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Abstract. We use a method recently devised by Bolle to establish the existence of an infinite
number of solutions for various non-homogeneous boundary value problems. In particular,
we consider second order systems, Hamiltonian systems as well as semi-linear partial dif-
ferential equations. The non-homogeneity can originate in the equation but also from the
boundary conditions. The results are more satisfactory than those obtained by the standard
“Perturbation from Symmetry” method that was developed – in various forms – in the early
eighties by Bahri–Berestycki, Struwe and Rabinowitz.

1. Introduction

Equivariant variational methods often yield multiple solutions for partial differ-
ential equations and Hamiltonian systems that are invariant under certain group
actions. However, there are no satisfactory general answers yet to the cases where
the group symmetry is broken by some non-equivariant – and even linear – pertur-
bations. A partially successful method to deal with such problems was devised in
the early eighties by Bahri–Berestycki [Ba-Be1,2] and Struwe [S1,2]. The varia-
tional principle underlying these results was later formulated by Rabinowitz [R].
The main idea being to think of the non-symmetric functionalI under study as a
perturbation of its symmetric partI0 and then to estimate how the growth rate of
the critical levels ofI0 is affected by the perturbation from symmetryI − I0.

This method has been somewhat successful in dealing with certain “lower order”
perturbations like the one resulting from non-homogeneous Hamiltonian systems
and second order systems [Ba-Be2]. More recently, the authors of [E-G-T] had to
deal with a new type of perturbation from symmetry which appeared in their study
of a second order system with non-homogeneous boundary conditions. Because of
the high order of the perturbation term, the method described above (to which we
shall refer thereafter as the “standard method”) did not yield a satisfactory result.
To remedy that, P. Bolle introduced in [B] a more refined version that succeeded in
improving the result in [E-G-T] on the Bolza problem.
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The new approach deals withI as the end-point of a continuous path of function-
als (Iθ )θ∈[0,1] which starts at the symmetric functionalI0. Bolle’s abstract result
roughly says that the preservation of the min-max critical levels along the path
(Iθ ) depends only on the variations∂

∂θ
Iθ (u) at the critical pointsu of Iθ . As we

shall see in this paper, better estimates can be obtained at such points since they
often obey certain conservation laws as they are solutions of the corresponding
Euler–Lagrange equations.

In this paper, we try this approach on three problems: a second order system,
a semi-linear pde and a Hamiltonian system. We show how it can improve old
results and prove new ones about the existence of multiple solutions for ordinary or
partial differential equations in the absence of symmetry. We also include a fourth
example (a non-linear wave equation) which illustrates how the failure to exploit
conservation laws to obtain estimates, can lead to unsatisfactory results.

We now state the main results of this paper.

Theorem 1.1 (Non-homogeneous Bolza problem). SupposeV ∈ C2(Rn,R) is
even and that there existsp > 2 such that:

0< pV (x) ≤ 〈∇V (x), x〉 for all |x| large.

Then for anyf ∈ C([0, T ],Rn), the Bolza problem{
ẍ + ∇V (x) = f (t) x ∈ Rn

x(0) = x0, x(T ) = x1.
(P1)

has infinitely many solutions.

As noted in [E-G-T], the “standard method” yields the above result only when
2< p < 4. The case wherep < 2 is different and has been dealt with by Clarke–
Ekeland [C-E].

Theorem 1.2 (Non-homogeneous semi-linear equations). Let� be an open boun-
ded subset ofRn (of classC2) andu0 ∈ C2(∂�,R). Assume1 < p < n+1

n−1, then

for anyf ∈ C(�̄,R), the problem{
1u+ |u|p−1u = f in �

u = u0 on ∂�
(P2)

has infinitely many solutions.

Again, the “standard method” yields the above result for 1< p < n+2
n

. We
note that ifu0 = 0, Bolle’s method yields the same result as the standard one which
was last used by Bahri-Lions [Ba-L] to improve the range ofp up to n

n−2. It is still
an open problem whether problem(P2) (even whenu0 = 0) has an infinite number
of solutions for allp all the way up ton+2

n−2.

Theorem 1.3 (Non-homogeneous Hamiltonian systems). LetH be a function in
C2(R2n,R) satisfying
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(h1)H is even,
(h2) ∃µ > 2 such thatH ′(x) · x ≥ µH(x) > 0 for |x| large,
(h3) There arer ands such that1< r ≤ s < 2r + 1 and

A|x|r+1 − B ≤ H(x) ≤ C|x|s+1 +D,

whereA, B, C,D are positive constants.

Let q0 and q1 be two given vectors inRn, then for any two functionsf1, f2 in
C1

([0,1]; Rn), the following problem



dq
dt

= ∂H
∂p
(q, p)+ f1(t)

dp
dt

= − ∂H
∂q
(q, p)+ f2(t)

q(0) = q0 andq(1) = q1.

(P3)

has an infinite number of solutions.

Assumptions (h2) and (h3) were used by Bahri and Berestycki in [Ba-Be2] to
prove the existence of infinitely many periodic solutions to the systems above, where
f1 andf2 are 1-periodic. Here we deal with the existence of orbits which connect
the subspaces{q = q0} and{q = q1} in a given time period. Note that in terms of
symplectic geometry,{q = q0} and{q = q1} are two Lagrangian submanifolds of

R2n (endowed with the canonical symplectic structure
n∑
1
dqi ∧dpi), and we could

raise a more general question, namely the existence of orbits connecting two given
Lagrangian submanifolds ofR2n in given time.

Finally, we describe the following highly unsatisfactory result which we obtain
by only using the “standard method”.

Theorem 1.4 (Non-homogeneous semi-linear wave equations). For any givenx0
andx1 in R and any continuousf , the following equation:



utt − uxx + |u|p−1u = f (x, t)

u(0, t) = x0, u(π, t) = x1

u(x, t + 2π) = u(x, t).

(P4)

has an infinite number of solutions provided1< p < 2.

Note that for the homogeneous case (x0 = x1 = 0), the multiplicity holds for
anyp > 1 (Tanaka [T2]). We were led here to this restriction onp because we
had to use the estimates of the “standard method” which do not take advantage
of the fact that the energy estimates are only needed for the critical points of the
associated functional.
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2. Preservation of critical levels along a path of functionals

In this section we recall Bolle’s method for dealing with problems with broken
symmetry. LetE be a Hilbert space and consider aC2 functionalI=[0,1]×E→R.
We denote by〈, 〉 and‖.‖ the scalar product inE and the associated norm. For
θ ∈ [0,1] we shall use the abbreviationIθ for I (θ, .). We make the following
hypotheses:

(H1) I satisfies the Palais–Smale condition, which means here that for every se-
quence((θn, xn)) (with θn ∈ [0,1], xn ∈ E) such that‖I ′

θn
(xn)‖ → 0 as

n → +∞ andI (θn, xn) is bounded, there is a subsequence converging in
[0,1] × E. (The limit (θ, x) then satisfiesI ′

θ (x) = 0).
(H2) For allb > 0 there is a constantC1(b) such that:

|Iθ (x)| < b implies | ∂
∂θ
I (θ, x)| ≤ C1(b)(‖I ′

θ (x)‖ + 1)(‖x‖ + 1).

(H3) There exist two continuous functionsf1 andf2 : [0,1] × R → R with
f1 ≤ f2, that are Lipschitz-continuous relative to the second variable and
such that, for all critical pointsx of Iθ ,

f1(θ, Iθ (x)) ≤ ∂

∂θ
I (θ, x) ≤ f2(θ, Iθ (x)).

(H4) There are two closed subsets ofE, A andB ⊂ A, such that:
(i) I0 has an upper-bound onA and lim|x|→+∞

x∈A
( sup
θ∈[0,1]

Iθ (x)) = −∞.

