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Abstract. We consider the family of fibres of a polynomial functionf on a smooth noncom-
pact algebraic real surface and we characterise the regular fibres off which are atypical due
to their asymptotic behaviour at infinity. We compare to the similar problem in the complex
case.

1. Introduction

We focus on the following aspect of the study of families of algebraic varieties: Let
{Xt }t∈K be a one-parametre algebraic family of real (resp. complex) affine smooth
curves, whereK = R or C. Let X := ∪t∈KXt be the total space and suppose
that it is a smooth algebraic manifold overR, resp.C. Denote byτ : X → K the
projection on the parametre space and take a regular valuet0 ∈ K of τ . Locally, in
some neighbourhood oft0, we have that each memberXt of the family is a union of
circles and lines (K = R), resp. a smooth non-compact Riemann surface (K = C).
The following problem arises:

Give a criterion for such a family to be differentiably trivial.

The valuet0 ∈ K (resp. the curveXt0) is calledtypical if the mapτ is a C∞
fibration at t0; otherwise,t0 (resp.Xt0) is calledatypical. Let 3τ be the set of
atypical values ofτ . It is well-known that3τ is finite, see for instance [Th], [Ve].
The problem posed above is equivalent to characterizing the atypical values ofτ .

Our aim is to characterise those atypical values which are not critical values, in
the real caseK = R. The question wheather an improper submersion is a fibration
was considered by L. Siebenmann in [KS, Essay II, §1] where he proves a sufficient
condition in very large generality. In a recent paper [FP], the problem is posed in the
particular case of a familyXt = f−1(t) defined as the fibres of a real polynomial
functionf : R

2 → R. As a matter of fact, the criterion given by the main result
[FP, Theorem 4.2] cannot be true, as our Example 3.4 shows.
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With the above assumptions, we prove the following:

Theorem 1.1. Let {Xt }t∈R be an algebraic family of real curves and lett0 be a
regular value ofτ : X → R. Assume that the total spaceX is nonsingular. Then
the curveXt0 is typical if and only if the Euler characteristicχ(Xt ) is constant
whent varies within some neighbourhood oft0 and there is no component ofXt
which vanishes at infinity ast tends tot0.

The following simple example shows why we needX be nonsingular. We also
show in Remark 2 how the statement can be extended for singularX.

Example 1.2.TakeX := {x2 + y2 − z2 = 0} ∪ {z = 0} ⊂ R
3, the union of a

cone and a plane through the vertex of the cone. Takeτ the projection on a lineL
through the origin. Then, for an adequate choice ofL, the curveXt , for t 6= 0, is
the disjoint union of a line with an oval, butX0 is just a line. Whent tends to 0, the
oval is “vanishing” in the origin, nevertheless the Euler characteristic is constant.

The criterion in our Theorem looks natural, since the constancy of the Euler
characteristic and the non-vanishing are necessary conditions. Moreover, it has
a striking similarity to certain criteria in the complex case, as we explain in the
following.

For a familyXt = f−1(t) given by the fibres of a complex polynomial function
f : C

2 → C, it has been proven by Hà, H.V. and Lê, D.T. [HL] that:

A reduced curveXt0 is typical if and only if its Euler characteristicχ(Xt0) is equal
to the Euler characteristic of a general fibre off (K = C).

This gives the answer (within the considered class of families) to the problem
stated above, i.e. a criterion for a fibref−1(t) to be atypical, since it is known that a
critical fibre is atypical (by a monodromy argument due to Lê, D.T.). An equivalent
form of this criterion is the following, see [ST]:

A regular fibreXt0 of a complex polynomial function is typical if and only if there
are no vanishing cycles at infinity corresponding to this fibre.

