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Abstract. We use a method recently devised by Bolle to establish the existence of an infinite
number of solutions for various non-homogeneous boundary value problems. In particular,
we consider second order systems, Hamiltonian systems as well as semi-linear partial dif-
ferential equations. The non-homogeneity can originate in the equation but also from the
boundary conditions. The results are more satisfactory than those obtained by the standard
“Perturbation from Symmettynethod that was developed — in various forms — in the early
eighties by Bahri—Berestycki, Struwe and Rabinowitz.

1. Introduction

Equivariant variational methods often yield multiple solutions for partial differ-
ential equations and Hamiltonian systems that are invariant under certain group
actions. However, there are no satisfactory general answers yet to the cases where
the group symmetry is broken by some non-equivariant — and even linear — pertur-
bations. A partially successful method to deal with such problems was devised in
the early eighties by Bahri-Berestycki [Ba-Bel,2] and Struwe [S1,2]. The varia-
tional principle underlying these results was later formulated by Rabinowitz [R].
The main idea being to think of the non-symmetric functiohainder study as a
perturbation of its symmetric pafy and then to estimate how the growth rate of

the critical levels oflp is affected by the perturbation from symmetry- Io.

This method has been somewhat successful in dealing with certain “lower order”
perturbations like the one resulting from non-homogeneous Hamiltonian systems
and second order systems [Ba-Be2]. More recently, the authors of [E-G-T] had to
deal with a new type of perturbation from symmetry which appeared in their study
of a second order system with non-homogeneous boundary conditions. Because of
the high order of the perturbation term, the method described above (to which we
shall refer thereafter as the “standard method”) did not yield a satisfactory result.
To remedy that, P. Bolle introduced in [B] a more refined version that succeeded in
improving the result in [E-G-T] on the Bolza problem.
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The new approach deals witlas the end-point of a continuous path of function-
als (Ip)gefo,1) Which starts at the symmetric functionkl. Bolle’s abstract result
roughly says that the preservation of the min-max critical levels along the path
(Iy) depends only on the variatioq%lg (u) at the critical pointsu of I. As we
shall see in this paper, better estimates can be obtained at such points since they
often obey certain conservation laws as they are solutions of the corresponding
Euler—Lagrange equations.

In this paper, we try this approach on three problems: a second order system,
a semi-linear pde and a Hamiltonian system. We show how it can improve old
results and prove new ones about the existence of multiple solutions for ordinary or
partial differential equations in the absence of symmetry. We also include a fourth
example (a non-linear wave equation) which illustrates how the failure to exploit
conservation laws to obtain estimates, can lead to unsatisfactory results.

We now state the main results of this paper.

Theorem 1.1 (Non-homogeneous Bolza problgnSupposeV € C2(R",R) is
even and that there exists> 2 such that:

0< pV(x) <(VV(x), x) forall |x| large
Then for anyf € C([0, T], R"), the Bolza problem

X4+ VV@) = f(t) xeR"

(P1)
x(0) = xo, x(T) = x1.

has infinitely many solutions.

As noted in [E-G-T], the “standard method” yields the above result only when
2 < p < 4. The case wherg < 2 is different and has been dealt with by Clarke—
Ekeland [C-E].

Theorem 1.2 Non-homogeneous semi-linear equatjohet 2 be an open boun-
ded subset aR" (of classC?) andug € C2(32, R). Assumél < p < "t then

forany f € C(Q, R), the problem

Au+ulPlu=f inQ P2)
U =ug ono

has infinitely many solutions.

Again, the “standard method” yields the above result foe Ip < ”niz We
note thatifug = 0, Bolle’s method yields the same result as the standard one which
was last used by Bahri-Lions [Ba-L] to improve the ranggafp to.=. It is still
an open problem whether problem,) (even whenig = 0) has an infinite number
of solutions for allp all the way up to’r%g.

Theorem 1.3 Non-homogeneous Hamiltonian systgmiset H be a function in
C?(R?", R) satisfying
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(hl) H is even,
(h2) 3u > 2 such thatd’(x) - x > uwH(x) > 0for |x| large,
(h3) There arer ands suchthatl <r <s < 2r +1and

Ax"" —B<Hx) < ClxP™ + D

whereA, B, C, D are positive constants.

Let g0 and g1 be two given vectors iR", then for any two functiongi, f2 in
C([0, 1]; R™), the following problem

L=28G, p+ fi)
dp = —3 (g, p)+ fo0) (P3)
q(0) = go andg (1) = q1.

has an infinite number of solutions.

Assumptions (h2) and (h3) were used by Bahri and Berestycki in [Ba-Be2] to
prove the existence of infinitely many periodic solutions to the systems above, where
f1 and f> are 1-periodic. Here we deal with the existence of orbits which connect
the subspaceg = go} and{g = ¢1} in a given time period. Note that in terms of
symplectic geometryg = go} and{g = g1} are two Lagrangian submanifolds of

n

R?" (endowed with the canonical symplectic structhrelq; A dp;), and we could

raise a more general question, namely the existencle of orbits connecting two given
Lagrangian submanifolds &2* in given time.

Finally, we describe the following highly unsatisfactory result which we obtain
by only using the “standard method”.

Theorem 1.4 Non-homogeneous semi-linear wave equafioRsr any givenxg
andx1 in R and any continuoug, the following equation:

Upp — Uxx + |M|P—1u = f(x,1)
u(0,1) =xo, u(mw,t)=x1 (P4)
u(x,t+2mr) =u(x,t).

has an infinite number of solutions providéc p < 2.

Note that for the homogeneous casg £ x; = 0), the multiplicity holds for
any p > 1 (Tanaka [T2]). We were led here to this restriction piecause we
had to use the estimates of the “standard method” which do not take advantage
of the fact that the energy estimates are only needed for the critical points of the
associated functional.
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2. Preservation of critical levels along a path of functionals

In this section we recall Bolle’s method for dealing with problems with broken
symmetry. LetE be a Hilbert space and considar&functionall =[0, 1]x E — R.