(ii) cA,B > cB wherecB = supB I0 andcA,B = inf
g∈DB

sup
g(A)

I0 where for some

R > 0, DB = {g ∈ C0(E,E); g(x) = x for x ∈ B and forx ∈ E with
‖x‖ ≥ R}.

Denote byψi (i = 1,2) the functions defined on[0,1] × R by{
ψi(0, s) = s
∂
∂θ
ψi(θ, s) = fi (θ, ψi(θ, s)) .

Note thatψ1 andψ2 are continuous and that for allθ ∈ [0,1],ψ1(θ, ·) andψ2(θ, ·)
are non-decreasing onR. Moreover, sincef1 ≤ f2, we haveψ1 ≤ ψ2.

In the sequel, we set̄fi(s) = supθ∈[0,1] |fi(θ, s)|, i = 1,2. Here is the result of
Bolle [B].

Theorem 2.1 (Bolle). Assume thatI = [0,1] × E → R is C2 and satisfies(H1),
(H2), (H3)and(H4). If ψ2(1, cB) < ψ1(1, cA,B), thenI1 has a critical point at a
level c̄ such that:ψ1(1, cA,B) ≤ c̄ ≤ ψ2(1, cA,B).

Assume nowE = E− ⊕ E+ and let(En)n be an increasing sequence of sub-
spaces ofE such thatE0 = E− andEn+1 = En ⊕ Ren+1. If E− is finite dimen-
sional, set:

G = {g ∈ C(E;E); g is odd andg(x) = x for x ∈ E and‖x‖ large}.
andck = inf

g∈G supg(Ek) I0.
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Theorem 2.2.AssumeI satisfies hypothesis (H1),(H2),(H3). In addition, we sup-
pose

(H4’) I0 is even and for any finite dimensional subspaceW ofE, we have:
supθ∈[0,1] I (θ, y) → −∞ asy ∈ W and‖y‖ → ∞.

Then, there isC > 0 such that for everyk:

(1) Either I1 has a critical levelc̄k withψ2(1, ck) < ψ1(1, ck+1) ≤ c̄k.
(2) Or ck+1 − ck ≤ C((f̄1(ck+1)+ f̄2(ck)+ 1).

Proof. Suppose thatψ2(1, ck) < ψ1(1, ck+1), we shall show that we are then in
the context of Theorem 2.1 above and thatI1 has a critical level≥ ψ1(1, ck+1).
Indeed, findε > 0 such thatψ2(1, ck + ε) < ψ1(1, ck+1). Fix g ∈ G such that
supg(Ek) I0 < ck + ε. Let E+

k+1 = Ek ⊕ R+ek+1 and setAk = g(E+
k+1) and

Bk = g(Ek).
We only need to verify (H4)(ii), that is:

ψ1(1, cAk,Bk ) > ψ2(1, sup
Bk

I0)

wherec
Ak,Bk

= inf `∈DBk
sup̀ (Ak) I0 andDBk is defined as in Theorem 2.1.

Indeed if` ∈ DBk , the functionm = ` ◦ g|E+
k+1

is odd onEk and therefore it
trivially extends to an odd function̄m onEk+1 (hence to an odd function on the
whole space satisfyingm(x) = x for large |x|, by the Tietze theorem). We now
have sinceI0 is even andm̄ is odd:

sup
`(Ak)

I0 = sup
m(E+

k+1)

I0 = sup
m̄(E+

k+1)

I0 = sup
m̄(Ek+1)

I0 ≥ ck+1.

It follows thatc
Ak,Bk

≥ ck+1 and therefore

ψ1(1, cAk,Bk ) ≥ ψ1(1, ck+1) > ψ2(1, ck + ε) ≥ ψ2(1, sup
Bk

I0).

Theorem 2.1 then applies to yield a critical level forI1 at level c̄k such that
ψ2(1, ck) < ψ1(1, ck+1) ≤ c̄k ≤ ψ2(1, cAk,Bk ), which is the first alternative.

Otherwise,ψ2(1, ck) ≥ ψ1(1, ck+1). Now, by the Lipschitz continuity offi
w.r.t. the second argument,|ψi(1, s)− s| ≤ Cif̄i(s)+Ki for s ≥ 0 andi = 1,2,
whereCi,Ki are positive constants. Hence we get that:

ck+1 − ck ≤ ψ1(1, ck+1)+ C1f̄1(ck+1)+K1 − ψ2(1, ck)+ C2f̄2(ck)+K2

≤ C1f̄1(ck+1)+ C2f̄2(ck)+K1 +K2.

which completes the proof of Theorem 2.2.ut
Remark 2.1.The classDA,B in Theorem 2.1 may be replaced by a less general
class of deformations, containing the (possibly truncated) gradient flows of the
functionalsI (θ, ·). If the gradient ofIθ is of the formU +K with U an invertible
linear operator andK compact, then the subspaces(Ek)k of Theorem 2.2 need not
be finite dimensional as long as the classG is suitably defined. We shall see an
example in Section 5.
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3. The nonhomogeneous Bolza problem

We first revisit the following non-homogeneous second order system:{
ẍ + ∇V (x) = f (t) x ∈ Rn

x(0) = x0, x(T ) = x1.
(P1)

As was done in [E-G-T], we introduce the change of variable:x = z + u, where
z : [0, T ] → Rn, z(t) = x0 + t

T
(x1 − x0) in such a way thatu satisfies:{

ü+ ∇V (u+ z(t)) = f (t)

u(0) = u(T ) = 0
(P’1)

In order to use Bolle’s method we introduce the function:I : [0,1] ×H → R
defined by:

I (θ, u) = Iθ (u) =
∫ T

0

(
1

2
|u̇|2 − V (u+ θz)+ θf u

)
dt

where:H = H 1
0 (0, T ). We shall denoteJθ (u) := ∂

∂θ
Iθ (u).

In the next lemmas, we show thatI satisfies the hypothesis(H1), (H2) and
(H3).

Lemma 3.1.There exists positive constants(Ci)5i=1 such that for anyy ∈ H :

(i) ‖y‖2 ≤ C1

(
pIθ (y)− 〈I ′

θ (y), y〉 − θJθ (y)− θ(p − 2)
∫ T

0 f (t)y dt
)
.

(ii) For all a > 0, there existsK(a) > 0 such that

|Jθ (y)| ≤ C2

a

(
‖y‖2 + ‖I ′

θ (y)‖‖y‖
)

+ C3‖I ′
θ (y)‖ +K(a).

(iii) ‖y‖2 ≤ C4(‖I ′
θ (y)‖2 + 1)+ C5|Iθ (y)|.

Proof. The proof of this lemma follows the same lines as Lemma 3.1 in [B]. We
repeat the argument here for completeness. We have

Jθ (y) = −
∫ T

0
∇V (y + θz)z+

∫ T

0
f (t)y dt and,

〈I ′
θ (y), y〉 =

∫ T

0
|ẏ|2 −

∫ T

0
∇V (y + θz)y + θ

∫ T

0
f (t)y dt

=
∫ T

0
|ẏ|2 −

∫ T

0
∇V (y + θz)(y + θz)

+ θ

∫ T

0
∇V (y + θz)z+

∫ T

0
f (t)y dt

≤
∫ T

0
|ẏ|2 − p

∫ T

0
V (y + θz)− θJθ (y)+ 2θ

∫ T

0
f (t)y dt

≤ pIθ (y)− (
p

2
− 1)

∫ T

0
|ẏ|2 − θ(p − 2)

∫ T

0
f (t)y dt.
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Sincep2 − 1> 0, we get estimate (i).

