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Abstract. We consider the family of fibres of a polynomial functigron a smooth noncom-
pact algebraic real surface and we characterise the regular fibfestith are atypical due

to their asymptotic behaviour at infinity. We compare to the similar problem in the complex
case.

1. Introduction

We focus on the following aspect of the study of families of algebraic varieties: Let
{X;};cx be a one-parametre algebraic family of real (resp. complex) affine smooth
curves, wheréK = R or C. Let X := U,k X, be the total space and suppose
that it is a smooth algebraic manifold ovRr resp.C. Denote byr : X — K the
projection on the parametre space and take a regular xat& of . Locally, in
some neighbourhood af, we have that each memhgy of the family is a union of
circles and linesi = R), resp. a smooth non-compact Riemann surf&ce=(C).

The following problem arises:

Give a criterion for such a family to be differentiably trivial.

The valuerg € K (resp. the curveX,,) is calledtypical if the mapz is a C*
fibration atzg; otherwise,rp (resp.X,,) is calledatypical Let A, be the set of
atypical values oft. It is well-known thatA ; is finite, see for instance [Th], [Ve].
The problem posed above is equivalent to characterizing the atypical values of

Our aim is to characterise those atypical values which are not critical values, in
the real cas& = R. The question wheather an improper submersion is a fibration
was considered by L. Siebenmannin [KS, Essay I, 81] where he proves a sufficient
condition in very large generality. In a recent paper [FP], the problem is posed in the
particular case of a family; = f~1(r) defined as the fibres of a real polynomial
function f : R? — R. As a matter of fact, the criterion given by the main result
[FP, Theorem 4.2] cannot be true, as our Example 3.4 shows.
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With the above assumptions, we prove the following:

Theorem 1.1. Let { X, },cr be an algebraic family of real curves and lgtbe a
regular value oft : X — R. Assume that the total spadgis nonsingular. Then
the curveX,, is typical if and only if the Euler characteristig (X;) is constant
whent varies within some neighbourhood gfand there is no component &f
which vanishes at infinity astends tar.

The following simple example shows why we neédye nonsingular. We also
show in Remark 2 how the statement can be extended for singular

Example 1.2.Take X := {x2+ y2 — z2 = 0} U {z = 0} C RS, the union of a
cone and a plane through the vertex of the cone. Tetke projection on a liné.
through the origin. Then, for an adequate choicé.pthe curveX;, forr # 0, is

the disjoint union of a line with an oval, bixtg is just a line. When tends to 0, the
oval is “vanishing” in the origin, nevertheless the Euler characteristic is constant.

The criterion in our Theorem looks natural, since the constancy of the Euler
characteristic and the non-vanishing are necessary conditions. Moreover, it has
a striking similarity to certain criteria in the complex case, as we explain in the
following.

For afamilyX, = f~1(r) given by the fibres of a complex polynomial function
f : C2 — C, it has been proven by Ha, H.V. and L&, D.T. [HL] that:

Areduced curve(,, is typical if and only if its Euler characteristig (X,,) is equal
to the Euler characteristic of a general fibre ¢f (K = C).

This gives the answer (within the considered class of families) to the problem
stated above, i.e. a criterion for a fibfe(r) to be atypical, since it is known that a
critical fibre is atypical (by a monodromy argument due to L&, D.T.). An equivalent
form of this criterion is the following, see [ST]:

A regular fibreX,, of a complex polynomial function is typical if and only if there
are no vanishing cycles at infinity corresponding to this fibre.

A common idea of “non-vanishing” appears in both real and complex case. We
shall explain in Section 4 the exact meaning of vanishing cycles and some fur-
ther results in the complex case. In contrast to the complex, in the real case the
two conditions (i.e. constancy of Euler characteristic, respectively non-vanishing
condition) have to be considered together: neither of them impliesthad atyp-
ical. We show this by Example 3.1 (constancy of Euler characteristic holds but
non-vanishing condition fails), respectively Example 3.2 (non-vanishing and “non-
splitting” condition both hold but constancy of Euler characteristic fails).

2. Families of real curves

Let X € R” be a smooth noncompact algebraic surface and' letX — R be
the restriction of a polynomial functiof : R* — R. We say that a regular value
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s € f(X)istypicalif f isa C*® trivial fibration ats; otherwisey is calledatypical
The set of atypical values of is denoted byA ¢.

