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Abstract. For each compact Lie algebrag and each real representationV of g we consider
a two-step nilpotent Lie groupN(g, V ), endowed with a natural left-invariant riemannian
metric. The homogeneous nilmanifolds so obtained are precisely those which are naturally
reductive. We study some geometric aspects of these manifolds, finding many parallels with
H-type groups. We also obtain, within the class of manifoldsN(g, V ), the first examples of
non-weakly symmetric, naturally reductive spaces and new examples of non-commutative
naturally reductive spaces.

1. Introduction

Two-step nilpotent Lie groups endowed with a left-invariant riemannian metric, of-
ten calledtwo-step homogeneous nilmanifolds, have attracted considerable attention
in the last twenty years, specially in riemannian geometry [31,54,17,18], harmonic
analysis [33,12,4] and spectral geometry [24,15,16,44,48].H-type groups (or gen-
eralized Heisenberg groups), introduced by A. Kaplan around 1980 [30], are a very
special subclass of two-step homogeneous nilmanifolds. These spaces have pro-
vided examples and counterexamples to many questions and conjectures [32,47,
45,23,36,11,9,7,10].

Starting from a real representation(J, V ) of a Clifford algebraCl(z), Kaplan
constructs a two-step nilpotent Lie algebran = z⊕V with centerz and Lie bracket
defined onV by 〈[v, w], z〉 = 〈Jzv, w〉 for all v, w ∈ V , z ∈ z, where〈, 〉 is a
natural inner product onn. The correspondingH-type group is denoted by(N, 〈, 〉),
whereN is the simply connected Lie group with Lie algebran, endowed with the
left-invariant metric determined by〈, 〉.

We study in this work another subclass of two-step homogeneous nilmanifolds,
with a construction analogous to that ofH-type groups, but starting from a real
representation(π, V ) of a compact Lie algebrag. Indeed, letn = g ⊕ V be
the two-step nilpotent Lie algebra with centerg and Lie bracket defined onV by
〈[v, w], x〉 = 〈π(x)v, w〉 for all v, w ∈ V , x ∈ g, where〈, 〉 is a fixedg-invariant
inner product onn (see 3.1(iii)). We denote byN(g, V ) the simply connected Lie
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group with Lie algebran = g ⊕ V and we endow it with the left-invariant metric
determined by〈, 〉, obtaining a two-step homogeneous nilmanifold(N(g, V ), 〈, 〉).

We shall prove, using a result due to C. Gordon [22], that the spaces
(N(g, V ), 〈, 〉) have a neat geometric characterization within the class of homoge-
neous nilmanifolds: they are precisely the naturally reductive ones (see Sect. 2). In
particular, they also are riemannian g.o. spaces and D’Atri spaces [13,14,7].

We prove in Sect. 3 some partial results on the isometry classes of these two-
step homogeneous nilmanifolds and on the isomorphism classes of the underlying
two-step nilpotent Lie groups. Further, we compute the isotropy subgroupK of
the isometry group of(N(g, V ), 〈, 〉), which is given essentially byK = G × U ,
whereG is the simply connected Lie group with Lie algebrag andU is the group
of orthogonal intertwining operators ofV . The groupU acts trivially on the center
g and eachg ∈ G acts onn = g ⊕ V by (Ad(g), π(g)), where we also denote by
π the corresponding representation ofG on V . This is very similar to theH-type
case, where essentiallyK = Spin(z) × U (see [46]). We note that the isometry
group of any simply connected homogeneous nilmanifold(N, 〈, 〉) is given by
I(N, 〈, 〉) = K × N , whereK = Aut(n) ∩ O(n, 〈, 〉) is the isotropy subgroup of
the identity element ofN (see [54]).

The other goal of this paper is to study the notions of commutativity and weak
symmetry within the class of naturally reductive manifolds(N(g, V ), 〈, 〉). A com-
mutative spaceis a connected riemannian homogeneous spaceM whose algebra of
all I(M)0-invariant differential operators is commutative, where I(M)0 denotes the
connected component of the full isometry group I(M). The notion of commutativity
is strongly related to that of Gelfand pair, and it has been studied in several articles,
see for instance [7,37–39,33,45,4,34,3,5,1].

Let T be any maximal torus ofG and letṼ denote aT -invariant complement
in V of the zero weight spaceV0, regarded naturally as a complex vector space. We
prove in Sect. 4 the following characterization:

N(g, V ) is a commutative space if and only if the action ofT × U on Ṽ is
multiplicity-free.

The action of a compact group on a complex vector spaceW is said to bemul-
tiplicity free if and only if all the isotypic components of the natural representation
on the polynomial ringC[W ] are irreducible.

Using this characterization, we shall prove that ifg is semisimple,V is irre-
ducible of real type (i.e. the complexificationVC is also irreducible) and dimV >

3 rank(g), thenN(g, V ) is not a commutative space. This gives a large class of
non-commutative, naturally reductive spaces; the first examples of this kind were
given in [27,28]. We also obtain some new examples of commutative spaces.

Finally, we exhibit in Sect. 6 some applications to weakly symmetric spaces.
A connected riemannian manifoldM is said to beweakly symmetricif for any two
pointsp, q ∈ M there exists an isometry ofM mappingp to q andq to p. These
spaces, introduced by A. Selberg in [49], have been studied for instance in [6–8,
38,55,1]. It is proved in [49] that any weakly symmetric space is a commutative
space (with respect to I(M)-invariance, but this coincides with I(M)0-invariance
for homogeneous nilmanifolds [5]).Thus, the non-commutative manifoldsN(g, V )
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described above are the first examples of non-weakly symmetric naturally reductive
spaces.

We wish to note that we have recently become aware that certain one-dimen-
sional solvable extensions of the two-step nilpotent Lie groupsN(g, V ), with V

irreducible, have been previously introduced by P. Eberlein and J. Heber in [19]
for the purpose of constructing new Einstein solvmanifolds. Also, the curvature of
these solvmanifolds has been studied in the thesis work of Sven Leukert (see [43]).

2. Description of naturally reductive homogeneous nilmanifolds via
representations

Let M be a connected homogeneous riemannian manifold. Furthermore, letG be a
Lie group acting transitively and effectively from the left by isometries onM and
denote byK the isotropy subgroup ofp ∈ M. Let g andk denote the Lie algebras
of G andK respectively. Supposem is a vector space complement tok in g such
that Ad(K)m ⊂ m (i.e. g = k ⊕ m is a reductive decomposition). Thus we may
identifym with TpM via the mapx → .

γ x (0), whereγx(t) = exptx.p. We denote
by 〈, 〉 the inner product onm induced by the riemannian metric ofM.

Definition 2.1. A manifoldM is said to benaturally reductiveif there exists a Lie
groupG and a subspacem of g with the properties described above such that

〈[x, y]m, z〉 + 〈y, [x, z]m〉 = 0 ∀ x, y, z ∈ m, (1)

where[x, y]m denotes the projection of[x, y] onm with respect to the decompo-
sitiong = k ⊕ m.

Condition (1) can be replaced by the following (see [35],p.192,196,201): any
geodesicγ of M with γ (0) = p is of the formγ (t) = exptx.p for somex ∈ m.
Clearly, any symmetric space is naturally reductive.

We consider a simply connected real nilpotent Lie groupN endowed with a left-
invariant riemannian metric, denoted by(N, 〈, 〉), where〈, 〉 is the inner product on
the Lie algebran of N determined by the metric. The riemannian manifold(N, 〈, 〉)
is said to be a (simply connected)homogeneous nilmanifold.

The full group of isometries of(N, 〈, 〉) is given by

I(N, 〈, 〉) = K × N (semidirect product), (2)

whereK = Aut(n) ∩ O(n, 〈, 〉) is the isotropy subgroup of the identity andN

acts by left translations (see [54]). Thus, the structure of I(N, 〈, 〉) is completely
determined byK. Note that, since we always assume thatN is simply connected,
we make no distinction between automorphisms ofN andn.

The following result follows from the proof of Theorem 3 in [54].