To get (ii) setr = a2T
||y||2+2a2 . Note that

t ∈ [0, r) ∪ (T − r, T ] ⇒ |y(t)| ≤ √
r||y|| ≤ a

√
T (3.1)

sincey(0) = y(T ) = 0.
Let h ∈ H be defined byh(t) = z(r) t

r
in [0, r], h(t) = z(t) in [r, T − r] , and

h(t) = T−t
r

for t ∈ [T − r, T ]. We have

Jθ (y) = −
∫ T

0
〈ẏ, ḣ〉 dt + 〈I ′

θ (y), h〉 − θ

∫ T

0
f (t)h−

∫ r

0
∇V (y + θz)(z− h)

−
∫ T

T−r
∇V (y + θz)(z− h).

SinceV isC1, from (3.1) we get∣∣∣∣
∫ r

0
∇V (y + θz)(z− h)

∣∣∣∣ +
∣∣∣∣
∫ T

T−r
∇V (y + θz)(z− h)

∣∣∣∣ ≤ C(a)

Hence
‖Jθ (y)‖ ≤ ||y||||h|| + ||I ′

θ (y)||||h|| +K||h||
Now;

||h|| ≤ K√
r

+K ≤ C

a
||y|| +K

From which (ii) follows. Finally from (i) and (ii) we get

||y||2 ≤ Iθ (y)− 〈I ′
θ (y), y〉 + C

a
||y||2 + C

a
||I ′
θ ||||y||

+ c||I ′
θ || +K(a)+ C||y||

From which (iii) follows. Now we use this result to prove:

Lemma 3.2.There exist constantsa, b > 0 such that wheneveru is a critical point
of Iθ , we have:

−a
(
|Iθ (u)|2 + 1

)1/4 ≤ Jθ (u) = ∂

∂θ
Iθ (u) ≤ b

(
|Iθ (u)|2 + 1

)1/4
.

Proof.

Jθ (u) =
∫ T

0
(−∇V (u+ θz)z+ f (t)u) dt.

We need to estimateJθ (u) at a pointu, such thatI ′
θ (u) = 0, i.e.

ü+ ∇V (u+ θz) = θf (t) t ∈ [0, T ].

Jθ (u) =
∫ T

0
ü(t)z(t)− θf (t)z(t)+ f (t)u(t) dt

= u̇(T )z(T )− u̇(0)z(0)+
∫ T

0
f (t)u dt −

∫ T

0
θf (t)z dt
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which implies:

|Jθ (u)| ≤ c (|u̇(T )| + |u̇(0)| + ‖u‖ + 1)

LetE(t) = 1
2|u̇+ θ ż|2 +V (u+ θz). ThenĖ(t) = (ü+ ∇V (u+ θz)) (u̇+ θ ż) =

θ(u̇+ θ ż)f (t). SinceV is bounded below onRn:




|u̇(T )|2 ≤ E(T )− V (u(T )+ θz(T )) and
|u̇(0)|2 ≤ E(0)− V (u(0)+ θz(0)) imply

|u̇(T )| + |u̇(0)| ≤ C

(√
max

0≤t≤1
|E(t)| + 1

)

On the other hand, fort1, t2 ∈ [0, T ], the formulaE(t2)−E(t1) = ∫ t2
t1
E′(s) ds

implies that

T E(t2)−
∫ T

0
E(t) dt =

∫ T

0

∫ t2

t1

E′(s) ds dt1

which in turn gives:

E(t) = 1

T

∫ T

0
E(s) ds + 1

T

∫ T

0

∫ t

r

E′(s) ds dr ∀t ∈ [0, T ].

From this last inequality we derive:

|E(t)| ≤
∣∣∣∣ 1

T

∫ T

0
E(s) ds

∣∣∣∣ +
∫ T

0
|E′(s)| ds

≤
∣∣∣∣ 1

T

∫ T

0

(
1

2
|u̇+ θ ż|2 + V (u+ θz)

)
dt

∣∣∣∣ + θ

∫ T

0
|u̇+ θ ż|.|f (t)| dt

≤
∣∣∣∣ 1

T

(
−Iθ (u)+ θ

∫ T

0
f (t)u dt + 1

2

∫ T

0
|u̇+ θ ż|2 dt + 1

2

∫ T

0
|u̇|2 dt

)∣∣∣∣
+‖u‖ + C

≤ 1

T
|Iθ (u)| + C1‖u‖2 + C2.

Now using Lemma 3.1 (iii) and recalling thatI ′
θ (u) = 0 we have:

|E(t)| ≤ C3|Iθ (u)| + C4, ∀t ∈ [0, T ]

which implies:

|u̇(T )|2 + |u̇(0)|2 ≤ C5 (|Iθ (u)| + 1)

and we finally get:

|Jθ (u)| ≤ C
(
Iθ (u)|2 + 1

)1/4
.

The proof of Lemma 3.2 is complete.ut
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End of proof of Theorem 1.1.We first prove thatI satisfies the hypothesis of
Theorem 2.2. It is clear thatI0 is even and that, in view of the above lemmas, it
satisfies hypothesis (H1), (H2) and (H3). Moreover, the condition onV implies the
existence of constantsC1 andC2 such thatV (x) ≥ C1|x|p − C2. Hence

I (θ, y) ≤ 1

2
‖y‖2 − C1

∫ T

0
|y + θz|p dt + C2 + θ‖y‖1‖f ‖∞

≤ 1

2
‖y‖2 − C1‖y‖pp + C3 + C4‖y‖1.

which implies that for every finite dimensional subspaceW of E the quantity
supθ∈[0,1] I (θ, y) goes to−∞ since all norms are equivalent onW .

Let now (ei )1≤i≤n be an orthonormal basis ofRn. For k ∈ N, let ak ∈ E be
defined byak(t) = sinπ(q(k)+ 1)t.er(k)+1 wherek = q(k)n+ r(k), 0 ≤ r(k) ≤
n− 1.

Denote byEk the subspace ofE spanned by{a0, ..., ak} and let

G = {g ∈ C(E;E); g is odd andg(x) = x for |x| large}

and setck = inf
g∈G supg(Ek) I0. Theorem 2.2 applied tof1(θ, s) = −a(s2 + 1)1/4

andf2(θ, s) = b(s2 +1)1/4 yields that if the set of critical levels ofI1 has an upper
bound then:

|ck+1 − ck| ≤ K(
√
ck + √

ck+1 + 1)

which implies that( ck
k2 ) is bounded. On the other hand, it is shown in [E-G-T] that

if V has a polynomial growth likeV (x) ≤ γ1|x|q + γ2 then there is a positive

constantL > 0 such thatck ≥ Lk
2q
q−2 . An adaptation of the proof in [EGT]

to general superquadratic potentials yields thatck
k2 → +∞ as k → +∞. This

contradiction completes the proof of Theorem 1.1.ut

4. Semilinear elliptic PDEs with nonhomogeneous boundary conditions

Let � be an open bounded subset ofRn (of classC2), f ∈ C(�̄,R) andu0 in
C2(�̄,R) such that1u0 = 0. We consider the problem

{
−1u = |u|p−1u+ f in �

u = u0 on ∂�.
(P2)

We shall prove that for 1< p < n+1
n−1, (P2) has infinitely many solutions.Again,

we first reformulate the problem by settingu = v + u0. (P2) is then equivalent to

{
−1v = |u0 + v|p−1(u0 + v)+ f in �

v = 0 on∂�.
(P’2)
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LetE = H 1
0 (�; R) be endowed with the scalar product(v1, v2) = ∫

�

∇v1.∇v2 dx

and let‖ ‖ denote the associated norm. For 1< p ≤ n+2
n−2, we can define on

[0,1] × E the functionalI by

I (θ, v) =
∫
�

(
1

2
|∇v|2 − |v + θu0|p+1

p + 1
− θf v) dx.

The solutions of(P ′
2) coincide with the critical points ofI1 = I (1, ·) in E. In

order to apply Theorem 2.2, one must first check thatI satisfies the Palais–Smale
condition (H1). That proof can be carried out in a standard way. Now we establish
(H2).