We denote by, ) and|.| the scalar product itk and the associated norm. For
6 € [0, 1] we shall use the abbreviatial for 1(6,.). We make the following
hypotheses:

(H1) I satisfies the Palais—Smale condition, which means here that for every se-
quence((6,, x,)) (with 6, € [0, 1], x, € E) such that||19’n (x| — O as
n — +oo and!(6,, x,) is bounded, there is a subsequence converging in
[0, 1] x E. (The limit (0, x) then satisfieg; (x) = 0).

(H2) For allb > 0 there is a constartt; (b) such that:

Iy (x)| < b implies | %10, )| < C1B) (1501 + D(lxll + D).

(H3) There exist two continuous functiong and f> : [0,1] x R — R with
f1 < fo, that are Lipschitz-continuous relative to the second variable and
such that, for all critical points of Iy,

a
S100, 1g(x)) = 2510, x) = 200, Ip(x)).

(H4) There are two closed subsetsiifA andB C A, such that:

(i) Iohasan upper-bound ohand Iim ( sup Ip(x)) = —oo.
|X|;X0° 0€[0,1]

(i) ca,p > cpwherecg = supg Ipandc,, p = inf suplpwhere for some

8€Ds g(a)
R>0,Dp ={g € COE, E); g(x) = x forx € B and forx € E with
lx]l = R}.
Denote byy; (i = 1, 2) the functions defined of®, 1] x R by

Yi(0,5) =5
i 0, 5) = fi (0, 9:(6,5)).

Note thaty; andyrp are continuous and that for alle [0, 1], ¥1(0, -) andy2(6, )
are non-decreasing dd Moreovetr, sincef; < f2, we havey1 < v».

In the sequel, we sef (s) = SURcjo.1) 1£i (0, $)|, i = 1, 2. Here is the result of
Bolle [B].

Theorem 2.1 Bolle). Assume thal = [0, 1] x E — R is €2 and satisfiegH1),
(H2), (H3)and(H4). If ¥2(1, cg) < ¥1(L, ca ), thenls has a critical point at a
level¢ such thatyr1(1, ca. ) < ¢ < ¥2(1, ca B).

Assume nowE = E_ @ E. and let(E,), be an increasing sequence of sub-
spaces of such thatEg = E_ andE, 11 = E, ® Re,41. If E_ is finite dimen-
sional, set:

G={geC(E;E); gisodd andg(x) = x for x € E and||x|| large.

andc; = infgeg Sup,(g,) fo-
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Theorem 2.2.Assumd satisfies hypothesis (H1),(H2),(H3). In addition, we sup-
pose

(H4") Ipis even and for any finite dimensional subsp#cef E, we have:
SURyejo.1) (0, y) = —ooasy € W and|y| — oo.

Then, there i< > 0 such that for every:

(1) Either I; has a critic_al leveky with Ya(L, cx) < ¥1(4, cpg1) < Ck-
(2) Or cry1 — ek < C((f1(ck+1) + fa(c) + D).

Proof. Suppose that2(1, ¢x) < ¥1(1, ck+1), we shall show that we are then in
the context of Theorem 2.1 above and tlighas a critical leveb 1(1, cky1)-
Indeed, finde > 0 such thaty>(1, cx + €) < ¥1(1, cx+1). Fix g € G such that
SUR,(g, fo < ¢k + €. Let Ef., = Ex ® Rerq1 and setd, = g(Ef,) and
By = g(Ek).

We only need to verify (H4)(ii), that is:

I/fl(]-’ CAk,Bk) > WZ(L SBUp[O)
k
wherec, , =inf.ep, sup, loandDp, is defined as in Theorem 2.1.
Indeed if¢ € Dp,, the functionm = £ o 815}, is odd onEj and therefore it
trivially extends to an odd functiom on Ej;1 (hence to an odd function on the
whole space satisfyingi(x) = x for large|x|, by the Tietze theorem). We now
have sincdy is even andn is odd:

suplop= sup lp= sup Ip= sup Ip> cit1.
E(A) m(E}, ) m(EY, ) m(Ej+1)

It follows thatcAk,Bk > cx+1 and therefore

V1l ¢y p) = ¥1(L cry1) > Y21, e +€) = a(l, S;Jplo).
k
Theorem 2.1 then applies to yield a critical level far at level ¢; such that
Yo (L, cp) < ¥1(L, cp1) < ¢k < ¥2(1, CAkak)’ which is the first alternative.
Otherwise,¥2(1, ¢x) > ¥1(1, cr+1). Now, by the Lipschitz continuity off;
w.r.t. the second argumenty; (1, s) — s| < C; fi(s) + K; fors > 0andi = 1, 2,
whereC;, K; are positive constants. Hence we get that:

ck+1— ek < ¥1(L, k1) + Cafilert1) + K1 — ¥2(L, k) + Cafalck) + K2
< Cifi(crs1) + Cafalcr) + K1+ K.

which completes the proof of Theorem 2.21

Remark 2.1The classD4_ g in Theorem 2.1 may be replaced by a less general
class of deformations, containing the (possibly truncated) gradient flows of the
functionals/ (9, -). If the gradient ofly is of the formU + K with U an invertible
linear operator and compact, then the subspacdés ), of Theorem 2.2 need not

be finite dimensional as long as the clgsss suitably defined. We shall see an
example in Section 5.
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3. The nonhomogeneous Bolza problem
We first revisit the following non-homogeneous second order system:

{5& +VV@) = f(t) xeR" 1)

x(0) = xo, x(T) = x1.

As was done in [E-G-T], we introduce the change of variable: z + u, where
z:[0,T] - R", z(t) = xo0 + %(xl — xp) in such a way that satisfies:

(P'D)

i+ VVu+z() = f@)
u(Q =u(r)=0

In order to use Bolle’s method we introduce the functibn]0, 1] x H - R
defined by:

rr1
I10,u)=1Iu) = / (§|ﬂ|2 —Vu+0z +9fu> dt
0
where:H = HE(0, T). We shall denotdy (u) := - Iy (u).
In the next lemmas, we show thatsatisfies the hypothesi#f1), (H2) and

(H3).
Lemma 3.1.There exists positive constanj('?,i)f.3 1 suchthat forany € H:

@) lIvl?2=ca (ple(y) —(I5(3), y) = 0Jp(y) —0(p —2) foT f@y dt)-
(i) Forall a > 0, there existX (a) > 0 such that

