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Abstract. We consider certain decomposition fields in extensions ofFq(Z) by the Carlitz
module and give formulas for their genera and numbers of rational places, suitable for
automatic computations. By extensive calculations we found some function fields which
have more rational places than the known examples of the respective genus.

1. Introduction

In the last years the interest in the maximal number of points of a curve of genusg

over the finite fieldFq has vastly increased. One is interested in the number

Nq(g) := max

{
#C(Fq) | C smooth, absolutely irreducible,

projective curve of genusg overFq

}
.

On the one hand there are different upper bounds forNq(g). The most famous one
is the Weil-bound

Nq(g) ≤ q + 1 + �2g
√

q�.
On the other hand for every pair(q, g) one can get a lower bound forNq(g) by
constructing a curve of genusg overFq with enough rational points. An overview
of the different methods is given in [GV00]. There the authors give tables for
q = 2, 4, 8, 16, 32, 64, 128, 3, 9, 27, 81 andg ≤ 50 of the best known results
at that time. These tables are regularly updated and can be found in [GVNet]. To
construct function fields with many rational places we have used methods of type
II in the numbering of [GV00]. That means we used methods from class field
theory based on Drinfeld modules of rank one. Thereby we followed the strategy of
A.Keller in [Ke01] and used her formulas on the genus of special types of function
fields. A more detailed deduction of these formulas can be found in [KeNet]. In
most cases we cannot give the exact number of rational places in our function fields
but we are able to give lower bounds.
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2. Cyclotomic extensions of K

First we introduce some notations closely following [Ke01]. Letp ∈ N be a prime,
Fq a finite field with characteristicp, K = Fq(Z) the rational function field inZ,
andL a finite extension ofK. For a finite galois extensionM|L and a placep of L,
the number of places ofM overp is denoted byr(p, M|L), e(p, M|L) denotes the
ramification index, andf (p, M|L) the residue class degree.

Definition 2.1. Let n ∈ Fq [T ] be a monic polynomial. Then there exists a unique
factorisation of n in irreducible polynomials, namely:

n =
s∏

ν=1

prν
ν ,

with s, rν in N and pν ∈ Fq [T ] monic, irreducible and pairwise different polyno-
mials of degree ≥ 1. We write for short

dν := deg(pν) , qν := qdν ,

nν := p
rν
ν , mν := n

nν

and ϕ(n) := #(Fq [T ]/(n))∗.

In the whole article we will not distinguish between an elementf ∈ Fq [T ] and
its classf +n ·Fq [T ] in Fq [T ]/(n). The correct meaning will always be clear from
the context. Note that for deg(n) ≥ 2 different polynomials of degree one remain
different inFq [T ]/(n).

With every polynomialn of Fq [T ] we associate a polynomialρn ∈ Fq(Z)[X]
by the following rules:

Definition 2.2. 1. ρT (X) = ZX + Xq ,
2. ρT i (X) = ρT (ρT i−1(X)),
3. ρf +g(X) = ρf (X) + ρg(X) for all f, g ∈ Fq [T ],
4. ρcT (X) = c · ρT (X) for all c ∈ Fq .

We defineK(n) as the splitting field ofρn(X) overFq(Z) and calln the con-
ductor of the extensionK(n)|K. In other words,K(n) is obtained fromFq(Z) by
adjoining then-torsion of the Carlitz-moduleρ (cf. [Go96, Chapter 3]). We denote
Gal(K(n), K) by G(n).

Hayes proved in [Ha74] the following fundamental theorem on the structure of
these extensions:

Theorem 2.3. 1. The extension K(n)|K is galois and abelian with Galois group
G(n) = (Fq [T ]/(n))∗.

2. Let n = pr be a primary polynomial, then the extension K(n)/K is totally
ramified in p = (p) and unramified in all other finite places q �= p, q �= ∞.

3. Let K+(n) be the fixed field of the embedding F∗
q ↪→ (Fq [T ]/(n))∗. Then the

place ∞ of K is totally split in K+(n) and any place of K+(n) over ∞ is totally
ramified in the extension K(n)|K+(n).

4. Let n be the product of s primary factors in Fq [T ]. Then K(n) is the compositum
of the fields K(p

rν
ν ), ν = 1, . . . , s, and all these K(p

rν
ν ) are linearly disjoint.
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5. Let O(n) be the integral closure of Fq [Z] in K(n) and λ a primitive root of ρn.
Then

O(n) = (Fq [Z])[λ] .

