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Abstract. For each compact Lie algebgeand each real representatigrof g we consider

a two-step nilpotent Lie groupy (g, V), endowed with a natural left-invariant riemannian
metric. The homogeneous nilmanifolds so obtained are precisely those which are naturally
reductive. We study some geometric aspects of these manifolds, finding many parallels with
H-type groups. We also obtain, within the class of manifdidg, V), the first examples of
non-weakly symmetric, naturally reductive spaces and new examples of non-commutative
naturally reductive spaces.

1. Introduction

Two-step nilpotent Lie groups endowed with a left-invariant riemannian metric, of-
ten calledwo-step homogeneous nilmanifgldave attracted considerable attention

in the last twenty years, specially in riemannian geometry [31,54,17,18], harmonic
analysis [33,12,4] and spectral geometry [24,15,16,44H8}pe groups (or gen-
eralized Heisenberg groups), introduced by A. Kaplan around 1980 [30], are a very
special subclass of two-step homogeneous nilmanifolds. These spaces have pro-
vided examples and counterexamples to many questions and conjectures [32,47,
45,23,36,11,9,7,10].

Starting from a real representatios, V) of a Clifford algebraCl(3), Kaplan
constructs a two-step nilpotent Lie algelara= 3 ® V with centery and Lie bracket
defined onV by ([v, w], z) = (J;v, w) forall v,w € V, z € 3, where(,) is a
natural inner product on. The correspondinig-type group is denoted b, (, )),
whereN is the simply connected Lie group with Lie algebraendowed with the
left-invariant metric determined by ).

We study in this work another subclass of two-step homogeneous nilmanifolds,
with a construction analogous to that ldftype groups, but starting from a real
representatior(zr, V) of a compact Lie algebrg. Indeed, letn = g @ V be
the two-step nilpotent Lie algebra with cengeand Lie bracket defined oW by
([v, w], x) = (r(x)v, w) forallv, w € V, x € g, where(, ) is a fixedg-invariant
inner product om (see 3.1(iii)). We denote by (g, V) the simply connected Lie
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group with Lie algebras = g @ V and we endow it with the left-invariant metric
determined by, ), obtaining a two-step homogeneous nilmanifaig, V), (, )).

We shall prove, using a result due to C. Gordon [22], that the spaces
(N(g, V), {,)) have a neat geometric characterization within the class of homoge-
neous nilmanifolds: they are precisely the naturally reductive ones (see Sect. 2). In
particular, they also are riemannian g.o. spaces and D’Atri spaces [13,14,7].

We prove in Sect. 3 some partial results on the isometry classes of these two-
step homogeneous nilmanifolds and on the isomorphism classes of the underlying
two-step nilpotent Lie groups. Further, we compute the isotropy subgkoop
the isometry group ofN (g, V), (, )), which is given essentially b = G x U,
wheregG is the simply connected Lie group with Lie algelgrandU is the group
of orthogonal intertwining operators &f. The groupU acts trivially on the center
gand eachy € G actsom = g @ V by (Ad(g), 7(g)), where we also denote by
7 the corresponding representation(@fon V. This is very similar to théd-type
case, where essentially = Spin(z) x U (see [46]). We note that the isometry
group of any simply connected homogeneous nilmanifd¥d (, )) is given by
I(N,{,)) = K x N,whereK = Aut(n) N O(n, (,)) is the isotropy subgroup of
the identity element o (see [54]).

The other goal of this paper is to study the notions of commutativity and weak
symmetry within the class of naturally reductive manifalds g, V), (, )). Acom-
mutative spacé a connected riemannian homogeneous spaegose algebra of
all 1(M)P-invariant differential operators is commutative, whet® ) denotes the
connected component of the fullisometry groui)). The notion of commutativity
is strongly related to that of Gelfand pair, and it has been studied in several articles,
see for instance [7,37-39,33,45,4,34,3,5,1].

Let T be any maximal torus of and letV denote ar -invariant complement
in V of the zero weight spacé,, regarded naturally as a complex vector space. We
prove in Sect. 4 the following characterization:

N(g, V) is a commutative space if and only if the actionTof U on V is
multiplicity-free.

The action of a compact group on a complex vector spéde said to bemul-
tiplicity freeif and only if all the isotypic components of the natural representation
on the polynomial ringC[W] are irreducible.

Using this characterization, we shall prove thagifs semisimpleV is irre-
ducible of real type (i.e. the complexificatidfy is also irreducible) and dirfi >
3rank(g), thenN(g, V) is not a commutative space. This gives a large class of
non-commutative, naturally reductive spaces; the first examples of this kind were
given in [27,28]. We also obtain some new examples of commutative spaces.

Finally, we exhibit in Sect. 6 some applications to weakly symmetric spaces.
A connected riemannian manifold is said to baveakly symmetriif for any two
pointsp, g € M there exists an isometry @f mappingp to ¢ andg to p. These
spaces, introduced by A. Selberg in [49], have been studied for instance in [6-8,
38,55,1]. It is proved in [49] that any weakly symmetric space is a commutative
space (with respect taM)-invariance, but this coincides withi#)%-invariance
forhomogeneous nilmanifolds [5]). Thus, the non-commutative manifélgs V)
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described above are the first examples of non-weakly symmetric naturally reductive
spaces.

We wish to note that we have recently become aware that certain one-dimen-
sional solvable extensions of the two-step nilpotent Lie graMps, V), with V
irreducible, have been previously introduced by P. Eberlein and J. Heber in [19]
for the purpose of constructing new Einstein solvmanifolds. Also, the curvature of
these solvmanifolds has been studied in the thesis work of Sven Leukert (see [43]).

2. Description of naturally reductive homogeneous nilmanifolds via
representations

Let M be a connected homogeneous riemannian manifold. Furthermotebketa
Lie group acting transitively and effectively from the left by isometries\w@and
denote byK the isotropy subgroup gf € M. Let g and¢ denote the Lie algebras
of G andK respectively. Supposa is a vector space complement#tin g such
that AdK)m C m (i.e. g = £ ® m is a reductive decomposition). Thus we may
identify my with T, M via the mapx — V. (0), wherey, (1) = exptx.p. We denote
by (, ) the inner product om induced by the riemannian metric &f.