Lemma 4.1.For all b > 0 there is a constantC1(b) such that:∣∣∣∣ ∂∂θ I (θ, v)
∣∣∣∣ ≤ C1(b)(‖I ′

θ (v)‖ + 1)(‖v‖ + 1)for all (θ, v) with |Iθ (v)| ≤ b.

Proof. Let b > 0 be given. The condition|Iθ (v)| ≤ b is equivalent to∣∣∣∣∣∣
∫
�

(
1

2
|∇v|2 − 1

p + 1
|v + θu0|p+1 − θf v) dx

∣∣∣∣∣∣ ≤ b (4.1)

and
∂

∂θ
I (θ, v) =

∫
�

(−|v + θu0|p−1(v + θu0)u0 − f v) dx.

Moreover, using (4.1), we have

−〈I ′
θ (v), v〉 =

∫
�

(−|∇v|2 + |v + θu0|p−1(v + θu0)v + θf v) dx

≥
(
p + 1

2
− 1

) ∫
�

|∇v|2 dx

−
∫
�

(|v + θu0|p−1(v + θu0)θu0 + pθf v) dx − (p + 1)b.

SetC0 = p+1
2 − 1> 0 and note that∣∣∣∣
∫
�

|v + θu0|p−1(v + θu0)θu0

∣∣∣∣ ≤ C1‖v + θu0‖pp+1

and ∣∣∣∣
∫
�

f v dx

∣∣∣∣ ≤ C2 + C3‖v + θu0‖p+1
p+1.

From (4.1) we have,‖v + θu0‖p+1
p+1 ≤ C4

∫
�

|∇v|2 + C5. Hence
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−〈I ′
θ (v), v〉 ≥ C0

∫
�

|∇v|2 − C6(

∫
�

|∇v|2) p
p+1 − C7(

∫
�

|∇v|2) 1
p+1 − C8 (4.2)

whenever|Iθ (v)| ≤ b.
Now (4.1) and (4.2) imply

‖v + θu0‖p+1
p+1 ≤ C4

∫
�

|∇v|2 + C5 ≤ C10(‖I ′
θ (v)‖ + 1)(‖v‖ + 1).

Since ∣∣∣∣ ∂∂θ I (θ, v)
∣∣∣∣ ≤ C11‖v + θu0‖pp+1 + C12‖v‖1/p+1

p+1

≤ C13

(
‖v + θu0‖pp+1 + 1

)
,

the lemma is proved.ut
Note that the same computations show that there existC,K > 0 such that ifv

is a critical point ofIθ (v), then

C(Iθ (v)− 1) ≤
∫
�

|∇v|2 ≤ C (Iθ (v)+ 1) (4.3)

and

K(Iθ (v)− 1) ≤
∫
�

|v + θu0|p+1 ≤ K (Iθ (v)+ 1) . (4.4)

We shall need the following “Pohozaev-type” lemma.

Lemma 4.2.There exists a constantC > 0 such that ifv is a critical point forIθ ,
then foru = v + θu0 we have∫

∂�

(
1

2
|∇u|2 − |∂u

∂n
|
2

)dσ ≤ C

∫
�

(|∇u|2 + |u|p+1 + 1) dx.

Proof. Let v be a critical point ofIθ . Then{
−4v = |v + θu0|p−1(v + θu0)+ θf on�

v = 0 on∂�.

Note that, by classical regularity results we have thatv andu belong toC2(�̄).
For x ∈ �̄, let `(x) = d(x, ∂�) be the distance to the boundary. Since� is

of classC2, there isδ > 0 such that̀ is C2 on �̄ ∩ {` < δ} andn(x) = ∇`(x)
coincides on∂�with the inner normal. Letϕ denote a smooth functionR → [0,1]
such thatϕ = 1 on(−∞,0] andϕ = 0 on[δ,+∞). Setg(x) = ϕ (`(x)).

Multiply now the equation{
−1u = |u|p−1u+ θf on�

u = θu0 on ∂�
(4.5)
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by g(x)∇u.n(x) and integrate over�. As a first term, we get:

∫
�

−1u.g∇u.n dx =
∫
∂�

−g
∣∣∣∣∂u∂n

∣∣∣∣
2

dσ +
∫
�

∇u · ∇(g∇u · n)) dx.

Note thatg = 1 on the boundary, while the last term of the equation is equal to∫
�

∑
1≤i,j≤n

uxi (guxj nj )xi
dx

=
∫
�

∑
i,j

uxi uxj (gnj )xi
dx +

∫
�

∑
i,j

uxi uxj xi gnj dx

= O


∫
�

|∇u|2

 +

∑
i,j

∫
�

(
1

2
|uxi |2

)
xj

gnj

= O


∫
�

|∇u|2

 +

∫
∂�

∑
i,j

1

2
|uxi |2g|nj |2 dσ

and on∂�,
∑
i,j

|uxi |2g|nj |2 = |∇u|2. Therefore,

∫
�

−1ug∇u · n dx =
∫
∂�

(
1

2
|∇u|2 −

∣∣∣∣∂u∂n
∣∣∣∣
2

) dσ +O


∫
�

|∇u|2 dx

 . (4.6)

In the same way, we get

∫
�

|u|p−1ug(x)∇u · n dx = θp+1
∫
∂�

|u0|p+1

p + 1
dσ +O


∫
�

|u|p+1 dx


 , (4.7)

∫
�

f (x)g(x)∇u · n dx = θ

∫
∂�

f u0 dσ +O


(∫

�

|u|p+1 dx
)1/p+1


 . (4.8)

By putting together (4.5)–(4.8), one can complete the proof of Lemma 4.2.ut
Lemma 4.3.There exists a constantC > 0 such that, ifv is a critical point ofIθ ,
then ∣∣∣∣ ∂∂θ I (θ, v)

∣∣∣∣ ≤ C
(
I (θ, v)2 + 1

)1/4
.

Proof. Let v be a critical point ofIθ . Then{
−1v = |v + θu0|p−1(v + θu0)+ θf on �

v = 0 on ∂�
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and therefore:

∂

∂θ
I (θ, v) =

∫
�

(−|v + θu0|p−1(v + θu0)u0 − f v) dx

=
∫
�

((1v + θf )u0 − f v) dx

=
∫
�

−∇v∇u0 dx +
∫
∂�

∂v

∂n
u0 dσ + θ

∫
�

f u0 −
∫
�

f v.

Note first that
∫
�

−∇v∇u0 dx = ∫
�

v1u0 dx = 0. We also have

∣∣∣∫
�

f v dx

∣∣∣ ≤ ‖v‖p+1‖f ‖ p+1
p

≤ C
(‖v + θu0‖p+1 + 1

)

≤ C′ (|I (θ, v)|1/p+1 + 1
)
.

(4.9)

So, sincep > 1, it is enough to check that∣∣∣∣∣∣
∫
∂�

∂v

∂n
· u0dσ

∣∣∣∣∣∣ ≤ C(|I
(
θ, v)|2 + 1

)1/4
.

We shall see that in fact∫
∂�

∣∣∣∣∂v∂n
∣∣∣∣
2

dσ ≤ c (|I (θ, v)| + 1) (4.10)

which obviously implies the desired estimate. Since∂v
∂n

= ∂u
∂n

− θ ∂u0
∂n

, (4.10) is
equivalent to prove the same estimate for

∫
∂�

| ∂u
∂n

|2 dσ .