6. Fq is the full constant field of K(n)|K .

Proof. In [Ha74].

Remark 2.4. The theorem shows that the splitting fields ofρn have many of the
properties of the cyclotomic fields overQ. Therefore they are calledcyclotomic
extensions of the rational function field. The fieldK+(n) is the analogue of the
maximal real extension ofQ which is contained in the cyclotomic extension. The
integral closureO(n) could be compared with the ring of integersZ[ζm] for some
primitive m-th root of unityζm.

In the same paper Hayes also proves the following theorem:

Theorem 2.5. Let P(T ) ∈ Fq [T ] be a monic irreducible polynomial, n ∈ Fq [T ]
monic and gcd(n, P ) = 1. Then the Artin symbol of the place P(Z) · Fq [Z] in
Gal(K(n), K) is the map given by ρP . So after identification of Gal(K(n), K) with
(Fq [T ]/(n))∗ the Artin symbol of the ideal P(Z)·Fq [Z] is the class P(T )+nFq [T ].
Remark 2.6. (i) Note the use of the indeterminatesT andZ in the theorem.

(ii) For everyα ∈ F∗
q the idealsP(Z) · Fq [Z] and(αP (Z)) · Fq [Z] are equal. So

one could wonder why in Theorem 2.5P(T ) + nFq [T ] and notαP (T ) + nFq [T ]
corresponds toP(Z) · Fq [Z]. The answer lies in Definition 2.2. If we put there
ρT (X) = ZX + βXq with some fixedβ ∈ F∗

q , Theorem 2.3 would remain valid.
But in 2.5 the Artin symbol ofP(Z) · Fq [Z] would beγ P (T ) + nFq [T ] with
γ ∈ F∗

q depending onβ andP(Z). By choosingβ = 1 we get thatγ = 1 for all
P(Z).

3. The subfields

We will take a closer look at some subfields ofK(n)|K. From now on we make the
following assumptions:

n monic, deg(n) ≥ 2, q ≥ 3, gcd(T 2 − T , n) = 1.

The caseq = 2 was already treated in [Ke01]. We take the following six subgroups
of Gal(K(n), K):

Subgr:= {{1}, 〈T 〉, 〈T , T − 1〉, F∗
q, 〈F∗

q, T 〉, 〈F∗
q, T , T − 1〉}.

Because of our assumptions these are actually subgroups ofG(n) = (Fq [T ]/(n))∗
andF∗

q �= {1}. For everyH ∈ Subgr letK(n)H be the corresponding subextension
of K(n)|K, S1(n, H) the set of all places (finite and infinite) ofK(n)H of degree
one overK, andg(n, H) the genus ofK(n)H .
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4. The genus of the subextensions

For n ∈ Fq [T ] andH ∈ Subgr, A. Keller gives explicit formulas forg(n, H) in
[Ke01] and [KeNet]. For the convenience of the reader we will state them below.
The formulas 4.3 and 4.4 are not in [Ke01] but in [KeNet].

We use the notation of Definition 2.1. Letf ∈ Fq [T ] be a monic polynomial
prime toT andT − 1. We defineG(f ) := (Fq [T ]/f )∗ and

eT (f ) := #〈 T 〉G(f ), eT ,+(f ) := #〈 T , F∗
q 〉G(f ),

ẽT ,T−1(f ) := #〈 T 〉G(f ) ∩ 〈 T −1 〉G(f ), eT ,T−1(f ) := #〈 T , T −1 〉G(f ),

ẽT ,T−1,+(f ) := #〈 T , T −1 〉G(f ) ∩ F∗
q, eT ,T−1,+(f ) := #〈 T , T −1, F∗

q 〉G(f ),

and fors = 1 we putẽ∗(mν) := 1 ande∗(mν) := 1.

Genus Formula 4.1.

g(n, {1}) = 1 + 1

2
ϕ(n)

(
−2 + q − 2

q − 1
+

s∑
ν=1

dν

rνqν − rν − 1

qν − 1

)
.

