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Abstract. Using the theory of Sobolev spaces on a metric measure space we are able to
apply calculus of variations and defipeharmonic functions as minimizers of tpeDirichlet
integral. More generally, we study regularity properties of quasi-minimizegsDirichlet
integrals in a metric measure space. Applying the De Giorgi method we show that quasi-
minimizers, and in particulgs-harmonic functions, satisfy Harnack’s inequality, the strong
maximum principle, and are locally Holder continuous, if the space is doubling and supports
a Poincaré inequality.

1. Introduction

The classical Dirichlet problem is to find a harmonic function with given boundary
values. An alternative variational formulation of this problem is to minimize the

Dirichlet integral
/ |Du|? dx

among all functions which have required boundary values. A more general nonlinear
variation of the classical Dirichlet problem is to study minimizers ofgHeirichlet

integral
/ |Du|? dx,

with 1 < p < oo. The minimizers are solutions to the corresponding Euler—
Lagrange equation, which in this case is fh&aplace equation

div(|Du|?~?Du) = 0,

and continuous solutions are callpeharmonic functions.
It is not clear what the counterpart for tipeLaplace equation is in a general
metric measure space, but the variational approach is available; it is possible to
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definep-harmonic functions as minimizers pfDirichlet integral in a metric mea-

sure space. The basic reason is that Sobolev spaces on a metric measure space can
be defined without the notion of partial derivatives; see [C, H, HeK] and [Sh2]. The
definitions in these references are different but by [Sh2] they give the same Sobolev
space under mild assumptions. Cheeger’s goal in [C] is to study differentiability of
Lipschitz functions on metric measure spaces. His definition of Sobolev spaces is
tailored to make lower semicontinuity of the Sobolev norm uridéconvergence

a virtual tautology. This leads to the existence of a differential as a measurable
section of a finite dimensional cotangent bundle from which the reflexivity of the
Sobolev space follows. Hence direct methods in the calculus of variations can be
easily applied to prove the existence for fid®irichlet problem; see Sect. 7 in [C]

and [Sh1]. In this work we study the regularity propertiepdiarmonic functions

on a metric measure space.

In the Euclidean case minimizers of tppeDirichlet integral are known to be
locally Holder continuous. There are at least two ways of seeing this. One possible
approach is to use Moser’s iteration technique (see [Mo1] and [Mo2]), which gives
Harnack’s inequality and then Holder continuity follows from this in a standard
way. From our point of view there is a drawback in Moser’s argument; it is based
on the differential equation and it seems to us that it cannot be applied in the general
metric setting. However, there is another approach by De Giorgi [DeG], whichrelies
only on the minimization property. In contrast with Moser’s technique, De Giorgi's
method gives Holder continuity and then Harnack’s inequality can be obtained as in
[DT]. One of the advantages of De Giorgi's method is that it is applicaple to quasi-
minimizers as well. We recall that a quasi-minimizer minimizes phBirichlet
integral up to a multiplicative constant; see [GG1] and [GG2]. Hence, in particular,
p-harmonic functions are quasi-minimizers. We have chosen this more general
approach to emphazise the fact that the obtained properties hold in a very general
context and are very robust. For example, they are preserved under bi-Lipschitz
perturbations of the metric.

The purpose of this note is to adapt De Giorgi's method to the metric setting.
We show that if the space is doubling in measure and suppdftsga-Poincaré
inequality, then quasi-minimizers, and in particutgharmonic functions, satisfy
Harnack’s inequality, the strong maximum principle, and are locally Holder con-
tinuous. We note that Harnack’s inequality is the strongest claim and all other
properties follow from it in a standard way. However, these claims are closely
related to each other, and for expository purposes we first prove Hélder continu-
ity, then the strong maximum principle, and finally Harnack’s inequality, since the
proofs of these properties are based on estimates which are needed in the proof of
Harnack’s inequality. De Giorgi’s method is based on two ingredients: Sobolev and
Caccioppoli type estimates. We observe that these estimates are available under our
assumptions. Here we use results of [HaK], which show that the Poincaré inequality
implies a Sobolev type estimate. Then we very closely follow the presentation of
[Gia] and [Giu] and show that De Giorgi's method applies. However, there are a few
delicate points in the argument and hence we are somewhat careful in details. For
example, the doubling condition comes into play in several occasions. In addition,
we do not have exactly the same exponents in the Sobolev type estimate as in the
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Euclidean case. Finally, the proof of [DT] is based on the Krylov—Safonov cover-
ing argument which is originally stated in terms of dyadic cubes. Instead of dyadic
cubes we use balls, doubling property and a simple maxoimal function argument.

Our work is closely related to the paper [C] of Cheeger. As he points out in
Remark 7.19 of [C], Moser’s iteration scheme can be used iptharmonic func-
tions are defined with respect to &3° Riemannian metric and the unit sphere is
smooth and strictly convex. Our approach shows that these additional assumptions
are not needed for local Hélder continuity and Harnack’s inequality. There exists
a remarkable literature on Harnack’s inequalities under various circumstances; see
for example [AC, CDG, FL, FKS, HS], [JX, LU, Ma, SC1], and [SC2]. Finally we
note that boundary continuity for quasi-minimizers on metric measure spaces have
recently been studied in [B].

This note is organized as follows. The second section focuses on the preliminary
notation and definitions needed in the rest of the paper. There we also fix the general
setup and conventions used later in the paper without further notice. In addition,
we prove a Sobolev type inequality for functions which vanish on a large set. The
third section explores the relationship between quasi-minimizers and the De Giorgi
class of functions. In particular, there we prove a Caccioppoli type estimate. In the
next two sections local boundedness and local Holder continuity properties of the
De Giorgi class are studied. In Sect. 6 we prove the strong maximum principle and
in Sect. 7 the Harnack inequality for quasi-minimizers.