A common idea of “non-vanishing” appears in both real and complex case. We
shall explain in Section 4 the exact meaning of vanishing cycles and some fur-
ther results in the complex case. In contrast to the complex, in the real case the
two conditions (i.e. constancy of Euler characteristic, respectively non-vanishing
condition) have to be considered together: neither of them implies thatXt0 is atyp-
ical. We show this by Example 3.1 (constancy of Euler characteristic holds but
non-vanishing condition fails), respectively Example 3.2 (non-vanishing and “non-
splitting” condition both hold but constancy of Euler characteristic fails).

2. Families of real curves

Let X ⊆ R
n be a smooth noncompact algebraic surface and letf : X → R be

the restriction of a polynomial functionF : R
n → R. We say that a regular value
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s ∈ f (X) is typical if f is a C∞ trivial fibration ats; otherwise,s is calledatypical.
The set of atypical values off is denoted by3f .

Let I :=]a, b[⊂ f (X) be an open interval containing only typical values off .
The restrictionf : f−1(I ) → I is a C∞ trivial fibration and it restricts to a trivial
fibration on any connected componentY of f−1(I ).

Definition 2.1. Let Y be a connected component off−1(]a, b[), where]a, b[⊂
f (X) \ 3f . DenoteYt := Xt ∩ Y. We say that a pointp ∈ X is a limit point of
the family{Yt }t∈]a,b[ whent tends toa if there exists a sequence of pointspk ∈ Y,
k ∈ N, such thatpk tends top and thatf (pk) tends toa. We denote:

lim
t→a , t>a

Yt := {p ∈ X | p is a limit point of {Yt }t whent → a } .

We define analogously lim
t→b , t<b

Yt . It follows that lim
s→a, s>a

Ys ⊆ f−1(a) and

lim
s→b, s<b

Ys ⊆ f−1(b).

Note thatYt is connected,∀t ∈]a, b[.
Definition 2.2. We say that the connected componentYs of f−1(s) vanishes at
infinity whens tends toa, s > a, if lim

s→a, s>a
Ys = ∅.

We have a similar notion whens tends tob, s < b.

Note that lim
s→a, s>a

Ys = ∅ if and only if lim
s→a, s>a

inf { ‖z‖ | z ∈ Ys } = ∞.

The following lemma is an easy consequence of the definitions, hence we only
give a hint.

Lemma 2.3. Let a ∈ f (X) be a regular value off . In the above notations, we
have:

(i) The limit lim
s→a, s>a

Ys is either empty or equal to the union of some connected

components off−1(a).
(ii) Let {Y ′

s}s be the family of curves corresponding to some connected component

Y ′. If

(
lim

s→a, s>a
Ys

)
∩

(
lim

s→a, s>a
Y ′
s

)
6= ∅, then{Ys} = {Y ′

s} (in particular

the two limits coincide).

Proof. Sincea is a regular value, one can prove that the limit lim
s→a, s>a

Ys is an open

subset off−1(a), by using local coordinates at points off−1(a). But this limit is
obviously a closed set. The rest is straightforward.ut
Definition 2.4. We say that the family{Ys}s splits whens tends toa, s > a, if the
limit lim

s→a,s>a
Ys contains at least two connected components off−1(a).

Let us suppose that 0∈ f (X) is a regular value off . With the above definitions,
we formulate the followingconditions:

(B) The Betti numbers of the fibreXt are constant fort within some neighbour-
hood of 0.
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(E) The Euler characteristicχ(Xt ) is constant fort within some neighbourhood
of 0.

(nV) There is no connected component ofXt which vanishes at infinity whent
tends to 0,t < 0 or t > 0.

(nS) There is no connected component ofXt which splits whent tends to 0,t < 0
or t > 0.

We state now the main result, which contains Theorem 1.1.

Theorem 2.5. Let 0 ∈ f (X) be a regular value off . Then the following are
equivalent:

(i) The value0 is a typical value off .
(ii) Conditions(B) and(nV) are fulfilled.
(iii) Conditions(E) and(nV) are fulfilled.
(iv) Conditions(B) and(nS)are fulfilled.

Remark.Example 3.3 shows that conditions(E) + (nS)do not imply condition (i).