Let! :=]a, b[C f(X) be an open interval containing only typical valuesfof
The restrictionf : f~1(I) — I is a C® trivial fibration and it restricts to a trivial
fibration on any connected compon@hbf F~1(1).

Definition 2.1. Let ) be a connected component 6f1(]a, b[), wherela, b[C
f(X)\ Ayr. DenoteY; := X; N Y. We say that a poinp € X is a limit point of
the family{Y;};c14,5; Whenr tends taz if there exists a sequence of poipise ),
k € N, such thatp, tends top and that f (py) tends taz. We denote:

lim Y, :={pe X | pisalimitpoint of {Y;}; whent — a }.

t—a , t>a

We define analogously lim Y;. It follows that |lim Y, C ffl(a) and

i—b, t<b s—a, s>a

lim s € F1w).

s—b, s<

Note thatY; is connectedyr €]a, b.

Definition 2.2. We say that the connected compongnbf f~1(s) vanishes at
infinity whens tends taz, s > a,if lim Y, =0.

s—a, s>a

We have a similar notion whentends tob, s < b.

Notethat Iim Y;=@ifandonlyif I|im inf{|z|||zeY;}=o00.
—a, s>a

s—a, s>a N
The following lemma is an easy consequence of the definitions, hence we only
give a hint.

Lemma 2.3. Leta € f(X) be a regular value off. In the above notations, we
have:
(i) Thelimit lim Y, is either empty or equal to the union of some connected
s—a, s>a
components of ~1(a).
(i) Let{Y!}s be the family of curves corresponding to some connected component
V. If lim YS) N < lim YY/) # @, then{Ys} = {Y!} (in particular

s—a, s>a s—a, s>a

the two limits coincidg

Proof. Sincea is aregular value, one can prove that the limit  lin¥, is an open
s—a, s>a

subset off ~1(a), by using local coordinates at points 6f1(a). But this limit is
obviously a closed set. The rest is straightforwarml.

Definition 2.4. We say that the famil{¥,}, splits whens tends toa, s > «, if the
limit lim ¥, contains at least two connected componentg of(a).
s—a,s>a
Letus suppose that® f(X) is aregular value of . With the above definitions,
we formulate the followingonditions:

(B) The Betti numbers of the fibr¥, are constant for within some neighbour-
hood of 0.
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(E) The Euler characteristig(X,) is constant for within some neighbourhood
of 0.

(nV) There is no connected componentXyf which vanishes at infinity when
tendsto Of < O orz > O.

(nS) There is no connected componentgfwhich splits when tendsto 0 < 0
ort > 0.

We state now the main result, which contains Theorem 1.1.

Theorem 2.5. Let 0 € f(X) be a regular value off. Then the following are
equivalent:

(i) The valuddis a typical value off.

(i) Conditions(B) and(nV) are fulfilled.
(i) Conditions(E) and(nV) are fulfilled.
(iv) Conditions(B) and(nS) are fulfilled.

Remark. Example 3.3 shows that conditiof) + (nS) do not imply condition (i).

Proof. Itis clear that (ii}=(iii). It is also clear that (i}=(nV) and (i}=(nS), hence
()= (ii) and (i)=(iv).

(i) =(i) Let D be a connected component pf1([—e¢, ¢]).

We first prove that, under the non-vanishing assumpfiof) and for small
enoughe > 0, D contains at least one connected componenk@f We may
assume without dropping generality thatD) 510, ¢]. Then take a decreasing
sequencés; jren C10, [, ¢ — 0. By the non-vanishing conditiofmV), one can
choose a bounded sequergg}icn Of pointsp; € X, N D. Hence there exists a
convergent sub-sequence. But the limit of this sub-sequence has toXye @m
the other hand, it is o® sinceD is closed. Applying now Lemma 2.3(i), we are
done.

We next show that the restrictiofy : D N fY[—e,e]) — [—¢,elisaC®
trivial fibration, for small enougla.