2. Preliminaries

In this section we recall basic definitions and describe the general setup of our
study.

We assume thaX is a metric measure space equipped with a Borel regular
measurge. Throughout the paper we assume that the measure of every nonempty
open set is positive and that the measure of every bounded set is finite. Later we
impose further requirements on the space and on the measure; see Subsect. 2.6.

2.1. Upper gradients

Letu X — [—o0, 00] be a function. A non-negative Borel measurable function
g X — [0, o0] is said to be ampper gradient of « if for all compact rectifiable
pathsy joining pointsx andy in X we have

lu(x) —u(y)l S/gdS- (2.1)

14

If u(x) = u(y) = oo oru(x) = u(y) = —oo, we define the left side of (2.1) to
beco. See [C, HeK, KoM] and [Sh2] for a discussion of upper gradients. Observe
that upper gradients are called very weak gradients in [HeK], but we use different
terminology here.
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Let1 < p < oo. The p-modulus of a family of pathd” in X is the number

inf/ oPdu,

P Jx

where the infimum is taken over all non-negative Borel measurable fungtions
such that for all rectifiable pathswhich belong ta™ we have

/pdszl.
Y

It is known that thep-modulus is an outer measure on the collection of all paths in
X. A property is said to hold fop-almost all paths, if the set of non-constant paths
for which the property fails is of zerp-modulus. If (2.1) holds fop-almost all
pathsy in X, theng is said to be g-weak upper gradient of u.

2.2. Newtonian spaces

The upper gradient is a substitute for the modulus of a gradient in a metric space,
but in order to be able to do calculus of variations we need a concept of Sobolev
spaces in a metric measure space. Let p < co. We define the spaaﬁl’P(X)

to be the collection of alp-integrable functiona that have g-integrablep-weak

upper gradieng. This space is equipped with a seminorm

lulljrexy = lullLeo) +infliglzex),

where the infimum is taken over gitweak upper gradients af Whenp > 1, by
the uniform convexity ofL”(X) we have that whenever ¢ N17(X) there is a
functiong, in L?(X)-convex hull formed by the set of gl-weak upper gradients
of u, called theminimal p-weak upper gradient of u, so thatg, is a p-weak upper
gradient ofu and

llgullrxy = Inf llgllLrx)

where the infimum is over aji-weak upper gradients of u; see [Sh1] or [C].
We define an equivalence relationAt-? (X) by saying that: ~ v if

llu — U”]\N/l,p(x) =0.

The Newtonian space N17(X) is defined to be the spadél?(X)/ ~ with the
norm

lullyirxy = ||M||ﬁ1«p(x)~

For basic properties of the Newtonian spaces we refer to [Sh2]. We recall here some
facts for future reference. It can be shown tNat? (X) is a Banach space. Itis also
very useful to know that if 1< p < oo every functionu that has gp-integrable
upper gradient has a minimatintegrablep-weak upper gradient, denoteg, in

the sense that i is anotherp-weak upper gradient aof, theng, < g u-almost
everywhere. The functions b7 (X) are absolutely continuous gralmost every
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path, which means thab y is absolutely continuous df, length(y)] for p-almost
every rectifiable arc-length parametrized patim X.
The p-capacity of a setE C X is defined by

Cp(E) =inf lull {1y )
where the infimum is taken over all functionse N17(X), whose restriction to
a neighbourhood of' is bounded below by 1. Capacity is the natural measure for
exceptional sets of Sobolev functions. It is easy to see that sets of zero capacity are
also of measure zero, but the converse is not true in general. See [KM] for more
properties of the capacity.

In order to be able to compare the boundary values of Sobolev functions we
need a notion of Sobolev spaces with zero boundary values in a metric measure
space. LetE be an arbitrary subset df. Following the method of [KKM], wi
deflneN0 P(E) to be the set of functions E — [—o0, co] for which there exists
a functionii e N% P (X) such thafi = u pu-almost everywhere ik and

C,({x € X \ Efi(x) #0}) = 0.

Next we define an equivalence relationﬁgr”(E) by saying that: ~ vifu = v

u-almost everywhere oA. Finally we IetN&”’(E) = ﬁg’p(E)/ ~, equipped with
the norm

”u”Né’P(E) = ”g”ﬁlp(x)a

be theNewtonian space with zero boundary values. The norm is unambiguously
defined by [Sh1] and the obtained space is a Banach space.

We use the following observation several times: suppose that there is a Borel
setA C X sothatu is constani-almost everywhere iX \ A. Thenifg is an upper
gradient ofu, theng x4 is a p-weak upper gradient af, and hence the minimal
p-weak upper gradieng, = 0 u-almost everywhere oX \ A. Here x4 is the
characteristic function ofA. For open setsl this has been proved in [Sh1] and
the general claim follows from fact that a locally finite Borel measure is a Radon
measure, and hence the measure of a Borel set can be approximated by measures
of open sets containing the set. It follows from this that &ndv are functions
such that: = v u-almost everywhere on a Borel sét theng, = g, u-almost
everywhere; see Corollary 2.25 in [C].