C
ol = =2 (1312 + 1Y) + Cal ()1 + K (@,
(ili) 1y1? = CaClZg(» 1%+ 1) + Csllo ()]

Proof. The proof of this lemma follows the same lines as Lemma 3.1 in [B]. We
repeat the argument here for completeness. We have

T T
Jo(y) = —/ VV(y+91)z+/ f@®)ydt and
0 0

T T T
<15(y),y>=/0 |y'|2—/O VV<y+ez>y+9/0 Fydi
T T
:/0 |y‘|2_/o VV(y+62)(y+06z)
T T
+9/ VV(y—l—GZ)Z—f-/ f@®)ydt
0 0
T T T
5/0 Iy'lz—pf0 V(y+9z)—919(y)+29f0 f)ydt

p T T
=pl() =5 - l)/o 9P —o0(p —2)/0 f@)ydt.
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Slnce —1>0,we get estimate (i).
To get (ii) setr = W Note that

1[0, )U(T —r,T1= |y(®)| < Vrlyll <avT 3.D
sincey(0) = y(T) = 0.

Leth € H be defined by:(t) = z(r)£in [0, r], h(t) = z(+) in[r, T —r], and
h(t) = L= fort € [T —r, T]. We have
T r
() = —/0 (G, Ry di + 1), h) f Fh - fo YV + 0 — )
T
—/ VV(y+0z)(z—h).
T—r

SinceV is €1, from (3.1) we get

‘f VV(iy+02)(z— h)' +
0

VV(y+6z2)(z—h)

= C(a)

Hence
IJo DI < IyI1AI+ 1D IAIL 4+ KAl
Now;

1Al < K +K =< CII I+ K
=7 =y
From which (i) follows. Finally from (i) and (ii) we get
2 / c o 2,.¢
yll© = Ie(y)—<19(y),y)+;||yll +;||19||IIyII
+clligll + K (@) + Cllyll

From which (iii) follows. Now we use this result to prove:

Lemma 3.2.There exist constants » > 0 such that wheneveris a critical point
of Iy, we have:

1/4 bl /4
~a(1@P 1) = 5w = 2w = (1 P +1)
Proof.
T
Jo(u) = / (=VV@u+02)z+ f(tu)dt.
0
We need to estimat («) at a pointu, such that; () = 0, i.e.

i+ VVu+60z)=0ft) tel0T]

T
Jo(u) = /0 u()z(t) = 0f (z(1) + f(Ou(r) dt

T T
= i(T)z(T) —u<0)z(0)+/ FOu dt—/ 0f (1)zdt
0 0
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which implies:
o ()| < ¢ (Ja(T)] + [a(O)] + [lull + 1)

Let E(1) = 3li+ 6022+ V(u+02). ThenE(t) = (ii + VV (u + 02)) (i + 62) =
O(u + 60z) f(t). SinceV is bounded below oR":

1i(T)|2 < E(T) — V (u(T) + 6z(T)) and
i(0)[2 < E0) — V (u(0) + 6z(0)) imply

@(D)] + 1i(0)] = c( [max [E@®)] + 1)

On the other hand, fai, r» € [0, T], the formulaE (t2) — E(t1) = ff E'(s)ds

implies that
T T ri2
TE(tz)—/ E(t)dt:/ / E'(s)dsdt
0 0 Jn

which in turn gives:
1 T 1 T t
E(t):—/ E(s)ds+—/ / E'(s)dsdr VYt e[0,T].
T Jo T Jo Jr
From this last inequality we derive:
1 T T
—/ E(s)ds +/ |E'(s)|ds
0

T
—/ ( |t + 62| +V(u+92)> dt +9/ | + 0z|.| f(1)| dt
0

1T, .12 107 .,
~low +6 | f(t)udt+ i+ 0:12dr + = | |a2dr
2 Jo 2 Jo

+||u|| +C

|E(7)]

IA

IA

IA

1
< = o) + Cillu)|® + Ca.

Now using Lemma 3.1 (jii) and recalling thaf(x) = 0 we have:
|[E(@®)| < C3llp(u)| + Ca, V1 €[0,T]

which implies:
(1)1 + 1i(0)* < Cs (15 (w)] + 1)
and we finally get:

1/4
ol = € (ol +1)

The proof of Lemma 3.2 is completen
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End of proof of Theorem 1.1.We first prove thatl satisfies the hypothesis of
Theorem 2.2. It is clear thdp is even and that, in view of the above lemmas, it
satisfies hypothesis (H1), (H2) and (H3). Moreover, the conditiol émplies the
existence of constants; andC» such thatV (x) > C1|x|? — C». Hence

A

1 T
10,y) = Ellyllz—leo ly +6z|” dt + C2 + 01y ll1ll flloo

12 P
SIVI" = Caliylly + Ca+ Callylla.

IA

which implies that for every finite dimensional subspageof E the quantity
SURycro.17 1 (0, y) goes to—oo since all norms are equivalent .

Let now (&)1<i<, be an orthonormal basis &". Fork € N, leta; € E be
defined byay (t) = sinz (g (k) 4+ 1)t.€-x)+1 Wherek = g(k)n +r(k), 0 < r(k) <
n—1

Denote byE} the subspace df spanned byao, ..., a;} and let

G={geC(E;E); gisoddande(x) = x for |x| largel

and set; = inf__; sup,g,, fo- Theorem 2.2 applied t¢ (0, 5) = —a(s® + 1)¥/*
and f2(8, s) = b(s%+ 1)1/*yields that if the set of critical levels df has an upper
bound then:

lek+1 — ekl < K(Vek + e+ 1)
which implies thal(l%) is bounded. On the other hand, it is shown in [E-G-T] that
if V has a polynomial growth liké/ (x) < y1]x|? + y» then there is a positive

2 . .
constantL > 0 such thatc;, > Lke=2. An adaptation of the proof in [EGT]
to general superquadratic potentials yields tfgat—> 400 ask — +oo. This
contradiction completes the proof of Theorem 1.

4. Semilinear elliptic PDEs with nonhomogeneous boundary conditions

Let @ be an open bounded subsetRjf (of classC?), f € C(Q,R) andug in
C2(, R) such thatAug = 0. We consider the problem

{—Au =P+ f inQ 2)

U = ug onog.