Definition 2.1. A manifold M is said to benaturally reductivef there exists a Lie
groupG and a subspaaa of g with the properties described above such that

(I, yIm- 2) + (¥, [x,2lm) =0  Vx,y,zem, (1)

where[x, y]m denotes the projection ¢f, y] onm with respect to the decompo-
sitiong = ¢ d m.

Condition (1) can be replaced by the following (see [35],p.192,196,201): any
geodesicy of M with y(0) = p is of the formy (r) = exptx.p for somex € m.
Clearly, any symmetric space is naturally reductive.

We consider a simply connected real nilpotent Lie graugndowed with a left-
invariant riemannian metric, denoted &Yy, (, )), where(, ) is the inner product on
the Lie algebra of N determined by the metric. The riemannian manifg\d (, ))
is said to be a (simply connecteapmogeneous nilmanifald

The full group of isometries ofN, (, }) is given by

I(N,{,)) =K x N (semidirect product), (2)

where K = Aut(n) N O(n, (, )) is the isotropy subgroup of the identity and
acts by left translations (see [54]). Thus, the structure®f [, )) is completely
determined byK . Note that, since we always assume tNaits simply connected,
we make no distinction between automorphism&/cindn.

The following result follows from the proof of Theorem 3 in [54].

Theorem 2.2 (54]). Let N1, N2 be nilpotent Lie groups. ThefVy, (, )1) is iso-
metric to (N2, (, )2) if and only if there exists an isomorphism of Lie algebras
A :n1 — nysuchthat{Ax, Ay)s = (x, y)s forall x, y € nj.
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Let N be a two-step nilpotent Lie group and lget be an inner product on.
We call the correspondingV, (, )) a (simply connectedjwo-step homogeneous
nilmanifold Denote byj the center ol and letn = 3 & V be the orthogonal
decomposition. For eache 3 we defineJ, : V. — V by

(Jyv, w) = (x, [v, w]), v,weV. 3)

Note thatJ, is skew-symmetric for alk € 3 andJ : 3 — EndV) is a linear
map. The map$J,}.c; give the relationship between the Lie bracketnofind

the metric(, ), thus they carry a lot of geometric information on the riemannian
manifold(N, (, )) (see for example [31,17,18]). It is easy to prove that the isotropy
subgroupK of I(N, (,)) (see (2)) is given by

K={($T)€0G () xO(V, () : TLT F=Js, xe3. (4

Letébethe Lie algebraaf. Thust = Der(n)Nso(n, {, )),i.e.the skew symmetric
derivations of(n.{, )), and

E={(A,B)€soG,(,) xso(V,(,): BJy = JxB=Jax, x€j}}. (5)

Remark 2.3.If [n, n] # 3 thenN ~ R* x Ny, whereN; = exp([n, n] @ V) and
R¥ = exp(3 N [n, n]t) (exp: n — N is the usual Lie exponential map). In this
case, we will say thatwv, (, )) haseuclidean factorsince the direct product is also
a product of riemannian manifolds. We have that (, )) has euclidean factor if
and only if there exists a nonzexoe 3 such that/, = 0 (see [17, Proposition
2.7)).

Among the two-step homogeneous nilmanifoldstaype groups are of partic-
ular significance. They were introduced by A. Kaplan in [30]. We say(Nat, ))
is anH-type groupif sz = —(x,x)I for all x € 3. We next recall some general
properties oH-type groups, following essentially [6] (see also [7]). ket dim 3
and letCl(m) denote the Clifford algebr@l(z, —| |2). When(N, (, )) is H-type the
actionJ of 3 on V extends to a real representationGitm). SoV is a realCl(m)-
module, and every real Clifford module arises in this way ([30]). The classification
of H-type algebras up to isomorphism is given as follows:

() If m # 3 (mod 49, thenCl(m) has a unique irreducible modulg. The general
H-type algebra with an-dimensional center is then obtained by taking=
3@ (Vo)? with p > 1.

(i) If m = 3 (mod 4, thenCl(m) has two non-equivalent irreducible modulés
andVy. The generaH-type algebra with am-dimensional center is obtained
by takingn = 3 @ (V1)? & (V)4 with p > ¢ > 0, p +¢ > 1, and only
V = (V)P & (V)4 andV = (V1)? @ (V)P lead to isomorphidH-type
algebras.

In both cases can be endowed with a unique inner product (up to isometry) for
which theH-type condition holds. I € 3 is a unit vector, the mag, defined in (3)
extends to an element ki by setting it equal minus the reflection with respect to the
hyperplane:t in 3. The subgroup ok generated by the automorphisfs} cc; is
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isomorphic to the groupin(m). If U denotes the group of orthogonal intertwining
operators for the representation@i{m) on V, thenk® = Spin(m) x U.

Natural reductivity on homogeneous nilmanifolds has been studied by C. Gor-
donin[22] (see also [32,52]). Itis proved in [22] that N, (, }) is naturally reduc-
tive thenN must be at most two-step nilpotent and the following characterization
for naturally reductive two-step homogeneous nilmanifolds is given (see also [42]
for an alternative proof of the following theorem using the theory of homogeneous
structures developed in [51,52)).

Theorem 2.4.[22] Let (N, (,)) be a two-step homogeneous nilmanifold without
euclidean factor(N, (, )) is naturally reductive if and only if

(i) J; ={Jx}xe; is aLie subalgebra oso(V, (,)).
(i) 7 € s0(3, (,)) foranyx e 3, wherer, : 3 — zisgivenby/, J,—J,J, = Jo,
forall x, y € 3.

Note that (i) is equivalent tgz,, J,) € €, the skew symmetric derivations of
n (see (5)).

Definition 2.5. If § is a Lie subalgebra (or just a subspace)Erid(V) such that
h C so(V, (,)), thenwe call, ) an h-invariant inner product .

It follows from Theorem 2.4 that it N, (,)) is naturally reductive, then the
bilinear form t given in (ii) defines a Lie algebra structure grand the map
J : 3 > End(V) becomes a real representation of the Lie algéjpra) on V.
Moreover,(, )|y xv is a J;-invariant inner product and sinag € so(3, (,)) we
have that(, )|;; is adz-invariant, where ad denotes the adjoint representation of
(3, 7).

