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Abstract. Using the theory of Sobolev spaces on a metric measure space we are able to
apply calculus of variations and definep-harmonic functions as minimizers of thep-Dirichlet
integral. More generally, we study regularity properties of quasi-minimizers ofp-Dirichlet
integrals in a metric measure space. Applying the De Giorgi method we show that quasi-
minimizers, and in particularp-harmonic functions, satisfy Harnack’s inequality, the strong
maximum principle, and are locally Hölder continuous, if the space is doubling and supports
a Poincaré inequality.

1. Introduction

The classical Dirichlet problem is to find a harmonic function with given boundary
values. An alternative variational formulation of this problem is to minimize the
Dirichlet integral ∫

|Du|2 dx
among all functions which have required boundary values.A more general nonlinear
variation of the classical Dirichlet problem is to study minimizers of thep-Dirichlet
integral ∫

|Du|p dx,
with 1 < p < ∞. The minimizers are solutions to the corresponding Euler–
Lagrange equation, which in this case is thep-Laplace equation

div(|Du|p−2Du) = 0,

and continuous solutions are calledp-harmonic functions.
It is not clear what the counterpart for thep-Laplace equation is in a general

metric measure space, but the variational approach is available; it is possible to
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definep-harmonic functions as minimizers ofp-Dirichlet integral in a metric mea-
sure space. The basic reason is that Sobolev spaces on a metric measure space can
be defined without the notion of partial derivatives; see [C, H, HeK] and [Sh2]. The
definitions in these references are different but by [Sh2] they give the same Sobolev
space under mild assumptions. Cheeger’s goal in [C] is to study differentiability of
Lipschitz functions on metric measure spaces. His definition of Sobolev spaces is
tailored to make lower semicontinuity of the Sobolev norm underLp convergence
a virtual tautology. This leads to the existence of a differential as a measurable
section of a finite dimensional cotangent bundle from which the reflexivity of the
Sobolev space follows. Hence direct methods in the calculus of variations can be
easily applied to prove the existence for thep-Dirichlet problem; see Sect. 7 in [C]
and [Sh1]. In this work we study the regularity properties ofp-harmonic functions
on a metric measure space.

In the Euclidean case minimizers of thep-Dirichlet integral are known to be
locally Hölder continuous. There are at least two ways of seeing this. One possible
approach is to use Moser’s iteration technique (see [Mo1] and [Mo2]), which gives
Harnack’s inequality and then Hölder continuity follows from this in a standard
way. From our point of view there is a drawback in Moser’s argument; it is based
on the differential equation and it seems to us that it cannot be applied in the general
metric setting. However, there is another approach by De Giorgi [DeG], which relies
only on the minimization property. In contrast with Moser’s technique, De Giorgi’s
method gives Hölder continuity and then Harnack’s inequality can be obtained as in
[DT]. One of the advantages of De Giorgi’s method is that it is applicaple to quasi-
minimizers as well. We recall that a quasi-minimizer minimizes thep-Dirichlet
integral up to a multiplicative constant; see [GG1] and [GG2]. Hence, in particular,
p-harmonic functions are quasi-minimizers. We have chosen this more general
approach to emphazise the fact that the obtained properties hold in a very general
context and are very robust. For example, they are preserved under bi-Lipschitz
perturbations of the metric.

The purpose of this note is to adapt De Giorgi’s method to the metric setting.
We show that if the space is doubling in measure and supports a(1, q)-Poincaré
inequality, then quasi-minimizers, and in particularp-harmonic functions, satisfy
Harnack’s inequality, the strong maximum principle, and are locally Hölder con-
tinuous. We note that Harnack’s inequality is the strongest claim and all other
properties follow from it in a standard way. However, these claims are closely
related to each other, and for expository purposes we first prove Hölder continu-
ity, then the strong maximum principle, and finally Harnack’s inequality, since the
proofs of these properties are based on estimates which are needed in the proof of
Harnack’s inequality. De Giorgi’s method is based on two ingredients: Sobolev and
Caccioppoli type estimates. We observe that these estimates are available under our
assumptions. Here we use results of [HaK], which show that the Poincaré inequality
implies a Sobolev type estimate. Then we very closely follow the presentation of
[Gia] and [Giu] and show that De Giorgi’s method applies. However, there are a few
delicate points in the argument and hence we are somewhat careful in details. For
example, the doubling condition comes into play in several occasions. In addition,
we do not have exactly the same exponents in the Sobolev type estimate as in the
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Euclidean case. Finally, the proof of [DT] is based on the Krylov–Safonov cover-
ing argument which is originally stated in terms of dyadic cubes. Instead of dyadic
cubes we use balls, doubling property and a simple maxoimal function argument.

Our work is closely related to the paper [C] of Cheeger. As he points out in
Remark 7.19 of [C], Moser’s iteration scheme can be used if thep-harmonic func-
tions are defined with respect to anL∞ Riemannian metric and the unit sphere is
smooth and strictly convex. Our approach shows that these additional assumptions
are not needed for local Hölder continuity and Harnack’s inequality. There exists
a remarkable literature on Harnack’s inequalities under various circumstances; see
for example [AC, CDG, FL, FKS, HS], [JX, LU, Ma, SC1], and [SC2]. Finally we
note that boundary continuity for quasi-minimizers on metric measure spaces have
recently been studied in [B].

This note is organized as follows. The second section focuses on the preliminary
notation and definitions needed in the rest of the paper. There we also fix the general
setup and conventions used later in the paper without further notice. In addition,
we prove a Sobolev type inequality for functions which vanish on a large set. The
third section explores the relationship between quasi-minimizers and the De Giorgi
class of functions. In particular, there we prove a Caccioppoli type estimate. In the
next two sections local boundedness and local Hölder continuity properties of the
De Giorgi class are studied. In Sect. 6 we prove the strong maximum principle and
in Sect. 7 the Harnack inequality for quasi-minimizers.

2. Preliminaries

In this section we recall basic definitions and describe the general setup of our
study.

We assume thatX is a metric measure space equipped with a Borel regular
measureµ. Throughout the paper we assume that the measure of every nonempty
open set is positive and that the measure of every bounded set is finite. Later we
impose further requirements on the space and on the measure; see Subsect. 2.6.