We shall prove thatfor k p < g—j (P2) has infinitely many solutions. Again,
we first reformulate the problem by setting= v + ug. (P2) is then equivalent to

{—Av =lug+v/P tuo+v)+ f InQ P2)

v=2~0 onog.
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LetE = Hol(sz; R) be endowed with the scalar prodyet, v2) = f Vvi1.Vuadx
Q

and let|| || denote the associated norm. For<l p < Z—J_f% we can define on

[0, 1] x E the functionall by

+1
16,v) = /( Vo2 — |v+6“°|p —0fv)dx.

The solutions of P;) coincide with the critical points of; = 7(1,-) in E. In
order to apply Theorem 2.2, one must first check theatisfies the Palais—Smale
condition (H1). That proof can be carried out in a standard way. Now we establish
(H2).

Lemma 4.1.For all b > Othere is a constant’; (b) such that:

‘—1(9 v)| < C1B) (I, + D(llvll + Dfor all (0, v) with [Ty (v)| < b.

Proof. Letb > 0 be given. The conditiofly (v)| < b is equivalent to
f GV

Rl
ﬁl(G, V) = /(—|v + 9u0|p71(v 4+ Oug)ug — fv)dx.

|v+9uo|p+l—9fv)dx <b 4.1)

and

Moreover, using (4.1), we have

—(Ij(v),v) = / (—=|Vv|? + |v + Ouol”X(v + Oug)v + 0 v) dx

1
> <& - 1)/ V|2 dx
2 Q

— /(|v + 0uol? (v + Oug)buo + pofv)dx — (p + 1)b.

SetCo PH — 1> 0and note that

‘/ v+ Guol”_l(v + Oug)bug
Q

/ fvdx
Q

From (4.1) we havejv + 9u0||1’+1 < Cs4 [ IVV|? + Cs. Hence

< Cyllv + Ouoll? 4

and

p+1
p+1-

< C2+ C3llv + Ouol|
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_P_

—(I5(v), v) ZCO/ |Vv|2—cs<f |Vo[?)pi —C7([ Vo271 — Cg (4.2)
Q Q Q

whenevel Iy (v)| < b.
Now (4.1) and (4.2) imply

o+ Ouoll?tE < c4/Q V[ 4 Cs < Cao(l1§ ) + (vl + 1.

Since

1/p+1

d
[7
‘ﬁz(e, v)| < Cuallv +Ouoll? 4 + Crzllvl Y

< Cua(Jlo + Ouoll 5 +1).
the lemma is proved.o
Note that the same computations show that there €%i&t > 0 such that ifv
is a critical point ofly (v), then
Clta) =1 = [ 190 = € (o) + 1 4.3
Q
and
K@) =D < [ o+ 0uol”* < K (o) + ). (4.4
Q
We shall need the following “Pohozaev-type” lemma.

Lemma 4.2.There exists a constant > 0 such that ifv is a critical point for Iy,
then foru = v + 6ug we have

1o o dup? 2 41
(§|VM| - |B_n| Ydo < C | (|Vul® + [u|P™ + 1) dx.
BY) Q

Proof. Let v be a critical point offy. Then

—Av = |v 4+ 0uglP" (v + Oug) +6f onQ
v=20 onos.

Note that, by classical regularity results we have thahdu belong toC2(Q).

Forx € @, leté(x) = d(x, 9R2) be the distgnce to the boundary. Sirfeés
of classC?, there is§ > 0 such that is C2onQ N {¢ < 8} andn(x) = VE(x)
coincides ord 2 with the inner normal. Lep denote a smooth functidR — [0, 1]
such thaty = 1 on(—o0, 0] andg = 0 on[§, +00). Setg(x) = ¢ (£(x)).

Multiply now the equation

(4.5)

—Au=uP"lu+60f onQ
u = Oug onaf2

335
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by ¢(x)Vu.n(x) and integrate ove®. As a first term, we get:

ou
—Au.gVundx = | —g|—
on

Q Q2

Note thatg = 1 on the boundary, while the last term of the equation is equal to

/Q Z Uy, (guxjnj)x’_ dx

1<i,j<n

:/ Zuxiuxj(gnj)xi dx+f Zuxiuxjxignjdx
Q Q

iJ i,J

1
=0 /|Vu|2 +Z/ <§|uxi|2>xvgnj
Q L Q

J

1
=0 /|Vu|2 +/Z§|Mxi|28|nj|2d0
i b/

Q

2
do + f Vu -V(gVu -n))dx.
Q

and ond, Y |uy,|%¢gln;|? = |Vul?. Therefore,
i.j

—AugVu -ndx = | (=|Vu|* - |—
Ele}

In the same way, we get

2
Ydo + O /|Vu|2dx . (4.6
Q

p+1
/ lul? " ug (x)Vu -ndx = 9P+1/ % do + 0 / ulP*rdx |, (4.7)
Q 00 Q

+1

1/p
/f(x)g(x)Vu -ndx =0 / fuodo + O (/ |u|p+1dx> . (4.8
Q Q2 Q

By putting together (4.5)—(4.8), one can complete the proof of Lemma d.2.

Lemma 4.3.There exists a constagt > 0 such that, ifv is a critical point of/y,
then

3 5 1/4
’ﬁl(e,v) 50(1(9, v) +1) .

Proof. Let v be a critical point offy. Then

—Av = |v+0uglP"Y(v + Oug) +0f on
v=20 on 9Q
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and therefore:

0
£1(9, V) = /(—|v + 9u0|”71(v 4+ Oug)ug — fv)dx
Q

f((Av+9f)uo— fv)dx
Q

d
:/—VvVuodx—i—/a—vuodG +0/fuo—/fv.
n

Q

Q Q Q

Note first that/ —VuvVugdx = [vAugdx = 0. We also have
Q Q

[ £ods] < vllpsall e = € (1o + 6wz + )
Q

(4.9
<c (|1(0, )| VP 4 1) .
So, sincep > 1, itis enough to check that
av 2 1/4
‘/‘% cupdo | < C(|1 (9, V)| + l)
aQ
We shall see that in fact
v |2
/ ’8— do < (16, v+ 1) (4.10
n
a0
which obviously implies the desired estimate. Sif 6= 3—: — 9%, (4.10) is

equivalent to prove the same estimate for3“|2 do-.
Q2

Now
vl - 122y do = | (GID ~ %24
f(2| ul” =19 do /(2| aquol” — S 1o %) do

IR Q2

(whereDyquo is the gradient ofig)sq). Sinceug € C?(Q), we get from Lemma
4.2 that there is a consta@t such that