Conversely, lelg be a real Lie algebra endowed with angathvariant inner
product(, )4, and let(r, V) be a real faithful representation gfendowed with a
7 (g)-invariant inner product, )y and without trivial subrepresentations, that is,
Nyeq Kerm(x) = 0. We define a two-step nilpotent Lie algebwa= g & V with
Lie bracket given by

[9, g]l‘l = [9, V]l‘l = 07 [Va V]l‘l C g’
(6)

([v, wln, x)g = (Tx)v,w)y Vxeg v,welV,
and we endow with the inner product, ) defined by

<7>|g><g:(7)g’ <7>|V><V=<7>Va <gv V>=0 (7)

Finally, we takeN the simply connected Lie group having Lie algelrand we
endow N with the left-invariant metric determined hy), obtaining a two-step
homogeneous nilmanifol@v, (, )).

Since(r, V) has no trivial subrepresentations, we have thit the center of
n. Moreover,V is the orthogonal complement gfand the transformations defined
in (3) for (N, (,)) are preciselyfm (x)}xcq. Thus(V, (, )) has no euclidean factor,
since(m, V) is faithful (see Remark 2.3). It then follows from Theorem 2.4 that
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(N, {,)) is naturally reductive. In facty(g) is a Lie subalgebra afo(V, {,)v)
and sincer (x)m (y) — 7 (y)7(x) = 7([x, y]) forall x, y € g, we have that, =
adx € so(g, (,)g) forall x € g.

Remark 2.6.If a real Lie algebrgy admits an ag-invariant inner product theg
is acompact Lie algebrai.e. any of the following equivalent conditions hold (see
[53)):

(i) gisthe Lie algebra of a compact Lie group.

(i) The Killing form B(x, y) = tr(adx ady) is negatively semidefinite.

(i) g = g @ c with ¢ the center ofg andg = [g, g] a compact semisimple Lie
algebra (i.e. the Killing form ofy is negative definite).

We have proved the following result.

Theorem 2.7. Let g be a compact Lie algebra endowed with adg-invariant
inner product(, )¢ and let(xr, V) be a real faithful representation gf without
trivial subrepresentations and endowed with )-invariant inner product;, )y .
Then the two-step homogeneous nilmanif@\d (, }) having Lie algebran =
g @ V defined as in(6), with (, ) defined in(7), is a naturally reductive space
without euclidean factor. Moreover, any homogeneous nilman(féld, )) without
euclidean factor which is naturally reductive can be constructed in this way.

Clearly, this theorem states essentially the same as Theorem 2.4. However,
we shall see in the next sections that the representation approach is very useful to
study the naturally reductive two-step homogeneous nilmanifolds. We obtain a kind
of classification of such spaces and we compute explicitly their isometry groups.
Also, conditions for the commutativity of invariant integrable functionsibifor
equivalently invariant differential operators) on these groups will be given in terms
of representation theory, and this is the key to our study of commutative naturally
reductive two-step homogeneous nilmanifolds in Sect. 4.

Remark 2.8.Suppose that the representation V) of g is not faithful or it has
some nonzero trivial subrepresentation. We take the orthogonal decompositions

g=moKerr, V=vVie[|Kerr().

xeg

It is easy to see thaj; is an ideal ofg andV; is ag-invariant subspace df, thus
(r1 = mlg,, V1) is areal faithful representation gf without trivial subrepresenta-
tions. Moreoven = n1 @R, wheren = g V,n1 = g1® V1 andRX is a central
subspace of orthogonal tdn, n]. Henceforth(N, (,)) = (N1, (, }lnyxny) X R,
whereR¥ becomes the euclidean factor@¥, (, )) (see Remark 2.3).

3. Two-step nilpotent Lie groups attached to representations of compact Lie
algebras

In this section, we shall study in detail some properties of the two-step homoge-
neous nilmanifolds constructed as follows. In view of Theorem 2.7, these two-step
homogeneous nilmanifolds are precisely the naturally reductive ones.
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Definition 3.1. We say that a tripl€g, V, (, )) is adata setif,

(i) gisacompactLie algebra (see Remark 2.6),

(i) (m, V)isarealfaithful representation gf without trivial subrepresentations,
i.e.(Nyeqg KErm(x) =0,

(i) (,) is a g-invariant inner product omm = g @ V, i.e.(,)g := (, )lgxg iS
adg-invariant, {, )y := (, )]y xv is w(g)-invariant and(g, V) = 0.

Adatasetg, V, (, )) determines a two-step nilpotent Lie group denote¥ by, V)

having Lie algebran = g @ V, with Lie bracket defined by (6). Finally, we endow

N(g, V) with the left-invariant metric determined Wy), obtaining a two-step
homogeneous nilmanifol@dv (g, V), (, )).

Note that the construction of the grow(g, V) could depend on the inner
producty(, ), but as we shall prove in the following proposition, this does not happen.

Proposition 3.2. Let N and N’ denote the two-step nilpotent Lie groups corre-
sponding to the data setg, V, (,)) and (g, V, {,)’) respectively. Thew is iso-
morphic toN’.

Proof. SinceN andN’ are simply connected by definition, it suffices to prove that
their respective Lie algebrasandn’ are isomorphic. The Lie brackets], and

[, I aredefined by (6) using) = (, )g®(, )v and(, )" = (, )’g@(, )}, respectively.
Suppose that

(X, g =(Px,y)y VYx,yeg, (v,wyy=(Qv,w)y, YuvweV,

with P andQ positive definite symmetric transformationsgandV with respect
to (,)g: (. )g @nd(, )v, (, )} respectively.
If x € gandv, w € V then

(Om (v, w)), = (T, w)y = —(v, T(X)w)y
(8)

= —(Qu, Tr(x)w)y, = (7 (x) Qv, w)Y,

and this implies thaDn (x) = n(x)Q for all x € g, i.e. 0 € Endy(V), the
intertwining operators of the representation V) of g. Thus Q% e Endy(V),
WhereQ% denotes the only symmetric square roofofe then have th&iP, Q%) :
n=g®dV — n = gdVisanisomorphism of Lie algebras, i[Q%v, Q%w]n/ =
Plv, w], forall v, w € V. Indeed, ifx € g andv, w € V then

([Q3v, Q3 wlw, x) = (1(x)Qv, Q3w)}, = (Q3n(x)Q%v, w);,
= (Qr(xX)v, w)y, = (T(x)v, w)y

= <[U, w]n’x>g = (P[U, w]n7x>;»

concluding the proof.o
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Remark 3.3.(i) The construction of afd-type group is very similar to 3.1 (see
Sect. 2). If(J, V) is a real representation of a Clifford algel€4(3), then the
correspondingd-type Lie algebrais given by = 3 & V, with Lie bracket defined

as in (6) puttingr = J. Moreover, anyH-type algebra can be constructed in this
way (see [30] or [31]).