Theorem 2.2 ([54]). Let N1, N2 be nilpotent Lie groups. Then(N1, 〈, 〉1) is iso-
metric to (N2, 〈, 〉2) if and only if there exists an isomorphism of Lie algebras
A : n1 → n2 such that〈Ax, Ay〉2 = 〈x, y〉1 for all x, y ∈ n1.
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Let N be a two-step nilpotent Lie group and let〈, 〉 be an inner product onn.
We call the corresponding(N, 〈, 〉) a (simply connected)two-step homogeneous
nilmanifold. Denote byz the center ofn and letn = z ⊕ V be the orthogonal
decomposition. For eachx ∈ z we defineJx : V → V by

〈Jxv, w〉 = 〈x, [v, w]〉, v, w ∈ V. (3)

Note thatJx is skew-symmetric for allx ∈ z andJ : z → End(V ) is a linear
map. The maps{Jx}x∈z give the relationship between the Lie bracket ofn and
the metric〈, 〉, thus they carry a lot of geometric information on the riemannian
manifold(N, 〈, 〉) (see for example [31,17,18]). It is easy to prove that the isotropy
subgroupK of I(N, 〈, 〉) (see (2)) is given by

K = {(φ, T ) ∈ O(z, 〈, 〉) × O(V , 〈, 〉) : T JxT
−1 = Jφx, x ∈ z}. (4)

Letk be the Lie algebra ofK. Thusk = Der(n)∩so(n, 〈, 〉), i.e. the skew symmetric
derivations of(n.〈, 〉), and

k = {(A, B) ∈ so(z, 〈, 〉) × so(V, 〈, 〉) : BJx − JxB = JAx, x ∈ z}. (5)

Remark 2.3.If [n, n] 6= z thenN ' R
k × N1, whereN1 = exp([n, n] ⊕ V ) and

R
k = exp(z ∩ [n, n]⊥) (exp : n → N is the usual Lie exponential map). In this

case, we will say that(N, 〈, 〉) haseuclidean factor, since the direct product is also
a product of riemannian manifolds. We have that(N, 〈, 〉) has euclidean factor if
and only if there exists a nonzerox ∈ z such thatJx = 0 (see [17, Proposition
2.7]).

Among the two-step homogeneous nilmanifolds theH-type groups are of partic-
ular significance. They were introduced by A. Kaplan in [30]. We say that(N, 〈, 〉)
is anH-type groupif J 2

x = −〈x, x〉I for all x ∈ z. We next recall some general
properties ofH-type groups, following essentially [6] (see also [7]). Letm = dim z
and letCl(m) denote the Clifford algebraCl(z, −| |2). When(N, 〈, 〉) is H-type the
actionJ of z onV extends to a real representation ofCl(m). SoV is a realCl(m)-
module, and every real Clifford module arises in this way ([30]). The classification
of H-type algebras up to isomorphism is given as follows:

(i) If m 6≡ 3 (mod 4), thenCl(m) has a unique irreducible moduleV0. The general
H-type algebra with am-dimensional center is then obtained by takingn =
z ⊕ (V0)

p with p ≥ 1.
(ii) If m ≡ 3 (mod 4), thenCl(m) has two non-equivalent irreducible modulesV1

andV2. The generalH-type algebra with anm-dimensional center is obtained
by takingn = z ⊕ (V1)

p ⊕ (V2)
q with p ≥ q ≥ 0, p + q ≥ 1, and only

V = (V1)
p ⊕ (V2)

q and V = (V1)
q ⊕ (V2)

p lead to isomorphicH-type
algebras.

In both casesn can be endowed with a unique inner product (up to isometry) for
which theH-type condition holds. Ifx ∈ z is a unit vector, the mapJx defined in (3)
extends to an element inK by setting it equal minus the reflection with respect to the
hyperplanex⊥ in z. The subgroup ofK generated by the automorphisms{Jx}x∈z is
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isomorphic to the groupPin(m). If U denotes the group of orthogonal intertwining
operators for the representation ofCl(m) onV , thenK0 = Spin(m) × U .

Natural reductivity on homogeneous nilmanifolds has been studied by C. Gor-
don in [22] (see also [32,52]). It is proved in [22] that if(N, 〈, 〉) is naturally reduc-
tive thenN must be at most two-step nilpotent and the following characterization
for naturally reductive two-step homogeneous nilmanifolds is given (see also [42]
for an alternative proof of the following theorem using the theory of homogeneous
structures developed in [51,52]).

Theorem 2.4. [22] Let (N, 〈, 〉) be a two-step homogeneous nilmanifold without
euclidean factor.(N, 〈, 〉) is naturally reductive if and only if

(i) Jz = {Jx}x∈z is a Lie subalgebra ofso(V, 〈, 〉).
(ii) τx ∈ so(z, 〈, 〉) for anyx ∈ z, whereτx : z → z is given byJxJy−JyJx = Jτxy

for all x, y ∈ z.

Note that (ii) is equivalent to(τx, Jx) ∈ k, the skew symmetric derivations of
n (see (5)).

Definition 2.5. If h is a Lie subalgebra (or just a subspace) ofEnd(V ) such that
h ⊂ so(V, 〈, 〉), then we call〈, 〉 anh-invariant inner product .

It follows from Theorem 2.4 that if(N, 〈 , 〉) is naturally reductive, then the
bilinear form τ given in (ii) defines a Lie algebra structure onz and the map
J : z → End(V ) becomes a real representation of the Lie algebra(z, τ ) on V .
Moreover,〈, 〉|V ×V is a Jz-invariant inner product and sinceτx ∈ so(z, 〈, 〉) we
have that〈, 〉|z×z is adz-invariant, where ad denotes the adjoint representation of
(z, τ ).

Conversely, letg be a real Lie algebra endowed with an adg-invariant inner
product〈, 〉g, and let(π, V ) be a real faithful representation ofg endowed with a
π(g)-invariant inner product〈, 〉V and without trivial subrepresentations, that is,⋂

x∈g Kerπ(x) = 0. We define a two-step nilpotent Lie algebran = g ⊕ V with
Lie bracket given by


[g, g]n = [g, V ]n = 0, [V, V ]n ⊂ g,

〈[v, w]n, x〉g = 〈π(x)v, w〉V ∀ x ∈ g, v, w ∈ V,

(6)

and we endown with the inner product〈, 〉 defined by

〈, 〉|g×g = 〈, 〉g, 〈, 〉|V ×V = 〈, 〉V , 〈g, V 〉 = 0. (7)

Finally, we takeN the simply connected Lie group having Lie algebran and we
endowN with the left-invariant metric determined by〈, 〉, obtaining a two-step
homogeneous nilmanifold(N, 〈 , 〉).

Since(π, V ) has no trivial subrepresentations, we have thatg is the center of
n. Moreover,V is the orthogonal complement ofg and the transformations defined
in (3) for (N, 〈 , 〉) are precisely{π(x)}x∈g. Thus(N, 〈 , 〉) has no euclidean factor,
since(π, V ) is faithful (see Remark 2.3). It then follows from Theorem 2.4 that
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(N, 〈 , 〉) is naturally reductive. In fact,π(g) is a Lie subalgebra ofso(V, 〈, 〉V )

and sinceπ(x)π(y) − π(y)π(x) = π([x, y]) for all x, y ∈ g, we have thatτx =
adx ∈ so(g, 〈, 〉g) for all x ∈ g.

Remark 2.6.If a real Lie algebrag admits an adg-invariant inner product theng
is acompact Lie algebra, i.e. any of the following equivalent conditions hold (see
[53]):

(i) g is the Lie algebra of a compact Lie group.
(ii) The Killing form B(x, y) = tr(adx ady) is negatively semidefinite.
(iii) g = g ⊕ c with c the center ofg andg = [g, g] a compact semisimple Lie

algebra (i.e. the Killing form ofg is negative definite).

We have proved the following result.