Genus Formula 4.2.

g(n, F∗
q) = 1 + 1

q − 1

(
g(n, {1}) − 1 − 1

2

(
ϕ(n)

q − 2

q − 1
+ d1(q − 2)

))
for s = 1 and

g(n, F∗
q) = 1 + 1

q − 1

(
g(n, {1}) − 1 − 1

2
ϕ(n)

q − 2

q − 1

)
for s > 1.

Genus Formula 4.3.

g(n, 〈T 〉) = 1 + 1

eT (n)

(
g(n, {1}) − 1 − 1

2

[
ϕ(n)

q − 1

(
ẽT ,+(n) − 1

)

+
s∑

ν=1

ϕ(mν)dν · aν(KT (n))

])

with

aν(KT (n)) = eT (n)

eT (mν)
− 1 + (qν − 1)

(
rν−1∑
α=1

qα−1
ν

eT (n)

eT (mνpα
ν )

)
− qrν−1

ν .

Genus Formula 4.4.

g(n, 〈T , F∗
q〉) = 1 + 1

eT ,+(n)

(
g(n, {1}) − 1 − 1

2

[
ϕ(n)

q − 1
(q − 2)

+
s∑

ν=1

ϕ(mν)dν · aν(KT,+(n))

])

with

aν(KT,+(n)) = eT ,+(n)

eT ,+(mν)
+ (qν − 1)

(
rν−1∑
α=1

qα−1
ν

eT ,+(n)

eT ,+(mνpα
ν )

)
− qrν−1

ν .
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Genus Formula 4.5.

g(n, 〈T , T −1〉) = 1 + 1

eT ,T−1(n)

(
g(n, {1})−1− 1

2

[
ϕ(n)

q−1

(
ẽT ,T−1,+(n)−1

)

+
s∑

ν=1

ϕ(mν)dν · aν(KT,T−1(n))

])
,

with

aν(KT,T −1(n)) = eT ,T −1(n)

eT ,T −1(mν)
− qrν−1

ν + (qν − 1)

rν−1∑
α=1

qα−1
ν

eT ,T −1(n)

eT ,T −1(mνpα
ν )

.

Genus Formula 4.6.

g(n, 〈T , T − 1, F∗
q〉) = 1 + 1

eT ,T −1,+(n)

(
g(n, {1}) − 1 − 1

2

[
ϕ(n)

q − 1
(q − 2)

+
s∑

ν=1

ϕ(mν)dν · aν(KT,T −1,+(n))

])
,

with

aν(KT,T −1,+(n)) = eT ,T −1,+(n)

eT ,T −1,+(mν)
− qrν−1

ν + (qν − 1)

rν−1∑
α=1

qα−1
ν eT ,T −1,+(n)

eT ,T −1,+(mνpα
ν )

.

5. The number of rational places

For a placep of K(n)H |Fq(Z) we define the placẽp of K as

p̃ :=
{

p ∩ Fq [Z], p finite

∞, p infinite

and

N1 := {p ∈ S1(n, H) | e(p̃, K(n)|K) = 1, p̃ �= ∞},
N2 := {p ∈ S1(n, H) | e(p̃, K(n)|K) = 1, p̃ = ∞},
N3 := {p ∈ S1(n, H) | e(p̃, K(n)|K) > 1, p̃ �= ∞},
N4 := {p ∈ S1(n, H) | e(p̃, K(n)|K) > 1, p̃ = ∞}.

These sets are pairwise disjoint andS1(n, H) decomposes into

S1(n, H) = N1 ∪ N2 ∪ N3 ∪ N4.
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Now we analyse the size of the setsNi . Sinceq > 2 we get by Theorem 2.3 that
N2 is the empty set. Furtheron we get by 2.3 and 2.5

#N1 =
∑

a∈Fq , n(x)x=a �=0,(T −a)∈H

[K(n)H : K]

= #{a ∈ Fq | n(x)x=a �= 0, (T − a) ∈ H } · [K(n)H : K]
= #{a ∈ Fq | (T − a) ∈ H } · [K(n)H : K].

ForN4 we have

#N4 = #{p ∈ S1(n, H) | e(p̃, K(n)|K) > 1, p̃ = ∞}
q>2= #{p ∈ S1(n, H) | p̃ = ∞}
= [K(n)H : K]

e(∞, K(n)H |K)
,

which forF∗
q ≤ H specializes to #N4 = [K(n)H : K] by Theorem 2.3. So we get

an explicit lower bound for #S1(n, H).