(i) It follows from the classification of naturally reductivé-type groups given in

[32] (see also [52] for an alternative proof using homogeneous structures) that a
groupN(g, V) is of H-type if and only ifg = RandV = R? @ ... ® R? is any
representation oR as in 3.1(ii), org = su(2) andV = C? @ ... @ C?, where

C? denotes the standard representatios:a®) regarded as a real representation.
Note that these groups are respectively the Heisenberg groups and its quaternionic
analogues, which are the Iwasaiagroups associated to the simple Lie groups of
real rank on&SU(n, 1) andSp(n, 1) respectively (see [9]).

Theorem 3.4. Let (g, V, (,)) and (¢, V', {,)") be two data sets as in 3.1. The
corresponding two-step homogeneous nilmanifaNgy, V), (, )) and(N (g, V'),

(, ) areisometricifand only if there exist anisometricisomorphisnig, {(, )) —
(¢, (,)) and an isometry : (V, {,)) — (V’, {,)’) such that

Tn(x) T '=n'(¢x) Vxeg. 9)

Proof. Suppose first that these groups are isometric. By Theorem 2.2 we have that
there exists a Lie algebra isomorphigm n — n’ such that

(Ax, AyY = (x,y) Vx,yen, (20)

wheren = g@ V andn’ = g’ ® V' are the Lie algebras &¥ (g, V) andN(g’, V')
respectively. Sincg andg’ are the centers ef andn’, thenAg = g’, and it follows
from (10) thatAV = V’. ThusA is of the formA = (¢, T) with ¢ : (g, (,)) —
(¢, (,))andT : (V,{,)) — (V',{,)) isometries. Sincel is an isomorphism,
we have tha{Tv, Tw] = ¢[v, w] for all v, w € V, and thus it is easy to see
that (9) holds. Furthermore, (9) implies that= (')~ o Ad(T) o 7, and since
7:g— m(g) C End(V),Ad(T) : End(V) — End(V") andn’ : g — n'(g) C
End(V’) are Lie algebra isomorphisms we obtain thatg — ¢’ is a Lie algebra
isomorphism.

Conversely, ifthere exigt andT satisfying the properties stated in the theorem,
it is easy to prove using (9) that

A=@T) n=gdV->n'=goV

is a Lie algebra isomorphism satifying (10), singeaand T are isometries. Thus
(N(g, V), {,)) and(N(g/, V'), {,))) are isometric by Theorem 2.20

We deduce from Theorem 3.4 thatgfis not isomorphic tay’, then a two-step
homogeneous nilmanifold of the foriV (g, V), (, )) can never be isometric to
another one of the forv (¢’, V'), (, )). We then fix a compact Lie algebgaand
we study the isomorphism classes of nilpotent Lie grodigg, V) which can be
constructed by using different representatidnef g.
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Proposition 3.5. Let g be a compact Lie algebra and & and V' be represen-
tations ofg as in 3.1(ii). Let Inn(g) denote the group of inner automorphisms
of g.

(i) Ifthere existp € Inn(g) andT : V — V' suchthatl' 7 (x)T~1 = 7/(¢x) for
all x € g, thenN(g, V) >~ N(g, V'). Wheng is semisimplelnn(g) can be
replaced byAut(g).

(i) In particular, if V >~ V' (equivalent to) theiN (g, V) >~ N(g, V).

(iii) Suppose thahut(g) = Inn(g). If {, ) and{(, )’ are g-invariant inner products
onn =g® Vandn' = g @ V'’ respectively such thatv (g, V), (,)) is
isometric to(N (g, V'), (,)’), thenV ~ V",

Proof. (i) We fix on g an adg-invariant inner product, ) 4. Also, we take ar(g)-
invariant inner product, )y on V and we consider the inner produgt)y, =
(T~YH*(,)y onV’. The inner product, )y is 7’ (g)-invariant, since for alk € g,
v, w’ € V' we have

(7' ), W)Y = (Ta@ T W, w) = @@ or—t, 771w
= (T W, 7@ o) T = (W, T-In'(x)w')
=, 7' x)w).

We construct the group¥ (g, V) and N(g, V') using the inner product§ ) =
(g @ ()vand(,) = (,)g @ (, )y respectively. By Proposition 3.2, these con-
structions do not depend on the invariant inner products chosen.

For allx € g andv, w € V we have that

([Tv, Twly, x)g = (7' (x)Tv, Tw)y = (Trr(qﬁ’lx)v, Tw)y

= (m(¢p~ ), w)y = ([v, Wi, " Lx)g = (P[v, Wi, x)g,

thus[Tv, Tw]y = ¢[v, w]l, for all v, w € V and hencg¢,T) : n = g &
V — n’ = g® V' is a Lie algebra isomorphism. This implies thetg, V) ~
N(g, V'), since both groups are simply connected. Note that we have usgg lan
O(g, (,)g), and ifg is semisimple then Ay) C O(g, (, )g).

(i) It follows from (i) putting ¢ = 1.

(iii) By Theorem 3.4 there exigt € Aut(g) andT : V — V' such thal'z (x)7 1
= 7/(¢x) forallx € g.Since Autg) = Inn(g), we have thatthere exist, ..., x, €
gsuchthaty = @41 4% |fwe put?; = ¢ @), itis easy to see that 0?3 =
Ad(T;) o 7/, then

r

7(¢x) = T,..Tid' ()T LT Vxeg.