Theorem 2.7. Let g be a compact Lie algebra endowed with anadg-invariant
inner product〈, 〉g and let (π, V ) be a real faithful representation ofg without
trivial subrepresentations and endowed with aπ(g)-invariant inner product〈, 〉V .
Then the two-step homogeneous nilmanifold(N, 〈, 〉) having Lie algebran =
g ⊕ V defined as in(6), with 〈, 〉 defined in(7), is a naturally reductive space
without euclidean factor. Moreover, any homogeneous nilmanifold(N, 〈, 〉) without
euclidean factor which is naturally reductive can be constructed in this way.

Clearly, this theorem states essentially the same as Theorem 2.4. However,
we shall see in the next sections that the representation approach is very useful to
study the naturally reductive two-step homogeneous nilmanifolds. We obtain a kind
of classification of such spaces and we compute explicitly their isometry groups.
Also, conditions for the commutativity of invariant integrable functions onN (or
equivalently invariant differential operators) on these groups will be given in terms
of representation theory, and this is the key to our study of commutative naturally
reductive two-step homogeneous nilmanifolds in Sect. 4.

Remark 2.8.Suppose that the representation(π, V ) of g is not faithful or it has
some nonzero trivial subrepresentation. We take the orthogonal decompositions

g = g1 ⊕ Kerπ, V = V1 ⊕
⋂
x∈g

Kerπ(x).

It is easy to see thatg1 is an ideal ofg andV1 is ag-invariant subspace ofV , thus
(π1 = π |g1, V1) is a real faithful representation ofg1 without trivial subrepresenta-
tions. Moreovern = n1⊕R

k, wheren = g⊕V , n1 = g1⊕V1 andR
k is a central

subspace ofn orthogonal to[n, n]. Henceforth,(N, 〈, 〉) = (N1, 〈, 〉|n1×n1) × R
k,

whereR
k becomes the euclidean factor of(N, 〈, 〉) (see Remark 2.3).

3. Two-step nilpotent Lie groups attached to representations of compact Lie
algebras

In this section, we shall study in detail some properties of the two-step homoge-
neous nilmanifolds constructed as follows. In view of Theorem 2.7, these two-step
homogeneous nilmanifolds are precisely the naturally reductive ones.
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Definition 3.1. We say that a triple(g, V , 〈, 〉) is adata setif,

(i) g is a compact Lie algebra (see Remark 2.6),
(ii) (π, V ) is a real faithful representation ofg without trivial subrepresentations,

i.e.
⋂

x∈g Kerπ(x) = 0,
(iii) 〈, 〉 is a g-invariant inner product onn = g ⊕ V , i.e. 〈, 〉g := 〈, 〉|g×g is

adg-invariant,〈, 〉V := 〈, 〉|V ×V is π(g)-invariant and〈g, V 〉 = 0.

A data set(g, V , 〈, 〉) determines a two-step nilpotent Lie group denoted byN(g, V )

having Lie algebran = g ⊕ V , with Lie bracket defined by (6). Finally, we endow
N(g, V ) with the left-invariant metric determined by〈, 〉, obtaining a two-step
homogeneous nilmanifold(N(g, V ), 〈, 〉).

Note that the construction of the groupN(g, V ) could depend on the inner
product〈, 〉, but as we shall prove in the following proposition, this does not happen.

Proposition 3.2. Let N and N ′ denote the two-step nilpotent Lie groups corre-
sponding to the data sets(g, V , 〈, 〉) and (g, V , 〈, 〉′) respectively. ThenN is iso-
morphic toN ′.

Proof. SinceN andN ′ are simply connected by definition, it suffices to prove that
their respective Lie algebrasn andn′ are isomorphic. The Lie brackets[, ]n and
[, ]n′ are defined by (6) using〈, 〉 = 〈, 〉g⊕〈, 〉V and〈, 〉′ = 〈, 〉′g⊕〈, 〉′V respectively.
Suppose that

〈x, y〉g = 〈Px, y〉′g ∀ x, y ∈ g, 〈v, w〉V = 〈Qv, w〉′V ∀ v, w ∈ V,

with P andQ positive definite symmetric transformations ong andV with respect
to 〈, 〉g, 〈, 〉′g and〈, 〉V , 〈, 〉′V respectively.

If x ∈ g andv, w ∈ V then

〈Qπ(x)v, w〉′V = 〈π(x)v, w〉V = −〈v, π(x)w〉V
= −〈Qv, π(x)w〉′V = 〈π(x)Qv, w〉′V ,

(8)

and this implies thatQπ(x) = π(x)Q for all x ∈ g, i.e. Q ∈ Endg(V ), the

intertwining operators of the representation(π, V ) of g. ThusQ
1
2 ∈ Endg(V ),

whereQ
1
2 denotes the only symmetric square root ofQ.We then have that(P, Q

1
2 ) :

n = g⊕V → n′ = g⊕V is an isomorphism of Lie algebras, i.e.[Q 1
2 v, Q

1
2 w]n′ =

P [v, w]n for all v, w ∈ V . Indeed, ifx ∈ g andv, w ∈ V then

〈[Q 1
2 v, Q

1
2 w]n′ , x〉′g = 〈π(x)Q

1
2 v, Q

1
2 w〉′V = 〈Q 1

2 π(x)Q
1
2 v, w〉′V

= 〈Qπ(x)v, w〉′V = 〈π(x)v, w〉V
= 〈[v, w]n, x〉g = 〈P [v, w]n, x〉′g,

concluding the proof.ut
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Remark 3.3.(i) The construction of anH-type group is very similar to 3.1 (see
Sect. 2). If(J, V ) is a real representation of a Clifford algebraCl(z), then the
correspondingH-type Lie algebra is given byn = z ⊕ V , with Lie bracket defined
as in (6) puttingπ = J . Moreover, anyH-type algebra can be constructed in this
way (see [30] or [31]).

(ii) It follows from the classification of naturally reductiveH-type groups given in
[32] (see also [52] for an alternative proof using homogeneous structures) that a
groupN(g, V ) is of H-type if and only ifg = R andV = R

2 ⊕ ... ⊕ R
2 is any

representation ofR as in 3.1(ii), org = su(2) andV = C
2 ⊕ ... ⊕ C

2, where
C

2 denotes the standard representation ofsu(2) regarded as a real representation.
Note that these groups are respectively the Heisenberg groups and its quaternionic
analogues, which are the IwasawaN -groups associated to the simple Lie groups of
real rank oneSU(n, 1) andSp(n, 1) respectively (see [9]).

Theorem 3.4. Let (g, V , 〈, 〉) and (g′, V ′, 〈, 〉′) be two data sets as in 3.1. The
corresponding two-step homogeneous nilmanifolds(N(g, V ), 〈, 〉)and(N(g′, V ′),
〈, 〉′) are isometric if and only if there exist an isometric isomorphismφ : (g, 〈, 〉) →
(g′, 〈, 〉′) and an isometryT : (V , 〈, 〉) → (V ′, 〈, 〉′) such that

T π(x)T −1 = π ′(φx) ∀ x ∈ g. (9)

Proof. Suppose first that these groups are isometric. By Theorem 2.2 we have that
there exists a Lie algebra isomorphismA : n → n′ such that

〈Ax, Ay〉′ = 〈x, y〉 ∀ x, y ∈ n, (10)

wheren = g⊕V andn′ = g′ ⊕V ′ are the Lie algebras ofN(g, V ) andN(g′, V ′)
respectively. Sinceg andg′ are the centers ofn andn′, thenAg = g′, and it follows
from (10) thatAV = V ′. ThusA is of the formA = (φ, T ) with φ : (g, 〈, 〉) →
(g′, 〈, 〉′) andT : (V , 〈, 〉) → (V ′, 〈, 〉′) isometries. SinceA is an isomorphism,
we have that[T v, T w] = φ[v, w] for all v, w ∈ V , and thus it is easy to see
that (9) holds. Furthermore, (9) implies thatφ = (π ′)−1 ◦ Ad(T ) ◦ π , and since
π : g → π(g) ⊂ End(V ), Ad(T ) : End(V ) → End(V ′) andπ ′ : g → π ′(g′) ⊂
End(V ′) are Lie algebra isomorphisms we obtain thatφ : g → g′ is a Lie algebra
isomorphism.