Now ∫
∂�

(
1

2
|∇u|2 − |∂u

∂n
|2) dσ =

∫
∂�

(
1

2
|D∂�u0|2 − 1

2
|∂u
∂n

|2) dσ

(whereD∂�u0 is the gradient ofu0|∂�). Sinceu0 ∈ C2(�̄), we get from Lemma
4.2 that there is a constantC′ such that

∫
∂�

∣∣∣∣∂u∂n
∣∣∣∣
2

dσ ≤ C′

∫
�

(|∇u|2 + |u|p+1) dx + 1




≤ C′′

∫
�

(|∇v|2 + |v|p+1) dx + 1
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and by (4.3) and (4.4)

∫
∂�

∣∣∣∣∂u∂n
∣∣∣∣
2

dσ ≤ C′′′ (I (θ, v)+ 1) ,

which yields Lemma 4.3.ut
End of Proof of Theorem 1.2.Again, we show thatI (θ, x) satisfies the hypothesis
of Theorem 2.2. It is clear thatI0 is even and that, in view of the above lemmas,
it satisfies hypothesis (H1), (H2) and (H3). It is also clear that for every finite
dimensional subspaceW of E, supθ∈[0,1] I (θ, y) → −∞ as|y| → +∞, y ∈ W .

For eachk, denote byEk the subspace ofE spanned by the firstk eigenfunctions
of 1, let

G = {g ∈ C(E;E); g is odd andg(x) = x for |x| large}

and setck = inf
g∈G supg(Ek) I0.

Theorem 2.2 applied withf1(θ, s) = −a(s2+1)1/4 andf2(θ, s) = b(s2+1)1/4

then yield that if the set of critical levels ofI1 has an upper bound then:

|ck+1 − ck| ≤ K(
√
ck + √

ck+1 + 1)

which implies that( ck
k2 ) is bounded. On the other hand, it is shown by Tanaka [Ta]

(see also Bahri–Lions [B-B]), that there is a positive constantL > 0 such that

ck ≥ Lk
p+1
p−1 .

2
n . This is a contradiction as long as2

n
.
p+1
p−1 > 2, that is whenp < n+1

n−1.
This completes the proof of the theorem.ut

Remark 4.1.A rougher estimate for
∣∣ ∂
∂θ
I (θ, v)

∣∣, without using thatv is a critical
point of Iθ , would have led to:

∣∣∣∣ ∂∂θ I (θ, v)
∣∣∣∣ ≤

∫
�

|v + θu0|p ≤ ‖v + θu0‖pp+1 ≤ C(I (θ, v)+ 1)
p
p+1 .

The existence of solution would have been obtained in this way only forp < n+2
n

.
Also note that, in order to obtain the same multiplicity result for the full range

of p (up to the critical Sobolev exponent), one needs to show that for eachε > 0,

∣∣∣∣ ∂∂θ I (θ, v)
∣∣∣∣ ≤ Cε(|I (θ, v)|ε + 1).
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5. Non-homogeneous Hamiltonian systems

We now consider the following Hamiltonian system


dq

dt
= ∂H

∂p
(q, p)+ f1(t)

dp

dt
= −∂H

∂q
(q, p)+ f2(t)

q(0) = q0, q(1) = q1

(P3)

whereq, p : [0,1] → Rn; fi ∈ C1
([0,1]; Rn

)
andq0, q1 are given.

We shall use the following assumptions onH :

(h1) H is even and belongs toC2(R2n,R).
(h2) ∃µ > 2 such thatH ′(x) · x ≥ µH(x) > 0 for |x| large.
(h3) There arer ands such that 1< r ≤ s < 2r + 1 and

A|x|r+1 − B ≤ H(x) ≤ C|x|s+1 +D,

whereA, B, C,D are positive constants.

In this section we prove Theorem 1.3, which state that under assumptions (h1),
(h2), (h3), problem (P3) has infinitely many solutions. To do that, we again perform
a change of variable, replacingq(t) by q(t)+ z(t), wherez(t) = tq1 + (1 − t)q0.
We find that (P3) is equivalent to



dq

dt
= ∂H

∂p
(q + z, p)+ f1(t)− (q1 − q0)

dp

dt
= −∂H

∂q
(q + z, p)+ f2(t)

q(0) = q(1) = 0.

(P’3)

Let a be a smooth even mapR → R, non decreasing onR+ and such that
|a′(x)| ≤ 1, a(x) = x for x ≥ 1. Let m̃ : R2 → R be defined bym̃(x, y) =
(x + y)/2 − a(x − y)/2 (m̃ is a smooth approximation of “min”). It is easy to
see thatm̃ is non-decreasing with respect to each of its arguments. More precisely,
0 ≤ ∂m̃/∂x ≤ 1 and 0≤ ∂m̃/∂y ≤ 1.

Fix α ∈ (2,min(µ, r + 1)) andα′ ∈ (2, α) . ForR large, defineGR by

GR(x) = m̃(H(x), R|x|α +D + 1).

By the definition ofm̃ and the properties ofH , GR(x) = H(x) if |x| ≤ mR :=
(R/C)1/(s+1−α) and, providedR is large enough,GR(x) = |Rx|α + D + 1 if
|x| ≥ MR := (2R/A)1/(r+1−α).

Now defineHR by

HR(q, p) = m̃(GR(q, p), LR(q, p)),

whereLR(q, p) = 2R(2MR)
α−2(|p|2 + |q|α′ + 1). One could easily verify that,

providedR is large enough,HR(x) = GR(x) if |x| ≤ 2MR. HenceHR(x) =
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R|x|α + D + 1 if MR ≤ |x| ≤ 2MR. Moreover, for|x| large,HR(x) = LR(x).
Notice also thatHR′(x) ≥ HR(x) if R′ ≥ R. Finally, by the properties ofH , there
are two positive constantsE andF such that, for allR ≥ 1, for all x ∈ R2n,
HR(x) ≥ E(|p|2 + |q|α′

)− F .
LetE = H 1

0

(
(0,1); Rn

) ×L2
(
(0,1); Rn

)
be endowed with the scalar product

〈(q, p); (q ′, p′)〉 =
∫ 1

0
q̇q̇ ′ + pp′ dt.

Let IR be defined on(0,1)× E by

IR(θ, q, p) =
∫ 1

0
(q̇ · p −HR(q + θz, p)+ θ(q1 − q0)

· p − θf1 · p + θf2 · q) dt.

It is easy to see thatIR is smooth on(0,1)×E and that the critical pointsx = (q, p)

of IR(1, .)which satisfy|q+z|2+|p|2 ≤ mR are solutions to problem(P ′
3). Notice

also that ifR′ ≥ R thenIR
′ ≤ IR. Moreover we have the following:

Lemma 5.1.There is a functioǹ : R+ → (0,+∞) such that:

(i) limR→+∞ `(R) = +∞.
(ii) If x = (q, p) is a critical point ofIR(θ, ·) which satisfiesIR(θ, x) ≤ `(R)

then|y| ≤ mR wherey = x + (θz,0).

Proof. We first prove that, ifx is a critical point ofIR(θ, ·), then

|HR(y(t))−
∫ 1

0
HR(y(s)) ds| ≤C1

∫ 1

0
(H 2

R(y(s))+ 1)1/4 ds

+ C2(H
2
R(y(t))+ 1)1/4

(5.1)

wherey(t) = x(t)+ θ
(
z(t),0

)
.

In fact, letx = (q, p) be a critical point ofIR(θ, ·). Then{
q̇(t) = ∂HR

∂p
(q + θz, p)+ θf1 − θ(q1 − q0)

ṗ(t) = − ∂HR
∂q
(q + θz, p)+ θf2.