In case thafD contains a “circle” componerk C Xg, K d'ﬁ_veo s, we may
take an open tubular neighbourhoddof K such thatl’ N Xg = K. Sincek is
compact, we get that, N T is compact, for any small enougti > 0. Therefore
the restrictionf; : T N fl([—e,€]) > [—e, elisa proper submersion (for small
enoughe > 0) and we may apply Ehresmann’s Fibration Theorem to conclude that
it is a C* trivial fibration. It also follows that the total spaden f~1([—e, ¢]) is

connected, hence it coincides with for small enougtz.

: ' . . diffi
Consider finally the case whéncontains a “line” component C Xg, L ~°R.

We have thabo(D N X;) is constant, for in some neighbourhood of 0. Indeed,
this number cannot decrease ras> 0, by the non-vanishing conditiofnV).
The constancy of Betti numbe(B) means that the suth - bo(D N X;) over all
connected componerify is constant, which shows thiai(DN X,) cannotincrease
either. In particular the conditiofmS)is fulfilled.

The Betti numbem := bo(D N X;) has to be equal to 1, by the following rea-
son. The set® N £~1(10, ¢]) andD N f~1([—e, O) contain exactlyn connected
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components, since the restriction 6bn each of them is trivial. This gives fam-

ilies {Y/}; from the positive side and anotherfamilies {Y,}; from the negative
side, according to Definition 2.1. The limit of such a family must be a connected
component ofg, by Lemma 2.3(i) and the above discussion. Our fixed line com-
ponentL of Xg is the limit of a certain positive side family and also the limit of a
certain negative side family. Now take the unigrof these two families together
with their limit L. ThenV is a connected component gf 1([—¢, €]), since itis a
closed set and disjoint from the other families and their limits (by Lemma 2.3(ii)).
ThereforeV coincides withD and the argument is now complete.

It remains to show that the restrictioh: D N f~1([—¢, e]) — [—¢, €] is a
C® trivial fibration. This will follow from Proposition 2.7, by applying it locally
on the base.

(iv)=(i) The proof follows the pattern of the case £)i) and we can safely
leave it to the reader.

(iii) = (ii) First, we note that (iig>(nS). Indeed, conditiorgnV) implies that no
“line” component ofX, vanishes at infinity when tends to 0, and conditiofE)
means that the number of “line” componentsXyf does not depend onwithin
some neighbourhood of 0. ThysS) is satisfied, since otherwise we would have
x (Xo) > x(X;) for some smalt.

Conditions(nS) and(nV) show that the number of connected components of
X, is constant for within a neighbourhood of 0. Together wig), this implies
that(B) is satisfied. Note thdhSH-(nV) alone do notimply(B), see Example 3.2.

O

Note 2.6. The algebricity assumption insures tlé&tc R” is closed, that the Betti
numbers ofX; are finite and that the set of atypical valuesfois discrete. Now,

if we drop the algebricity condition but suppose that these three conditions are
fulfilled, then the proof of the equivalences (i) (iv) is still valid.

The next statement could be known, though we were not able to find a reference.

Proposition 2.7. Let M C R” be a smooth submanifold of dimensient 1 and
letg : M — R™ be a smooth function. Assume that the functidras no critical
values and that all the fibreg~1(¢) are diffeomorphic t& and closed ifR". Then
g is aC®™ trivial fibration.

In particular, M AE0 pm+1,
Proof. We show thag is locally trivial over a poinpp € R™. The result will follow
sinceR™ is contractible. Fix a poing € g~1(p). Sinceg is a submersion, we can
find a submanifold” ¢ M such that it is transversal to the fibresgfthatqg € T
and that the restriction gf to T is a C* diffeomorphism onto a small open ball
B c R™ centered ap.

One can take a smooth vector field: g~1(B) — R” tangent to the fibres of
g and without zeros. Moreover, one may take the unit tangent vector field (with
respect to the Riemannian metricRf). The fibres being closed and diffeomorphic
toR, this vector field defines a global floy: T x R — g~1(B), which is a diffeo-
morphism. Sincd’ is diffeomorphic toB, it follows thatg —1(B) is diffeomorphic
toBxR. O
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Remark.In the statement of Theorem 1.1 we may allow the total spadeve
singularities and use the following extension of the notion of “regular value": Let
X be a real algebraic variety, possibly singular, andzlet X — R denote an
algebraic function. We say that € R is aregular valuefor  if there ise > 0 such
that the spac& (¢) := X Nt~ 1(Jtg — &, 1o + €[) is a manifold andy is a usual
regular value of the mapon X (¢).