2.1. Upper gradients

Let u X → [−∞,∞] be a function. A non-negative Borel measurable function
g X → [0,∞] is said to be anupper gradient of u if for all compact rectifiable
pathsγ joining pointsx andy in X we have

|u(x)− u(y)| ≤
∫
γ

g ds. (2.1)

If u(x) = u(y) = ∞ or u(x) = u(y) = −∞, we define the left side of (2.1) to
be∞. See [C, HeK, KoM] and [Sh2] for a discussion of upper gradients. Observe
that upper gradients are called very weak gradients in [HeK], but we use different
terminology here.
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Let 1 ≤ p < ∞. Thep-modulus of a family of paths� in X is the number

inf
ρ

∫
X

ρp dµ,

where the infimum is taken over all non-negative Borel measurable functionsρ

such that for all rectifiable pathsγ which belong to� we have∫
γ

ρ ds ≥ 1.

It is known that thep-modulus is an outer measure on the collection of all paths in
X. A property is said to hold forp-almost all paths, if the set of non-constant paths
for which the property fails is of zerop-modulus. If (2.1) holds forp-almost all
pathsγ in X, theng is said to be ap-weak upper gradient of u.

2.2. Newtonian spaces

The upper gradient is a substitute for the modulus of a gradient in a metric space,
but in order to be able to do calculus of variations we need a concept of Sobolev
spaces in a metric measure space. Let 1≤ p < ∞. We define the spacẽN1,p(X)

to be the collection of allp-integrable functionsu that have ap-integrablep-weak
upper gradientg. This space is equipped with a seminorm

‖u‖Ñ1,p(X) = ‖u‖Lp(X) + inf ‖g‖Lp(X),
where the infimum is taken over allp-weak upper gradients ofu. Whenp > 1, by
the uniform convexity ofLp(X) we have that wheneveru ∈ N1,p(X) there is a
functiongu in Lp(X)-convex hull formed by the set of allp-weak upper gradients
of u, called theminimal p-weak upper gradient of u, so thatgu is ap-weak upper
gradient ofu and

‖gu‖Lp(X) = inf ‖g‖Lp(X)
where the infimum is over allp-weak upper gradientsg of u; see [Sh1] or [C].

We define an equivalence relation iñN1,p(X) by saying thatu ∼ v if

‖u− v‖Ñ1,p(X) = 0.

The Newtonian space N1,p(X) is defined to be the spacẽN1,p(X)/ ∼ with the
norm

‖u‖N1,p(X) = ‖u‖Ñ1,p(X).

For basic properties of the Newtonian spaces we refer to [Sh2]. We recall here some
facts for future reference. It can be shown thatN1,p(X) is a Banach space. It is also
very useful to know that if 1< p < ∞ every functionu that has ap-integrable
upper gradient has a minimalp-integrablep-weak upper gradient, denotedgu, in
the sense that ifg is anotherp-weak upper gradient ofu, thengu ≤ g µ-almost
everywhere. The functions inN1,p(X) are absolutely continuous onp-almost every



Regularity of quasi-minimizers on metric spaces 405

path, which means thatu◦γ is absolutely continuous on[0, length(γ )] forp-almost
every rectifiable arc-length parametrized pathγ in X.

Thep-capacity of a setE ⊂ X is defined by

Cp(E) = inf
u

‖u‖p
N1,p(X)

,

where the infimum is taken over all functionsu ∈ N1,p(X), whose restriction to
a neighbourhood ofE is bounded below by 1. Capacity is the natural measure for
exceptional sets of Sobolev functions. It is easy to see that sets of zero capacity are
also of measure zero, but the converse is not true in general. See [KM] for more
properties of the capacity.

In order to be able to compare the boundary values of Sobolev functions we
need a notion of Sobolev spaces with zero boundary values in a metric measure
space. LetE be an arbitrary subset ofX. Following the method of [KKM], we
defineÑ1,p

0 (E) to be the set of functionsu E → [−∞,∞] for which there exists
a functioñu ∈ Ñ1,p(X) such that̃u = u µ-almost everywhere inE and

Cp({x ∈ X \ E ũ(x) �= 0}) = 0.

Next we define an equivalence relation oñN1,p
0 (E) by saying thatu ∼ v if u = v

µ-almost everywhere onE. Finally we letN1,p
0 (E) = Ñ

1,p
0 (E)/ ∼, equipped with

the norm
‖u‖

N
1,p
0 (E)

= ‖ũ‖Ñ1,p(X),

be theNewtonian space with zero boundary values. The norm is unambiguously
defined by [Sh1] and the obtained space is a Banach space.

We use the following observation several times: suppose that there is a Borel
setA ⊂ X so thatu is constantµ-almost everywhere inX\A. Then ifg is an upper
gradient ofu, thengχA is ap-weak upper gradient ofu, and hence the minimal
p-weak upper gradientgu = 0 µ-almost everywhere onX \ A. HereχA is the
characteristic function ofA. For open setsA this has been proved in [Sh1] and
the general claim follows from fact that a locally finite Borel measure is a Radon
measure, and hence the measure of a Borel set can be approximated by measures
of open sets containing the set. It follows from this that ifu andv are functions
such thatu = v µ-almost everywhere on a Borel setA, thengu = gv µ-almost
everywhere; see Corollary 2.25 in [C].

2.3. Poincaré inequalities

A metric measure spaceX is said to bedoubling if there is a constantcd ≥ 1 so
that

µ(B(z,2r)) ≤ cdµ(B(z, r)) (2.2)

for every open ballB(z, r) in X. Throughout the work we use the convention that
B(z, r) refers to an open ball. The constantcd in (2.2) is called the doubling constant
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of µ. Note that by the doubling property, ifB(y,R) is a ball inX, z ∈ B(y,R) and
0< r ≤ R < ∞, then

µ(B(z, r))

µ(B(y, R))
≥ c

( r
R

)Q
(2.3)

for somec andQ depending only on the doubling constant.
Let 1 ≤ q < ∞. The spaceX is said tosupport a weak (1, q)-Poincaré

inequality if there are constantsc0 > 0 andτ ≥ 1 such that

∫
B(z,r)

|u− uB(z,r)| dµ ≤ c0r
(∫

B(z,τr)

gq dµ
)1/q

(2.4)

for all ballsB(z, r) in X, for all integrable functionsu in B(z, r) and for all upper
gradientsg of u. The word weak refers to the possibility thatτ > 1. If τ = 1, the
space is said to support a(1, q)-Poincaré inequality.A result of [HaK] shows that in
a doubling measure space a weak(1, q)-Poincaré inequality implies a weak(t, q)-
Poincaré inequality for somet > q possibly with a differentτ . More precisely,
there arec > 0 andτ ′ ≥ 1 such that

(∫
B(z,r)

|u− uB(z,r)|t dµ
)1/t ≤ cr

(∫
B(z,τ ′r)

gq dµ
)1/q

, (2.5)

where 1≤ t < Qq/(Q − q) if q < Q andt ≥ 1 if q ≥ Q, for all ballsB(z, r)
in X, for all integrable functionsu in B(z, r) and for all upper gradientsg of u.
Conversely, by the Hölder inequality we see that a(t, q)-Poincaré inequality implies
the same inequality for smaller values oft and larger values ofq. In particular,
if the space supports a weak(t, q)-Poincaré inequality, then it also supports a
weak(1, q)-Poincaré inequality. It can also be shown that in a space supporting a
weak(1, q)-Poincaré inequality, every ball, whose complement is non-empty, has
a non-empty boundary. This is a strengthening of the topological notion of uniform
perfectness; see the comments following inequality (2.6).