Henceforth
7)) =T . .’ 1177 vxeg,

and this implies tha¥ >~ V’. O
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The following example shows that the converse of Proposition 3.5,(ii) is not
valid, and that the condition Agf) = Inn(g) in (iii) can not be removed.

Example 3.6.We consider the real simple Lie algelwa(8). Its complexification
s0(8, C) is of type Oy, and the fundamental representations@f8) are

C8 A2C8, A%, A%,

where(, C8) is the standard representation and., A%), (z_, A%) denote the
spin representations (see [2]). The spin representations are also 8-dimensional
and of real type, i.e. they are complexifications of certain real representations
(ADR, (A*)R of s0(8). It is well known that(r, A%) and (z_, A%*) can be
obtained fromC8 in the following way: there exists an outer automorphigraf
s50(8) such that

(7 0 ¢, C® = (1, AY).

This implies that the corresponding real representations ¢, R8) and
(74, (A%)R) are also equivalent, and hence there efist (A%)r — R® sat-
isfying

Tr ()T t=n(px) Vxeso®).

Using Proposition 3.5,(i) we obtain that(so(8), R®) ~ N(so(8), (A%)r), and
analogously we have the same f¥i(so(8), (A%)g). However, the representa-
tionsR8, (A})R, (A%)R are pairwise non-equivalent, since their respective com-
plexifications are pairwise non-equivalent. We then obtain counterexamples to
the converse of Proposition 3.5,(ii). Furthermore(,if is anso(8)-invariant in-
ner product om = so(8) @ R8, then it is easy to check that the inner product
(,) = (¢, T)*(,) is alsoso(8)-invariant onn’ = s0(8) & (A})r. By Theorem
3.4 we obtain thatN (so(8), R8), (,)) is isometric to(N (so(8), (Ai)R), (L,
and thus this provides a counterexample to Proposition 3.5,(iii), if we remove the
condition Aut(g) = Inn(g).

Remark 3.7.The situation in the example above is very similar tatiype case. In
fact, ifdimz = 3 (mod 4, thenthe algebr@l(3) has two non-equivalentirreducible
modulesV; andV,. However, the correspondidytype algebras; = 3 @ V1 and
ny = 3 ® Vo are isomorphic (see [30] and Sect. 2).

In the following theorem, we shall give some partial results about isometry
classes ofy-invariant metrics on a fixed groul(g, V) . Let B denote the Killing
form of g. If g is semisimple theB is negative definite og, sinceg is compact.
Thus—B is an inner product og and anyy € Aut(g) satisfiesp € O(g, —B). A
left-invariant metric onV (g, V) is said to beg-invariant if it is determined by a
g-invariant inner product on (see 3.1(iii)).

Theorem 3.8. Let(, ) and{(, ) be twog-invariant inner productsom = g @ V.

() I (x,y)g = (¢x,¢y)g forall x,y € g, then(N(g, V), (,)) is isometric to
(N(g, V), ;).

(i) If gissimple, therv (g, V) can be endowed with a uniggeinvariant metric,
up to isometry and scaling.
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(iii) Suppose thag is semisimple and
<xsy)=_B(P-x9y)v (x’yy:_B(P/xfy)’ Vx’yEg'

If (N(g, V), (,)) isisometric to(N (g, V), {,)") then there exist$ < Aut(g)
such thap P¢~ = P’ and (x, y), = (¢ *x, ¢ ty)g forallx,y e g, .

(iv) Suppose thag is semisimple ang = g1 @ ... ® g; is the decomposition of
g into simple ideals and thay; # g; forall i # j. Then(N(g, V), (,)) is
isometric to(N (g, V), (,)") ifand only if(, )g = (, )’g.

(v) Under the hypothesis @fv), the g-invariant metrics onV (g, V), up to isom-
etry, are parametrized by

{(A1, ..., Ap) - A; > O}

Proof. (i) If (v, w),, = (Pv,w)y forall v, w € V thenP is a positive definite
symmetric transformation o with respect to(, )y and{, )y . Since(, )y and
(,)v are g-invariant we have thaP € Endy(V) (see (8)), thus we also have
P? c Endy (V). As in the proof of Proposition 3.5, (iii), i = ¢29%1...e3% we
takeT = ™). ™1 ¢ O(V, (, )y) and thus we have thatr (x)T 1 = 7 (¢x)

1
for all x € g. This implies tha{¢, P2T) :n =g@® V — n = g @ V determines
an isometry betweetW (g, V), {,)) and(N(g, V), {,)) (see Theorem 3.4).
(ii) Since g is simple there is an unique gdinvariant inner product ogy up to
scaling, thus the result follows from part (i), usigg= 1.
(iii) By Theorem 3.4 there exists anisomety, T) : (g®V, {,)) = (g®V,{,))
satisfyingTn(x)T~1 = n(¢x) forall x € g. Thus¢p = 7 Lo Ad(T) o7 €
Aut(g) C O(g, —B) and for allx, y € g we have

—B(¢Px,y) = —B(Px, ¢ 1y) = (x, 67 1y)
= (¢x,y) = —B(P'¢x, ).

This implies thatp P = P’¢, concluding the proof of (iii).

(iv) Itis easy to see that for all# j, g; L g; with respect to ang-invariant inner
product. Thus? and P’ must be of the form

Mlg, Mg
P = , P = , Ai,xg>0. (12)
Ailgy )";clgk

It follows from (iii) that there exist® € Aut(g) such thatp P¢p—1 = P’. The auto-

morphism¢ must preserve the ideafg, since they are pairwise non-isomorphic,

thusi; = 4! foralli = 1, ..., k. This implies thatP = P’ and(, )4 = {, );.
Conversely, if(, )y = (, )’g then the corresponding groups are isometric by

part (i).

(v) It follows clearly from (iv) and (11). O
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Remark 3.9.The property in (v) is essentially different to the analogous intthe
type case. In fact, aH-type group can be endowed with a uniddeype metric,
up to isometry. However, this is still satisfied by the grodfig, V) with g simple

(see (ii)).