2.3. Poincaréinequalities

A metric measure spack is said to bedoubling if there is a constant; > 1 so
that

w(B(z, 2r)) < cqu(B(z,1)) (2.2)

for every open balB(z, r) in X. Throughout the work we use the convention that
B(z, r) refersto an open ball. The constapin (2.2) is called the doubling constant
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of . Note that by the doubling property,8(y, R) isaballinX, z € B(y, R) and
0<r <R < oo, then

w(B(z,r)) - c( r )Q

— 2.3
w(B(y, R)) — 23)

R

for somec and Q depending only on the doubling constant.
Let 1 < g < oo. The spaceX is said tosupport a weak (1, g)-Poincaré
inequality if there are constantg > 0 andr > 1 such that

1/q
][ lu —uperldu < Cor(][ g? dM) (2.4)
B(z,r) B(z,tr)

for all balls B(z, r) in X, for all integrable functions in B(z, r) and for all upper
gradientsg of u. The word weak refers to the possibility that- 1. If t = 1, the
space is said to supporta ¢)-Poincaréinequality. A result of [HaK] shows that in
a doubling measure space a wé&akg)-Poincaré inequality implies a wegk q)-
Poincaré inequality for some > ¢ possibly with a different. More precisely,
there arec > 0 andt’ > 1 such that

. 1/t . 1/q
( u—upenldn)” < er( gldu) . (@29)
B(z,r) B(z,7'r)

where 1<t < Qq/(Q —q) if g < Q andr > 1if ¢ > Q, for all balls B(z, r)
in X, for all integrable functions in B(z, r) and for all upper gradients of u.
Conversely, by the Holder inequality we see th@t g)-Poincaré inequality implies
the same inequality for smaller valuesroénd larger values of. In particular,
if the space supports a wedk q)-Poincaré inequality, then it also supports a
weak (1, ¢)-Poincaré inequality. It can also be shown that in a space supporting a
weak(1, g)-Poincaré inequality, every ball, whose complement is non-empty, has
a non-empty boundary. This is a strengthening of the topological notion of uniform
perfectness; see the comments following inequality (2.6).

Moreover, ininequalities (2.4) and (2.5) we can replace the upper gradisttit
any p-weak upper gradient ih{ (X), because of the result in [KoM] which states

that everyp-weak upper gradilgcnt inl’(’)C(X ) can be approximated ib? (X) by an
upper gradient irLl’;C(X). Indeed, given any-weak upper gradient; € LI’;C(X)

of u and anys > 0 we can find an upper gradiegy so thatl| g2 — g1llLr(x) < €.

Here Lf;C(X) is the space of all measurable functions that psimtegrable on
bounded subsets of.

2.4. Sobolev inequalities

Next we prove a Sobolev type inequality for functions which vanish on a large set.
The paper [B] has a better capacitary version of this inequality, but for our purposes
it suffices to consider the more easily proved version below.
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Lemma 2.1. Let X be a doubling metric measure space supporting a weak (1, g)-
Poincaré inequality for some 1 < g < p. Supposethat u € N17(X) and let A =
{x € B(z, R) lu(x)| > 0}. If u(A) < yu(B(z, R)) for somey with0 < y < 1,
then thereisa constant ¢ > 0 so that

1/t 1/q
(F  wran)” <cr(f  gan)”.
B(z,R) B(z,7'R)

wherer and ¢’ areasin (2.5). The constant ¢ depends only on y and the constants
cand ' of (2.5).

Proof. By the Minkowski inequality and (2.5) we have

‘ 1/t / 1/t
(F  wraw)" <(f  w-uscnldan)” +uscol
B(z,R) B(z,R)

1/q
< cR<][ gl du) + lup,pl-
B(z,7’R)

The Hdolder inequality implies that

w(A)  \1-1/ N2
unenl = (o) (][B(Z’m jul'di)

1/t
< yl—l/l<f |M|[dM) / .
B(z,R)

Hence we obtain

_ 1/t 1/q
A=y Un(f ) ser(f gtau)”
B(z,R) B(z,7'R)

from which the claim follows since & y < 1. O

We observe that Lemma 2.1 gives a Sobolev inequality for Sobolev functions
with zero boundary values. To be more precise, there exist® so that for every

ball B(z, R) with 0 < R < diam(X)/3 and every: € N&"’(B(z, R)) we have

(][B(Z,R) ul'dn) E CR(][B(Z’R) g du)l/q. (2.6)

This follows easily from Lemma 2.1 after noting thigt= 0 almost everywhere on
X\B(z, R) and by observing that there must be a point on the sph&(e, 2R).

If there is no such point, then it is easy to construct a function which violates the
Poincaré inequality.
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2.5. Quasi-minimizers

Now we are ready to formulate the minimization problem for thBirichlet in-
tegral in a metric measure space. B%’CP(Q) we mean the space of all functions
u € L{(Q) that have an upper gradientirf,.(Q2), whereL{, () is the space of
all measurable functions that apeintegrable on bounded subsetsXof

Suppose tha® C X is open. A function: € Né‘cf’(sz) is calledp-harmonic on
Q, if for every bounded open subset of @ with @ ¢  andv € N17(Q') with
u—ve Ng”(Q) we have

/gﬁduf/ ghdu,
Q Q/

whereg, andg, are the minimal weak upper gradientsucdndv respectively.

A functionu is said to be @uasi-minimizer on <2 if there is a constank > 0
so that for all bounded open subse€isof  with Q' ¢ Q and for all functions
ve NLP(@)withu —v e N&'P(Q’) the inequality

/ gndn <K / ghdu
Q'N{uv} Q' N{uz#v}

is satisfied.
In particular, everyp-harmonic function is a quasi-minimizer witi = 1. p-
harmonic functions on metric measure spaces have been studied in [C] and [Sh1].

2.6. General setup

A very interesting fact for us is that if the metric measure space is doubling and sup-
ports the(1, p)-Poincaré inequality with k p < oo, thenN17(X) is reflexive.