/

Q2

ou
on

2
do < C' /(quIZ + uP Y dx + 1
Q

<c" f(|Vv|2+ Py dx + 1
Q
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and by (4.3) and (4.4)

/ au |?
an
Q2

which yields Lemma 4.3.0

do <C"(16,v)+1),

End of Proof of Theorem 1.2 Again, we show that (6, x) satisfies the hypothesis
of Theorem 2.2. It is clear thd is even and that, in view of the above lemmas,
it satisfies hypothesis (H1), (H2) and (H3). It is also clear that for every finite
dimensional subspad& of £, supycp.1; 1 (0, y) — —oo as|y| — +oo,y € W.

For eaclk, denote by, the subspace df spanned by the firéteigenfunctions
of A, let

G={geC(E;E); gisoddandg(x) = x for |x| largel

and sety = infgeg SUR, () lo-

Theorem 2.2 applied withy (6, s) = —a(s2+1)Y*andf>(8, s) = b(s2+1)1/4
then yield that if the set of critical levels &f has an upper bound then:

lekvr — ekl < K(Vek + a1+ 1)

which implies thai( %) is bounded. On the other hand, it is shown by Tanaka [Ta]
(see also Bahn L|ons [B-B]), that there is a positive consfant 0 such that

o > Lkb 1% This s a contradiction as long 3 53”*1 > 2,thatiswherp < 2£1.
This completes the proof of the theorenm

Remark 4.1A rougher estimate fok%l(e, v)|, without using thatb is a critical
point of Iy, would have led to:

‘—1(9 v <

/|v +0uol” < [l +6uoll”, 1 < CU 0. v) + 7.

The existence of solution would have been obtained in this way only f«or",—fz.

Also note that, in order to obtain the same multiplicity result for the full range
of p (up to the critical Sobolev exponent), one needs to show that foreach,

‘—1(9 v)| < C(|1(6,v)|€ +1).
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5. Non-homogeneous Hamiltonian systems

We now consider the following Hamiltonian system

dg 0H

I E(q’ p)+ fi®)

dp _ _90H (P3)
ar = og (q,p)+ f2(t)

g0 =q0, ¢V =aq1

whereg, p : [0, 1] — R"; f; € C}([0, 1]; R") andqo, g1 are given.
We shall use the following assumptions &n

(hl) H is even and belongs ©62(R%*, R).
(h2) 3u > 2 such that?’(x) - x > wH (x) > 0 for |x| large.
(h3) There are ands suchthat < r <s < 2r +1and

Alx|"" = B < H(x) < Clx|'*t + D,
whereA, B, C, D are positive constants.

In this section we prove Theorem 1.3, which state that under assumptions (h1),
(h2), (h3), problem (P3) has infinitely many solutions. To do that, we again perform
a change of variable, replacing?) by ¢ (¢) + z(¢), wherez(¢) = tq1 + (1 — t)qo.

We find that (P3) is equivalent to

4 _ 8—H( +2z,p) + fit) — (g1 — q0)

ar =~ op gtz p)+ N q1 — qo0

dp _ _9H (P'3)
i = og (g +z,p)+ f2(t)
q(0) =g =0.

Let a be a smooth even maR — R, non decreasing oR. and such that
la’(x)] < 1,a(x) = x forx > 1. Let/ : R2 — R be defined by (x, y) =
(x +¥)/2—a(x —y)/2 (m is a smooth approximation of “min”). It is easy to
see thatn is non-decreasing with respect to each of its arguments. More precisely,
O0<om/ox <landO0< dm/dy < 1.

Fix a € (2, min(u, r + 1)) anda’ € (2, ) . For R large, defingG g by

Gr(x) =m(H(x), R|x|*+ D+ 1).

By the definition ofm and the properties off, Gr(x) = H(x) if |x] < mp =
(R/C)V6+1=0) and, providedR is large enoughG g(x) = |Rx|* + D + 1 if
x| > Mg := (2R/A)Y r+1-e)

Now defineHy by

Hg(q, p) =m(GRr(q, p), Lr(g, p)),

whereLz(q, p) = 2R(2Mr)*2(|p|?2 + |g|* + 1). One could easily verify that,
providedR is large enoughHgr(x) = Gg(x) if |x|] < 2Mg. HenceHg(x) =
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Rix|*+ D+ 1if Mg < |x| < 2Mpg. Moreover, for|x| large, Hr(x) = Lg(x).
Notice also that{z (x) > Hg(x) if R’ > R. Finally, by the properties aoff, there
are two positive constants and F such that, for allR > 1, for all x € R,
Hg(x) = E(|p|® +1q|*) — F.

Let E = Hg((0, 1); R") x L?((0, 1); R") be endowed with the scalar product

1
(@, p); (@, p) = /0 i + pp dt.

Let 7% be defined or0, 1) x E by

1
IR(G,q,p)=/O (g -p— Hgr(g + 0z, p)+0(q1 — q0)
-p—0f1-p+0f2-q)dt.

Itis easy to see thdt® is smooth or{0, 1) x E and that the critical points = (g, p)
of I®(1, .) which satisfylg +z|?+|p|? < m are solutions to problertP}). Notice
also that ifR’ > R thenI®" < IR. Moreover we have the following:

Lemma 5.1.There is a functiort : R, — (0, +00) such that:

(i) lim g— 400 £(R) = +00.

(i) If x = (g, p) is a critical point of /% (0, -) which satisfied X9, x) < £(R)
then|y| < mg wherey = x + (6z, 0).

Proof. We first prove that, if is a critical point off ¥ (9, -), then

1 1
|Hr(y(1)) — /O Hr(y(s))ds| <C1 /0 (H2(y(s)) + DY4ds

+ C2(HE(y(1)) + D4

(5.1)

wherey (1) = x(1) + 6(z(1), 0).
In fact, letx = (¢, p) be a critical point off (6, -). Then

q(0) = %IE(q + 6z, p) + 6f1— 6(q1 — q0)
ﬁ(t) = - 9

Uk (q + 0z, p) + 0 2.