Conversely, if there existφ andT satisfying the properties stated in the theorem,
it is easy to prove using (9) that

A := (φ, T ) : n = g ⊕ V → n′ = g′ ⊕ V ′

is a Lie algebra isomorphism satifying (10), sinceφ andT are isometries. Thus
(N(g, V ), 〈, 〉) and(N(g′, V ′), 〈, 〉′) are isometric by Theorem 2.2.ut
We deduce from Theorem 3.4 that ifg is not isomorphic tog′, then a two-step
homogeneous nilmanifold of the form(N(g, V ), 〈, 〉) can never be isometric to
another one of the form(N(g′, V ′), 〈, 〉′). We then fix a compact Lie algebrag, and
we study the isomorphism classes of nilpotent Lie groupsN(g, V ) which can be
constructed by using different representationsV of g.
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Proposition 3.5. Let g be a compact Lie algebra and letV andV ′ be represen-
tations ofg as in 3.1(ii). Let Inn(g) denote the group of inner automorphisms
of g.

(i) If there existφ ∈ Inn(g) andT : V → V ′ such thatT π(x)T −1 = π ′(φx) for
all x ∈ g, thenN(g, V ) ' N(g, V ′). Wheng is semisimple,Inn(g) can be
replaced byAut(g).

(ii) In particular, if V ' V ′ (equivalent to) thenN(g, V ) ' N(g, V ′).
(iii) Suppose thatAut(g) = Inn(g). If 〈, 〉 and〈, 〉′ areg-invariant inner products

on n = g ⊕ V and n′ = g ⊕ V ′ respectively such that(N(g, V ), 〈, 〉) is
isometric to(N(g, V ′), 〈, 〉′), thenV ' V ′.

Proof. (i) We fix ong an adg-invariant inner product〈, 〉g. Also, we take aπ(g)-
invariant inner product〈, 〉V on V and we consider the inner product〈, 〉V ′ =
(T −1)∗〈, 〉V onV ′. The inner product〈, 〉V ′ is π ′(g)-invariant, since for allx ∈ g,
v′, w′ ∈ V ′ we have

〈π ′(x)v′, w′〉′ = 〈T π(φ−1x)T −1v′, w′〉′ = 〈π(φ−1x)T −1v′, T −1w′〉

= −〈T −1v′, π(φ−1x)T −1w′〉 = −〈T −1v′, T −1π ′(x)w′〉

= −〈v′, π ′(x)w′〉′.
We construct the groupsN(g, V ) andN(g, V ′) using the inner products〈, 〉 =
〈, 〉g ⊕ 〈, 〉V and〈, 〉′ = 〈, 〉g ⊕ 〈, 〉V ′ respectively. By Proposition 3.2, these con-
structions do not depend on the invariant inner products chosen.

For allx ∈ g andv, w ∈ V we have that

〈[T v, T w]n′ , x〉g = 〈π ′(x)T v, T w〉V ′ = 〈T π(φ−1x)v, T w〉V ′

= 〈π(φ−1x)v, w〉V = 〈[v, w]n, φ−1x〉g = 〈φ[v, w]n, x〉g,

thus [T v, T w]n′ = φ[v, w]n for all v, w ∈ V and hence(φ, T ) : n = g ⊕
V → n′ = g ⊕ V ′ is a Lie algebra isomorphism. This implies thatN(g, V ) '
N(g, V ′), since both groups are simply connected. Note that we have used Inn(g) ⊂
O(g, 〈, 〉g), and ifg is semisimple then Aut(g) ⊂ O(g, 〈, 〉g).

(ii) It follows from (i) putting φ = I .

(iii) By Theorem 3.4 there existφ ∈ Aut(g) andT : V → V ′ such thatT π(x)T −1

= π ′(φx) for all x ∈ g. Since Aut(g) = Inn(g), we have that there existx1, ..., xr ∈
g such thatφ = eadx1...eadxr . If we putTi = eπ ′(xi ), it is easy to see thatπ ′◦eadxi =
Ad(Ti) ◦ π ′, then

π ′(φx) = Tr ...T1π
′(x)T −1

1 ...T −1
r ∀ x ∈ g.

Henceforth
π(x) = T −1Tr ...T1π

′(x)T −1
1 ...T −1

r T ∀ x ∈ g,

and this implies thatV ' V ′. ut
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The following example shows that the converse of Proposition 3.5,(ii) is not
valid, and that the condition Aut(g) = Inn(g) in (iii) can not be removed.

Example 3.6.We consider the real simple Lie algebraso(8). Its complexification
so(8, C) is of type D4, and the fundamental representations ofso(8) are

C
8, 32

C
8, 14+, 14−,

where(π, C
8) is the standard representation and(π+, 14+), (π−, 14−) denote the

spin representations (see [2]). The spin representations are also 8-dimensional
and of real type, i.e. they are complexifications of certain real representations
(14+)R, (14−)R of so(8). It is well known that(π+, 14+) and (π−, 14−) can be
obtained fromC

8 in the following way: there exists an outer automorphismφ of
so(8) such that

(π ◦ φ, C
8) ' (π+, 14+).

This implies that the corresponding real representations(π ◦ φ, R
8) and

(π+, (14+)R) are also equivalent, and hence there existT : (14+)R → R
8 sat-

isfying
T π+(x)T −1 = π(φx) ∀ x ∈ so(8).

Using Proposition 3.5,(i) we obtain thatN(so(8), R
8) ' N(so(8), (14+)R), and

analogously we have the same forN(so(8), (14−)R). However, the representa-
tionsR

8, (14+)R, (14−)R are pairwise non-equivalent, since their respective com-
plexifications are pairwise non-equivalent. We then obtain counterexamples to
the converse of Proposition 3.5,(ii). Furthermore, if〈, 〉 is anso(8)-invariant in-
ner product onn = so(8) ⊕ R

8, then it is easy to check that the inner product
〈, 〉′ = (φ, T )∗〈, 〉 is alsoso(8)-invariant onn′ = so(8) ⊕ (14+)R. By Theorem
3.4 we obtain that(N(so(8), R

8), 〈, 〉) is isometric to(N(so(8), (14+)R), 〈, 〉′),
and thus this provides a counterexample to Proposition 3.5,(iii), if we remove the
condition Aut(g) = Inn(g).

Remark 3.7.The situation in the example above is very similar to theH-type case. In
fact, if dimz ≡ 3 (mod 4), then the algebraCl(z)has two non-equivalent irreducible
modulesV1 andV2. However, the correspondingH-type algebrasn1 = z⊕V1 and
n2 = z ⊕ V2 are isomorphic (see [30] and Sect. 2).

In the following theorem, we shall give some partial results about isometry
classes ofg-invariant metrics on a fixed groupN(g, V ) . Let B denote the Killing
form of g. If g is semisimple thenB is negative definite ong, sinceg is compact.
Thus−B is an inner product ong and anyφ ∈ Aut(g) satisfiesφ ∈ O(g, −B). A
left-invariant metric onN(g, V ) is said to beg-invariant if it is determined by a
g-invariant inner product onn (see 3.1(iii)).

Theorem 3.8. Let 〈, 〉 and〈, 〉′ be twog-invariant inner products onn = g ⊕ V .

(i) If 〈x, y〉′g = 〈φx, φy〉g for all x, y ∈ g, then(N(g, V ), 〈, 〉) is isometric to
(N(g, V ), 〈, 〉′).

(ii) If g is simple, thenN(g, V ) can be endowed with a uniqueg-invariant metric,
up to isometry and scaling.
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(iii) Suppose thatg is semisimple and

〈x, y〉 = −B(Px, y), 〈x, y〉′ = −B(P ′x, y), ∀ x, y ∈ g.

If (N(g, V ), 〈, 〉) is isometric to(N(g, V ), 〈, 〉′) then there existsφ ∈ Aut(g)

such thatφPφ−1 = P ′ and〈x, y〉′g = 〈φ−1x, φ−1y〉g for all x, y ∈ g, .
(iv) Suppose thatg is semisimple andg = g1 ⊕ ... ⊕ gk is the decomposition of

g into simple ideals and thatgi 6' gj for all i 6= j . Then(N(g, V ), 〈, 〉) is
isometric to(N(g, V ), 〈, 〉′) if and only if〈, 〉g = 〈, 〉′g.