This result has been proved in [C] by Cheeger. He employs a different definition of
Sobolev spaces on a metric measure space using only upper gradients and a concept
of generalized upper gradients and bypassing the notions of moduli of path families
and weak upper gradients. However, our definition gives rise to the same space as
his when 1< p < oo; see [Sh2]. Since the notion pfweak upper gradients pro-
vides insight into the geometric aspect of this function space, we use the definition
developed in [Sh1] in the De Giorgi method given here, which itself is a geometric
argument. Cheeger has also shown that the minimal upper gradient of a locally
Lipschitz function can be obtained as the pointwise Lipschitz congtaaitnost
everywhere provided the space is doubling and supports a Poincaré inequality; see
section 6 of [C]. There is yet another definition of Sobolev spaces on a metric mea-
sure spaces given by Hajtasz [H] based on a maximal function inequality. If the
measure is doubling and the space supports a Wkagk-Poincaré inequality for
someg with 1 < ¢ < p, then all three definitions yield the same space. Therefore
doubling and Poincaré type assumptions seem to form a natural context for us to
work with.



Regularity of quasi-minimizers on metric spaces 409

From now on we assume without further notice that the metric measure space
X is equipped with a doubling Borel regular measure for which the measure of
every nonempty open set is positive and the measure of every bounded set isfinite.
Furthermore we assume that the space supports a weak (1, ¢)-Poincaré inequality
for someg withl < ¢ < p.

3. Quasi-minimizersand De Giorgi class

In this section we show that quasi-minimizers, and in particataarmonic func-
tions, satisfy a Caccioppoli type estimate on level sets.

Definition 3.1. Let 2 be an open subset of X. The function u € Njo? (%) belongs
to the De Giorgi class DG, (€2), if there exists a constant ¢ > 0 such that for all
keR,zeQ,and0 < p < R < diam(X)/3 sothat B(z, R) C 2, we have

p ¢ p
ol du < —/ (- k)P dp, (3.1)
/Az(k,p) “ (R—=p)P Ja,k,p)

where A, (k, r) = {x € B(z,r) u(x) > k}. Intherest of the discussion we drop the
subscript z from A, (k, r) asz € Q isfixed. Observe that (3.1)is equivalent to

p ¢ p
¢l o dp < —S / (w— b du. (32)
/B(z,p) @b+ (R—p)? Jpi, R -

where we denote by (u — k) the function max{u — k, 0}.

To prove the local Holder continuity, the strong maximum principle and Har-
nack’s inequality for a quasi-minimizar, we show that: and—u belong to the De
Giorgi class and in the subsequent sections we prove that such functions satisfy the
corresponding property.

Suppose that is a quasi-minimizer oif2. We show that: € DG ,(Q2). Let
B(z, R) c Qand0< p < R < diam(X)/3. Letn be ac/(R — p)-Lipschitz cutoff
function so that O< n < 1,7 = 1 on B(z, p) and the support of is contained in
B(z, R). Set

v=u—npmaxu —k, 0).

Thenu — v € Né’p(A(k, R)). By the energy quasi-minimizing property of
employed on the subdomanz, R) (see Subsect. 2.5), we have

f gffduff gﬁ'dusK/ ghdpu.
Ak, p) A(k,R) A(k,R)

Note thatv = u — n(u — k) = (1 — n)(u — k) + k on A(k, R). Henceu-almost
everywhere on this set

g = (u—kgy+QA—-ngu;
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see Lemma 2.4 in [Sh1] or [C]. Singg < c¢/(R — p), we get

/ oldu <c / (= k)Pel + A —mPel)du
Ak, p) A(k,R)

C
S—/ (u—k)”du—i—c/ ghan.
(R—=0)" Jaw,r) Ak, R\A,p)

Here we used the fact thatdn = 0 on A(k, p). Adding the term: fA(k’p) gl to
the left- and right-hand sides of the inequality above, we see that

(1+0¢) gfdufc/ ghdu+ w—kPdu.
A(k,p) A(k,R)

C
(R —p)? /A(k,R)

This implies that

Cc
f gfduié’/ gfdu+—/ (w— k)P dy.
Ak, p) A(k,R) (R —0)? Jaw, R

whered = ¢/(c+1) < 1. Hence, if O< p < r < R, then

/ ghdp < 9/ g du+ ;/ w—kPdu.  (3.3)
Ak, p) Alk,r) =) Jaw, R

Now we recall a technical lemma; see Lemma 5.1 in [Gia].

Lemma3.2. Let R > 0and f (0, R] — [0, co) be a bounded function. Suppose
thatfor 0 < p <r < R < oo we have

fp) =yr—p)* +0fr) (3.4)
witha > 0,0 <6 < 1,and y > 0. Then thereisa constant ¢ = c(«, 6) so that
fp) <cy(r—p)~°. (3.5)
forO<p <r <R.

From (3.2) and Lemma 3.2 we conclude that there is a constdepending
only on p and the quasi-minimizer constakitso that

Py < %/ rm 3.6
fA(k,p)g (R—=0)? Jaw.r (3:6)

and hence: is in the De Giorgi class. Finally we observe thauifis a quasi-
minimizer, then so is-u. Thus we have proved the following result.

Proposition 3.3. Let 2 be an open subset of X. If u isa quasi-minimizer in €2, then
ue DG,(Q)and —u € DG, ().
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4. DeGiorgi classand boundedness

Suppose that a functianis in DG, (2). Let0 < R/2 < p < R < diam(X)/3
such thatB(z, R) C Q. Thengu i, < guXak,R) in B(z, R) and by inequality
(3.2) we see that

P ¢ )4
o duf—/ w-0lde.  (41)
/B(z,(R+p)/2) (w=k)+ (R—0)? Jpi.R) +

Here we use the product rule again; see Lemma 2.4 in [Sh1] or [C]s Lt
ac/(R — p)-Lipschitz cutoff function so that O< n < 1, the support of; is
contained inB(z, (R + p)/2), andn = 1L onB(z, p). Then, lettingy = n(u — k)4,
we have

C

R—p

8v = 8u—k N+ u—k+8) < gu-i, + (0 —k)+.