Moreover, in inequalities (2.4) and (2.5) we can replace the upper gradientgwith
anyp-weak upper gradient inLploc(X), because of the result in [KoM] which states
that everyp-weak upper gradient inLploc(X) can be approximated inLp(X) by an
upper gradient inLploc(X). Indeed, given anyp-weak upper gradientg1 ∈ Lploc(X)

of u and anyε > 0 we can find an upper gradientg2 so that‖g2 − g1‖Lp(X) < ε.
HereLploc(X) is the space of all measurable functions that arep-integrable on
bounded subsets ofX.

2.4. Sobolev inequalities

Next we prove a Sobolev type inequality for functions which vanish on a large set.
The paper [B] has a better capacitary version of this inequality, but for our purposes
it suffices to consider the more easily proved version below.
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Lemma 2.1. Let X be a doubling metric measure space supporting a weak (1, q)-
Poincaré inequality for some 1 < q < p. Suppose that u ∈ N1,p(X) and let A =
{x ∈ B(z, R) |u(x)| > 0}. If µ(A) ≤ γµ(B(z, R)) for some γ with 0 < γ < 1,
then there is a constant c > 0 so that

(∫
B(z,R)

|u|t dµ
)1/t ≤ cR

(∫
B(z,τ ′R)

g
q
u dµ

)1/q
,

where t and τ ′ are as in (2.5). The constant c depends only on γ and the constants
c and τ ′ of (2.5).

Proof. By the Minkowski inequality and (2.5) we have

(∫
B(z,R)

|u|t dµ
)1/t ≤

(∫
B(z,R)

|u− uB(z,R)|t dµ
)1/t + |uB(z,R)|

≤ cR
(∫

B(z,τ ′R)
g
q
u dµ

)1/q + |uB(x,R)|.

The Hölder inequality implies that

|uB(z,R)| ≤
( µ(A)

µ(B(z, R))

)1−1/t(∫
B(z,R)

|u|t dµ
)1/t

≤ γ 1−1/t
(∫

B(z,R)

|u|t dµ
)1/t

.

Hence we obtain

(1 − γ 1−1/t )
(∫

B(z,R)

|u|t dµ
)1/t ≤ cR

(∫
B(z,τ ′R)

g
q
u dµ

)1/q
,

from which the claim follows since 0< γ < 1. ��

We observe that Lemma 2.1 gives a Sobolev inequality for Sobolev functions
with zero boundary values. To be more precise, there existsc > 0 so that for every
ballB(z, R) with 0< R ≤ diam(X)/3 and everyu ∈ N1,p

0 (B(z, R)) we have

(∫
B(z,R)

|u|t dµ
)1/t ≤ cR

(∫
B(z,R)

g
q
u dµ

)1/q
. (2.6)

This follows easily from Lemma 2.1 after noting thatgu = 0 almost everywhere on
X\B(z, R) and by observing that there must be a point on the sphere∂B(z,2R).
If there is no such point, then it is easy to construct a function which violates the
Poincaré inequality.
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2.5. Quasi-minimizers

Now we are ready to formulate the minimization problem for thep-Dirichlet in-
tegral in a metric measure space. ByN1,p

loc (&) we mean the space of all functions
u ∈ Lploc(&) that have an upper gradient inLploc(&), whereLploc(&) is the space of
all measurable functions that arep-integrable on bounded subsets ofX.

Suppose that& ⊂ X is open. A functionu ∈ N1,p
loc (&) is calledp-harmonic on

&, if for every bounded open subset&′ of & with &
′ ⊂ & andv ∈ N1,p(&′) with

u− v ∈ N1,p
0 (&′) we have ∫

&′
g
p
u dµ ≤

∫
&′
gpv dµ,

wheregu andgv are the minimal weak upper gradients ofu andv respectively.
A functionu is said to be aquasi-minimizer on& if there is a constantK > 0

so that for all bounded open subsets&′ of & with &
′ ⊂ & and for all functions

v ∈ N1,p(&′) with u− v ∈ N1,p
0 (&′) the inequality∫

&′∩{u�=v}
g
p
u dµ ≤ K

∫
&′∩{u�=v}

gpv dµ

is satisfied.
In particular, everyp-harmonic function is a quasi-minimizer withK = 1.p-

harmonic functions on metric measure spaces have been studied in [C] and [Sh1].

2.6. General setup

A very interesting fact for us is that if the metric measure space is doubling and sup-
ports the(1, p)-Poincaré inequality with 1< p < ∞, thenN1,p(X) is reflexive.
This result has been proved in [C] by Cheeger. He employs a different definition of
Sobolev spaces on a metric measure space using only upper gradients and a concept
of generalized upper gradients and bypassing the notions of moduli of path families
and weak upper gradients. However, our definition gives rise to the same space as
his when 1< p < ∞; see [Sh2]. Since the notion ofp-weak upper gradients pro-
vides insight into the geometric aspect of this function space, we use the definition
developed in [Sh1] in the De Giorgi method given here, which itself is a geometric
argument. Cheeger has also shown that the minimal upper gradient of a locally
Lipschitz function can be obtained as the pointwise Lipschitz constantµ-almost
everywhere provided the space is doubling and supports a Poincaré inequality; see
section 6 of [C]. There is yet another definition of Sobolev spaces on a metric mea-
sure spaces given by Hajłasz [H] based on a maximal function inequality. If the
measure is doubling and the space supports a weak(1, q)-Poincaré inequality for
someq with 1< q < p, then all three definitions yield the same space. Therefore
doubling and Poincaré type assumptions seem to form a natural context for us to
work with.
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From now on we assume without further notice that the metric measure space
X is equipped with a doubling Borel regular measure for which the measure of
every nonempty open set is positive and the measure of every bounded set is finite.
Furthermore we assume that the space supports a weak (1, q)-Poincaré inequality
for some q with 1< q < p.

3. Quasi-minimizers and De Giorgi class

In this section we show that quasi-minimizers, and in particularp-harmonic func-
tions, satisfy a Caccioppoli type estimate on level sets.