The conditions in this definition imply that the singular locus<os “far" from
the fibreX,,. Example 1.2 shows why singularities Bfhave to be kept out.

3. Examples

We consider polynomialg : R? — R of the following type

Fo,y) i=ax®+280)x +y Q). 1)

LetA :={y € R| a(y) = 0}. We assume that > 0 is such that :=] — ¢, ¢[
contains only regular values gfand that

foranyy € A we have8(y) = 0 and|y (y)| > . (2)

Then for any € I, the equatiory’ = ¢ in the variablex has two complex solutions
x1.2(y,1). Let Ay, 1) = B2(y) — a(»)y () + ta(y) and let us denote

D:={(y,1) eR*| A(y,1) =0}, K:={(y,1) e R®| A(y,1) =0},

L(s):={(y,1) eR?|t=s} and A:={(y,1) e R?| y € A}.

Thenx1 2(y, t) are real numbers if and only {§, ) € D. It is easy to see that
if (y,t) € D andy tends to a point iM4, then|x1 2(y, t)| tends to infinity. Note

JdA
also that4 C K and that \ A € 9D becausea =a(y) #0fory & A.

Forr € I, the topology of the fibrg ~1(z9) can be described using the projec-
tions

((c,y, ) eR3| fx,y) =1} DRZ >R, (x,y,1) — (y, 1) > 1.

More precisely, the connected components of the &&ts) := D N L(ry) and
F(to) \ A are segments and isolated points. @Y, if P is an isolated point of
F(t0) such thatP € A, thenz—1(P) = ¢. Moreover, if Q is an isolated point
of F(to) such thatQ ¢ A, thenz~1(Q) is an isolated point of ~1(10), hence a
critical point of f; butr is a regular value of .

Now, consider the one-dimensional connected componeri®j \ A. Let
J be such a segment, gt be its closure if—oo, co] x R and letn(7) be the
number of endpoints Qf which are contained i \ A.

If (y,t0) € J\8J,thent ~(y, o) consists of two distinct points. Now assume
that(y, r0) € J \ 97 tends to an endpoir® of 7. There are three possibilities.

If O € K\ A, then the two points imr ~(y, o) tend to the (unique!) point
7 HQ).
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If O e A, then the two distinct points in ~1(y, 10) tend to infinity, because
their x-coordinate will be unbounded.

If O = (o0, 10), then the two distinct points i ~1(y, 10) tend to infinity,
because theiy-coordinate will be unbounded.

These imply the following.

(i) If n(J) = 2, thenr=1(7) is diffeomorphic to a circle.
@i) If n(J) =1, thenn—l(Z) is diffeomorphic to a line.
(iii) If n(J) =0, thenr—1(7) is diffeomorphic to a disjoint union of two lines.

Thus, fort e I, we can read the topology of the fibfe1(r) from the pictures of
D, K and A. Moreover, using our main result, we can decide if O is an atypical
value of f or not.

Our first three examples use these considerations. We leave the details to the
reader.

Example 3.1.The polynomial

fx,y) = x2y3(y? — 25)2 + 2xy(y? — 25)(y + 25
— (v* + y3 — 50y?2 — 51y + 575

has the property that 0 is an atypical value, but the Betti numbers of the fibfes)

are constant, foft| small enough. Namely, all these fibers have 5 hon—compact
connected components. For this polynomial, O is a regular value and con@tion

is satisfied. Besides the lines.ifj the setC contains also the graph of the function

—@2—2a%y+1y
y

It is easily seen that this graph has two connected components, separated by the
vertical asymptot¢y = 0}. The seD consists of the lines inl and the region of the

plane situated between the two connected components of the grapfitod only

local extrema of the functiop are two local maximums, for = +5, and a local
minimum, between-5 and—1. For|¢| sufficiently small, the equatioa(y) = ¢

has five (complex) solutions, say(7), j = 1,... , 5. One of these solutions, say
asz(t), is a real one, for all, while the other four are real if and only if < 0.
Assume that

y > (y) =

lim a1(¢) = lim a>(t) = =5 and limaa(¢) = lim as(¢) = 5.
t—0 t—0 t—0 t—0

For|z| sufficiently smalland < 0, the setF(¢)\.4 has 5 connected components
and each of them corresponds to a line componeritihz). Namely, we have:

F)\ A= (lar(®), =5) x {t}) U (=5, a2()] x {t}) U

U ([az(r), 0) x {r}) U ((0, as(t)] x {t}) U ([as(t), 00) x {t}).
We also have:

FO\A=(-1,0) x {0} U (0,5 x {0} U ((5,00) x {O}) .