Hence

d

ZHR(Q(I) +0z(1), p(1))
0Hp

g

= Of2— P)(q +60(q1—q0) + (¢ — 6f1+ 6(q1 — q0)) P

= 0124 + 67 f2(q1 — q0) — 0.f1p.

) 0Hpg .
(g + 6z, p)(¢ +60(q1 — q0)) + W(q + 0z, p)p
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We get:
Hg(y(t2)) — Hr(y(t1)

2
= / 0£2(5)4(s) + 62 f2(5)(q1 — qo) — Of1(s) p(s) ds
1

7]

t2 . .
— 0% —q0)- | fals)ds +0 / () p(s) — f2()q(s) ds
n

n

+0Lf2(9)q ()12 — OLAS) P

Sincef; € C1([0, 1]; R"), by (h3) and the definition afiz we get:

PN

K [Hr(v(12) = He(v)| = (Hr(y(2)* +1)* + (Hr(v()? + 1)

+ /01 (HR(y(s))2+ 1)“ds (5.2)

whereK > 0 is independent oR. It is easy to see that (5.2) implies (5.1).
Moreover, by the properties @, (5.1) implies that, ift = (¢, p) is a critical
pointof/ % (6, -) then eithety ()| < 2Mx forallz or|y(t)| > Mg forallz (provided
R is large enough).
Now assume that there ise [0, 1] such thaty(¢)| > mg. Then using (h2),
the definition of Hz and (5.1), one can derive thﬁjl Hpg (y(t)) dt > Bg, where
lIMg_ 100 Br = +00 andy(t) = x(¢) + (0z(¢),0). O

We now prove that X (6, x(r)) > €(R), where ling_, 4o £(R) = +o00.

Case l |y| < 2Mp.
On the ballB(0, 2My), we have

Hr(y) = Gr(y) = m(H(y), RIx|“ + D +1)

1
Hp(y) = 5(1—d'(H(y) = Ry = D = 1) H'(y)
1
+5A+a (HG) = RIy[* = D - Daly|*2y.

Chooseu’ € (2,a) (sou’ < w). Using the properties af, we can get easily by
(h2):

Hi(y)-y > ' Hg(y) >0 on B(0,2Mg) for |y| > C, (5.3)

whereC is independent oR. Now x satisfies

x(1) = JHp(y(®) 4+ 6(f1— (g1 — q0). f2)

whereJ = (—01,, IS) andy(t) = x(t) + (Qz(t), O).

341
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1%, x)

1
1. )
= /0 E(qp—pq)—HR(qu@z, p)+0(q1—qo)p—0f1p+0f2-qdt

11
_ /0 [ (4P~ (a+62)p) ~ Hr(q+62, p)+0(q1~q0) - p~0f1p+0f2q 1ds

0
+5 [(91. P(D)—(q0, P(0))]
1

1 1
= E(H,;(yxy)—HR(yHo(/o |y|dr+|y<1>|+|y<0>|)

/ 1 1
> <%—1>/0 HR(y)dt+0(/0 Iy|dt+|y(1)l+|y(0)l+1)-

Now, by (5.1) and the fact thafz(y) > K|y|°> — K’ (whereK andK’ are
independent oR), we get that for appropriate consta&t$’, K" > 0,

1
IR(Q, x) > K" (f HR(}’) dl‘) —_ K" > KN‘BR _ K"
0

Case 2 |y| > Mg.
On the sef|y| > Mg}, we haveHg(y) = m(R|x|*“ + D + 1, Lr(y)), and a
straightforward computation shows that theré s (0, 1) such that

oH oH
(1+5)8_R(y) p+A-8"L() g = vHr(y) — K (5.4)
P dq

wherev > 2 andK is a constant independent Bf
Notingthat/y ¢p = &2 (=4 p— (1%‘” I $q and using the equation satisfied
by x, we get by the same type of estimates as in the first case;

I®0,x)> K"Br — K.
Since limg_, o0 Br = +00, We get the claim of Lemma 5.1, with
K(R) — min(K”ﬁR _ KW; E/I,BR _ Ig///).

As a consequence of Lemma 5.1, we get that a critical poiffof, .) of critical
value< £(R) is a solution ta(P3).

Lemma 5.2.For everyR, IR satisfies the Palais—Smale condition (i.e(if, x,,)
is a sequence if0, 1] x E s.t.(lefj)’(xn) — 0and IR ,, x,) is bounded, then it
has a convergent subsequence).
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Proof. Note thatHg (x) = Lg(x) + Ug(x) = 2R2Mg)*~2(Ip|2 + |q|* + 1) +
Ur(x) whereUg andU} are bounded.

The same type of estimates as in the proof of Lemma 5.1 (second case) enables
one to prove that, if6,, x,,) is a PS sequence, thé€n,) is bounded inE. The
convergence of a subsequence is then proved by standard argunments.

Lemma 5.3.For all R, forall b > 0, there isCf such that:

0
RO, %) <b= ‘ﬁl’?(e,m < RIS I + 1) (x|l + D).

We do not give the proof, which is an easy consequence of the fact that the
truncated Hamiltonia (x) = 2R(2Mg)*~2(|p|? + |g|* + 1) + Ug(x), where
Ur andUy}, are bounded.
Lemma 5.4.If x is a critical point of 7% (6, -) of critical value< £(R) then
d
— 1R,
29 0, x)

whereC» and C3 are two constants.