Definition 3.1. Let & be an open subset of X. The function u ∈ N1,p
loc (&) belongs

to the De Giorgi class DGp(&), if there exists a constant c > 0 such that for all
k ∈ R, z ∈ &, and 0< ρ < R ≤ diam(X)/3 so that B(z, R) ⊂ &, we have∫

Az(k,ρ)

g
p
u dµ ≤ c

(R − ρ)p

∫
Az(k,R)

(u− k)p dµ, (3.1)

where Az(k, r) = {x ∈ B(z, r) u(x) > k}. In the rest of the discussion we drop the
subscript z from Az(k, r) as z ∈ & is fixed. Observe that (3.1) is equivalent to∫

B(z,ρ)

g
p

(u−k)+ dµ ≤ c

(R − ρ)p

∫
B(z,R)

(u− k)
p
+ dµ, (3.2)

where we denote by (u− k)+ the function max{u− k,0}.
To prove the local Hölder continuity, the strong maximum principle and Har-

nack’s inequality for a quasi-minimizeru, we show thatu and−u belong to the De
Giorgi class and in the subsequent sections we prove that such functions satisfy the
corresponding property.

Suppose thatu is a quasi-minimizer on&. We show thatu ∈ DGp(&). Let
B(z, R) ⊂ & and 0< ρ < R ≤ diam(X)/3. Letη be ac/(R−ρ)-Lipschitz cutoff
function so that 0≤ η ≤ 1, η = 1 onB(z, ρ) and the support ofη is contained in
B(z, R). Set

v = u− ηmax(u− k,0).

Then u − v ∈ N
1,p
0 (A(k, R)). By the energy quasi-minimizing property ofu

employed on the subdomainB(z, R) (see Subsect. 2.5), we have∫
A(k,ρ)

g
p
u dµ ≤

∫
A(k,R)

g
p
u dµ ≤ K

∫
A(k,R)

gpv dµ.

Note thatv = u − η(u − k) = (1 − η)(u − k) + k onA(k,R). Henceµ-almost
everywhere on this set

gv ≤ (u− k)gη + (1 − η)gu;



410 J. Kinnunen, N. Shanmugalingam

see Lemma 2.4 in [Sh1] or [C]. Sincegη ≤ c/(R − ρ), we get

∫
A(k,ρ)

g
p
u dµ ≤ c

∫
A(k,R)

(
(u− k)pgpη + (1 − η)pg

p
u

)
dµ

≤ c

(R − ρ)p

∫
A(k,R)

(u− k)p dµ+ c

∫
A(k,R)\A(k,ρ)

g
p
u dµ.

Here we used the fact that 1− η = 0 onA(k, ρ). Adding the termc
∫
A(k,ρ)

g
p
u to

the left- and right-hand sides of the inequality above, we see that

(1 + c)

∫
A(k,ρ)

g
p
u dµ ≤ c

∫
A(k,R)

g
p
u dµ+ c

(R − ρ)p

∫
A(k,R)

(u− k)p dµ.

This implies that∫
A(k,ρ)

g
p
u dµ ≤ θ

∫
A(k,R)

g
p
u dµ+ c

(R − ρ)p

∫
A(k,R)

(u− k)p dµ,

whereθ = c/(c + 1) < 1. Hence, if 0< ρ < r ≤ R, then∫
A(k,ρ)

g
p
u dµ ≤ θ

∫
A(k,r)

g
p
u dµ+ c

(r − ρ)p

∫
A(k,R)

(u− k)p dµ. (3.3)

Now we recall a technical lemma; see Lemma 5.1 in [Gia].

Lemma 3.2. Let R > 0 and f (0, R] → [0,∞) be a bounded function. Suppose
that for 0< ρ < r ≤ R < ∞ we have

f (ρ) ≤ γ (r − ρ)−α + θf (r) (3.4)

with α > 0, 0 ≤ θ < 1, and γ ≥ 0. Then there is a constant c = c(α, θ) so that

f (ρ) ≤ cγ (r − ρ)−α. (3.5)

for 0< ρ < r ≤ R.

From (3.2) and Lemma 3.2 we conclude that there is a constantc depending
only onp and the quasi-minimizer constantK so that∫

A(k,ρ)

g
p
u dµ ≤ c

(R − ρ)p

∫
A(k,R)

(u− k)p dµ, (3.6)

and henceu is in the De Giorgi class. Finally we observe that ifu is a quasi-
minimizer, then so is−u. Thus we have proved the following result.

Proposition 3.3. Let& be an open subset ofX. If u is a quasi-minimizer in&, then
u ∈ DGp(&) and −u ∈ DGp(&).
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4. De Giorgi class and boundedness

Suppose that a functionu is in DGp(&). Let 0< R/2 < ρ < R ≤ diam(X)/3
such thatB(z, R) ⊂ &. Theng(u−k)+ ≤ guχA(k,R) in B(z, R) and by inequality
(3.2) we see that∫

B(z,(R+ρ)/2)
g
p

(u−k)+ dµ ≤ c

(R − ρ)p

∫
B(z,R)

(u− k)
p
+ dµ. (4.1)

Here we use the product rule again; see Lemma 2.4 in [Sh1] or [C]. Letη be
a c/(R − ρ)-Lipschitz cutoff function so that 0≤ η ≤ 1, the support ofη is
contained inB(z, (R+ ρ)/2), andη = 1 onB(z, ρ). Then, lettingv = η(u− k)+,
we have

gv ≤ g(u−k)+η + (u− k)+gη ≤ g(u−k)+ + c

R − ρ
(u− k)+.

Inequality (4.1) implies that∫
B(z,(R+ρ)/2)

gpv dµ

≤ c

∫
B(z,(R+ρ)/2)

g
p

(u−k)+ dµ+ c

(R − ρ)p

∫
B(z,(R+ρ)/2)

(u− k)
p
+ dµ

≤ c

(R − ρ)p

∫
B(z,R)

(u− k)
p
+ dµ.

Since the space supports a weak(1, p)-Poincaré inequality, by inequality (2.6) we
gett > p (see the discussion after (2.5)) so that

(∫
B(z,ρ)

(u− k)t+ dµ
)p/t ≤ c

(∫
B(z,(R+ρ)/2)

|v|t dµ
)p/t

≤ cRp
(∫

B(z,(R+ρ)/2)
gqv dµ

)p/q

≤ c
Rp

(R − ρ)p

∫
B(z,R)

(u− k)
p
+ dµ.

(4.2)

The Hölder inequality implies that∫
B(z,ρ)

(u− k)
p
+ dµ ≤

(∫
B(z,ρ)

(u− k)t+ dµ
)p/t( µ(A(k, ρ)

µ(B(z, ρ))

)1−p/t
.