Inequality (4.1) implies that

/ ghdn
B(z,(R+p)/2)

Cc
56/ gh du+—/ (u—k)f du
BG.(R+p)2) O (R = p)? Jp(z,(R+p)/2) *

C
<— w—k)% dp.
(R — p)P /mm +

Since the space supports a wéakp)-Poincaré inequality, by inequality (2.6) we
getr > p (see the discussion after (2.5)) so that

p/t p/t
(][ (u—k)ﬁrdu) Sc(][ |v|tdu)
B(z,p) B(z,(R+p)/2)

rlq
< R (][ gl dn) 4.2)
B(z,(R+p)/2)
< RY ][ w -kt d
<¢c——— u— .
(R—p)") er) *

The Holder inequality implies that

/tr w(A(k, p) \1-p/t
Ny ][ —ohap) (AL .
][B(z,p)(u & MS( B(z,m(u S+ M> (M(B(z,,o)))

Therefore, inequality (4.2) gives us

foow-ntau
B(z.p)
R? (M(A(k,p)

<c
— (R=p)? \u(B(z, p))

1-p/t
) ”][ w—kdu. (4.3)
B(z,R)
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Leth < k. Then

k — )P (A Gk, p)) = / k — )P dpu
Alk.p) (4.4)

5/ (u—h)pduff u—h)Pdu.
Ak,p) A(h,p)

1/p
wop = (f w-ntan)”"
B(z,p)
Then, by inequality (4.4) and the doubling condition, we have

u(B(z, p)) p _ (B, R))
w(A(k, p)) < W”(h, P < CW

and by inequality (4.3) we obtain

Let

uCh, R)?,

ulk, p) <c u(k, R)

( w(Ak, p) )1/P—1/t
R — p\u(B(z, p))

k —m)~"uh, R,

(4.5)

<c

R—p
whered =1— p/t > 0.
The following proposition is a modification of Proposition 5.1 in [Gia].

Proposition 4.1. For any number kg € R we have u(kg + d, R/2) = 0, where
d¥ = ¢ 201041, ko RYO. (4.6)
Herec and 0 areasin (4.5).

Proof. Letk, = ko+d(1—2"") andp, = R/2+2""1R,n=0,1,2,... Then
po =R, p, \\ R/2, andk, / ko + d asn — oo. Next we show that for every
n=0,12, ... we have

M(kl’H pn) S Z*Mnu(ko, R)v (47)

whereu = (1+ 6)/6.
It is clear that (4.7) holds when= 0. Suppose then that (4.7) holds for some
n. Then, by inequality (4.5), we obtain

0 _
u(kns1, Pny1) < C—n(kn—H. —ky) gu(kn» pn)l+0
n — Pn+1

u(ko, R)H?

_ o—u(n+l)
(1) 2 u(ko, R).

= Cm(zinild)fg

Thus (4.7) is proved by induction.
Hence lim,_ o u(ky, p,) = 0. ASk, < ko +d andR/2 < p, < R for every
n=20,12,...,using the doubling property we conclude that

0<u(ko+d, R/2) < cu(ky, pn).

The claim follows by lettingk — co. 0O
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Now we are ready to prove the following weak Harnack inequality; see Theo-
rem 5.1 in [Gia]. Itimplies that functions in the De Giorgi class are locally bounded
and the obtained estimate is a basis of our work.

Theorem 4.2. Let Q be an open subset of X, B(z,R) € Q with0 < R <
diam(X)/3, and kg € R. If u € DG ,(), then there is a constant ¢ > 0 such
that

1/p
sup u Sko—i-c(][ (u—ko)frdu> .
B(z,R/2) B(z,R)

The constant ¢ depends only on the constant in De Giorgi’s condition, the doubling
constant, p, ¢, and constants ¢ and =’ from (2.5). In particular, the constant is
independent of the ball B(z, R).

Proof. By Proposition 4.6 we have(kg + d, R/2) = 0, whered is as in (4.6).
This implies that

v
sup ufko—i—d:ko—i—c(][ (u—ko)idu) "
B(z,R/2) B(z,R)

Thus the result follows. O
Takingko = 0 we see that the following theorem is true.

Theorem 4.3. Suppose that the hypothesis of Theorem 4.2 hold and, in addition,
—u € DG,(S2). Then

1/p
sup_Jul < ¢ ul? dp) ",
B(z,R/Z) B(z,R)

wherec > Oisasin Theorem4.2.

Remarks 4.4. (1) It is easy to see that there is nothing particular in the factar 1
in the claims of Theorem 4.3. Indeed, if0p < r < R, then

1/p
sup Ju| < ul? dpe) .

c (][
B(z,p) A—p/r)P\] g

To see this, let > 0 and takey € B(z, p) so thatju(y)|” > (Supg, , u))? —e.
Then by Theorem 4.3 we have

(sup [up? <e+luMP <e+( sup |u]?
B(z,p) B(y,(r—p)/4)

<e+ c][ lu|? d.
B(y,(r=p)/2)
Doubling property (2.3) of the measureimplies that

W(B(y, r — p)/2) = c(L— p/r)Cu(B(z, 1))

from which the claim follows.
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(2) Itis useful to observe that the claim of Theorem 4.3 hold for every exponent
g > 0. To be more precise, for evegy> 0 there is constantsuch that

1/q
sup Ju| < jul dp)

c (][
B(z.p) 1—p/R)C/\] B R

when0< p < R < o0. If ¢ > p, the claim follows directly from Holder's
inequality. Suppose then that@ ¢ < pandlet0O< p < r < R. Then an
application of Young’s inequality gives

_ 1/p
sup Jul < Ul "~ dp)

c (][
B(z.p) A—p/r9P\] per)
c 1/p 1-g/p
< aman(F wran)”"(sup
A= p/r)CP\] ger) (B(z,r) )

c(e 1/q
<¢ sup '”'*L(][m )Iulqdu)
zZ,r

B(z,r) (1 - p/r)Q/q
c(e) 1/q
<& sup |ul + —(RQ][ |9 du) ,
B(z.r) (r—p)2/a B(z.R)

where O< ¢ < 1. Inthe lastinequality we used doubling property (2.3). The claim
follows now from Lemma 3.2

5. DeGiorgi classand Holder continuity

The aim of this section is to prove De Giorgi's theorem [DeG], which states that
functions in De Giorgi’s class are locally Holder continuous.