R 1/r+1
=G|1fe. 0| +cs

Proof. Letx be a critical point off ¥ (6, -) of critical value< ¢(R). From Lemma
5.1, we have:

(1) = 55(q + 6z, p) +6f1—6(q1— qo)
p(0) = —5(g + 6z, p) + 62
q(0)=¢q1)=0

wherex = (g, p). We therefore have:

d » 1 89H
—17(0,x) = A —%(q+9z,p)~z+(q1—qo)p—f1-p+fz-q

a0
1 1
=/ (1'7—9f2)~z+0</ |P|+|CI|)
0 0

1
=p(1)-q1—p(0)-qo—f p - (g1 —qo)

0
1 1
—efo f2~z+0(/0 |p|+|q|>

1
=p(1)~ql—p(0)-qo+0</o |p|+lq|+1>~

By (h3) and (5.1) we get:
d e 1 2
£1 0, x) sc((/o H(q+9Z,P)dt) +1

Now, as in the proof of Lemma 5.1 (first case), we get:

1/2(r+1)
) (5.5)

1
1%, x) > K”/ H(q +0z, p)dt — K"
0

from which our claim follows. O
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End of Proof of Theorem 1.3.The functionall R (0, -) = I(f is clearly even a#fy
is an even Hamiltonian. Let

E-={@q.p)eH} xL? | p=—¢) E*={(q.p)eH}xL?|p=q)
and
E®={(q.p) € H} x L? | ¢ =0 andp = Cst}

We haveE = E- @ ET @ E°. Forx € E we shall denote by —, x*, x0 the
elements off—, ET, E%resp. such that = x— + xt + x0.

Let {g,1 < i < n} denote the standard basisRf. Fork > 0, letk =
[(k)n +rk), rk) € {0,...,n — 1}, and definey, € E™ by

ax = (sinw (k) + Dt & o+1, (k) + D cosm(I(k) + D)1 & k)+1)

which are valued ilR" x R". Let Ef = spafiao, ax, ..., ax} C ET.
SetEy =E- @ E® E;,

g(x) = eV T xt 47 Wx— 4 K(x) wherey®
are continuous, even, maps bounded
G =1 g € C(E, E); setstocompact subsets
of Randy*(x) = 0 for ||x|| large
while K is compact, odd ané (x) = x°,

and letcft = inf e sup, (g, I§ € (—oo, +-00]. Without loss of generality we will
assume thail (0) = 0. Note that ifR’ > R then/® < 1% andcf" < cR. We may
definecy = lim g 400 cf.

Lemma 5.5.With the above hypothesis, we have:

(i) 0 <cx <cf <supg, If < +oo.

(ii) cx > K'k6+D/6=D _ g (wherekK and K’ are positive constants).

Proof. (i) Forallg € G, g(0) = 0and sincdf!(0) = 0, itfollows thatc} > Ofor all
R, hence;;, > 0. Moreover, foralR > 1, Hg(x) > H(x) := E(|p|2+|q|0‘/)—F.
Let ¢ be the functional defined by (x) = folqp — H(x)dt (wherex = (g, p)).
Itis enough to check that has an upper bount} on Ey. If x belongs taEy, it can
be written:x = (g, —¢ + v) with v € spariey, e, .., e, cosn(g() + Drer()+1;
0<1 <k}

1
vf(x):/o 1+ dv— Elv— 2 — Elgl® + F
1 s
=f ~(A+ E)2 + A+ 2E)gi — EPf? — Elgl® + F
0

1
5/ S1512 — Efv2 + Kslql? — Elg* + F
0

wheres > 0 is arbitrary andK’s depends o#.
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Now, sincev € sparey, €, .., &, cosn(g(l) + Dterqy+1; 0 <1 < k}, we
can Writefol 0% < K (k) fol |v|? and, choosing small enough, we see théthas
an upper bound o#&.

(i) By (h3) there are positive numbeng, ..., a,, independent ove®, such

that for allx, H(x) < H(x) := Q(x) + K, where

0x) = a1(p? 4+ 9 + ...+ an(p? +¢?).

The non-zero solutions of

q =9H/dp
p =—0H/dq

which satisfyg(0) = g(1) = 0 are

(" = (@™, P™)) i i Where gi () = pif6) =0 for j #i

and
(t) ! ( k )Jllsink t
S T ;
Jai \ai(s + 1
1
ik _ 1 km s—1
D; (t)—\/a_i oG D coskrt.

The value of the function%l(pq — H(q, p))dr atx"* is equal to

s 1 k (s+1)/(s—1)
a=(2-Z)(—— —K
Cik (2 2) <(s T 1)ai)

Note that ther; x are distinct. Let us calt] < ¢, < ... < ¢; < ... their ordered
sequence.

Now we can definédy (for R Iarge) in the same way &% is defined, and we can
deflneck in the same way a@{ Let Ry be such that(R) > c; forall R > Ry
(€(R), defined in lemma 5.1, is associateddchere). Then, foR > Ry, the first
k nontrivial (i.e. # I(f (0)) critical values ofl_(f (the functional associated )
arec) < ¢ < ... < c}. Moreover it is easy to see that the infimum gt over
S+ ={x e ET||lx|| =p}is> I§(0) for p > O small. Hencegz has been defined
such that, forali > 1, forallg € G, g(E;) N S+ £ (), ¢R is a nontrivial critical

value ofIO . Now all the critical points of crlt_lcal levek Z(R) are isolated. Hence
by classical results on even functionat$,> £(R) orc® ; > . We can conclude

thatforallR > Ry, &R > ¢} > K'ki"1 — K. SinceHlg > Hg, ¢k < ¢ and we
can derive (ii) of the Lemma.

Now assume that probleiiP;) has a finite numbeN of solutions. LetR be
such that the corresponding trajectories are included in the ball of ragiushen,
for R > R, these solutions give rise to critical pomtsqf Let D be an upper
bound of the corresponding critical values.



346 P. Bolle et al.

By Lemma 5.1, forR > R, I®(1,.) has no critical value- D and< [(R).
Let y; denote the flow off;, where

fi(s) = —Ca(L+ sHY20D _ s and fa(s) = Ca(l + sHY20+D 4 5.

As in the proof of Tr]eorem 2.2, for ary> 0 we can findR and constructi; and
By C Ag such tha’rcgk <cr+e€and

5 R R R
VR Z R CAksBk 2 CAksBk 2 Ck+]_ 2 Ck-i—lv

wherecB = supg, I0 'CAA g = Inf sup 1O and
8€Dy g(Ap)

D%k = {g (S Q; 8|By = IdBk}~

Now chooseR > R such thaty»(1, CAk Bk) < I(R). Thencf; < c§ <cp+e,

ka,gk > cr+1 andyra(1, CAk,Bk) < v¥2(1, ‘Ak,Bk) <I(R).
Using Theorem 2.1 and Remark 2.1, one can see by lemma 5.4 that if
Va1, ck+e) < Y(1, cx41) thenI R has acritical value in the interviays (1, cx11),
¥a(l, CﬁksBk)]’ which corresponds to a solution to the problem by Lemma 5.1.
Since we may choose> 0 arbitrarily small, we derive that, for atl,

Y11, k1) <D or Y1l crq1) < ¥2(d, cr),

which yieldsciy1 — ek < K ((co)Y D + (cr+0)Y7F1). It is then easy to see

.. . r+l1 .
that this implies that; < ek~ + S whereax and g are some constants, which
contradicts Lemma 5.5 (ii), because< 2r + 1. O

6. Non-homogeneous, semi-linear wave equations

In this last section, we deal with the following non-linear wave equation with non-
homogeneous boundary conditions:

e — ey + u|P " = f(x,1)
u(x,t+2m) =u(x,r) (P4)
u(0,1) =xo u(m,t) = x1.