Therefore, inequality (4.2) gives us

∫
B(z,ρ)

(u− k)
p
+ dµ

≤ c
Rp

(R − ρ)p

( µ(A(k, ρ)
µ(B(z, ρ))

)1−p/t∫
B(z,R)

(u− k)
p
+ dµ. (4.3)
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Let h < k. Then

(k − h)pµ(A(k, ρ)) =
∫
A(k,ρ)

(k − h)p dµ

≤
∫
A(k,ρ)

(u− h)p dµ ≤
∫
A(h,ρ)

(u− h)p dµ.

(4.4)

Let

u(h, ρ) =
(∫

B(z,ρ)

(u− h)
p
+ dµ

)1/p
.

Then, by inequality (4.4) and the doubling condition, we have

µ(A(k, ρ)) ≤ µ(B(z, ρ))

(k − h)p
u(h, ρ)p ≤ c

µ(B(z, R))

(k − h)p
u(h,R)p,

and by inequality (4.3) we obtain

u(k, ρ) ≤ c
R

R − ρ

( µ(A(k, ρ)
µ(B(z, ρ))

)1/p−1/t
u(k, R)

≤ c
R

R − ρ
(k − h)−θu(h, R)1+θ ,

(4.5)

whereθ = 1 − p/t > 0.
The following proposition is a modification of Proposition 5.1 in [Gia].

Proposition 4.1. For any number k0 ∈ R we have u(k0 + d,R/2) = 0, where

dθ = c 2(1+θ)2/θ+1u(k0, R)
θ . (4.6)

Here c and θ are as in (4.5).

Proof. Let kn = k0 + d(1− 2−n) andρn = R/2+ 2−n−1R, n = 0,1,2, . . . Then
ρ0 = R, ρn ↘ R/2, andkn ↗ k0 + d asn → ∞. Next we show that for every
n = 0,1,2, . . . we have

u(kn, ρn) ≤ 2−µnu(k0, R), (4.7)

whereµ = (1 + θ)/θ .
It is clear that (4.7) holds whenn = 0. Suppose then that (4.7) holds for some

n. Then, by inequality (4.5), we obtain

u(kn+1, ρn+1) ≤ c
ρn

ρn − ρn+1
(kn+1 − kn)

−θu(kn, ρn)1+θ

≤ c
R

2−n−2R
(2−n−1d)−θ u(k0, R)

1+θ

2µn(1+θ) = 2−µ(n+1)u(k0, R).

Thus (4.7) is proved by induction.
Hence limn→∞ u(kn, ρn) = 0. Askn ≤ k0 + d andR/2 ≤ ρn ≤ R for every

n = 0,1,2, . . . , using the doubling property we conclude that

0 ≤ u(k0 + d,R/2) ≤ c u(kn, ρn).

The claim follows by lettingk → ∞. ��
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Now we are ready to prove the following weak Harnack inequality; see Theo-
rem 5.1 in [Gia]. It implies that functions in the De Giorgi class are locally bounded
and the obtained estimate is a basis of our work.

Theorem 4.2. Let & be an open subset of X, B(z, R) ⊂ & with 0 < R ≤
diam(X)/3, and k0 ∈ R. If u ∈ DGp(&), then there is a constant c > 0 such
that

sup
B(z,R/2)

u ≤ k0 + c
(∫

B(z,R)

(u− k0)
p
+ dµ

)1/p
.

The constant c depends only on the constant in De Giorgi’s condition, the doubling
constant, p, q, and constants c and τ ′ from (2.5). In particular, the constant is
independent of the ball B(z, R).

Proof. By Proposition 4.6 we haveu(k0 + d,R/2) = 0, whered is as in (4.6).
This implies that

sup
B(z,R/2)

u ≤ k0 + d = k0 + c
(∫

B(z,R)

(u− k0)
p
+ dµ

)1/p
.

Thus the result follows. ��
Takingk0 = 0 we see that the following theorem is true.

Theorem 4.3. Suppose that the hypothesis of Theorem 4.2 hold and, in addition,
−u ∈ DGp(&). Then

sup
B(z,R/2)

|u| ≤ c
(∫

B(z,R)

|u|p dµ
)1/p

,

where c > 0 is as in Theorem 4.2.

Remarks 4.4. (1) It is easy to see that there is nothing particular in the factor 1/2
in the claims of Theorem 4.3. Indeed, if 0< ρ < r ≤ R, then

sup
B(z,ρ)

|u| ≤ c

(1 − ρ/r)Q/p

(∫
B(z,r)

|u|p dµ
)1/p

.

To see this, letε > 0 and takey ∈ B(z, ρ) so that|u(y)|p ≥ (supB(z,ρ) |u|)p − ε.
Then by Theorem 4.3 we have

( sup
B(z,ρ)

|u|)p ≤ ε + |u(y)|p ≤ ε + ( sup
B(y,(r−ρ)/4)

|u|)p

≤ ε + c

∫
B(y,(r−ρ)/2)

|u|p dµ.

Doubling property (2.3) of the measureµ implies that

µ(B(y, (r − ρ)/2)) ≥ c(1 − ρ/r)Qµ(B(z, r))

from which the claim follows.
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(2) It is useful to observe that the claim of Theorem 4.3 hold for every exponent
q > 0. To be more precise, for everyq > 0 there is constantc such that

sup
B(z,ρ)

|u| ≤ c

(1 − ρ/R)Q/q

(∫
B(z,R)

|u|q dµ
)1/q

when 0< ρ < R < ∞. If q > p, the claim follows directly from Hölder’s
inequality. Suppose then that 0< q < p and let 0< ρ < r ≤ R. Then an
application of Young’s inequality gives

sup
B(z,ρ)

|u| ≤ c

(1 − ρ/r)Q/p

(∫
B(z,r)

|u|q |u|p−q dµ
)1/p

≤ c

(1 − ρ/r)Q/p

(∫
B(z,r)

|u|q dµ
)1/p(

sup
B(z,r)

|u|)1−q/p

≤ ε sup
B(z,r)

|u| + c(ε)

(1 − ρ/r)Q/q

(∫
B(z,r)

|u|q dµ
)1/q

≤ ε sup
B(z,r)

|u| + c(ε)

(r − ρ)Q/q

(
RQ

∫
B(z,R)

|u|q dµ
)1/q

,

where 0< ε < 1. In the last inequality we used doubling property (2.3). The claim
follows now from Lemma 3.2

5. De Giorgi class and Hölder continuity

The aim of this section is to prove De Giorgi’s theorem [DeG], which states that
functions in De Giorgi’s class are locally Hölder continuous.