Suppose that € DG,(Q) and let0< r < R < diam(X)/(37) be such
that B(z, 2t'R) C Q. Assume thaj(A(h, R)) < yu(B(z, R)) for somey with
0 <y < 1. Letk > h, and define

v(x) = min{u(x), k} — min{u(x), h}.
Sinceu € N7 (Q), we note thav € N1-7(). By hypothesis,
pu({x € B(z, R) v(x) > 0}) < yu(B(z, R)).

Since the space is assumed to support a wgak)-Poincaré inequality for some
g with 1 < ¢ < p, we may use Lemma 2.1 with= ¢ and we obtain

(k — hyu(A(k, R)>=f vdui/ vl du
A(k,R) B(z,R)

1/q
< en(BG R ( f vl dp)
B(z,R)

< cRu(B(z, R))H/q( f gl du)l/q

B(z,7'R)

1
< cRu(BG. RV [ gldu) ",

Ah, T’ R\Ak,T'R)
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where the constamt> 0 has the same dependencies as the constantin Lemma 2.1.
Here we used the fact thal, = g, xn<u<k} n-almost everywhere. Hence, by
Hélder’s inequality we have

(k — W)u(Ak, R)) < cRu(B(z, R))¥ 4
1 )
(i) (wawn e R = wad, v RY)
A(hT'R)

Sincex € DG ,(2), we conclude thatfoR < diam(X)/(3t7) sothatB(z, 2t'R) C
Ql

(k = h)u(Ak, R)) < cpu(B(z, R4
1/p , , -
( f (=P dp) " ((AG, T R) — (A, T RY) YT (5.1)
A(h,21'R)
Herec depends ory and on other parameters.
The following result is Proposition 5.1 in [Gia]. We denote

m(R)= inf u and M(R)= sup u.
B@zR) B(z,R)

By the results of Section 44 (R) is finite.

Proposition 5.1. Supposethatu € DG ,(2) islocally bounded belowandlet M =
M(2t'R), m = m(2t'R) and ko = (M + m)/2. If u(A(ko, R)) < y(B(z, R))
for some0 < y < 1, then

lim Ak, R)) =0.
k_>MM( (k, R))
Proof. Letk; = M —2-U+D(M —m),i =0,1,2,... Thenk; / M asi — oo
andko = (M + m)/2. Note that
M—ki_1=2""(M—m) and ki —ki_1=2"tDM —m).

By inequality (5.1) we have

1
(i — kDA, R) < (B R V([ —kipPdp)

A(ki—1,2T'R)
(w(Aki—1, T'R)) — (A ki, T R))) 4P

Therefore, as — ki1 < M — k;i—1 on A(k;—1, 2t'R), we conclude that

270D M — m)u(Aki, R) < ciu(B(z, R)Yat1/p
- 27H(M — m)((Atki—1, T'R)) — (A, T/R)))l/q—l/p_
Note that ifv > i, thenu(A(k,, R)) < u(Ak;, R)). Hence
w(Aky, R)) < cju(B(z, R))YYatl/r
- (u(Aki—1, T'R)) — n(Acki, .E/R)))l/qfl/P'
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Now summing the above inequality ovee= 1, 2, ..., v, and using the doubling
property, we get
vi(Alky, R)PP=D < cp(B(z, R)PY P~V (u(Ako, T R))
— u(Ak,, T'R))) (5.2)
< cu(B(z, R))M/(P—q)_

Therefore, lim_, » (A (k,, R)) = 0 and hence the result follows by the fact that
u(A(k, R)) is a monotonic decreasing functionaf O

Now we are ready to prove De Giorgi's theorem; see page 82 in [Gia]. Let
osdu, B(z,r)) = M(r) — m(r) denote the oscillation af on B(z, r).

Theorem 5.2. Suppose that both » and —u are in DG,(2). If 0 < r < R <
diam(X)/(37) aresuch that B(z, 2t'R) C €, then
r

osdu, B(z, T'r)) < 4“(R)a osdu, B(z, 7'R)).

for some @ with 0 < @ < 1 independent of the function u and the ball B(z, R). In
particular, u islocally Holder continuous on 2.

Proof. Let kg = (M + m)/2, whereM andm are as in Proposition 5.1. If
w(Ako, R)) > n(B(z, R))/2, then

u(fx € B(z, R) —u(x) < —ko}) > n(B(z, R))/2.
Consequently we have

pn({x € B(z, R) —u(x) > —ko}) < u(B(z, R))/2,

and then we can consideu rather than: in the following discussion. Therefore,
without loss of generality, we assume thatA (ko, R)) < u(B(z, R))/2. By The-
orem 4.2 withkg replaced by, = M —2=""X(M —m),v=0,1,2,..., and by
the doubling property, we get

n(Aky, R)))l/l’
n(B(z, R))

with ¢ > 0 asin Theorem 4.2. By Proposition 5.1 it is possible to choose an integer
v large enough so that

M('R/2) < ky + c(M(2T'R) — kv)(

C(M(A(kl,, R)))l/P !