(v) Under the hypothesis of(iv), theg-invariant metrics onN(g, V ), up to isom-
etry, are parametrized by

{(λ1, ..., λk) : λi > 0}.
Proof. (i) If 〈v, w〉′V = 〈Pv, w〉V for all v, w ∈ V thenP is a positive definite
symmetric transformation onV with respect to〈, 〉V and 〈, 〉V ′ . Since〈, 〉V and
〈, 〉V ′ are g-invariant we have thatP ∈ Endg(V ) (see (8)), thus we also have

P
1
2 ∈ Endg(V ). As in the proof of Proposition 3.5, (iii), ifφ = eadx1...eadxr we

takeT = eπ(xr )...eπ(x1) ∈ O(V , 〈, 〉V ) and thus we have thatT π(x)T −1 = π(φx)

for all x ∈ g. This implies that(φ, P
1
2 T ) : n = g ⊕ V → n = g ⊕ V determines

an isometry between(N(g, V ), 〈, 〉′) and(N(g, V ), 〈, 〉) (see Theorem 3.4).

(ii) Since g is simple there is an unique adg-invariant inner product ong up to
scaling, thus the result follows from part (i), usingφ = I .

(iii) By Theorem 3.4 there exists an isometry(φ, T ) : (g⊕V, 〈, 〉) → (g⊕V, 〈, 〉′)
satisfyingT π(x)T −1 = π(φx) for all x ∈ g. Thusφ = π−1 ◦ Ad(T ) ◦ π ∈
Aut(g) ⊂ O(g, −B) and for allx, y ∈ g we have

−B(φPx, y) = −B(Px, φ−1y) = 〈x, φ−1y〉

= 〈φx, y〉′ = −B(P ′φx, y).

This implies thatφP = P ′φ, concluding the proof of (iii).

(iv) It is easy to see that for alli 6= j , gi ⊥ gj with respect to anyg-invariant inner
product. ThusP andP ′ must be of the form

P =



λ1Ig1

. . .

λkIgk


 , P ′ =




λ′
1Ig1

. . .

λ′
kIgk


 , λi, λ

′
i > 0. (11)

It follows from (iii) that there existsφ ∈ Aut(g) such thatφPφ−1 = P ′. The auto-
morphismφ must preserve the idealsgi , since they are pairwise non-isomorphic,
thusλi = λ′

i for all i = 1, ..., k. This implies thatP = P ′ and〈, 〉g = 〈, 〉′g.
Conversely, if〈, 〉g = 〈, 〉′g then the corresponding groups are isometric by

part (i).

(v) It follows clearly from (iv) and (11). ut
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Remark 3.9.The property in (v) is essentially different to the analogous in theH-
type case. In fact, anH-type group can be endowed with a uniqueH-type metric,
up to isometry. However, this is still satisfied by the groupsN(g, V ) with g simple
(see (ii)).

We shall now compute the isometry group of a two-step homogeneous nilman-
ifold (N(g, V ), 〈, 〉), where(g, V , 〈, 〉) is a data set (see 3.1). Note that by (2), it
suffices to compute the isotropy subgroupK of the isometry group.

We first consider the groupU := {T ∈ K : T |g = I }. It follows from (4)
thatT ∈ U if and only if T is orthogonal andT π(x)T −1 = π(x) for all x ∈ g,
thusU = Endg(V ) ∩ O(V , 〈, 〉), where Endg(V ) denotes the set of intertwining
operators of the representation(π, V ) of g. Suppose that

V = V
r1
1 ⊕ ... ⊕ V

rk
k , Vi irreducible, Vi 6' Vj ∀ i 6= j,

i.e. the subspacesV rl
l = Vl ⊕ ... ⊕ Vl (rl copies) are theisotypic components of

V . SinceVl is a real irreducible representation, we have that Endg(Vl) is a real
division associative algebra, and thus Endg(Vl) = R, C or H, the real and complex
numbers and the quaternions respectively.

Definition 3.10. An irreducible real representationV ofg is said to be of real type,
complex type or quaternionic type ifEndg(V ) = R, C or H respectively (see [2]
for further information).

We then obtain

Endg(V ) = gl(r1, F1) ⊕ ... ⊕ gl(rk, Fk),

whereFl = R, C, H depending on the type ofVl , andgl(r, F) denotes the Lie
algebra of(r × r)-matrixes with coefficients in the ringF. EachA = (aij ) ∈
gl(rl, Fl ) acts onV rl

l by

A(v1, ..., vrl ) = (

rl∑
i=1

a1ivi , ...,

rl∑
i=1

arl ivi), (12)

wherevi ∈ Vl for 1 ≤ i ≤ rl . This implies that

U = U1 × ... × Uk,

whereUl = O(rl), U(rl), Sp(rl) depending on the type ofVl .
Before stating the main theorem, we need to describe the action of the center

of g onV .

Lemma 3.11. Let (g, V , 〈, 〉) be a data set and letg = g ⊕ c, with g = [g, g]
and c the center ofg. If V = V1 ⊕ ... ⊕ Vk is an orthogonal decomposition of
V into g-irreducible subrepresentations, then for eachi = 1, ..., k there exists a
skew-symmetric transformationJi : Vi → Vi satisfyingJ 2

i = −I such that

π(h) = λi(h)Ji for someλi(h) ∈ R, ∀ h ∈ c.
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Proof. We have that Endg(Vi) = R, C, H, thus the dimension of any abelian sub-
space of Endg(Vi) acting by skew-symmetric transformations must be at most one.
Therefore, sinceπ(c)|Vi

⊂ Endg(Vi) is abelian, there exists a skew-symmetric
transformationJi ∈ Endg(Vi) such thatπ(c)|Vi

⊂ RJi . Furthermore, the irre-
ducibility of π(g)|Vi

implies thatJ 2
i = −λ2I . We then may take a suitable multiple

of Ji , concluding the proof.ut
Theorem 3.12. Let (N(g, V ), 〈, 〉) be the two-step homogeneous nilmanifold cor-
responding to the data set(g, V , 〈, 〉) (see3.1). We putg = g ⊕ c with g = [g, g]
andc the center ofg.

(i) The Lie algebrak = Der(n) ∩ so(n, 〈, 〉) of the isotropy subgroupK of the
isometry group of(N(g, V ), 〈, 〉) is given by

k = g ⊕ u, [g, u] = 0,

whereu = Endg(V ) ∩ so(V, 〈, 〉) andg acts onn = g ⊕ V by (adx, π(x))

for all x ∈ g.
(ii) The connected component of the identity ofK is

K0 = G × U0,

whereU = Endg(V ) ∩ O(V , 〈, 〉), G = G/ Kerπ andG is the simply con-
nected Lie group with Lie algebrag. The groupU acts trivially ong and if
we also denote byπ the corresponding representation ofG on V , then each
g ∈ G acts onn = g ⊕ V by (Ad(g), π(g)).

(iii) If V = V
r1
1 ⊕ ... ⊕ V

rk
k with Vi irreducible andVi 6' Vj for all i 6= j , then

U = U1 × ... × Uk,

whereUi = O(ri), U(ri), Sp(ri) depending on the type ofVi , andUi acts on
V

ri
i as in(12).

(iv) If Aut(g) = Inn(g), thenK = G × U .

Proof. (i) If D is an element ofk thenD preserves the centerg of n, sinceD is a
derivation ofn, and it follows from the skew-symmetry ofD thatD also preserves
the orthogonal complementV of g. We then suppose thatD = (A, B) ∈ k with
A : g → g andB : V → V . Using (5) we obtain

Bπ(x) − π(x)B = π(Ax) ∀ x ∈ g.