Proof. It is clear that (ii)⇒(iii). It is also clear that (i)⇒(nV) and (i)⇒(nS), hence
(i)⇒(ii) and (i)⇒(iv).

(ii)⇒(i) Let D be a connected component off−1([−ε, ε]).
We first prove that, under the non-vanishing assumption(nV) and for small

enoughε > 0, D contains at least one connected component ofX0. We may
assume without dropping generality thatf (D) ⊃]0, ε]. Then take a decreasing
sequence{εk}k∈N ⊂]0, ε[, ε → 0. By the non-vanishing condition(nV), one can
choose a bounded sequence{pk}k∈N of pointspk ∈ Xεk ∩ D. Hence there exists a
convergent sub-sequence. But the limit of this sub-sequence has to be onX0. On
the other hand, it is onD sinceD is closed. Applying now Lemma 2.3(i), we are
done.

We next show that the restrictionf| : D ∩ f−1([−ε, ε]) → [−ε, ε] is a C∞
trivial fibration, for small enoughε.

In case thatD contains a “circle” componentK ⊂ X0, K
diffeo' S1, we may

take an open tubular neighbourhoodT of K such thatT ∩ X0 = K. SinceK is
compact, we get thatXt ∩ T is compact, for any small enough|t | > 0. Therefore
the restrictionf| : T ∩ f−1([−ε, ε]) → [−ε, ε] is a proper submersion (for small
enoughε > 0) and we may apply Ehresmann’s Fibration Theorem to conclude that
it is a C∞ trivial fibration. It also follows that the total spaceT ∩ f−1([−ε, ε]) is
connected, hence it coincides withD, for small enoughε.

Consider finally the case whenD contains a “line” componentL ⊂ X0,L
diffeo' R.

We have thatb0(D ∩Xt) is constant, fort in some neighbourhood of 0. Indeed,
this number cannot decrease ast → 0, by the non-vanishing condition(nV).
The constancy of Betti numbers(B) means that the sum

∑
D b0(D ∩ Xt) over all

connected componentsD, is constant, which shows thatb0(D∩Xt) cannot increase
either. In particular the condition(nS) is fulfilled.

The Betti numberm := b0(D ∩Xt) has to be equal to 1, by the following rea-
son. The setsD ∩ f−1(]0, ε]) andD ∩ f−1([−ε,0[) contain exactlym connected
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components, since the restriction off on each of them is trivial. This givesm fam-
ilies {Y ′

t }t from the positive side and anotherm families {Y ′′
t }t from the negative

side, according to Definition 2.1. The limit of such a family must be a connected
component ofX0, by Lemma 2.3(i) and the above discussion. Our fixed line com-
ponentL of X0 is the limit of a certain positive side family and also the limit of a
certain negative side family. Now take the unionV of these two families together
with their limit L. ThenV is a connected component off−1([−ε, ε]), since it is a
closed set and disjoint from the other families and their limits (by Lemma 2.3(ii)).
ThereforeV coincides withD and the argument is now complete.

It remains to show that the restrictionf : D ∩ f−1([−ε, ε]) → [−ε, ε] is a
C∞ trivial fibration. This will follow from Proposition 2.7, by applying it locally
on the base.

(iv)⇒(i) The proof follows the pattern of the case (ii)⇒(i) and we can safely
leave it to the reader.

(iii) ⇒(ii) First, we note that (iii)⇒(nS). Indeed, condition(nV) implies that no
“line” component ofXt vanishes at infinity whent tends to 0, and condition(E)
means that the number of “line” components ofXt does not depend ont within
some neighbourhood of 0. Thus,(nS) is satisfied, since otherwise we would have
χ(X0) > χ(Xt ) for some smallt .