Hence

d

dt
HR

(
q(t)+ θz(t), p(t)

)
= ∂HR

∂q
(q + θz, p)

(
q̇ + θ(q1 − q0)

) + ∂HR

∂p
(q + θz, p)ṗ

= (θf2 − ṗ)
(
q̇ + θ(q1 − q0)

) + (
q̇ − θf1 + θ(q1 − q0)

)
ṗ

= θf2q̇ + θ2f2(q1 − q0)− θf1ṗ.
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We get:

HR
(
y(t2)

) −HR
(
y(t1)

)
=

∫ t2

t1

θf2(s)q̇(s)+ θ2f2(s)(q1 − q0)− θf1(s)ṗ(s) ds

= θ2(q1 − q0) ·
∫ t2

t1

f2(s) ds + θ

∫ t2

t1

(ḟ1(s)p(s)− ḟ2(s)q(s)) ds

+ θ [f2(s)q(s)]t2t1 − θ [f1(s)p(s)]t2t1.

Sincefi ∈ C1
([0,1]; Rn

)
, by (h3) and the definition ofHR we get:

K
∣∣HR(

y(t2)
) −HR

(
y(t1)

)∣∣ ≤
(
HR

(
y(t2)

)2 + 1
) 1

4 +
(
HR

(
y(t1)

)2 + 1
) 1

4

+
∫ 1

0

(
HR

(
y(s)

)2 + 1
) 1

4
ds (5.2)

whereK > 0 is independent ofR. It is easy to see that (5.2) implies (5.1).
Moreover, by the properties ofHR, (5.1) implies that, ifx = (q, p) is a critical

point ofIR(θ, ·) then either|y(t)| ≤ 2MR for all t or |y(t)| ≥ MR for all t (provided
R is large enough).

Now assume that there ist ∈ [0,1] such that|y(t)| > mR. Then using (h2),
the definition ofHR and (5.1), one can derive that

∫ 1
0 HR

(
y(t)

)
dt ≥ βR, where

limR→+∞ βR = +∞ andy(t) = x(t)+ (θz(t),0). ut
We now prove thatIR

(
θ, x(t)

) ≥ `(R), where limR→+∞ `(R) = +∞.

Case 1. |y| ≤ 2MR.
On the ballB(0,2MR), we have

HR(y) = GR(y) = m̃(H(y), R|x|α +D + 1)

H ′
R(y) = 1

2
(1 − a′(H(y)− R|y|α −D − 1))H ′(y)

+ 1

2
(1 + a′(H(y)− R|y|α −D − 1)α|y|α−2y.

Chooseµ′ ∈ (2, α) (soµ′ < µ). Using the properties ofa, we can get easily by
(h2):

H ′
R(y) · y ≥ µ′HR(y) > 0 on B(0,2MR) for |y| ≥ C, (5.3)

whereC is independent ofR. Now x satisfies

ẋ(t) = JH ′
R

(
y(t)

) + θ
(
f1 − (q1 − q0), f2

)
whereJ =

(
0 In

−In 0

)
andy(t) = x(t)+ (

θz(t),0
)
.
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IR(θ, x)

=
∫ 1

0

1

2
(q̇p−ṗq)−HR(q+θz, p)+θ(q1−q0)p−θf1p+θf2 · q dt

=
∫ 1

0
[1

2

(
q̇p−(q+θz)ṗ)−HR(q+θz, p)+θ(q1−q0) · p−θf1p+θf2q ]dt

+ θ

2

∫ 1

0
zṗ dt

=
∫ 1

0
(−1

2
〈J ẋ, y〉−HR(q+θz, p)+ θ

2
(q1−q0) · p−θf1 · p+θf2q )dt

+θ
2

[(
q1, p(1)

)−(
q0, p(0)

)]
=

∫ 1

0

1

2

(
H ′
R(y), y

)−HR(y)+O
(∫ 1

0
|y| dt+|y(1)|+|y(0)|

)

≥
(
µ′

2
−1

) ∫ 1

0
HR(y) dt+O

(∫ 1

0
|y| dt+|y(1)|+|y(0)|+1

)
.

Now, by (5.1) and the fact thatHR(y) ≥ K|y|2 − K ′ (whereK andK ′ are
independent ofR), we get that for appropriate constantsK ′′′,K ′′ > 0,

IR(θ, x) ≥ K ′′
(∫ 1

0
HR(y) dt

)
−K ′′′ ≥ K ′′βR −K ′′′.

Case 2. |y| ≥ MR.
On the set{|y| ≥ MR}, we haveHR(y) = m̃(R|x|α + D + 1, LR(y)), and a

straightforward computation shows that there isδ ∈ (0,1) such that

(1 + δ)
∂HR

∂p
(y) · p + (1 − δ)

∂HR

∂q
(y) · q ≥ νHR(y)−K (5.4)

whereν > 2 andK is a constant independent ofR.
Noting that

∫ 1
0 q̇p = (1+δ)

2

∫ 1
0 q̇p− (1−δ)

2

∫ 1
0 ṗq and using the equation satisfied

by x, we get by the same type of estimates as in the first case;

IR(θ, x) ≥ K̃ ′′βR − K̃ ′′′.

Since limR→+∞ βR = +∞, we get the claim of Lemma 5.1, with

`(R) = min(K ′′βR −K ′′′; K̃ ′′βR − K̃ ′′′).

As a consequence of Lemma 5.1, we get that a critical point ofIR(1, .) of critical
value≤ `(R) is a solution to(P ′

3).

Lemma 5.2.For everyR, IR satisfies the Palais–Smale condition (i.e. if(θn, xn)
is a sequence in[0,1] × E s.t.(IRθn)

′(xn) → 0 andIR(θn, xn) is bounded, then it
has a convergent subsequence).
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Proof. Note thatHR(x) = LR(x)+ UR(x) = 2R(2MR)
α−2(|p|2 + |q|α′ + 1) +

UR(x) whereUR andU ′
R are bounded.

The same type of estimates as in the proof of Lemma 5.1 (second case) enables
one to prove that, if(θn, xn) is a PS sequence, then(xn) is bounded inE. The
convergence of a subsequence is then proved by standard arguments.ut
Lemma 5.3.For all R, for all b > 0, there isCRb such that:

|IR(θ, x)| ≤ b ⇒
∣∣∣∣ ∂∂θ IR(θ, x)

∣∣∣∣ ≤ CRb
(‖(IRθ )′(x)‖ + 1

)
(‖x‖ + 1).

We do not give the proof, which is an easy consequence of the fact that the
truncated HamiltonianHR(x) = 2R(2MR)

α−2(|p|2 + |q|α′ + 1)+UR(x), where
UR andU ′

R are bounded.

Lemma 5.4.If x is a critical point ofIR(θ, ·) of critical value≤ `(R) then∣∣∣∣ ∂∂θ IR(θ, x)
∣∣∣∣ ≤ C2

∣∣∣IR(θ, x)∣∣∣1/r+1 + C3,

whereC2 andC3 are two constants.

Proof. Let x be a critical point ofIR(θ, ·) of critical value≤ `(R). From Lemma
5.1, we have: 


q̇(t) = ∂H

∂p
(q + θz, p)+ θf1 − θ(q1 − q0)

ṗ(t) = − ∂H
∂q
(q + θz, p)+ θf2

q(0) = q(1) = 0

wherex = (q, p). We therefore have:

∂

∂θ
IR(θ, x) =

∫ 1

0
−∂H
∂q
(q + θz, p) · z+ (q1 − q0)p − f1 · p + f2 · q

=
∫ 1

0
(ṗ − θf2) · z+O

(∫ 1

0
|p| + |q|

)

= p(1) · q1 − p(0) · q0 −
∫ 1

0
p · (q1 − q0)

− θ

∫ 1

0
f2 · z+O

(∫ 1

0
|p| + |q|

)

= p(1) · q1 − p(0) · q0 +O

(∫ 1

0
|p| + |q| + 1

)
.