We shall now compute the isometry group of a two-step homogeneous nilman-
ifold (N(g, V), (,)), where(g, V, (,)) is a data set (see 3.1). Note that by (2), it
suffices to compute the isotropy subgrakipf the isometry group.

We first consider the groupy := {T € K : T|g = I}. It follows from (4)
that7 e U if and only if T is orthogonal and’ 7 (x)T~1 = 7 (x) for all x € g,
thusU = Endy(V) N O(V, {, )), where Eng(V) denotes the set of intertwining
operators of the representation, V) of g. Suppose that

Vv=Vi'e. eV}’  Vireducible V;%V; Vi#]j,

i.e. the subspace\z@” =V, ®...» V, (r; copies) are thésotypic components of
V. SinceV, is a real irreducible representation, we have thatft¥gd is a real
division associative algebra, and thus g6id) = R, C or H, the real and complex
numbers and the quaternions respectively.

Definition 3.10. Anirreducible real representatiovi of g is said to be of real type,
complex type or quaternionic typelind; (V) = R, C or H respectively (see [2]
for further information).

We then obtain
Endy(V) = gl(r1,F1) @ ... ® gl (ri, Fr),

whereF; = R, C, H depending on the type df;, andgi(r, F) denotes the Lie
algebra of(r x r)-matrixes with coefficients in the rin§. EachA = (a;;) €
gl(r;, ) acts onV," by

Tl Tl
A(vy, ..., vp) = (Zalivi,...,Zar,ivi), (12)
i=1 i=1

wherev; € V; for 1 < i < r;. This implies that
U=Uy x..x Uy,

whereU; = O(ry), U(r;), Sp(r;) depending on the type 6.
Before stating the main theorem, we need to describe the action of the center
ofgonV.

Lemma 3.11. Let(g, V, (,)) be adata setand la§ = g @ ¢, withg = [g, g]
and ¢ the center ofg. If V. = V1 & ... @ V; is an orthogonal decomposition of
V into g-irreducible subrepresentations, then for eack: 1, ..., k there exists a
skew-symmetric transformatioh : V; — V; satisfyingJi2 = —J such that

w(h) = A;(h)J; forsomer;(h) e R, Vheec
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Proof. We have that EnglV;) = R, C, H, thus the dimension of any abelian sub-
space of Engl(V;) acting by skew-symmetric transformations must be at most one.
Therefore, sincer(¢)|y, C Endy(V;) is abelian, there exists a skew-symmetric
transformation/; € Endy(V;) such thatr(¢)|y, C RJ;. Furthermore, the irre-
ducibility of 7 (g)|v, implies that/l.2 = —12]. We then may take a suitable multiple
of J;, concluding the proof.o

Theorem 3.12. Let(N(g, V), {, )) be the two-step homogeneous nilmanifold cor-
responding to the data ség, V, (,)) (see3.1). We putg = g & ¢ withg = [g, g]
and ¢ the center of.

(i) The Lie algebrak = Der(n) N so(n, (, )) of the isotropy subgroui of the
isometry group of N (g, V), {, )) is given by

tE=gou [gul=0

whereu = Endy (V) Nso(V, (,)) andg acts oon = g @ V by (adx, 7 (x))
forall x € g.
(i) The connected component of the identitKaik

K%=G x U°,

whereU = Endy(V) NO(V, (,)), G = G/Kerx andG is the simply con-
nected Lie group with Lie algebrg. The groupU acts trivially ong and if
we also denote by the corresponding representation Gfon V, then each
g € Gactsom = g @ V by (Ad(g), 7(g)).

(iiy If v=v'®..®V}* withV;irreducible andV; % V; forall i # j, then

U=Ui x ... x Uy,
whereU; = O(r;), U(r;), Sp(r;) depending on the type &f, andU; acts on
V/i asin(12).
(iv) If Aut(g) = Inn(g), thenK = G x U.

Proof. (i) If D is an element o then D preserves the centgrof n, sinceD is a
derivation ofu, and it follows from the skew-symmetry @f that D also preserves
the orthogonal complemet of g. We then suppose th@ = (A, B) € € with
A:g— gandB:V — V.Using (5) we obtain

Brn(x) —n(x)B=n(Ax) Vxeg.

We will denote byf, ], the Lie bracket ok and by[, ] the Lie brackets ofy and
End V). If x, y € g then

m(Alx,y]) = Br([x,y]) —n([x, yDB = B[n(x), 7 (y)] — [7(x), 7 (y)]1B
=[B,[r(x), 7 =B, r(x)], (W] + [ (x), [B, = (y)]]

= [r(Ax), t(M)] + [7(x), 7 (Ay)] = w([Ax, y] + [x, AyD.
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Sincer is faithful, then
Alx, y] =[Ax,y]+[x,Ay] Vx,yeg,

obtaining thatd € Der(g). Henceg andc areA-invariant subspaces, and thus there
existsx; € g such thatA|g = adx; (note thafg is semisimple).

We also have thatadxy, 7(x1)) :m = g®V — n = g V is a skew-
symmetric derivation of. Indeed,, ) is ag-invariant inner product and

w(x)m(x) —w(x)m(xy) = w(lxy, x]) Vxeg,
(see (5)). We then consider the element given by
(A, B') = (A — adx1, B — w(x1)),

which satisfiesA’|g = 0 andA’c C .
We next prove thatt’ = 0. Leth € ¢ — {0}, thusB'w(h) — w(h)B' = w(A’h).
If V. =V, ®Kern(h)isan orthogonal decomposition thexg), and in particular
7 (A’h) preserves the subspadésand Kerr (h), since it commutes with (k).
Forv, w € Kerm (h) we have

(m(A'h)v, w)y = (B'w(h)v — w(h)B'v, w)y = (B'v, t(h)w)y = 0,

thusz (A’h) |kernny = 0. LetV, = Vh1 @ ...® V; be an orthogonal decomposition
of v, into g-irreducible subspaces. Fix are {1, ..., r}. By Lemma 3.11 we have
thatn(h)|vlj = J; (taking a suitable multiple of) andn(A’h)|Vé- = A; J;, forsome
Ai € R.Ifwe setB] = p;oB'|y,i : V} — V},wherep; : V — Vj isthe orthogonal
projection, thenB!J; — J; B/ = A;J;. We then obtain-J;BJ; — B! = A;I, and
thusJi_lBi’J,- = B/ + ;1. It follows from the fact thaiB; is skew-symmetric that
A; = 0, and this happens for all= 1, ..., r. Thusz(A’h) = 0 and, sincer is
faithful, we obtain thatA’sr = 0. This implies thad” = 0.