Suppose thatu ∈ DGp(&) and let 0< r < R < diam(X)/(3τ ′) be such
thatB(z,2τ ′R) ⊂ &. Assume thatµ(A(h,R)) ≤ γµ(B(z, R)) for someγ with
0< γ < 1. Letk > h, and define

v(x) = min{u(x), k} − min{u(x), h}.
Sinceu ∈ N1,p(&), we note thatv ∈ N1,p(&). By hypothesis,

µ({x ∈ B(z, R) v(x) > 0}) ≤ γµ(B(z, R)).

Since the space is assumed to support a weak(1, q)-Poincaré inequality for some
q with 1< q < p, we may use Lemma 2.1 witht = q and we obtain

(k − h)µ(A(k, R)) =
∫
A(k,R)

v dµ ≤
∫
B(z,R)

|v| dµ

≤ cµ(B(z, R))1−1/q
( ∫

B(z,R)

|v|q dµ
)1/q

≤ cRµ(B(z, R))1−1/q
( ∫

B(z,τ ′R)
gqv dµ

)1/q

≤ cRµ(B(z, R))1−1/q
( ∫

A(h,τ ′R)\A(k,τ ′R)
gqv dµ

)1/q
,



Regularity of quasi-minimizers on metric spaces 415

where the constantc > 0 has the same dependencies as the constant in Lemma 2.1.
Here we used the fact thatgv = gvχ{h<u≤k} µ-almost everywhere. Hence, by
Hölder’s inequality we have

(k − h)µ(A(k, R)) ≤ cRµ(B(z, R))1−1/q

·
( ∫

A(h,τ ′R)
gpv dµ

)1/p(
µ(A(h, τ ′R))− µ(A(k, τ ′R))

)1/q−1/p
.

Sinceu ∈ DGp(&), we conclude that forR < diam(X)/(3τ ′)so thatB(z,2τ ′R) ⊂
&,

(k − h)µ(A(k, R)) ≤ cµ(B(z, R))1−1/q

·
( ∫

A(h,2τ ′R)
(u− h)p dµ

)1/p(
µ(A(h, τ ′R))− µ(A(k, τ ′R))

)1/q−1/p
. (5.1)

Herec depends onγ and on other parameters.
The following result is Proposition 5.1 in [Gia]. We denote

m(R) = inf
B(z,R)

u and M(R) = sup
B(z,R)

u.

By the results of Section 4,M(R) is finite.

Proposition 5.1. Suppose that u ∈ DGp(&) is locally bounded below and letM =
M(2τ ′R), m = m(2τ ′R) and k0 = (M + m)/2. If µ(A(k0, R)) ≤ γµ(B(z, R))

for some 0< γ < 1, then

lim
k→M

µ(A(k, R)) = 0.

Proof. Let ki = M − 2−(i+1)(M −m), i = 0,1,2, . . . Thenki ↗ M asi → ∞
andk0 = (M +m)/2. Note that

M − ki−1 = 2−i (M −m) and ki − ki−1 = 2−(i+1)(M −m).

By inequality (5.1) we have

(ki − ki−1)µ(A(ki, R)) ≤ cµ(B(z, R))1−1/q
( ∫

A(ki−1,2τ ′R)
(u− ki−1)

p dµ
)1/p

· (
µ(A(ki−1, τ

′R))− µ(A(ki, τ
′R))

)1/q−1/p
.

Therefore, asu− ki−1 ≤ M − ki−1 onA(ki−1,2τ ′R), we conclude that

2−(i+1)(M −m)µ(A(ki, R)) ≤ cµ(B(z, R))1−1/q+1/p

· 2−i (M −m)
(
µ(A(ki−1, τ

′R))− µ(A(ki, τ
′R))

)1/q−1/p
.

Note that ifν ≥ i, thenµ(A(kν, R)) ≤ µ(A(ki, R)). Hence

µ(A(kν, R)) ≤ cµ(B(z, R))1−1/q+1/p

· (
µ(A(ki−1, τ

′R))− µ(A(ki, τ
′R))

)1/q−1/p
.
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Now summing the above inequality overi = 1,2, . . . , ν, and using the doubling
property, we get

νµ(A(kν, R))
pq/(p−q) ≤ cµ(B(z, R))pq/(p−q)−1(µ(A(k0, τ

′R))
− µ(A(kν, τ

′R))
)

≤ cµ(B(z, R))pq/(p−q).
(5.2)

Therefore, limn→∞ µ(A(kn, R)) = 0 and hence the result follows by the fact that
µ(A(k, R)) is a monotonic decreasing function ofk. ��

Now we are ready to prove De Giorgi’s theorem; see page 82 in [Gia]. Let
osc(u, B(z, r)) = M(r)−m(r) denote the oscillation ofu onB(z, r).

Theorem 5.2. Suppose that both u and −u are in DGp(&). If 0 < r < R <

diam(X)/(3τ ′) are such that B(z,2τ ′R) ⊂ &, then

osc(u, B(z, τ ′r)) ≤ 4α
( r
R

)α
osc(u, B(z, τ ′R)),

for some α with 0 < α ≤ 1 independent of the function u and the ball B(z, R). In
particular, u is locally Hölder continuous on &.

Proof. Let k0 = (M + m)/2, whereM andm are as in Proposition 5.1. If
µ(A(k0, R)) > µ(B(z, R))/2, then

µ({x ∈ B(z, R) − u(x) ≤ −k0}) > µ(B(z, R))/2.

Consequently we have

µ({x ∈ B(z, R) − u(x) > −k0}) ≤ µ(B(z, R))/2,

and then we can consider−u rather thanu in the following discussion. Therefore,
without loss of generality, we assume thatµ(A(k0, R)) ≤ µ(B(z, R))/2. By The-
orem 4.2 withk0 replaced bykν = M − 2−ν−1(M −m), ν = 0,1,2, . . . , and by
the doubling property, we get

M(τ ′R/2) ≤ kν + c(M(2τ ′R)− kν)
(µ(A(kν, R))
µ(B(z, R))

)1/p

with c > 0 as in Theorem 4.2. By Proposition 5.1 it is possible to choose an integer
ν large enough so that

c
(µ(A(kν, R))
µ(B(z, R))

)1/p
<

1

2
.