Definition 5.1. Let n ∈ Fq [T ]monic, gcd(T 2−T , n) = 1, deg(n) > 1, H ∈ Subgr.
Then

r(n, H) :=
{

#(N1), H = {1}, 〈T 〉, 〈T , T − 1〉
#(N1 ∪ N4), H = F∗

q, 〈F∗
q, T 〉, 〈F∗

q, T , T − 1〉 .

By the previous arguments we directly get the following lemma:

Lemma 5.2. Let n ∈ Fq [T ] monic, gcd(T 2 − T , n) = 1, deg(n) > 1, H ∈ Subgr.
Then

r(n, H) =




[K(n)H : Fq(Z)] · #{a ∈ Fq | (T − a) ∈ H },
if H = {1}, 〈T 〉, 〈T , T − 1〉

[K(n)H : Fq(Z)] · (1 + #{a ∈ Fq | (T − a) ∈ H }),
if H = F∗

q, 〈F∗
q, T 〉, 〈F∗

q, T , T − 1〉

.

Proof. Clear by the preceding arguments.��
In some cases we even have equality betweenr(n, H) and #S1(n, H).

Lemma 5.3. Let n ∈ Fq [T ] monic, deg(n) > 1, gcd(T q − T , n) = 1, H ∈
{F∗

q, 〈F∗
q, T 〉, 〈F∗

q, T , T − 1〉}. Then we have

r(n, H) = #S1(n, H).

Proof. There are no zeros ofn in Fq . So by Theorem 2.3 the setN3 is empty. ��
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6. Results

The above formulas have been derived and written down since they are suitable
for automatic calculations. By extensive computations forq = 4, 8, 16, 32, 64,
3, 9, 27, 5, 25 we got the following results which beat those given in [GVNet].

There are lots of symmetries in our construction and so we got the same re-
sults for quite a lot of different conductorsn. We always give the smallest one in
lexicographical order.

If there is no entry in the tables [GVNet] resp. [ShNet] for a pair(Fq, g), we only
mention results that beat the Drinfeld–Vladut bound. That means that the number
of rational places is greater thang · (√q − 1

)
. This bound seems poor for smallg,

and so we especially got many results forF25, because there are a lot of gaps in the
corresponding table. For some values ofq (q = 4, 32, 64) we didn’t get any new
result.

For everyq the conductor ran through those of the lexicographically first
100 000 monic polynomials which are prime toT 2 − T . The bound is quite arbi-
trary. Except forq = 25 we got our results for conductors from the first 40 000
monic polynomials.

The finite fieldFq is represented asFp[u]/P with a monic, irreducibleP ∈
Fp[u] of degree[Fq : Fp]. In the tablesI stands for the index[K(n)H : Fq(Z)], g

for the genusg(n, H), r for r(n, H), lb gives the lower bounds andub the upper
bounds from the updated tables in [GVNet] from June 19, 2001. If the value ofr

meets the upper bound it is printed in bold letters. This occurs in just two cases. The
value ofr is framed ifH ∈ {F∗

q, 〈F∗
q, T 〉, 〈F∗

q, T , T −1〉} and gcd(n, T q −T ) = 1.
In these casesr is the exact number of rational places of the subfieldK(n)H by
Lemma 5.3.

Table 1.

p = 2

Fq P Conductor n H I g lb r ub

F8 u3 + u + 1 T 5 + uT 4+ 〈F∗
q , T , T − 1〉 42 47 120 126 161

+T 3 + (u2 + 1)T 2+
+(u2 + u)T + (u2 + 1)

F16 u4 + u + 1 T 4 + T 2 + (u2 + u)T + 1 〈F∗
q , T , T − 1〉 51 50 225 255 291

F16 u4 + u + 1 T 4 + uT 3 + u2T 2+ 〈F∗
q , T , T − 1〉 45 34 161 180 213

+u3T + (u + 1)

There are no tables for characteristic 5 in [GV00] and [GVNet]. So we have
used the tables from [ShNet].