1(B(z, R)) 2

Here, by inequality (5.2)), it is possible to choaséo be independent of the ball
B(z, R) and the function:. Note that here = 1/2. Hence
M(T'R/2) < M(2t'R) — (M(2t'R) — m(21'R))2~ 12,
and therefore
M(t'R/2) —m(t'R/2) < M(x'R/2) — m(2t'R)
< (M@t'R) —m(2U'R)) (1 — 27F2),
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By the above inequality,
osqu, B(z, T'R/2)) < A 0sdu, B(z, 2t'R)), (5.3)

wherexr =1—-2-02 < 1. To complete the proof we iterate inequality (5.3). We
choose an integet > 1 so that4~1 < R/r < 4/. Inequality (5.3) implies that

osqu, B(z, 7'r)) < A "Yosdu, B(z, 7’4 1r)) < A "Losdu, B(z, T'R)).
By the choice ofj we conclude that

A/ 1 = 4(-Ddlogr)/log4 4a<§)—a’

,
wherea = —(logx)/log4 < 1. Thus we have

r

osau. B(z.1'r)) < 4“(R)“ osau. B(z.T'R)). O

Combining Proposition 3.3 and Theorem 5.2 we conclude that every quasi-
minimizer is locally Holder continuous. In particular, this holds feharmonic
functions.

6. DeGiorgi class and strong maximum principle

Itwas shownin Theorem 7.17 of [C] and in [Sh1] thaharmonic functions satisfy
the maximum principle on their domain of harmonicity: they achieve their maxima
and minima on the boundary of the domain. In this section we prove that quasi-
minimizers, and in particulap-harmonic functions, satisfy the strong maximum
principle: they do not achieve their maxima and minimain the interior of the domain
of harmonicity.

We denoteD, (1, R) = {x € B(z, R) u(x) < t} and drop the subscriptsince
z € Qs fixed.

Lemma 6.1. Supposethatu > Oand —u € DG ,(R2). Let0 < R < diam(X)/3 be
such that B(z, R) C € and t > 0. Then thereisa constant g, 0 < yp < 1, such
that if £ (D(z, R)) < you(B(z, R)), then

inf u>1/2
B(z,R/2)

Here yg isindependent of the ball B(z, R).

Proof. By Theorem 4.2 applied teu, with kg = —7, we see that

sup —u < —-t+4c

1/p
L )™
B(z,R/2) (M(B(Z, R)) Jp(,p)
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This implies that

. 1 1/p
inf u>t-— c(— (t —u)? du)
B(z,R/2) w(B(z, R) Jp,r)

- CT(M(D(R R)))l/ﬂ
- w(B(z, R)) ’

where the last inequality was obtained by noting that u < t. To obtain the
claim we choosey = (2¢)~?. 0O

Lemma 6.2. Suppose that the hypothesis of Lemma 6.1 holds. For every y with
0 < y < 1lthereisaconstant A > Osuchthatif w(D(t, R)) < yu(B(z, R)), then

inf  u>Art.
B(z,R/2)

The constant A is independent of the ball B(z, R), and depends only on y, the
constantsrel ated to the Poincaréinequality, the doubling property, and the constant
in the De Giorgi inequality satisfied by u.

Proof. Let —k > —h with i, k > 0. We apply (5.1) with: replaced by-u, k by
—k andh by —h respectively. This gives us

(h —k)u(D(k, R)) < cu(B(z, R4

1/ ~
~(/ (h—umQ " (WD, ' R) — (D k. 7' RY) TP
D(h,2t'R)

Then we follow the proof of Proposition 5.1 with = r andM = 0. As in (5.2))
we conclude that

vu(D(Z_(H'l)r, R))P‘I/(P—Q) < cu(B(z, R))M/(P—q)
forv=1,2,... Hence we can chooselarge enough so that
(D@ YD, R)) < you(B(z, R)),

whereyyg is as in Lemma 6.1. The exponents independent of the bal(z, R)
andu. Now by Lemma 6.1, with replaced by 2tD ¢, we get

inf u>20t¢: g
B(z,R/2)

Remark 6.3. Suppose thaB(z, 6R) C Q2 and 0< R < diam(X)/18. If there exists
8,0< 48 <1, sothat

n({x € B(z, R)u(x) = t}) = du(B(z, R)),

then by the doubling property we have

1)
n({x € B(z,6R) u(x) > t}) > c—3M(B(z, 6R)),
d
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wherec; > 1 is the doubling constant ¢f. Hence by Lemma 6.2 we have

inff u>At, (6.1)
B(z,3R)

wherex > OisasinLemma 6.2. In particularjs independent of the bali(z, R).
Clearly we may assume thatOx < 1.

Note that ifx is not a constant, for = maxg;, r) u, then there is a number
with 0 < y < 1 sothatu(D(z, R)) < yu(B(z, R)). By Lemma 6.2 we conclude
that

inf  u> Art.
B(z,R/2)

This provesthai > 0onB(z, R/2). Thus we obtain the following strong maximum
principle for quasi-minimizers.

Corollary 6.4. Let 2 be an open subset of X and suppose that « is a non-constant
quasi-minimizer in . Then u does not obtain its minimum or maximumin 2.

7. DeGiorgi classand Harnack’sinequality
In this section we prove a weak Harnack inequality as in [DT], which together with
Theorem 4.3 implies the Harnack inequality.

Theorem 7.1. If —u € DG (), u > 0, thenthereares > 0 and ¢ > 0 such that

. 1/0
inf u> c(][ u’ du) (7.1)
B(z,3R) B(z,R)

for every ball B(z, R) such that B(z, 6R) C Q with0 < R < diam(X)/18. The
constants o and ¢ are independent of the ball B(z, R).