Conditions(nS) and(nV) show that the number of connected components of
Xt is constant fort within a neighbourhood of 0. Together with(E), this implies
that(B) is satisfied. Note that(nS)+(nV) alone do not imply(B), see Example 3.2.
ut
Note 2.6.The algebricity assumption insures thatX ⊂ R

n is closed, that the Betti
numbers ofXt are finite and that the set of atypical values off is discrete. Now,
if we drop the algebricity condition but suppose that these three conditions are
fulfilled, then the proof of the equivalences (i)· · · (iv) is still valid.

The next statement could be known, though we were not able to find a reference.

Proposition 2.7. LetM ⊆ R
n be a smooth submanifold of dimensionm + 1 and

let g : M → R
m be a smooth function. Assume that the functiong has no critical

values and that all the fibresg−1(t) are diffeomorphic toR and closed inRn. Then
g is aC∞ trivial fibration.

In particular,M
diffeo' R

m+1.

Proof. We show thatg is locally trivial over a pointp ∈ R
m. The result will follow

sinceR
m is contractible. Fix a pointq ∈ g−1(p). Sinceg is a submersion, we can

find a submanifoldT ⊂ M such that it is transversal to the fibres ofg, thatq ∈ T
and that the restriction ofg to T is a C∞ diffeomorphism onto a small open ball
B ⊂ R

m centered atp.
One can take a smooth vector fieldw : g−1(B) → R

n tangent to the fibres of
g and without zeros. Moreover, one may take the unit tangent vector field (with
respect to the Riemannian metric ofR

n). The fibres being closed and diffeomorphic
toR, this vector field defines a global flowψ : T ×R → g−1(B), which is a diffeo-
morphism. SinceT is diffeomorphic toB, it follows thatg−1(B) is diffeomorphic
toB × R. ut



388 M. Tibăr, A. Zaharia

Remark.In the statement of Theorem 1.1 we may allow the total spaceX have
singularities and use the following extension of the notion of “regular value": Let
X be a real algebraic variety, possibly singular, and letτ : X → R denote an
algebraic function. We say thatt0 ∈ R is aregular valuefor τ if there isε > 0 such
that the spaceX(ε) := X ∩ τ−1(]t0 − ε, t0 + ε[) is a manifold andt0 is a usual
regular value of the mapτ onX(ε).

The conditions in this definition imply that the singular locus ofX is “far" from
the fibreXt0. Example 1.2 shows why singularities ofX have to be kept out.

3. Examples

We consider polynomialsf : R
2 → R of the following type

f (x, y) := α(y)x2 + 2β(y)x + γ (y). (1)

LetA := {y ∈ R | α(y) = 0}. We assume thatε > 0 is such thatI :=] − ε, ε[
contains only regular values off and that

for anyy ∈ A we have:β(y) = 0 and|γ (y)| ≥ ε. (2)

Then for anyt ∈ I , the equationf = t in the variablex has two complex solutions
x1,2(y, t). Let1(y, t) = β2(y)− α(y)γ (y)+ tα(y) and let us denote

D := {(y, t) ∈ R
2 | 1(y, t) ≥ 0} , K := {(y, t) ∈ R

2 | 1(y, t) = 0} ,

L(s) := {(y, t) ∈ R
2 | t = s} and A := {(y, t) ∈ R

2 | y ∈ A} .
Thenx1,2(y, t) are real numbers if and only if(y, t) ∈ D. It is easy to see that

if (y, t) ∈ D andy tends to a point inA, then|x1,2(y, t)| tends to infinity. Note

also thatA ⊆ K and thatK \ A ⊆ ∂D because
∂1

∂t
= α(y) 6= 0 for y 6∈ A.

For t0 ∈ I , the topology of the fibref−1(t0) can be described using the projec-
tions

{(x, y, t) ∈ R
3 | f (x, y) = t} π→ R

2 → R , (x, y, t)
π7−→ (y, t) 7→ t .

More precisely, the connected components of the setsF(t0) := D ∩ L(t0) and
F(t0) \ A are segments and isolated points. By(2), if P is an isolated point of
F(t0) such thatP ∈ A, thenπ−1(P ) = ∅. Moreover, ifQ is an isolated point
of F(t0) such thatQ 6∈ A, thenπ−1(Q) is an isolated point off−1(t0), hence a
critical point off ; but t0 is a regular value off .

