u+4) (T) 24 | 9 - 72 -
T2+ (u+MT +2u (T) 24 | 11 | - 96 -
T8 4+1 (F:.7.7—1) | 48 | 19 | - 144 -
T3+ u+2) F2,7,7T-1) | 7 3 - 56 -
T3+ u+37T+2 (T) 42 | 31| — 210 -
T3+ T242T 42 (F, T) 72 | 28 | - 144 -
T34+ T2+ (u+DT + u+1) (F2.T) 16 7| — | [80] | -
T3 +4T% + (u+2)T + 2u + 1) (T, T —1) 24 | 15 | - 96 -
T3 +uT?24+T+2u (T, T —1) 24 | 14| — 96 -
T3+ (u+DT2+ Bu+3)T + u+4) (T) 48 | 39 | — 192 -
T3+ (u+1DT%2+ (4u+HT +3 (T) 18 | 16 | — 126 -
T3+ (u+2T%+ Qu+HT + (2u+1) (T, T —1) 48 | 29 | — 144 -
T3+ w+3T2+1 (T, T —1) 24 | 20 | — 120 -
T3+ u+3T2+@u+2T + (2u+1) (T, T —1) 24 | 21| - 144 -
T3+ (2u+1)T%2+ Bu+2)T + Bu+3) (T, T —1) 60 | 37 | — 240 -
T4+ 3T + (u+23) (T, T —1) 8 5 - 56 -
T+ u+HT + 3u (F:.T.7—1) | 39| 38 | — 156 -
T4 4+ 4T2 + 2u + DT + (u + 3) (T, T —1) 24 | 26 | — 120 -
T4+ uT?2+ 4 (F:.7.7—1) | 13 | 12 | 101 | 104 | 140
T4+ u+1DT2+ (2u +4) (T, T —1) 26 | 25 | — 130 -
T4+ (u+3)T? + Qu+ DT + 4 (T, T —1) 48 | 47 | — 192 -
T+ w+HT%2+ Bu+3) (T, T —1) 48 | 43 | — 240 -
T4+ u+HT? + W+ 2)T + (4u+ 4 ®;,7,7-1) | 15| 8 | — | [60] | -
T4+ Qu+1DT2+37 + Bu+1) (F2.T.T-1) | 48 | 33 | — -
T4+ Qu+3)T2+3u (T, T —1) 24 | 27 | - 120 -
T+ u+HT? + (du +2) (F. 7.7 -1 | 50 | 48 | — |[[200] | -
T4+ Qu+DT? + Qu+ DT + (4u+1) (F;, T,T—1) | 48 | 35 | — E -
T4+ (2u+ T2+ GBu+ 1T +3u (F5,7,7T—1) | 24| 18 | — | |120] | -
T4+ 273 + Qu+HT2 4+ 2u+3T + Bu+1) (T, T —1) 60 | 49 | — 240 -
T4+ 373 + T2 + 2uT + (4u + 4) (F2.T.7—1) | 48 | 41 | — E -
T4 4373+ 372+ 2uT + (u+ 1) (F:.T) 48 | 45 | — | |192] | -
T4 4373 + (2u+2)T2 + Bu+ DT + 2u (F2,T,7T—1) | 72| 46 | — 216 -

just need the cardinality dff’, T — 1), which is easy computable by # T — 1) =

% without knowing(T, T — 1) explicitly. But since we have to know the
e[ements iNT, T — 1) to calculate #a € F, | (T —a) € (T, T — 1)}, we have to

generate the subgroup anyway.

Remark 6.2. Especially the first example fdits and the second one fdk is inter-
esting, because they realize the upper bound for genus 19 resp. 9.

97
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7. Conclusion

By the Drinfeld—VIadut bound

IimsupM <Jq9-1,
g—>00 8
with equality if ¢ is a square. But by a result in [FPS92] for every sequence of
abelian extensioné.; |K);cn With lim; . o [L; : K] = oo and the same constant
field F,,
| #S51(L;) _
i—oo g(L;)

holds. Therefore, subextensions of the abelian extersian K are asymptotically

bad for the construction of curves with many rational places. But our calculations
show that in small cases émall) there is nevertheless a good chance to get inter-
esting examples.

Furthermore, the choice of our six subextensions is quite arbitrary. We chose
the subgroups generated Byand/or (T — 1) and/orIF; to make sure that the
corresponding places decompose completely in the corresponding subextensions,
which yields a good chance to get many rational places therein. Since operation
Z— aZ+pwitha € Fy, B € F, is 2-transitive on the finite rational places
of F,[Z], the choice of the two rational placdsandT — 1 is inessential. But
we could choose any other subgrouipf (IF,[T']/(n))* to get interesting results,
for example subgroups generated By’ — 1 and some other polynomials of
degree one. It is not clear which subgrodpsvould be good choices. For such a
subgroupy we would have to calculate an explicit formula for the genug ¢f)Y
(in our examples this was done by A. Keller in her master thesis) and then count
#aelF, | (T —a) e U}
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