We will denote by[, ]n the Lie bracket ofn and by[, ] the Lie brackets ofg and
End(V ). If x, y ∈ g then

π(A[x, y]) = Bπ([x, y]) − π([x, y])B = B[π(x), π(y)] − [π(x), π(y)]B

= [B, [π(x), π(y)]] = [[B, π(x)], π(y)] + [π(x), [B, π(y)]]

= [π(Ax), π(y)] + [π(x), π(Ay)] = π([Ax, y] + [x, Ay]).
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Sinceπ is faithful, then

A[x, y] = [Ax, y] + [x, Ay] ∀ x, y ∈ g,

obtaining thatA ∈ Der(g). Henceg andc areA-invariant subspaces, and thus there
existsx1 ∈ g such thatA|g = adx1 (note thatg is semisimple).

We also have that(adx1, π(x1)) : n = g ⊕ V → n = g ⊕ V is a skew-
symmetric derivation ofn. Indeed,〈, 〉 is ag-invariant inner product and

π(x1)π(x) − π(x)π(x1) = π([x1, x]) ∀ x ∈ g,

(see (5)). We then consider the element ofk given by

(A′, B ′) = (A − adx1, B − π(x1)),

which satisfiesA′|g ≡ 0 andA′c ⊂ c.
We next prove thatA′ = 0. Leth ∈ c − {0}, thusB ′π(h) − π(h)B ′ = π(A′h).

If V = Vh ⊕ Kerπ(h) is an orthogonal decomposition thenπ(g), and in particular
π(A′h) preserves the subspacesVh and Kerπ(h), since it commutes withπ(h).

Forv, w ∈ Kerπ(h) we have

〈π(A′h)v, w〉V = 〈B ′π(h)v − π(h)B ′v, w〉V = 〈B ′v, π(h)w〉V = 0,

thusπ(A′h)|Kerπ(h) ≡ 0. LetVh = V 1
h ⊕ ...⊕V r

h be an orthogonal decomposition
of Vh into g-irreducible subspaces. Fix ani ∈ {1, ..., r}. By Lemma 3.11 we have
thatπ(h)|V i

h
= Ji (taking a suitable multiple ofh) andπ(A′h)|V i

h
= λiJi , for some

λi ∈ R. If we setB ′
i = pi ◦B ′|V i

h
: V i

h → V i
h , wherepi : V → V i

h is the orthogonal

projection, thenB ′
iJi − JiB

′
i = λiJi . We then obtain−JiB

′
iJi − B ′

i = λiI , and
thusJ−1

i B ′
iJi = B ′

i + λiI . It follows from the fact thatB ′
i is skew-symmetric that

λi = 0, and this happens for alli = 1, ..., r. Thusπ(A′h) = 0 and, sinceπ is
faithful, we obtain thatA′h = 0. This implies thatA′ = 0.

Henceforth, the elementD = (A, B) ∈ k is of the form

(A, B) = (adx1, π(x1)) + (0, B ′)

with B ′ = B − π(x1) ∈ Endg(V ) ∩ so(V, 〈, 〉V ) = u. Sinceg andu commute,
thenk = g ⊕ u is a direct sum of Lie algebras. Note that we are identifyingg with
{(adx, π(x)) : x ∈ g} ⊂ k.

(ii) We have thatG is a compact semisimple Lie group. Eachg ∈ G defines an
element ofK acting onn = g⊕V by (Ad(g), π(g)), where Ad denotes the adjoint
representation ofG. In fact, it is easy to see thatπ(g)π(x)π(g)−1 = π(Ad(g)x)

for all x ∈ g,g ∈ G (see (4)). Since Kerπ ⊂ center(G), the kernel of the morphism
G → K, g → (Ad(g), π(g)) is given precisely by Kerπ , which is a finite group.
Thus, there is a connected subgroup ofK isomorphic toG/ Kerπ , having Lie
algebrag. It follows from (i) thatK0 = G × U0.

(iii) The groupU was obtained after Definition 3.10.

(iv) By (4) we have that

K = {(φ, T ) ∈ O(g, 〈, 〉) × O(V , 〈, 〉) : T π(x)T −1 = π(φx), x ∈ g}.



Homogeneous nilmanifolds attached to representations 301

Hence, if(φ, T ) ∈ K thenφ = π−1 ◦ Ad(T ) ◦ π ∈ Aut(g), and since Aut(g) =
Inn(g) there must existg ∈ G such thatφ = Ad(g). By (ii) we have that
(Ad(g), π(g)) ∈ K and thusπ(g)−1T ∈ U . We then obtain that(φ, T ) can be
written as

(φ, T ) = (Ad(g), π(g)).(I, π(g)−1T ),

proving thatK = G × U (note that both subgroups commute).ut
Remark 3.13.If n is anH-type algebra thenk = so(z)⊕u, where each element of
so(z)acts naturally onzand it can be extended ton = z⊕V using the representation
of Cl(z) onV (see [47]). Moreover, we have thatK0 = Spin(z) × U0, where the
groupU can be computed as described after Remark 3.9 (see [46] and Sect. 2).

4. Commutativity on manifolds N(g, V )

A commutative spaceis a connected riemannian homogeneous spaceM such that
the algebra of all I(M)0-invariant differential operators is commutative, where
I(M)0 denotes the connected component of the full isometry group I(M). It is well
known that any symmetric space is commutative (see [21]; or else [25], p.293).
Commutativity in the class of homogeneous nilmanifolds is strongly related to the
notion of Gelfand pair. LetN be a nilpotent Lie group and letK be a compact
group of automorphisms ofN . We say that(K, N) is aGelfand pairif the convo-
lution algebra L1K(N) of K-invariant integrable functions onN is commutative. If
H = K × N then it is easy to prove that L1

K(N) is isomorphic to L1(H//K), the
convolution algebra ofK-bi-invariant integrable functions onH (see [40]). Thus
(K, N) is a Gelfand pair precisely when(H, K) is a Gelfand pair in the usual sense
(see [20], p. 36).

It is shown in [4] that if(K, N) is a Gelfand pair thenN must be two-step
nilpotent (or abelian). Note that this is analogous to C. Gordon’s result on naturally
reductive homogeneous nilmanifolds (see Sect. 2). We will thus assume thatN is
a two-step nilpotent Lie group.

In the following theorem we give the relationship between commutativity and
Gelfand pairs. We shall first recall some preliminary facts and introduce some
notation.

If K ⊂ Aut(N) ≈ Aut(n) (we always assume thatN is simply connected),
we endown with aK-invariant inner product〈, 〉 and for each nonzerox ∈ z, we
consider the Lie algebranx = Rx ⊕ Vx , whereVx = {v ∈ V : [v, V ] ⊥ x}⊥ =
(KerJx)

⊥, with defining Lie bracket[v, w]x = 〈[v, w], x〉x for all v, w ∈ Vx . It
is clear that the groupNx = expnx is isomorphic to a Heisenberg group, unless
Jx = 0 (i.e. Vx = 0), whereNx ' R. We have thatKx ⊂ Aut(Nx), where
Kx = {k ∈ K : kx = x}.
Definition 4.1. SinceJx : Vx → Vx is invertible, there exists an orthogonal de-
compositionVx = V1 ⊕ ... ⊕ Vr such thatdimVi = 2 and

Jx |Vi
=

[
0 −ci

ci 0

]
, ci 6= 0, ∀ i = 1, ..., r.
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If we takeJ : Vx → Vx given byJ |Vi
= 1

ci
Jx |Vi

, thenJ 2 = −I and thusJ defines

a complex structure onVx . We denote bỹVx the corresponding complex vector
space(Vx, J ).

It follows from (4) that the elements ofKx commute withJx and hence they
also commute withJ , this implies thatKx acts by complex linear transformations
on Ṽx .

A complex representationW of a compact Lie groupK is said to bemultiplicity
freeif the action ofK (or equivalently of its complexificationKC) on the polynomial
ring C[W ] given by (k.p)(w) = p(k−1w) is multiplicity free, i.e. its isotypic
components are all irreducible (see [29,26] for further information).

Theorem 4.2. If N is a two-step nilpotent Lie group,K is a compact subgroup of
Aut(N) andH = K × N , then the following conditions are equivalent.

(i) The algebra ofH 0-invariant differential operators onN is commutative. In
particular, if K is the isotropy subgroup of the isometry group of(N, 〈, 〉), this
means that(N, 〈, 〉) is a commutative space.