Henceforth, the elemer? = (A, B) € tis of the form

(A, B) = (adx1, 7(x1)) + (0, B)

with B = B — w(x1) € Endy(V) Nso(V, (,)v) = u. Sinceg andu commute,
thent = g @ uis a direct sum of Lie algebras. Note that we are identifygrith
{(@adx, r(x)): x e g} C &.

(i) We have thatG is a compact semisimple Lie group. Eaghe G defines an
elementofK actingom = g&@ V by (Ad(g), 7(g)), where Ad denotes the adjoint
representation of. In fact, it is easy to see that(g)w (x)7(g)~1 = 7(Ad(g)x)
forallx € g, g € G (see (4)). Since Ket C cente(G), the kernel of the morphism
G — K, g — (Ad(g), m(g)) is given precisely by Ket, which is a finite group.
Thus, there is a connected subgroupkbfisomorphic toG/ Kerx, having Lie
algebrag. It follows from (i) thatk® = G x U°.

(iii) The groupU was obtained after Definition 3.10.
(iv) By (4) we have that

K ={(¢,T)€O(g,(,) xO(V,(,)): Ta()T  =m(¢px), x € g}.
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Hence, if(¢, T) € K theng = 710 Ad(T) o = € Aut(g), and since Autg) =
Inn(g) there must exisg € G such thaty = Ad(g). By (ii) we have that
(Ad(g), 7(g)) € K and thust(g)~1T e U. We then obtain thatg, T) can be
written as

(@, T) = (Ad(g), 7()).(I, m(g) 'T),

proving thatk = G x U (note that both subgroups commutet

Remark 3.13If n is anH-type algebra theb = so(3) ® u, where each element of
s0(3) acts naturally og and it can be extended#o= 3@V using the representation
of Cl(3) on V (see [47]). Moreover, we have th&C = Spin(3) x U°, where the
groupU can be computed as described after Remark 3.9 (see [46] and Sect. 2).

4. Commutativity on manifolds N (g, V)

A commutative spads a connected riemannian homogeneous spaceich that

the algebra of all (M)%invariant differential operators is commutative, where

I (M)° denotes the connected component of the full isometry gravp.litis well
known that any symmetric space is commutative (see [21]; or else [25], p.293).
Commutativity in the class of homogeneous nilmanifolds is strongly related to the
notion of Gelfand pair. LeiV be a nilpotent Lie group and &t be a compact
group of automorphisms df. We say thatK, N) is aGelfand pairif the convo-
lution algebra I,lg(N) of K-invariant integrable functions aN is commutative. If

H = K x N then itis easy to prove that:l(N) is isomorphic to E(H//K), the
convolution algebra oK -bi-invariant integrable functions oH (see [40]). Thus

(K, N) is a Gelfand pair precisely wheii, K) is a Gelfand pair in the usual sense
(see [20], p. 36).

It is shown in [4] that if (K, N) is a Gelfand pair the®v must be two-step
nilpotent (or abelian). Note that this is analogous to C. Gordon’s result on naturally
reductive homogeneous nilmanifolds (see Sect. 2). We will thus assum¥ ikat
a two-step nilpotent Lie group.

In the following theorem we give the relationship between commutativity and
Gelfand pairs. We shall first recall some preliminary facts and introduce some
notation.

If K C Aut(N) =~ Aut(n) (we always assume that is simply connected),
we endown with a K -invariant inner product, ) and for each nonzero € 3, we
consider the Lie algebra, = Rx & V., whereV, = {v € V : [v, V] L x}+ =
(Ker J)*, with defining Lie brackefv, wl, = ([v, w], x)x for all v, w € V. It
is clear that the groupy, = expn, is isomorphic to a Heisenberg group, unless
Jy = 0 (i.e. V, = 0), whereN, ~ R. We have thatk, C Aut(N,), where
K, =lkeK:kx=x}.

Definition 4.1. SinceJ, : V, — V. is invertible, there exists an orthogonal de-
compositionVy = V1 & ... ® V, such thadimV; = 2 and

0 —c; ,
Jxlv,:[c, OC} ¢ #£0, Yi=1 ..r

1
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If we takeJ : Vy — V, givenbyJ|y, = %th/l.,thenl2 = —] and thus/ defines

a complex structure of¥,. We denote by, the corresponding complex vector
space(Vy, J).

It follows from (4) that the elements &, commute withJ, and hence they
also commute with/, this implies thatk, acts by complex linear transformations
onv,.

A complex representatiol of a compact Lie grouj is said to bemultiplicity
freeifthe action ofK (or equivalently of its complexificatiok ¢) on the polynomial
ring C[W] given by (k.p)(w) = p(k~1w) is multiplicity free, i.e. its isotypic
components are all irreducible (see [29,26] for further information).

Theorem 4.2. If N is a two-step nilpotent Lie grougk is a compact subgroup of
Aut(N) and H = K x N, then the following conditions are equivalent.

() The algebra off%-invariant differential operators oV is commutative. In
particular, if K is the isotropy subgroup of the isometry groug®t (, )), this
means thatn, (, )) is a commutative space.

(i) (KO, N)is a Gelfand pair.

(i) (K, N) is a Gelfand pair.

(iv) (K, N,) is a Gelfand pair for any nonzero € 3.

(v) The action ofK, (or k%) on the complex vector spadg defined in(4.1)is
multiplicity free for any nonzers € 3.

It is well known that (i) is equivalent to the commutativity of the algebra
LY(HO//KO) (see [25],p.486), thus the equivalence of (i) and (i) follows from
the isomorphism E(H%//K®) ~ L% ,(N). Itis proved that (ii) and (iii) are equiv-
alent in [3] and [5]. The equivalence of (iii) and (iv) is callextalization and it
has been proved in [34] and [5]. Finally, conditions (iv) and (v) are equivalent by
[4].