Again, we introduce: = v + z wherez(x) = xo + 7 (x1 — xo). Note thatz is
independent of and so is obviously 2 periodic inz. We need then to solve:

Uit — Vex + 0+ 2P+ 2) = fx 1)
v(x,t+27) = v(x,t) (P'4)
v(0,1) =0, wv(m,t)=0.
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As in Tanaka [T2] we consider the space of functions define@ en (0, ) x
(0, 27) satisfying the above (homogeneous) boundary conditions. Any smooth
functionu in this space has a Fourier expansion of the form

o0 o0
. ik _
=Z Z ajxsinjxe™, aj—k =ajx
j=1lk=—o00
We define:

1 . _
w.v) = 5= > K2 = jPlapbje and |LIlg = {u,u)
J.k

foru =3 ajisinjxe™ andv =Y bj sin jxe . Itis clear that].|| g is a norm
J.k j.k
onthe setu : aj; = 0if j = |k|}. Next we set

ET = uu—ZZa]kSIn]xe Zlkz—jl|a1k| < 00
Jj=11k|>j J-k

E™ =1u; u-ZZalkSIn]xe ZI/’(2 j ||ajk| <00y,
Jj=1lkl<j

andE = E* @ E~. Furthermore set:
N = LP*1 _ closure of spafsin jxe'*’; j = |k|, j € N}

with LP+1-norm||.||p+l. E™, E~ andN are complementary subspaces of the space
of functions satisfying homogeneous boundary conditian®; t) = v(r, ) =
0,v(x,t + 27) = v(x, t) and the wave fornC = v,, — v, iS positive definite,
negative definite and null respectively, &1, E~ and N. Next we consider the
one parameter family of functionals:

Ke(u)=/g S —ud) = ——

on the space @ N. Clearly, critical points ofK1 are solutions of our problem.
Note that

lu+60z|P+ + efu} dxdt

1 1
Ko +v) = St I = Sllu”1I

_ + -
p+1||u +u

~|—v+91||p+1+(9fu +u” +v+62z)

foru =ut4+u~ € E=ET ® E~ andv € N. Now the functionQy defined by
the minimization problem

lu+06z+ o
Qo (1) = min [—"“

P (9f,u+9z+w)] uek
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is well defined and continuous —as the minimized term is strictly convex. Actually,
for eachu, the minimum is attained at a unique paint(z) in such a way that:

p+1
lu + 6z + wp)lIb 7

p+1

Qou) = —(0f,u+0z+ wyp(u)).
In particular:
<|u 407 4 wp )P (u + 07 + wp () — 67, h> —0 VheN.

Now it is easily seen that there is a one to one correspondence between the critical
points of Ky and those ofy, wherely : E — R is defined by

1 1
lo () = St IIf = ST lIE — Qo)
So we seek critical points df. One can easily see th@, is of classC! on E and

(Qp(u), h) = (|u+9z+w9(u)|p_1(u+9z+a)9(u))—6f, h)y=0 forallu,h € E.

Elementary estimates then show that:

[(Qp), u) = (p + D) Qo()] < callu + 0z +llh 4 +c2

ra (6.3)
= ¢ (10071 +1)
since:|Qy(u)| > alu + 6z + wliﬁ —b.
On the other hand at a poimtwherel) (1) = 0, we have
ut)? u=||?
lo(u) = | 2” | 2” — Qo(u) (6.4)
0= (Ij(u),h) = (ut —u",h) — (Qpu), h)forh € E.

Settingh = u andh = u* — u~ in the above formula we get
1% =l 117 = (Qf (), u) =0 (6.5)
lell® + (Qp ), u™ —u~) =0 (6.6)

So by (6.4) and (6.5)
1
E(Q/e(u), u) — Qg(u) = Ip(u)
Now from (6.3) and the above equality we get
1 P
(% ~ 1)Qo) — C(1Qs )| P71 +1) < Ip(u)

which implies
|Qo ()] < C(lp(u)| +1) for Iyu) =0.
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To apply Bolle’s method we need to estimate

0
Jo(u) = a—ele(u)

0
=— [<|u +0z4+ 0P N u+0z+w),z+ £w>

IA

—(9f,z+%w> —(f,u+92+w)]

= —[<|u+9z+w|1’—1(u+9z+w),z) - (f,u+9z+a>)]
Now if we estimate the first term of, in the usual way we get
_pP_
e = € (11s0)[71 +1).

By applying Theorem 2.2, we get that eitliy) has an infinite number of solutions
or Iy has a sequence of critical levels,) satisfyingc, < Cn?*1. On the other

p+1
hand, by a result of Tanaka [T2] we have that for each0, ¢, > cgn%_e which
proves the result only for & p < 2!

Remark 6.1In order to improve the above result, we need better estimatds on
and to use the full strength of Theorem 2.2, we need to exploit that the estimate is
only needed at a poirf, (1) = 0. For such points, we have

Upp — Uy + |1+ 0217 (u + 02) = 0f

andJy (u) = (uy — uxx, 2) + (f,u + 0z + w).
Now we have a better estimate on the second term as

1
(fru+02+0) < u+0z+0lp41 = C (1071 +1),

so what remains is to estimate the first telapy — u,., z) which after integration
by parts is dominated by

(s — Uyx,2) <

2
/ x1uy (7w, 1) — xouy, (0, 1) dt
0

A natural question is whetharverifies an adequate conservation law that will yield
a good estimate for the latter term.
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