By (h3) and (5.1) we get:∣∣∣∣ ∂∂θ IR(θ, x)
∣∣∣∣ ≤ C

((∫ 1

0
H(q + θz, p) dt

)2 + 1

)1/2(r+1)

(5.5)

Now, as in the proof of Lemma 5.1 (first case), we get:

IR(θ, x) ≥ K ′′
∫ 1

0
H(q + θz, p) dt −K ′′′.

from which our claim follows. ut
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End of Proof of Theorem 1.3.The functionalIR(0, ·) = IR0 is clearly even asHR
is an even Hamiltonian. Let

E− = {(q, p) ∈ H 1
0 × L2 | p = −q̇}; E+ = {(q, p) ∈ H 1

0 × L2 | p = q̇}
and

E0 = {(q, p) ∈ H 1
0 × L2 | q = 0 andp = Cst.}

We haveE = E− ⊕ E+ ⊕ E0. For x ∈ E we shall denote byx−, x+, x0 the
elements ofE−, E+, E0 resp. such thatx = x− + x+ + x0.

Let {ei,1 ≤ i ≤ n} denote the standard basis ofRn. For k ≥ 0, let k =
l(k)n+ r(k), r(k) ∈ {0, . . . , n− 1}, and defineak ∈ E+ by

ak = (
sinπ(l(k)+ 1)t er (k)+1 , (l(k)+ 1)π cosπ(l(k)+ 1)t er (k)+1

)
which are valued inRn × Rn. LetE+

k = span{a0, a1, ..., ak} ⊂ E+.
SetEk = E− ⊕ E0 ⊕ E+

k ,

G =




g(x) = eγ
+(x)x+ + eγ

−(x)x− +K(x)whereγ±
are continuous, even, maps bounded

g ∈ C(E,E); sets to compact subsets
of R andγ±(x) = 0 for ‖x‖ large
whileK is compact, odd andK(x) = x0,




and letcRk = inf g∈G supg(Ek) I
R
0 ∈ (−∞,+∞]. Without loss of generality we will

assume thatH(0) = 0. Note that ifR′ ≥ R thenIR
′ ≤ IR andcR

′
k ≤ cRk . We may

defineck = limR→+∞ cRk .

Lemma 5.5.With the above hypothesis, we have:

(i) 0 ≤ ck ≤ cRk ≤ supEk I
R
0 < +∞.

(ii) ck ≥ K ′k(s+1)/(s−1) −K (whereK andK ′ are positive constants).

Proof. (i) For allg ∈ G,g(0) = 0 and sinceIR0 (0) = 0, it follows thatcRk ≥ 0 for all

R, henceck ≥ 0. Moreover, for allR ≥ 1,HR(x) ≥ H(x) := E
(|p|2+|q|α′

)−F .

Letψ be the functional defined by:ψ(x) = ∫ 1
0 q̇p−H(x) dt (wherex = (q, p)).

It is enough to check thatψ has an upper bounddk onEk. If x belongs toEk, it can
be written:x = (q,−q̇ + v) with v ∈ span{e1,e2, ..,en, cosπ(q(l) + 1)ter (l)+1;
0 ≤ l ≤ k}.

ψ(x) =
∫ 1

0
−|q̇|2 + q̇v − E|v − q̇|2 − E|q|α′ + F

=
∫ 1

0
−(1 + E)|q̇|2 + (1 + 2E)qv̇ − E|v|2 − E|q|α′ + F

≤
∫ 1

0
δ|v̇|2 − E|v|2 +Kδ|q|2 − E|q|α′ + F

whereδ > 0 is arbitrary andKδ depends onδ.
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Now, sincev ∈ span{e1,e2, ..,en, cosπ(q(l) + 1)ter (l)+1; 0 ≤ l ≤ k}, we

can write
∫ 1

0 |v̇|2 ≤ K(k)
∫ 1

0 |v|2 and, choosingδ small enough, we see thatψ has
an upper bound onEk.

(ii) By (h3) there are positive numbersa1, . . . , an, independent overQ, such

that for allx,H(x) ≤ H̄ (x) := Q(x)
(s+1)

2 +K, where

Q(x) = a1(p
2
1 + q2

1)+ . . .+ an(p
2
n + q2

n).

The non-zero solutions of {
q̇ = ∂H/∂p

ṗ = −∂H/∂q
which satisfyq(0) = q(1) = 0 are(

xi,k = (qi,k, pi,k)
)
1≤i≤n,k≥1, where q

i,k
j (t) = p

i,k
j (t) = 0 for j 6= i

and

q
i,k
i (t) = 1√

ai

(
kπ

ai(s + 1)

) 1
s−1

sinkπt;

p
i,k
i (t) = 1√

ai

(
kπ

ai(s + 1)

) 1
s−1

coskπt.

The value of the functional
∫ 1

0 (pq̇ − H̄ (q, p)) dt atxi,k is equal to

ci,k =
(
s

2
− 1

2

) (
kπ

(s + 1)ai

)(s+1)/(s−1)

−K

Note that theci,k are distinct. Let us callc′1 < c′2 < ... < c′k < ... their ordered
sequence.
Now we can defineH̄R (for R large) in the same way asHR is defined, and we can
definec̄Rk in the same way ascRk . Let Rk be such that̀̄ (R) > c′k for all R ≥ Rk

( ¯̀(R), defined in lemma 5.1, is associated toH̄ here). Then, forR ≥ Rk, the first
k nontrivial (i.e. 6= IR0 (0)) critical values ofĪ R0 (the functional associated tōH )
arec′1 < c′2 < ... < c′k. Moreover it is easy to see that the infimum ofIR0 over
S+
ρ = {x ∈ E+ | ||x|| = ρ} is> IR0 (0) for ρ > 0 small. Hence (G has been defined

such that, for alli ≥ 1, for all g ∈ G, g(Ei) ∩ S+
ρ 6= ∅), c̄Ri is a nontrivial critical

value ofIR0 . Now all the critical points of critical level≤ ¯̀(R) are isolated. Hence
by classical results on even functionals,c̄Ri >

¯̀(R) or c̄Ri+1 > c̄Ri . We can conclude

that for allR ≥ Rk, c̄Rk ≥ c′k ≥ K ′k
s+1
s−1 −K. SinceH̄R ≥ HR, c̄Rk ≤ cRk and we

can derive (ii) of the Lemma.
Now assume that problem(P ′

3) has a finite numberN of solutions. LetR̄ be
such that the corresponding trajectories are included in the ball of radiusmR̄. Then,
for R ≥ R̄, these solutions give rise to critical points ofIR1 . LetD be an upper
bound of the corresponding critical values.
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By Lemma 5.1, forR ≥ R̄, IR(1, .) has no critical value> D and≤ l(R).
Letψi denote the flow offi , where

f1(s) = −C2(1 + s2)1/2(r+1) − C3 andf2(s) = C2(1 + s2)1/2(r+1) + C3.

As in the proof of Theorem 2.2, for anyε > 0 we can findR̃ and constructAk and
Bk ⊂ Ak such thatcR̃Bk ≤ ck + ε and

∀R ≥ R̃ cR̃Ak,Bk ≥ cRAk,Bk ≥ cRk+1 ≥ ck+1,

wherecR̃Bk = supBk I
R̃
0 , cR̃Ak,Bk = inf

g∈D′
Bk

sup
g(Ak)

I R̃0 and

D′
Bk

= {g ∈ G; g|Bk = IdBk }.

Now chooseR ≥ R̃ such thatψ2(1, cR̃Ak,Bk ) ≤ l(R). ThencRBk ≤ cR̃Bk
≤ ck + ε,

cRAk,Bk
≥ ck+1 andψ2(1, cRAk,Bk ) ≤ ψ2(1, cR̃Ak,Bk ) ≤ l(R).

Using Theorem 2.1 and Remark 2.1, one can see by lemma 5.4 that if
ψ2(1, ck+ε) < ψ1(1, ck+1) thenIR1 has a critical value in the interval[ψ1(1, ck+1),
ψ2(1, cRAk,Bk )], which corresponds to a solution to the problem by Lemma 5.1.