Now, consider the one-dimensional connected components ofF(t0) \ A. Let
J be such a segment, letJ be its closure in[−∞,∞] × R and letn(J ) be the
number of endpoints ofJ which are contained inK \ A.

If (y, t0) ∈ J \∂J , thenπ−1(y, t0) consists of two distinct points. Now assume
that(y, t0) ∈ J \ ∂J tends to an endpointQ of J . There are three possibilities.

If Q ∈ K \ A, then the two points inπ−1(y, t0) tend to the (unique!) point
π−1(Q).
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If Q ∈ A, then the two distinct points inπ−1(y, t0) tend to infinity, because
theirx-coordinate will be unbounded.

If Q = (±∞, t0), then the two distinct points inπ−1(y, t0) tend to infinity,
because theiry-coordinate will be unbounded.

These imply the following.

(i) If n(J ) = 2, thenπ−1(J ) is diffeomorphic to a circle.
(ii) If n(J ) = 1, thenπ−1(J ) is diffeomorphic to a line.
(iii) If n(J ) = 0, thenπ−1(J ) is diffeomorphic to a disjoint union of two lines.

Thus, fort ∈ I , we can read the topology of the fibref−1(t) from the pictures of
D, K andA. Moreover, using our main result, we can decide if 0 is an atypical
value off or not.

Our first three examples use these considerations. We leave the details to the
reader.

Example 3.1.The polynomial

f (x, y) := x2y3(y2 − 25)2 + 2xy(y2 − 25)(y + 25)
− (y4 + y3 − 50y2 − 51y + 575)

has the property that 0 is an atypical value, but the Betti numbers of the fibresf−1(t)

are constant, for|t | small enough. Namely, all these fibers have 5 non–compact
connected components. For this polynomial, 0 is a regular value and condition(2)
is satisfied. Besides the lines inA, the setK contains also the graph of the function

y 7−→ ϕ(y) := −(y2 − 25)2(y + 1)

y
.

It is easily seen that this graph has two connected components, separated by the
vertical asymptote{y = 0}. The setD consists of the lines inA and the region of the
plane situated between the two connected components of the graph ofϕ. The only
local extrema of the functionϕ are two local maximums, fory = ±5, and a local
minimum, between−5 and−1. For |t | sufficiently small, the equationϕ(y) = t

has five (complex) solutions, sayaj (t), j = 1, . . . ,5. One of these solutions, say
a3(t), is a real one, for allt , while the other four are real if and only ift ≤ 0.
Assume that

lim
t→0

a1(t) = lim
t→0

a2(t) = −5 and lim
t→0

a4(t) = lim
t→0

a5(t) = 5.

For|t | sufficiently small andt < 0, the setF(t)\A has 5 connected components
and each of them corresponds to a line component inf−1(t). Namely, we have:

F(t) \ A = ([a1(t),−5)× {t}) ∪ ((−5, a2(t)] × {t})∪

∪ ([a3(t),0)× {t}) ∪ ((0, a4(t)] × {t}) ∪ ([a5(t),∞)× {t}) .
We also have:

F(0) \ A = ([−1,0)× {0}) ∪ ((0,5)× {0}) ∪ ((5,∞)× {0}) .
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Therefore, whent < 0 tends to 0, the line components inf−1(t) corresponding
to the segments([a1(t),−5)× {t}) ∪ ((−5, a2(t)] × {t}) will “vanish” at infinity
since limt→0 a1(t) = lim t→0 a2(t) = −5 ∈ A. Also, each of the line components
in f−1(t) corresponding to the segments((0, a4(t)] × {t}) ∪ ([a5(t),∞)× {t})
will “split” in two line components fort = 0 since limt→0 a4(t) = lim t→0 a5(t) =
5 ∈ A.