We begin by proving the Krylov—Safonov covering theorem [KS] on a doubling
metric measure space.

Lemma7.2. Let B(z, R) beaball in X, and E C B(z, R) be u-measurable. Let
0 < 8 < 1, and define

Es=J {B0.30) N B Ry € B, B), w(E N B 3p) > 8u(B(y, o)) |-
p>0

Then, either Es = B(z, R), or else w(Es) > (cg8) 1(E), wherecy > listhe
doubling constant of .

Proof. We define a maximal operatdf B(z, R) — R by setting
p(E N B(y, 3p))
n(B(y, p))

where the supremum is taken over all open balls, o), with y € B(z, R), such
thatx € B(y, 3p).

M(x) = sup
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We claim that
Es ={x € B(z, R) M(x) > 6}

for everys with 0 < § < 1. To see this let € B(z, R) such thatM (x) > §. Then
there is a ballB(y, p), y € B(z, R), such thatu(E N B(y, 3p)) > Su(B(y, p))
andx € B(y, 3p). This means that € E;s. On the other hand, if € Ejs, there
is ball B(y, p), y € B(z, R), such thatu(E N B(y,3p)) > su(B(y, p)) and
x € B(y, 3p). This implies thatV/ (x) > §.
Suppose thaB(z, R) \ Es # @. The setE; is open by definition. We covets
by balls B(x, ry), wherex € Es andr, = dist(x, B(z, R) \ Es)/2. By the Vitali
type covering lemma, see p. 69 in [CW], there are countably many pairwise disjoint
balls B(x;, r;), wherer; = ry,,i = 1,2, ..., such that

o
Es C U B(x;, 5r;).
i=1
ThenB(x;, 5r;) N (B(z, R) \ Es) # ¥ foreveryi = 1,2,... and there is a point
yi € B(x;,5r;) N (B(z, R) \ Es). In particular,M(y;) < 48,i = 1,2,... Since
x; € B(y;, 5r;), we conclude that

5
W(E N BGxi.5r)) < 8u(B(xi. 3r1)) < cad(Bxi. ),
where we also used the doubling property I6 a density point ofz, then

WENBQY,30)) _ . WENBY, ) _

liminf =1>6.

p—>0  w(B(y,p))  p=>0 w(B(y,p))
Sinceu-almost every point of is a density point, we observe thatalmost every
point of E belongs toEs for every 0< § < 1. From this it follows that

e¢]

W(E) = w(E N Es) <Y u(E N B(x;, 5r))
i=1

oo
< cad ) n(B(xi, 1)) < cadp(Es).
i=1
The above inequality yields the desired resulh

Proof of Theorem 7.1. Suppose that & § < 1 andA, 0 < A < 1, is the constant
in (6.1) corresponding td. Letr > 0 and denote

Ai={xeBE Rux) =}, i=012...

We apply Lemma 7.2 wittE = A, ;_1. If there is a poinkx € B(z, R) andp > 0
so that

w(Asi—1N B(x,3p)) = du(B(x, p)),
then

8
n(Ari-1N B(x, 6p)) > c_SM(B(x’ 6p)),
d
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and by Remark 6.3 we have

inf u> 1Al
B(x,3p)

Hence if B(x, 3p) is one of the balls going to make up the #&gtin Lemma 7.2,
thenB(x, 3p)NB(z, R) C A;;. ThisimpliesthaE;s C A; ;. Hence by the Krylov—
Safonov covering theorem we conclude that

1
— (A i—1) < p(Es) < u(Ar ) (7.2)
cqd
orA;; = B(z, R). Let0< § < 1/cy. We choose an integgr> 1 so that
(cad)’ < 1(Ar0)/i(B(z, R)) < (cad)’ .
Then by (7.2) we obtain
1 1
w(Arj-1) > Cd—(SIJ«(At,j—Z) =z WM(AI,O) > cgdu(B(z, R)).

By Remark 6.3 we see that

inf u>cta/L,
B(z,3R)

Herec is the constant in (6.1) corresponding the faetgt. This implies that

inf u > ctad 7t = cr(cy8)U 09N/ loglead) > ct(—'u(At’O) )y,
B(z.3R) ~ \u(B(z,R))

wherey = log/log(cs8). Consequently we obtain the estimate

MS =y inf L7,
w(B(z, R)) B(z.3R)

On the other hand, far > 0 we compute

o o 1
u® dy = —/ 1" L(Ay o) dt
][B(z,R) w(B(z, R)) Jo '

< ;/wﬂ’—lumt o)dt—l—a/E 1 Ldr
~ uw(B(z, R)) Je ’ 0
< C/ooto—l—l/ysl/y dt +$U,
£
where¢ = infp 3ryu.If o < 1/y,then
][ W% dpp < Y7 (Uy — o) TV 467 < g7,
B(z,R)

and hence
. 1/o
inf u > c(][ u® du) .
B(z,3R) B(z,R)
This completes the proof.O

Combining Theorem 4.3 (with Remark 4.4 (2)) and Theorem 7.1 we obtain
Harnack’s inequality.
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Corollary 7.3. Supposethatu > 0,u € DG, (2) and —u € DG ,(2). Then there
exists a constant ¢ > 1 so that

supu<c inf u
B(z,R) B(z,R)

for every ball B(z, R) for which B(z, 6R) € Q and 0 < R < diam(X)/18. Here
the constant ¢ isindependent of the ball B(z, R) and function u.

In particular, by Proposition 3.3 Harnack’s inequality holds for nonnegative
guasi-minimizers ang-harmonic functions. We obtain Liouville’s theorem as a
consequence of the Harnack inequalityXifis unbounded and is a p-harmonic
function on all ofX, then eithew: is constant or it is unbounded.
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