(ii) (K0, N) is a Gelfand pair.
(iii) (K, N) is a Gelfand pair.
(iv) (Kx, Nx) is a Gelfand pair for any nonzerox ∈ z.
(v) The action ofKx (or K0

x ) on the complex vector spacẽVx defined in(4.1) is
multiplicity free for any nonzerox ∈ z.

It is well known that (i) is equivalent to the commutativity of the algebra
L1(H 0//K0) (see [25],p.486), thus the equivalence of (i) and (ii) follows from
the isomorphism L1(H 0//K0) ' L1

K0(N). It is proved that (ii) and (iii) are equiv-
alent in [3] and [5]. The equivalence of (iii) and (iv) is calledlocalization, and it
has been proved in [34] and [5]. Finally, conditions (iv) and (v) are equivalent by
[4].

In this section, we shall study the commutativity within the class of the mani-
folds (N(g, V ), 〈, 〉) introduced in 3.1, i.e. in the class of naturally reductive two-
step homogeneous nilmanifolds (see Theorem 2.7). Equivalently, in view of Theo-
rems 4.2, 3.12, we shall study conditions for(G × U0, N(g, V )) to be a Gelfand
pair.

As a first step, we prove that the commutativity of(N(g, V ), 〈, 〉) does not
depend on theg-invariant metric〈, 〉.
Proposition 4.3. If 〈, 〉 and〈, 〉′ are twog-invariant inner products onn = g ⊕ V

then(N(g, V ), 〈, 〉) is a commutative space if and only if(N(g, V ), 〈, 〉′) is so.

Proof. Let K andK ′ denote the corresponding isotropy subgroups. By Theorem
3.12 we have thatK0 = G × U0 and(K ′)0 = G × (U ′)0, whereU = Endg(V ) ∩
O(V , 〈, 〉) andU ′ = Endg(V ) ∩ O(V , 〈, 〉′).

If 〈v, w〉 = 〈Qv, w〉′ for all v, w ∈ V thenQ ∈ Endg(V ) (see (8)) and hence

the mapT → Q
1
2 T Q− 1

2 is an isomorphism betweenU andU ′. Moreover, since
Q commutes with the action ofG on V we have that this map is an isomorphism
betweenK0|V and(K ′)0|V . Henceforth, ifh ∈ g then the actions ofK0

h and(K ′)0
h
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on Ṽh are conjugate viaQ
1
2 . This implies that one of these actions is multiplicity

free if and only if the other is so, hence the result follows from Theorem 4.2.ut
Thus, we shall study the commutativity of a groupN(g, V ) , assuming that it is

endowed with anyg-invariant metric. We shall always use condition (v) of Theorem
4.2, thus we have to compute forh ∈ g the stabilizerK0

h = {ϕ ∈ K0 : ϕh = h},
whereK0 is the connected component of the isotropy subgroup ofN(g, V ).

Suppose thatg is semisimple. Leth ∈ g be a regular element and lett denote
the only maximal torus ofg (maximal abelian subalgebra) containingh. We note
thatλ ∈ t∗ is called aweightof a real representation(π, V ) if there existv, w ∈ V

such thatπ(h′)v = λ(h′)w andπ(h′)w = −λ(h′)v for all h′ ∈ t (see [2]). We
can chooseh such thatλ(h) 6= 0 for all nonzeroλ ∈ P(V ), whereP(V ) denotes
the set of weights of the representationV with respect tot. This implies that
Kerπ(h) = V0, the zero weight space ofV , and thusV = Vh ⊕ V0. By Theorem
3.12 we have thatK0 = G × U0, whereU acts trivially ong andG acts by the
adjoint representation ong. This implies that the Lie algebra ofK0

h is Cg(h) ⊕ u,
whereCg(h) = {x ∈ g : [x, h] = 0} is the centralizer ofh in g. Sinceh is regular
we have thatCg(h) = t and thus, ifT is the maximal torus ofG with Lie algebra
t then

K0
h = T × U0, (13)

where each exph′ ∈ T (h′ ∈ t) acts onV by eπ(h′). We then obtain a necessary
condition forN(g, V ) to be a commutative space: the action ofeπ(t) × U0 on Ṽh

must be multiplicity free (see Theorem 4.2,(v)), whereeπ(t) = {eπ(h′) : h′ ∈ t}. In
the following theorem we prove that the condition above is also sufficient for the
commutativity ofN(g, V ) wheng is semisimple.

Theorem 4.4. A groupN(g, V ) with g semisimple is a commutative space if and
only if the action ofeπ(t) × U0 on Ṽ is multiplicity free, wheret is any maximal
torus ofg and Ṽ is the complex vector spacẽVh defined in4.1 for any h ∈ t
satisfyingλ(h) 6= 0 for all nonzero weightλ of V . Note thatV = Ṽ ⊕ V0, where
V0 denotes the zero weights space of the representationV with respect tot.

Proof. If N(g, V ) is a commutative space we have proved above that this condition
must be satisfied.

Conversely, suppose that the action ofeπ(t) × U0 on Ṽ is multiplicity free.
If h1 ∈ g − {0} we taket1 any maximal torus ofg containingh1. In view of
Theorem 4.2 we have to prove that the action ofKh1 on Ṽh1 is multiplicity free,
whereV = Vh1 ⊕ Kerπ(h1).

There existsA ∈ G such thatAt1 = t. We also denote byA the corresponding
extension ton = g⊕V as an element ofK (see Theorem 3.12). SinceAπ(x)A−1 =
π(Ax) for all x ∈ g (see (4)) andA commutes with the action ofU we have that

Aeπ(h)T A−1 = Aeπ(h)A−1T = eAπ(h)A−1
T = eπ(Ah)T ∀ h ∈ t1, T ∈ U0.

This implies thatA(eπ(t1) × U0)A−1 = eπ(t) × U0. If V = Ṽ 1 ⊕ V 1
0 denotes the

decomposition as in the theorem fort1, thenAV 1
0 = V0. Indeed, for allv ∈ V 1

0 ,

π(h)Av = Aπ(A−1h)v = 0 ∀ h ∈ t,
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thusAṼ 1 = Ṽ , sinceA is orthogonal. It is clear that the action of

A−1(eπ(t) × U0)A = eπ(t1) × U0

onA−1Ṽ = Ṽ 1 is also multiplicity free, and sinceeπ(t1)×U0 ⊂ K0
h1

andVh1 ⊂ Ṽ 1

(note thath1 ∈ t1 andV 1
0 ⊂ Kerπ(h1)) we obtain that the action ofK0

h1
onVh1 is

multiplicity free, as was to be shown.ut
Using the characterization in the theorem above, we shall give now two families

of examples of groupsN(g, V ) which are commutative spaces. We first need a
lemma about multiplicity free actions of a torus, which will be very useful.

Lemma 4.5. Let C
∗ denote the multiplicative groupC − {0}. A complex repre-

sentationW of an n-dimensional torusT n is multiplicity free if and only if the
set of weightsP(W) ⊂ t∗ of W is R-linearly independent. In particular, ifW is
multiplicity free thendimC W ≤ n.

Proof. The complex irreducible representations of a torusT n = R
n/Z

n are all
one-dimensional and of the form

π([x]) = e2πiλ(x), x ∈ R
n,

for someλ : R
n → R given by

λ(x1, ..., xn) =
n∑

j=1

kjxj , (k1, ..., kn) ∈ Z
n (14)

(see [2],p.107). Thus, if(ρ, W) is anm-dimensional complex representation ofT n,
then there exists a basis{w1, ..., wm} of W such that

ρ([x])wj = e2πiλj (x)wj , x ∈ R
n,

where eachλj is as in (14) for some element ofZ
n. The Lie algebrat of T n can be

identified withR
n and its corresponding action onW is given by

x.wj = 2πiλj (x)wj , x ∈ t = R
n.