For |t | sufficiently small andt ≥ 0, the setF(t) \ A has 3 connected compo-
nents: one corresponds to a line component inf−1(t) and each of the other two
corresponds to two line components inf−1(t). Namely, we have:

F(t) \ A = ([a3(t),0)× {t}) ∪ ((0,5)× {t}) ∪ ((5,∞)× {t}) .

Thus, for|t | sufficiently small,f−1(t) is a disjoint union of 5 line components.
This means that the Betti numbers off−1(t) do not depend ont , if |t | is sufficiently
small.

On the other hand, forε > 0 sufficiently small, the restrictionsf : f−1(−ε,0)
→ (−ε,0) andf : f−1[0, ε) → [0, ε) are easily seen to beC∞ trivial fibrations,
while f : f−1(−ε, ε) → (−ε, ε) is not a topological fibration.

Example 3.2.The polynomialf (x, y) := x2y2+2xy+(y2−1)2 has the property
that conditions(nV) + (nS) are satisfied, but 0 is an atypical value. Besides the
line in A, the setK contains also the graph of the functionϕ(y) := y4 − 2y2. This
function has a local maximum, fory = 0, and two local minimums, fory = ±1.
The setD consists of the line inA and the region of the plane situated above
the graph ofϕ. For t < 0 with |t | sufficiently small, the curvef−1(t) has two
circle components. Fort ≥ 0 sufficiently small, the curvef−1(t) has two line
components.

Example 3.3.The polynomial

f (x, y) := x2y3(9 − y2)2 + 2xy(9 − y2)(y3 + y + 6)
+ 2(y5 − 6y3 + 6y2 + 25y + 6)

has the property that conditions(E) + (nS)are satisfied, but 0 is an atypical value.
Besides the lines inA, the setK contains also the graph of the function

y 7−→ ϕ(y) := (y2 − 1)(y2 − 4)(y2 − 9)

y
.

This graph has two connected components, separated by the vertical asymptote
{y = 0}. For |t | sufficiently small, the equationϕ(y) = t has six real solutions.
There existsa ∈]1,2[ andb ∈]2,3[ such that the local maxima ofϕ are−b and
a, and the local minima ofϕ are−a andb. The setD consists of the lines inA
and the region of the plane situated between the two connected components of the
graph ofϕ. For |t | 6= 0 sufficiently small, the curvef−1(t) has a circle component
and 4 line components. The curvef−1(0) has only 4 line components.
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Example 3.4.This was suggested by Henry King. Letf : R
2 → R be defined by

f (x, y) := 2x2y3 − 9xy2 + 12y. Thenf is a trivialC∞ fibration because the map
F : R

2 → R
2,

F(x, y) :=
(
f (x, y),

x

g(x, y)

)
, where g(x, y) := 2x2y2 − 9xy + 12 ,

is a diffeomorphism of order two (F−1 = F ).
The criterion given in the paper [FP] for a regular fibre to be atypical is con-

tradicted by the polynomialh : R
2 → R, defined byh(x, y) := f (x + y, y) =

2x2y3 + 4xy4 − 9xy2 + 2y5 − 9y3 + 12y. For ally ∈ R \ {0}, the discriminant (in

variablex) of the equation
∂h

∂y
= 0 is1 = 4y2(4y4 + 18y2 + 9) > 0. Therefore

∂h/∂y changes sign along the germ at infinity of the curveC := {∂h/∂y = 0}.
Moreover, it is easy to see that alongC, if y tends to 0, then|x| tends to infinity and
h(x, y) tends to 0. According to [FP, Defintion 4.1], the value 0 is a “real critical
value at infinity" forh and this would mean, by [FP, Theorem 4.2], thath is not
locally trivial, in contrast to the explicit computation above.

4. Real versus complex

In the remainder we focus on families of fibres of polynomial functionsK
2 → K.