390 M. Tibar, A. Zaharia

Therefore, when < 0 tends to 0, the line componentsfin(r) corresponding
to the segmentfai(t), —5) x {t}) U ((—5, az2(¢)] x {t}) will “vanish” at infinity
since lim_pa1(t) = lim,_0a2(t) = —5 € A. Also, each of the line components
in f~1(r) corresponding to the segmeni®, a4(r)] x {t}) U ([as(1), 00) x {t})
will “split” in two line components for = 0 since lim_.ga4(t) = lim,;_gas(t) =
5¢€ A.

For |z] sufficiently small and > 0, the setF(¢) \ A has 3 connected compo-
nents: one corresponds to a line componentit(r) and each of the other two
corresponds to two line componentsfin(r). Namely, we have:

F)\ A= ([az(1), 0) x {r}) U ((0,5) x {t}) U ((5, 00) x {t}).

Thus, for|¢| sufficiently small,f ~1(z) is a disjoint union of 5 line components.
This means that the Betti numbers©f1(¢) do not depend on if || is sufficiently
small.

On the other hand, far > 0 sufficiently small, the restrictiong : f~1(—¢, 0)
— (—¢&,0)and f : 710, &) — [0, ¢) are easily seen to b8 trivial fibrations,
while f : f~1(—e, &) — (—¢, €) is not a topological fibration.

Example 3.2.The polynomialf (x, y) := x2y2+2xy+ (y2 — 1)2 has the property
that conditiongnV) + (nS) are satisfied, but O is an atypical value. Besides the
line in A, the set contains also the graph of the functipty) := y* — 2y2. This
function has a local maximum, for = 0, and two local minimums, foy = +1.
The setD consists of the line ind and the region of the plane situated above
the graph ofp. For: < 0 with |¢| sufficiently small, the curve'=1(¢) has two
circle components. Far > 0 sufficiently small, the curveg’~1(z) has two line
components.

Example 3.3.The polynomial

Fo,y) =220 - yH% + 2099 - y) (3 +y +6)
+ 2(y° — 6y° + 6y2 + 25y + 6)

has the property that conditio(B) + (nS) are satisfied, but 0 is an atypical value.
Besides the lines i, the setlC contains also the graph of the function

0?2 -D(?-HG%2-9
y

Yy o) =

This graph has two connected components, separated by the vertical asymptote
{y = 0}. For |z] sufficiently small, the equatioa(y) = ¢ has six real solutions.
There exists: €]1, 2[ andb €]2, 3[ such that the local maxima g¢f are—b and

a, and the local minima op are —a andb. The setD consists of the lines itd

and the region of the plane situated between the two connected components of the
graph ofp. For|t| # 0 sufficiently small, the curvg —1(¢) has a circle component

and 4 line components. The curye1(0) has only 4 line components.
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Example 3.4.This was suggested by Henry King. Lét: RZ — R be defined by
f(x,y) :=2x2y3 —9xy2 + 12y. Thenf is a trivial C* fibration because the map
F:R2 > RZ,

F(x,y) = (f(x, y), ) , Where g(x, y) := 2x%y% — 9y + 12,

X
g(x,y)

is a diffeomorphism of order twaH{~ ! = F).