Here, by inequality (5.2)), it is possible to chooseν to be independent of the ball
B(z, R) and the functionu. Note that hereγ = 1/2. Hence

M(τ ′R/2) < M(2τ ′R)− (M(2τ ′R)−m(2τ ′R))2−(ν+2),

and therefore

M(τ ′R/2)−m(τ ′R/2) ≤ M(τ ′R/2)−m(2τ ′R)
<

(
M(2τ ′R)−m(2τ ′R)

)
(1 − 2−(ν+2)).
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By the above inequality,

osc(u, B(z, τ ′R/2)) < λosc(u, B(z,2τ ′R)), (5.3)

whereλ = 1− 2−(ν+2) < 1. To complete the proof we iterate inequality (5.3). We
choose an integerj ≥ 1 so that 4j−1 ≤ R/r < 4j . Inequality (5.3) implies that

osc(u, B(z, τ ′r)) ≤ λj−1 osc(u, B(z, τ ′4j−1r)) ≤ λj−1 osc(u, B(z, τ ′R)).

By the choice ofj we conclude that

λj−1 = 4(j−1)(logλ)/ log 4 ≤ 4α
(R
r

)−α
,

whereα = −(logλ)/ log 4 ≤ 1. Thus we have

osc(u, B(z, τ ′r)) ≤ 4α
( r
R

)α
osc(u, B(z, τ ′R)). ��

Combining Proposition 3.3 and Theorem 5.2 we conclude that every quasi-
minimizer is locally Hölder continuous. In particular, this holds forp-harmonic
functions.

6. De Giorgi class and strong maximum principle

It was shown in Theorem 7.17 of [C] and in [Sh1] thatp-harmonic functions satisfy
the maximum principle on their domain of harmonicity: they achieve their maxima
and minima on the boundary of the domain. In this section we prove that quasi-
minimizers, and in particularp-harmonic functions, satisfy the strong maximum
principle: they do not achieve their maxima and minima in the interior of the domain
of harmonicity.

We denoteDz(τ, R) = {x ∈ B(z, R) u(x) < τ } and drop the subscriptz since
z ∈ & is fixed.

Lemma 6.1. Suppose that u ≥ 0 and −u ∈ DGp(&). Let 0< R ≤ diam(X)/3 be
such that B(z, R) ⊂ & and τ > 0. Then there is a constant γ0, 0 < γ0 < 1, such
that if µ(D(τ, R)) ≤ γ0µ(B(z, R)), then

inf
B(z,R/2)

u ≥ τ/2.

Here γ0 is independent of the ball B(z, R).

Proof. By Theorem 4.2 applied to−u, with k0 = −τ , we see that

sup
B(z,R/2)

−u ≤ −τ + c
( 1

µ(B(z, R))

∫
D(τ,R)

(−u+ τ)p dµ
)1/p

.
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This implies that

inf
B(z,R/2)

u ≥ τ − c
( 1

µ(B(z, R))

∫
D(τ,R)

(τ − u)p dµ
)1/p

≥ τ − cτ
(µ(D(τ, R))
µ(B(z, R))

)1/p
,

where the last inequality was obtained by noting thatτ − u ≤ τ . To obtain the
claim we chooseγ0 = (2c)−p. ��
Lemma 6.2. Suppose that the hypothesis of Lemma 6.1 holds. For every γ with
0< γ < 1 there is a constant λ > 0 such that if µ(D(τ, R)) ≤ γµ(B(z, R)), then

inf
B(z,R/2)

u ≥ λτ.

The constant λ is independent of the ball B(z, R), and depends only on γ , the
constants related to the Poincaré inequality, the doubling property, and the constant
in the De Giorgi inequality satisfied by u.

Proof. Let −k > −h with h, k > 0. We apply (5.1) withu replaced by−u, k by
−k andh by −h respectively. This gives us

(h− k)µ(D(k, R)) ≤ cµ(B(z, R))1−1/q

·
( ∫

D(h,2τ ′R)
(h− u)p dµ

)1/p(
µ(D(h, τ ′R))− µ(D(k, τ ′R))

)1/q−1/p
.

Then we follow the proof of Proposition 5.1 withm = τ andM = 0. As in (5.2))
we conclude that

νµ(D(2−(ν+1)τ, R))pq/(p−q) ≤ cµ(B(z, R))pq/(p−q)

for ν = 1,2, . . . Hence we can chooseν large enough so that

µ(D(2−(ν+1)τ, R)) ≤ γ0µ(B(z, R)),

whereγ0 is as in Lemma 6.1. The exponentν is independent of the ballB(z, R)
andu. Now by Lemma 6.1, withτ replaced by 2−(ν+1)τ , we get

inf
B(z,R/2)

u ≥ 2−(ν+2)τ. ��

Remark 6.3. Suppose thatB(z,6R) ⊂ & and 0< R ≤ diam(X)/18. If there exists
δ, 0< δ < 1, so that

µ({x ∈ B(z, R) u(x) ≥ τ }) ≥ δµ(B(z, R)),

then by the doubling property we have

µ({x ∈ B(z,6R) u(x) ≥ τ }) ≥ δ

c3
d

µ(B(z,6R)),
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wherecd ≥ 1 is the doubling constant ofµ. Hence by Lemma 6.2 we have

inf
B(z,3R)

u ≥ λτ, (6.1)

whereλ > 0 is as in Lemma 6.2. In particular,λ is independent of the ballB(z, R).
Clearly we may assume that 0< λ < 1.

Note that ifu is not a constant, forτ = maxB(z,R) u, then there is a numberγ
with 0 < γ < 1 so thatµ(D(τ, R)) ≤ γµ(B(z, R)). By Lemma 6.2 we conclude
that

inf
B(z,R/2)

u ≥ λτ.

This proves thatu > 0 onB(z, R/2).Thus we obtain the following strong maximum
principle for quasi-minimizers.

Corollary 6.4. Let & be an open subset of X and suppose that u is a non-constant
quasi-minimizer in &. Then u does not obtain its minimum or maximum in &.

7. De Giorgi class and Harnack’s inequality

In this section we prove a weak Harnack inequality as in [DT], which together with
Theorem 4.3 implies the Harnack inequality.

Theorem 7.1. If −u ∈ DGp(&), u > 0, then there are σ > 0 and c > 0 such that

inf
B(z,3R)

u ≥ c
(∫

B(z,R)

uσ dµ
)1/σ

(7.1)

for every ball B(z, R) such that B(z,6R) ⊂ & with 0 < R ≤ diam(X)/18. The
constants σ and c are independent of the ball B(z, R).

We begin by proving the Krylov–Safonov covering theorem [KS] on a doubling
metric measure space.

Lemma 7.2. Let B(z, R) be a ball in X, and E ⊂ B(z, R) be µ-measurable. Let
0< δ < 1, and define

Eδ =
⋃
ρ>0

{
B(y,3ρ) ∩ B(z, R) y ∈ B(z, R), µ(E ∩ B(y,3ρ)) > δµ(B(y, ρ))

}
.