We first introduce some notations in a larger context.
Given twoK-analytic functionsf, h : K

n → K, we say that the set:

0(f, h) := closure{Sing(f, h) \ (Singf ∪ Singh)}
is thepolar locusof (f, h). Let P̌n−1 be the set of all hyperplanes of the projective
spacePn−1 and let us identify a hyperplaneH ∈ P̌

n−1 by its defining linear form
lH : K

n → K.

Polar curve lemma 4.1 ([Ti-1]). There is an open dense�f ⊂ P̌
n−1 (Zariski-

open in the complex case) such that, for anyH ∈ �f , 0S(lH , f ) is a curve or it is
void.

Identify K
n to its image by the embeddingKn ↪→ K

n × K, x 7→ (x, f (x))

and take the closure0(lH , f ) of 0(lH , f ) ⊂ K
n × K within P

n × K. Under the
conditions of the above lemma, the intersection0(lH , f ) ∩H∞ × K = {(pi, ti)}i
is a finite set, whereH∞ denotes the hyperplane at infinityP

n \ K
n (coordinates of

K
n are supposed fixed). Note that the valuesti might not be all distinct.

In the complex casen = 2 we have the following result, which does not hold
over the reals.

Proposition 4.2. Letf : C
2 → C be a complex polynomial function. LetH ∈ �f

and let{(p1, t1), . . . , (pk, tk)} = 0(lH , f ) ∩H∞ × C. DenoteXDi := f−1(Di),
whereDi ⊂ C is a closed disc centered atti , i ∈ {1, . . . , k}, which does not contain
any other atypical value off besidesti . Then:
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(i) The union of{t1, . . . , tk} with the set of critical values off is equal to the set
of atypical values3f of f .

(ii) Assume thatXti has only isolated singularities with the sum of their Milnor
numbers denoted byµi . Let ai ∈ ∂Di . ThenXDi is homotopy equivalent to
Xai to which one attaches a number ofµi + ∑

tj=ti λj cells of dimension 2,
where the positive integersλj are defined bellow.

Proof. (i) was shown in [HL] and [HN]. More generally, for polynomial functions
C
n → C with isolatedW-singularities at infinity, it was shown in [ST, 3.4, 4.5].

(ii). By the theory of complex isolated singularities, taking a small ballB at an
affine critical point ofXti one can show thatB ∩ XDi is homotopy equivalent to
B ∩ Xai to which one attaches a number of 2-cells equal to the Milnor number of
the critical point (assuming thatDi is small enough).

In case of a singular point “at infinity”, it was shown in [ST] that for each
point (pi, ti), if one takes a small enough ballB ′ ⊂ P

2 × C at (pi, ti), than again
B ′ ∩ XDi is homotopy equivalent toB ′ ∩ Xai to which one attachesλi cells of
dimension 2 (for small enoughDi). The result then follows by patching the local
contributions. The positive integerλi is defined as the local intersection multiplicity
int(pi ,ti )(0(lH , f ),Xti ), see [ST, 3.4, 4.4] and [Ti-2].ut

We may suppose without loss of generality thatf has connected general fibre.
Then this fibreXt is a bouquet of circles which are a basis of cycles in homology
H1(Xt ,Z). Starting with a general fibreXt we may fill in the spaceC2 (homotopi-
cally) by adding a certain number of 2-cells for each singular point (in the affine
space or at infinity). It follows that each such 2-cell kills a certain cycle, since the
result isC

2, hence contractible. One callsvanishing cycles at infinitythose cycles
that are killed in some neighbourhood of a point at infinity of type(pi, ti). Further
details may be found in [ST].

Remarks.The problem of characterising3f for a polynomialf of several complex
variables has an answer only in special cases, see [NZ], [Pa], [ST], [Ti-1].

In casen = 2, K = C, the points(pi, ti) are called “singularities at infinity".
There are several ways of characterising them, see [Du], [Ti-2].

In the real case, the polar curve criterion 4.2(i) does not work, as shown by
Example 3.4.
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