Since we may chooseε > 0 arbitrarily small, we derive that, for allk,

ψ1(1, ck+1) ≤ D or ψ1(1, ck+1) ≤ ψ2(1, ck),

which yieldsck+1 − ck ≤ K
(
(ck)

1/(r+1) + (ck+1)
1/r+1

)
. It is then easy to see

that this implies thatck ≤ αk
r+1
r + β whereα andβ are some constants, which

contradicts Lemma 5.5 (ii), becauses < 2r + 1. ut

6. Non-homogeneous, semi-linear wave equations

In this last section, we deal with the following non-linear wave equation with non-
homogeneous boundary conditions:


utt − uxx + |u|p−1u = f (x, t)

u(x, t + 2π) = u(x, t)

u(0, t) = x0 u(π, t) = x1.

(P4)

Again, we introduceu = v + z wherez(x) = x0 + x
π
(x1 − x0). Note thatz is

independent oft and so is obviously 2π periodic int . We need then to solve:

vtt − vxx + |v + z|p−1(v + z) = f (x, t)

v(x, t + 2π) = v(x, t)

v(0, t) = 0, v(π, t) = 0.

(P’4)
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As in Tanaka [T2] we consider the space of functions defined on� = (0, π)×
(0,2π) satisfying the above (homogeneous) boundary conditions. Any smooth
functionu in this space has a Fourier expansion of the form

u =
∞∑
j=1

∞∑
k=−∞

ajk sinjxeikt , aj,−k = āj,k

We define:

〈u, v〉 = 1

4π2

∑
j,k

|k2 − j2|ajkb̄jk and ||.||E = 〈u, u〉

for u = ∑
j,k

ajk sinjxeikt andv = ∑
j,k

bjk sinjxeikt . It is clear that||.||E is a norm

on the set{u : ajk = 0 if j = |k|}. Next we set

E+ =

u; u =

∞∑
j=1

∑
|k|>j

ajk sinjxeikt :
∑
j,k

|k2 − j2||ajk|2 < ∞



E− =

u; u =

∞∑
j=1

∑
|k|<j

ajk sinjxeikt :
∑
j,k

|k2 − j2||ajk|2 < ∞

 ,

andE = E+ ⊕ E−. Furthermore set:

N = Lp+1 − closure of span{sinjxeikt ; j = |k|, j ∈ N}
withLp+1-norm||.||p+1.E+, E− andN are complementary subspaces of the space
of functions satisfying homogeneous boundary conditions:v(0, t) = v(π, t) =
0, v(x, t + 2π) = v(x, t) and the wave formL = vtt − vxx is positive definite,
negative definite and null respectively, onE+, E− andN . Next we consider the
one parameter family of functionals:

Kθ(u) =
∫
�

{
1

2
(u2
t − u2

x)− 1

p + 1
|u+ θz|p+1 + θf u

}
dxdt

on the spaceE ⊕ N . Clearly, critical points ofK1 are solutions of our problem.
Note that

Kθ(u+ v) = 1

2
||u+||2E − 1

2
||u−||2E

− 1

p + 1
||u+ + u−

+ v + θz||p+1
p+1 + 〈

θf, u+ + u− + v + θz
〉

for u = u+ + u− ∈ E = E+ ⊕ E− andv ∈ N . Now the functionQθ defined by
the minimization problem

Qθ(u) = min
ω∈N

[‖u+ θz+ ω‖p+1
p+1

p + 1
− 〈θf, u+ θz+ ω〉

]
u ∈ E
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is well defined and continuous –as the minimized term is strictly convex. Actually,
for eachu, the minimum is attained at a unique pointωθ(u) in such a way that:

Qθ(u) = ‖u+ θz+ ωθ(u)‖p+1
p+1

p + 1
− 〈θf, u+ θz+ ωθ(u)〉 .

In particular:〈
|u+ θz+ ωθ(u)|p−1 (u+ θz+ ωθ(u))− θf, h

〉
= 0 ∀h ∈ N.

Now it is easily seen that there is a one to one correspondence between the critical
points ofKθ and those ofIθ , whereIθ : E → R̄ is defined by

Iθ (u) = 1

2
||u+||2E − 1

2
||u−||2E.−Qθ(u)

So we seek critical points ofIθ . One can easily see thatQθ is of classC1 onE and

〈Q′
θ (u), h〉 = (|u+θz+ωθ(u)|p−1(u+θz+ωθ(u))−θf, h) = 0 for all u, h ∈ E.

Elementary estimates then show that:

∣∣(Q′
θ (u), u)− (p + 1)Qθ(u)

∣∣ ≤ c1‖u+ θz+ ω‖pp+1 + c2

≤ C
(
|Qθ(u)|

p
p+1 + 1

) (6.3)

since:|Qθ(u)| ≥ a|u+ θz+ ω|p+1
p+1 − b.

On the other hand at a pointu whereI ′
θ (u) = 0, we have

Iθ (u) = ‖u+‖2

2
− ‖u−‖2

2
−Qθ(u) (6.4)

0 = 〈I ′
θ (u), h〉 = 〈u+ − u−, h〉 − 〈Q′

θ (u), h〉 for h ∈ E.
Settingh = u andh = u+ − u− in the above formula we get

‖u+‖2 − ‖u−‖2 − 〈Q′
θ (u), u〉 = 0 (6.5)

‖u‖2 + 〈Q′
θ (u), u

+ − u−〉 = 0 (6.6)

So by (6.4) and (6.5)
1

2
〈Q′

θ (u), u〉 −Qθ(u) = Iθ (u)

Now from (6.3) and the above equality we get

(
p + 1

2
− 1)Qθ(u)− C(|Qθ(u)|

p
p+1 + 1) ≤ Iθ (u)

which implies
|Qθ(u)| ≤ C(|Iθ (u)| + 1) for I ′

θ (u) = 0.
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To apply Bolle’s method we need to estimate

Jθ (u) = ∂

∂θ
Iθ (u)

= −
[〈

|u+ θz+ ω|p−1(u+ θz+ ω), z+ ∂

∂θ
ω

〉

≤ −
(
θf, z+ ∂

∂θ
ω

)
− (f, u+ θz+ ω)

]
= −

[
〈|u+ θz+ ω|p−1(u+ θz+ ω), z〉 − (f, u+ θz+ ω)

]

Now if we estimate the first term ofJθ in the usual way we get

|Jθ (u)| ≤ C
(
|Iθ (u)|

p
p+1 + 1

)
.

By applying Theorem 2.2, we get that either(P4) has an infinite number of solutions
or I0 has a sequence of critical levels(cn) satisfyingcn ≤ Cnp+1. On the other

hand, by a result of Tanaka [T2] we have that for eachε > 0,cn ≥ cεn
p+1
p−1−ε which

proves the result only for 1< p < 2!

Remark 6.1.In order to improve the above result, we need better estimates onJθ
and to use the full strength of Theorem 2.2, we need to exploit that the estimate is
only needed at a pointI ′

θ (u) = 0. For such points, we have

utt − uxx + |u+ θz|p−1(u+ θz) = θf

andJθ (u) = 〈utt − uxx, z〉 + 〈f, u+ θz+ ω〉.
Now we have a better estimate on the second term as

〈f, u+ θz+ ω〉 ≤ ‖u+ θz+ ω‖p+1 ≤ C
(
|Iθ (u)|

1
p+1 + 1

)
,

so what remains is to estimate the first term〈utt − uxx, z〉 which after integration
by parts is dominated by

|〈utt − uxx, z〉 ≤
∣∣∣∣
∫ 2π

0
x1ux(π, t)− x0ux(0, t) dt

∣∣∣∣ .
A natural question is whetheru verifies an adequate conservation law that will yield
a good estimate for the latter term.
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