We must study the action oft on the polynomial ringC[W ]. We denote byzj the
element ofC[W ] given byzj (w) = aj , wherew = a1w1 + ... + amwm. Since the
polynomialzj is linear it is not hard to check that(x.zj )(w) = zj (−x.w), thus

x.zj (w) = zj (−x.w) = zj (−2πiλ1(x)a1w1 − ... − 2πiλm(x)amwm)

= −2πiλj (x)aj = −2πiλj (x)zj (w)

and therefore

x.zj = −2πiλj (x)zj ∀ j = 1, ..., m, x ∈ t. (15)
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Using thatt acts by derivations onC[W ] (i.e. x.(pq) = (x.p)q + p(x.q), where
pq denotes ordinary multiplication inC[W ]) and (15) it is easy to see that any
x ∈ t acts on a monomial ofC[W ] by

x.(z
k1
1 ...zkm

m ) = −2πi(k1λ1(x) + ... + kmλm(x))z
k1
1 ...zkm

m .

We then obtain thatC[W ] will be multiplicity free if and only ifk1λ1+...+kmλm 6=
k′

1λ1 + ... + k′
mλm for all (k1, ..., km) 6= (k′

1, ..., k
′
m) (∈ (Z≥0)

m). This condition
is equivalent to the set{λ1, ..., λm} ⊂ t∗ beingZ-linearly independent, and since
theλi are integral (see (14)), we have that this is equivalent to{λ1, ..., λm} being
R-linearly independent, as it was to be shown.ut

Example 4.6.Consider the groupN(su(n), C
n), n ≥ 2, whereC

n is the standard
representation ofsu(n) regarded as a real representation. The subspacet of su(n)

given by

t =


H =




ih1
. . .

ihn


 :

∑
j

hj = 0, hj ∈ R




is a maximal torus ofsu(n). The representationCn is of complex type, thuseπ(t) ×
U0 = eπ(t) ×S1 (see Definition 3.10). Furthermore, since(Cn)0 = 0, we have that
Ṽ = C

n. The Lie algebra ofeπ(t) × S1 can be identified witht ⊕ R, and thus the
weights ofCn are given byP(Cn) = {λ1 + λ, ..., λn + λ}, whereλj (H, r) = ihj

andλ(H, r) = ir for all H ∈ t, r ∈ R. SinceP(Cn) is a linearly independent
subset of(t ⊕ R)∗, we obtain from Lemma 4.5 that the action ofeπ(t) × S1 onC

n

is multiplicity free and henceN(su(n), C
n) is a commutative space by Theorem

4.4.

Example 4.7.We consider the groupN(so(n), R
n), n ≥ 2, whereR

n denotes the
standard representation ofso(n). In this caseeπ(t) × U0 = eπ(t), sinceR

n is of
real type. Ifn = 2k + 1 we choose the maximal torus ofso(n)

t =




H =




0 −h1
h1 0

. . .

0 −hk

hk 0
0




: hj ∈ R




,

and if n = 2k we take the samet but with the last row and column deleted. It is
clear that in both cases we have to analyze the action ofeπ(t) on Ṽ = C

k given by
eπ(H).(c1, ..., ck) = (ih1c1, ..., ihkck) (see 4.1). The Lie algebra ofeπ(t) is t and
P(Ck) = {λ1, ..., λk}, whereλj (H) = ihj , thusP(Ck) is a linearly independent
subset oft∗. By Lemma 4.5 we have that the action ofeπ(t) on C

k is multiplicity
free and thusN(so(n), R

n) is a commutative space (see Theorem 4.4).
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Remark 4.8.It is easy to see that the groupN(so(n), R
n) is precisely the so called

free two-step nilpotent Lie group onn generators. These groups have been consid-
ered by many authors, see [4,55,50] for instance, and the commutativity has been
proved in [4]. Moreover, it was also proved in this work that the only Gelfand pair
of the form(K, N(so(n), R

n)) is (SO(n), N(so(n), R
n)).

Lemma 4.9. LetW be a complex representation ofg such thatdimC Wλ = 1 for
all λ ∈ P(W) − {0}. ThendimC W0 ≤ rank(g).

Proof. If r = rank(g) we take1 = {α1, ..., αr} the set of simple roots ofg.
Denote byλ1 ∈ P(W) the maximum weight ofW and letw1 ∈ Wλ1 − {0}. If
x−αi1

...x−αit
w1 ∈ W0 with x−αij

∈ g−αij
, thenx−αi2

...x−αit
w1 ∈ Wαi1

, and thus
x−αi1

...x−αit
w1 ∈ x−αi1

Wαi1
. SinceW0 is C-linearly generated by the elements of

the formx−αi1
...x−αit

w1 we have that

W0 ⊂< x−α1Wα1 ∪ ... ∪ x−αr Wαr >C .

Now, using that dimWαi
≤ 1 for all i we obtain that dimW0 ≤ r. ut

The following theorem gives a large family of non-commutative naturally re-
ductive spaces. The first examples of this kind were given in [27,28].

Theorem 4.10. If the groupN(g, V ), withg semisimple andV irreducible of real
type (see Definition 3.10) is a commutative space, thendimV ≤ 3 rank(g).

Proof. We will use Theorem 4.4. In this case we have thateπ(t) × U0 = eπ(t). If
V = Ṽ ⊕ V0 as in the theorem we take a real basis ofṼ

Ṽ = {v1, w1, ..., vn, wn}R
such that

π(h)|{vj ,wj }R =
[

0 −λj (h)

λj (h) 0

]
∀ h ∈ t.

Thus, as a complex vector space,Ṽ = {v1, ..., vn}C and the action is given by
π(h)vj = iλj (h)vj for all h ∈ t. Suppose thatN(g, V ) is commutative. Since the
action ofeπ(t) on Ṽ is multiplicity free, we obtain from Lemma 4.5 thatn ≤ dim t
and {λ1, ..., λn} is a linearly independent subset oft∗. SinceV is of real type,
we have that its complexificationW = C ⊗ V , which is naturally a complex
representation ofg, is also irreducible. Furthermore,

dimC W − dimC W0 = dimV − dimV0 = dimR Ṽ = 2n ≤ 2 dimt.

We thus obtain that the complex representationW of g satisfies:

dimC W ≤ 2 rank(g) + dimC W0.

dimC Wλ = 1 ∀ λ ∈ P(W) − {0}, (16)

whereWλ denotes theλ-weight space ofW . Now, using (16) and Lemma 4.9, we
obtain that dimV = dimC W ≤ 3 rankg. ut

As an example, we takeg = su(2). All the odd dimensional irreducible rep-
resentations ofsu(2) are of real type, but in view of Theorem 4.10, we have that
only N(su(2), V ) with the 3-dimensional representationV = R

3 is a commuta-
tive space. Note thatsu(2) = so(3), andV = R

3 is the standard representation of
so(3).
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5. Applications to weakly symmetric spaces

A connected riemannian manifoldM is said to beweakly symmetricif for any two
pointsp, q ∈ M there exists an isometry ofM mappingp to q andq to p. This
notion was introduced byA. Selberg in [49]. This is not the original definition given
by Selberg, but it is equivalent to it (see [8]). It is easy to see that any symmetric
space is weakly symmetric.

We note that the commutativity of a space (see Sect. 4) is defined sometimes
with respect to the full isometry group I(M). The equivalence of these two notions is
still an open problem. However, in the class of two-step homogeneous nilmanifolds
both notions coincide (see Theorem 4.2,(ii),(iii) and [6]).

Theorem 5.1 ([49]). Any weakly symmetric spaceM is a commutative space (with
respect toI(M)-invariance).

The converse is known to be false, there are examples in [40,41] of modified H-
type groups which are commutative spaces and not weakly symmetric.A motivation
for the study of the commutativity and weak symmetry on manifolds(N(g, V ), 〈, 〉)
has been the fact that, up to now, there were no examples of non-weakly symmetric
naturally reductive spaces. The following result provides a large family of such
examples, and its proof follows from Theorems 4.10, 5.1.

Theorem 5.2. Any (N(g, V ), 〈, 〉) with g semisimple,V irreducible of real type
anddimV > 3 rank(g) is a non-weakly symmetric naturally reductive space.
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