The criterion given in the paper [FP] for a regular fibre to be atypical is con-
tradicted by the polynomidl : R> — R, defined byi(x, y) := f(x +y,y) =
2x2y3 4+ 4xy* — 9xy? +2y° — 9y3 + 12y. Forally € R\ {0}, the discriminant (in

. . dh .
variablex) of the equation.— = 0is A = 4y?(4y* + 18y? 4+ 9) > 0. Therefore

dh/dy changes sign alongythe germ at infinity of the cuéve= {0h/dy = 0}.
Moreover, it is easy to see that alo@gif y tends to 0, theix| tends to infinity and
h(x, y) tends to 0. According to [FP, Defintion 4.1], the value 0 is a “real critical
value at infinity" foriz and this would mean, by [FP, Theorem 4.2], thas not
locally trivial, in contrast to the explicit computation above.

4. Real versus complex

In the remainder we focus on families of fibres of polynomial functi§is— K.
We first introduce some notations in a larger context.
Given twoK-analytic functionsf, i : K" — K, we say that the set:

[C'(f, h) := closurdSing(f, k) \ (Sing f U Singh)}

is thepolar locusof (f, k). LetP"~1 be the set of all hyperplanes of the projective
spaceP"~1 and let us identify a hyperplané < P*~! by its defining linear form
lg: K" - K.

Polar curve lemma 4.1 ([Ti-1]). There is an open dense; C pr-1 (zariski-
open in the complex case) such that, for &he Q, s(lg, f)isacurve oritis
void.

Identify K” to its image by the embeddiil§” — K" x K, x — (x, f(x))
and take the closurE(ly, f) of T(ly, f) € K" x K within P* x K. Under the
conditions of the above lemma, the intersectitthy, /) N Heo x K = {(p;, ti)}i
is a finite set, wherél,, denotes the hyperplane at infinit§f \ K" (coordinates of
K" are supposed fixed). Note that the valge®ight not be all distinct.

In the complex case = 2 we have the following result, which does not hold
over the reals.

Proposition 4.2. Let f : C?> — C be a complex polynomial function. Lét Qy
and let{(p1, 1), ..., (pr. )} = T'(lH, f) N Hy x C. DenoteXp, := f—l(D,-),
whereD; c Cisacloseddisccenteredati € {1, ..., k}, which does not contain
any other atypical value of besides;. Then:
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(i) Theunion ofz, ... , #;} with the set of critical values of is equal to the set
of atypical valuesh  of f.

(i) Assume thak, has only isolated singularities with the sum of their Milnor
numbers denoted hby;. Leta; € dD;. ThenXp, is homotopy equivalent to
X,; to which one attaches a number of + Zr,-:ri Aj cells of dimension 2,
where the positive integeds; are defined bellow.

Proof. (i) was shown in [HL] and [HN]. More generally, for polynomial functions
C" — C with isolatedW-singularities at infinity, it was shown in [ST, 3.4, 4.5].
(i). By the theory of complex isolated singularities, taking a small [Bakt an
affine critical point ofX,, one can show thaB N X p, is homotopy equivalent to
B N X, to which one attaches a number of 2-cells equal to the Milnor number of
the critical point (assuming thd; is small enough).

In case of a singular point “at infinity”, it was shown in [ST] that for each
point (p;, t;), if one takes a small enough ball c P2 x C at(p;, #;), than again
B’ N X p, is homotopy equivalent t®#’ N X,, to which one attaches; cells of
dimension 2 (for small enough;). The result then follows by patching the local
contributions. The positive integgr is defined as the local intersection multiplicity
intep,.iy(TUm, ), X)), see [ST, 3.4, 4.4] and [Ti-2].0

We may suppose without loss of generality tiidtas connected general fibre.
Then this fibreX, is a bouquet of circles which are a basis of cycles in homology
H1(X,, 7). Starting with a general fibr&; we may fill in the spac&€? (homotopi-
cally) by adding a certain number of 2-cells for each singular point (in the affine
space or at infinity). It follows that each such 2-cell kills a certain cycle, since the
result isC2, hence contractible. One callanishing cycles at infinitthose cycles
that are killed in some neighbourhood of a point at infinity of typg ¢;). Further
details may be found in [ST].

Remarks.The problem of characterisiny, for a polynomialf of several complex
variables has an answer only in special cases, see [NZ], [Pa], [ST], [Ti-1].

In casen = 2, K = C, the points(p;, t;) are called “singularities at infinity".
There are several ways of characterising them, see [Du], [Ti-2].

In the real case, the polar curve criterion 4.2(i) does not work, as shown by
Example 3.4.
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