Remark 6.1. The most time and space consuming part of the calculations was to
determine the span〈T , T −1〉 < (Fq [T ]/(n))∗. For the calculation of the genus we
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Table 2.

p = 3

Fq P Conductor n H I g lb r ub

F3 − T 5 + 1 〈F∗
q , T 〉 16 19 28 32 32

F3 − T 5 + 2T 3 + 2T 2 + T + 2 〈F∗
q , T 〉 8 8 15 16 18

F3 − T 6 + T 2 + 2 〈F∗
q , T 〉 20 32 38 40 48

F3 − T 6 + T 4 + T 2 + 1 〈F∗
q , T 〉 32 49 63 64 67

F3 − T 9 + 2T + 1 〈F∗
q , T , T − 1〉 13 42 48 52 59

F9 u2 + 1 T 6 + T 4 + T 2+ 〈F∗
q , T , T − 1〉 7 12 55 56 63

+uT + 1

F9 u2 + 1 T 6 + (u + 1)T 4 + 2T 3+ 〈F∗
q , T , T − 1〉 20 31 101 120 127

+2uT 2 + (u + 1)T +
+(2u2 + 2u)

F27 u3 + 2u + 1 T 4 + T + (2u2 + 1) 〈F∗
q , T 〉 52 50 299 312 416

Table 3.

p = q = 5

Conductor n H I g lb r ub

T 4 + 3T 2 + 2 〈F∗
q , T 〉 12 8 22 24 29

T 4 + 2T 3 + 2T + 4 〈F∗
q , T 〉 16 9 26 32 32

T 5 + 4T 2 + 1 〈T 〉 12 20 − 36 −
T 5 + T 4 + 2T 3 + T + 3 〈T 〉 12 18 − 24 −
T 5 + 3T 4 + 2T 3 + 2T 2 + T + 4 〈F∗

q , T 〉 32 29 56 64 73

T 6 + 1 〈F∗
q , T , T − 1〉 16 25 52 64 66

T 6 + 2 〈F∗
q , T , T − 1〉 24 45 88 96 104

T 6 + 3T 3 + 3T 2 + T + 4 〈F∗
q , T , T − 1〉 12 19 45 48 54

T 6 + 4T 3 + 1 〈F∗
q , T , T − 1〉 14 26 − 42 −

T 6 + 3T 4 + 3T 2 + 1 〈F∗
q , T , T − 1〉 25 44 − 75 −

T 6 + 3T 4 + 4T 3 + 3T 2 + 1 〈F∗
q , T , T − 1〉 18 22 51 54 60

T 6 + T 5 + 2T 3 + 4T 2 + 2T + 4 〈F∗
q , T , T − 1〉 12 15 35 36 45

T 7 + T 5 + 3T 4 + 3T + 4 〈F∗
q , T , T − 1〉 22 40 − 66 −

T 7 + 4T 5 + 3T 4 + T 2 + 2T + 3 〈F∗
q , T , T − 1〉 25 50 70 75 113
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Table 4.

p = 5, q = 25, P = u2 + 2

Conductor n H I g lb r ub

T 2 + 3T + (u + 4) 〈T 〉 24 9 − 72 −
T 2 + (u + 4)T + 2u 〈T 〉 24 11 − 96 −
T 3 + 1 〈F∗

q , T , T − 1〉 48 19 − 144 −
T 3 + (u + 2) 〈F∗

q , T , T − 1〉 7 3 − 56 −
T 3 + (u + 3)T + 2 〈T 〉 42 31 − 210 −
T 3 + T 2 + 2T + 2 〈F∗

q , T 〉 72 28 − 144 −
T 3 + T 2 + (u + 1)T + (2u + 1) 〈F∗

q , T 〉 16 7 − 80 −
T 3 + 4T 2 + (u + 2)T + (2u + 1) 〈T , T − 1〉 24 15 − 96 −
T 3 + uT 2 + T + 2u 〈T , T − 1〉 24 14 − 96 −
T 3 + (u + 1)T 2 + (3u + 3)T + (u + 4) 〈T 〉 48 39 − 192 −
T 3 + (u + 1)T 2 + (4u + 4)T + 3 〈T 〉 18 16 − 126 −
T 3 + (u + 2)T 2 + (2u + 4)T + (2u + 1) 〈T , T − 1〉 48 29 − 144 −
T 3 + (u + 3)T 2 + 1 〈T , T − 1〉 24 20 − 120 −
T 3 + (u + 3)T 2 + (3u + 2)T + (2u + 1) 〈T , T − 1〉 24 21 − 144 −
T 3 + (2u + 1)T 2 + (3u + 2)T + (3u + 3) 〈T , T − 1〉 60 37 − 240 −
T 4 + 3T + (u + 3) 〈T , T − 1〉 8 5 − 56 −
T 4 + (u + 4)T + 3u 〈F∗