Then, either Eδ = B(z, R), or else µ(Eδ) ≥ (cdδ)
−1µ(E), where cd ≥ 1 is the

doubling constant of µ.

Proof. We define a maximal operatorM B(z,R) → R by setting

M(x) = sup
µ(E ∩ B(y,3ρ))
µ(B(y, ρ))

,

where the supremum is taken over all open ballsB(y, ρ), with y ∈ B(z, R), such
thatx ∈ B(y,3ρ).
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We claim that
Eδ = {x ∈ B(z, R) M(x) > δ}

for everyδ with 0< δ < 1. To see this letx ∈ B(z, R) such thatM(x) > δ. Then
there is a ballB(y, ρ), y ∈ B(z, R), such thatµ(E ∩ B(y,3ρ)) > δµ(B(y, ρ))

andx ∈ B(y,3ρ). This means thatx ∈ Eδ. On the other hand, ifx ∈ Eδ, there
is ball B(y, ρ), y ∈ B(z, R), such thatµ(E ∩ B(y,3ρ)) > δµ(B(y, ρ)) and
x ∈ B(y,3ρ). This implies thatM(x) > δ.

Suppose thatB(z, R) \Eδ �= ∅. The setEδ is open by definition. We coverEδ
by ballsB(x, rx), wherex ∈ Eδ andrx = dist(x, B(z, R) \ Eδ)/2. By the Vitali
type covering lemma, see p. 69 in [CW], there are countably many pairwise disjoint
ballsB(xi, ri), whereri = rxi , i = 1,2, . . . , such that

Eδ ⊂
∞⋃
i=1

B(xi,5ri).

ThenB(xi,5ri) ∩ (B(z, R) \ Eδ) �= ∅ for everyi = 1,2, . . . and there is a point
yi ∈ B(xi,5ri) ∩ (B(z, R) \ Eδ). In particular,M(yi) ≤ δ, i = 1,2, . . . Since
xi ∈ B(yi,5ri), we conclude that

µ(E ∩ B(xi,5ri)) ≤ δµ
(
B

(
xi,

5

3
ri

))
≤ cdδµ(B(xi, ri)),

where we also used the doubling property. Ify is a density point ofE, then

lim inf
ρ→0

µ(E ∩ B(y,3ρ))
µ(B(y, ρ))

≥ lim
ρ→0

µ(E ∩ B(y, ρ))
µ(B(y, ρ))

= 1> δ.

Sinceµ-almost every point ofE is a density point, we observe thatµ-almost every
point ofE belongs toEδ for every 0< δ < 1. From this it follows that

µ(E) = µ(E ∩ Eδ) ≤
∞∑
i=1

µ(E ∩ B(xi,5ri))

≤ cdδ

∞∑
i=1

µ(B(xi, ri)) ≤ cdδµ(Eδ).

The above inequality yields the desired result.��
Proof of Theorem 7.1. Suppose that 0< δ < 1 andλ, 0 < λ < 1, is the constant
in (6.1) corresponding toδ. Let t > 0 and denote

At,i = {
x ∈ B(z, R) u(x) ≥ tλi

}
, i = 0,1,2, . . .

We apply Lemma 7.2 withE = At,i−1. If there is a pointx ∈ B(z, R) andρ > 0
so that

µ(At,i−1 ∩ B(x,3ρ)) ≥ δµ(B(x, ρ)),

then

µ(At,i−1 ∩ B(x,6ρ)) ≥ δ

c3
d

µ(B(x,6ρ)),
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and by Remark 6.3 we have
inf

B(x,3ρ)
u ≥ tλi .

Hence ifB(x,3ρ) is one of the balls going to make up the setEδ in Lemma 7.2,
thenB(x,3ρ)∩B(z, R) ⊂ At,i . This implies thatEδ ⊂ At,i . Hence by the Krylov–
Safonov covering theorem we conclude that

1

cdδ
µ(At,i−1) ≤ µ(Eδ) ≤ µ(At,i) (7.2)

orAt,i = B(z, R). Let 0< δ < 1/cd . We choose an integerj ≥ 1 so that

(cdδ)
j ≤ µ(At,0)/µ(B(z, R)) ≤ (cdδ)

j−1.

Then by (7.2) we obtain

µ(At,j−1) ≥ 1

cdδ
µ(At,j−2) ≥ · · · ≥ 1

(cdδ)j−1µ(At,0) ≥ cdδµ(B(z, R)).

By Remark 6.3 we see that

inf
B(z,3R)

u ≥ ctλj−1.

Herec is the constant in (6.1) corresponding the factorcdδ. This implies that

inf
B(z,3R)

u ≥ ctλj−1 = ct (cdδ)
(j−1)(logλ)/ log(cd δ) ≥ ct

( µ(At,0)

µ(B(z, R))

)γ
,

whereγ = logλ/ log(cdδ). Consequently we obtain the estimate

µ(At,0)

µ(B(z, R))
≤ ct−1/γ inf

B(z,3R)
u1/γ .

On the other hand, forσ > 0 we compute∫
B(z,R)

uσ dµ = σ

µ(B(z, R))

∫ ∞

0
tσ−1µ(At,0) dt

≤ σ

µ(B(z, R))

∫ ∞

ξ

tσ−1µ(At,0) dt + σ

∫ ξ

0
tσ−1 dt

≤ c

∫ ∞

ξ

tσ−1−1/γ ξ1/γ dt + ξσ ,

whereξ = infB(z,3R) u. If σ < 1/γ , then∫
B(z,R)

uσ dµ ≤ cξ1/γ (1/γ − σ)−1ξσ−1/γ + ξσ ≤ cξσ ,

and hence

inf
B(z,3R)

u ≥ c
(∫

B(z,R)

uσ dµ
)1/σ

.

This completes the proof.��
Combining Theorem 4.3 (with Remark 4.4 (2)) and Theorem 7.1 we obtain

Harnack’s inequality.
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Corollary 7.3. Suppose that u > 0, u ∈ DGp(&) and −u ∈ DGp(&). Then there
exists a constant c ≥ 1 so that

sup
B(z,R)

u ≤ c inf
B(z,R)

u

for every ball B(z, R) for which B(z,6R) ⊂ & and 0 < R ≤ diam(X)/18. Here
the constant c is independent of the ball B(z, R) and function u.

In particular, by Proposition 3.3 Harnack’s inequality holds for nonnegative
quasi-minimizers andp-harmonic functions. We obtain Liouville’s theorem as a
consequence of the Harnack inequality: ifX is unbounded andu is ap-harmonic
function on all ofX, then eitheru is constant or it is unbounded.
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