q , T , T − 1〉 39 38 − 156 −
T 4 + 4T 2 + (2u + 4)T + (u + 3) 〈T , T − 1〉 24 26 − 120 −
T 4 + uT 2 + 4 〈F∗

q , T , T − 1〉 13 12 101 104 140

T 4 + (u + 1)T 2 + (2u + 4) 〈T , T − 1〉 26 25 − 130 −
T 4 + (u + 3)T 2 + (2u + 1)T + 4 〈T , T − 1〉 48 47 − 192 −
T 4 + (u + 4)T 2 + (3u + 3) 〈T , T − 1〉 48 43 − 240 −
T 4 + (u + 4)T 2 + (u + 2)T + (4u + 4) 〈F∗

q , T , T − 1〉 15 8 − 60 −
T 4 + (2u + 1)T 2 + 3T + (3u + 1) 〈F∗

q , T , T − 1〉 48 33 − 192 −
T 4 + (2u + 3)T 2 + 3u 〈T , T − 1〉 24 27 − 120 −
T 4 + (2u + 4)T 2 + (4u + 2) 〈F∗

q , T , T − 1〉 50 48 − 200 −
T 4 + (2u + 4)T 2 + (2u + 1)T + (4u + 1) 〈F∗

q , T , T − 1〉 48 35 − 192 −
T 4 + (2u + 4)T 2 + (3u + 1)T + 3u 〈F∗

q , T , T − 1〉 24 18 − 120 −
T 4 + 2T 3 + (2u + 4)T 2 + (2u + 3)T + (3u + 1) 〈T , T − 1〉 60 49 − 240 −
T 4 + 3T 3 + T 2 + 2uT + (4u + 4) 〈F∗

q , T , T − 1〉 48 41 − 288 −
T 4 + 3T 3 + 3T 2 + 2uT + (u + 1) 〈F∗

q , T 〉 48 45 − 192 −
T 4 + 3T 3 + (2u + 2)T 2 + (3u + 4)T + 2u 〈F∗

q , T , T − 1〉 72 46 − 216 −

just need the cardinality of〈T , T −1〉, which is easy computable by #〈T , T −1〉 =
#〈T 〉 · #〈T −1〉
#{〈T 〉∩〈T −1〉} without knowing〈T , T − 1〉 explicitly. But since we have to know the
elements in〈T , T − 1〉 to calculate #{a ∈ Fq | (T − a) ∈ 〈T , T − 1〉}, we have to
generate the subgroup anyway.

Remark 6.2. Especially the first example forF3 and the second one forF5 is inter-
esting, because they realize the upper bound for genus 19 resp. 9.
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7. Conclusion

By the Drinfeld–Vladut bound

lim sup
g→∞

Nq(g)

g
≤ √

q − 1 ,

with equality if q is a square. But by a result in [FPS92] for every sequence of
abelian extensions(Li |K)i∈N with lim i→∞[Li : K] = ∞ and the same constant
field Fq ,

lim
i→∞

#S1(Li)

g(Li)
= 0

holds.Therefore, subextensions of the abelian extensionK(n)|K are asymptotically
bad for the construction of curves with many rational places. But our calculations
show that in small cases (n small) there is nevertheless a good chance to get inter-
esting examples.

Furthermore, the choice of our six subextensions is quite arbitrary. We chose
the subgroups generated byT and/or(T − 1) and/orF∗

q to make sure that the
corresponding places decompose completely in the corresponding subextensions,
which yields a good chance to get many rational places therein. Since operation
Z �→ αZ + β with α ∈ F∗

q , β ∈ Fq is 2-transitive on the finite rational places
of Fq [Z], the choice of the two rational placesT andT − 1 is inessential. But
we could choose any other subgroupU of (Fq [T ]/(n))∗ to get interesting results,
for example subgroups generated byT , T − 1 and some other polynomials of
degree one. It is not clear which subgroupsU would be good choices. For such a
subgroupU we would have to calculate an explicit formula for the genus ofK(n)U

(in our examples this was done by A. Keller in her master thesis) and then count
#{a ∈ Fq | (T − a) ∈ U}.
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