In this section, we shall study the commutativity within the class of the mani-
folds (N (g, V), (,)) introduced in 3.1, i.e. in the class of naturally reductive two-
step homogeneous nilmanifolds (see Theorem 2.7). Equivalently, in view of Theo-
rems 4.2, 3.12, we shall study conditions far x U°, N(g, V)) to be a Gelfand
pair.

As a first step, we prove that the commutativity @f (g, V), (, }) does not
depend on thg-invariant metric(, ).

Proposition 4.3. If {,) and{, )’ are twog-invariant inner products om = g V
then(N (g, V), (,)) is a commutative space if and only(i¥ (g, V), (,)) is so.

Proof. Let K and K’ denote the corresponding isotropy subgroups. By Theorem
3.12 we have thak® = G x U% and(K")° = G x (U")°, whereU = Endy(V) N
O(V, (,)) andU’ = Endg(V) N O(V, (,)).

If (v, w) = (Quv, w) forallv,w € V thenQ € Endy(V) (see (8)) and hence
the mapT — Q%TQ_% is an isomorphism betwedri andU’. Moreover, since
O commutes with the action @ on V we have that this map is an isomorphism
betweenk °|y and(K”)°|y . Henceforth, if: € g then the actions ok ? and(K")?
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on Vj, are conjugate vi@%. This implies that one of these actions is multiplicity
free if and only if the other is so, hence the result follows from Theorem 412.

Thus, we shall study the commutativity of a gradgg, V) , assuming that it is
endowed with ang-invariant metric. We shall always use condition (v) of Theorem
4.2, thus we have to compute fore g the stabilizerk? = {¢ € K° : ph = h},
wherek © is the connected component of the isotropy subgroul @f, V).

Suppose thag is semisimple. Let € g be a regular element and ledenote
the only maximal torus of (maximal abelian subalgebra) containihgWe note
that) € t* is called aveightof a real representatiam, V) if there existv, w € V
such thatr (h')v = A(W)w andz(W)w = —A(h')v for all i’ € t (see [2]). We
can choosé such that.(k) £ O for all nonzera. € P(V), whereP (V) denotes
the set of weights of the representati¥nwith respect tot. This implies that
Kerm(h) = Vy, the zero weight space &f, and thusV = V}, & V. By Theorem
3.12 we have thak® = G x U, whereU acts trivially ong andG acts by the
adjoint representation gg This implies that the Lie algebra akf,? is Cg(h) ® u,
whereCgy(h) = {x € g : [x, h] = 0} is the centralizer ok in g. Sincer is regular
we have thatCy(h) = t and thus, ifT" is the maximal torus o with Lie algebra
tthen

KP=T x U°, (13)

where each expy € T (k' € t) acts onV by ¢ ). We then obtain a necessary
condition forN (g, V) to be a commutative space: the actior®®) x U onV,

must be multiplicity free (see Theorem 4.2,(v)), whefé) = (™) : i/ ¢ ¢}. In

the following theorem we prove that the condition above is also sufficient for the
commutativity of N (g, V) wheng is semisimple.

Theorem 4.4. A groupN (g, V) with g semisimple is a commutative space if and
only if the action o&™® x U% on V is multiplicity free, wheret is any maximal
torus ofg and V is the complex vector spadé, defined in4.1for anyh € t
satisfyingx(h) # O for all nonzero weight of V. Note thatV = V & Vg, where

Vo denotes the zero weights space of the represent&tiasith respect tct.

Proof. If N(g, V) isacommutative space we have proved above that this condition
must be satisfied.

Conversely, suppose that the actionedf x U° on V is multiplicity free.
If h1 € g — {0} we taket; any maximal torus ofy containinghs. In view of
Theorem 4.2 we have to prove that the actiorkgf on \7;,1 is multiplicity free,
whereV =V, @ Kerm(hy).

There existsA € G such thatdt; = t. We also denote by the corresponding
extensiontm = g®V asanelementdt (see Theorem 3.12). Sinder (x)A~! =
7w (Ax) for all x € g (see (4)) andd commutes with the action @ we have that

ATMT A = Ag™WATIT = (ATWAT Y — TADT  yp ety T € UO

This implies thatd (e™ ) x U9 A~ = ¢™® x U, If v = V1 @ V{ denotes the
decomposition as in the theorem fiat thenAVOl = Vp. Indeed, for alb € Vol,

T(h)Av=An(Ah)v=0 Vhet,
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thusAV?® = V, sinceA is orthogonal. It is clear that the action of
A7 x U%A = ") x O

onA~1V = Vtisalso multiplicity free, and sina€ ) x U° ¢ K andV, c V!
(note thath; € t; andVy C Ker (k1)) we obtain that the action df,?l onVy, is
multiplicity free, as was to be showno

Using the characterization in the theorem above, we shall give now two families
of examples of group®/(g, V) which are commutative spaces. We first need a
lemma about multiplicity free actions of a torus, which will be very useful.

Lemma 4.5. Let C* denote the multiplicative grouff — {0}. A complex repre-
sentationW of ann-dimensional torus’™” is multiplicity free if and only if the
set of weightsP (W) c t* of W is R-linearly independent. In particular, iV is
multiplicity free therdim¢ W < n.

Proof. The complex irreducible representations of a toftis= R"/Z" are all
one-dimensional and of the form

a([x]) = PO} x € R",
for somea : R" — R given by
n
A(XL, oo Xp) = ijxj, k1, ..., kn) € Z" (14)
j=1
(see [2],p-107). Thus, ifo, W) is anm-dimensional complex representatiorisf,
then there exists a badi@, ..., w,,} of W such that
p(xhw; = e *iWw;,  x eR",

where eachi ; is as in (14) for some element @f. The Lie algebra of 7" can be
identified withR” and its corresponding action ¥ is given by

xw; =2mirj(x)w;, x et=R"
We must study the action d@fon the polynomial ringC[W]. We denote by ; the
element ofC[W] given byz; (w) = aj, wherew = ajw1 + ... + anws,. Since the

polynomialz; is linear it is not hard to check that.z;)(w) = z;(—x.w), thus

x.zj(w) = zj(—=x.w) = z;(=2wir1(x)araw — ... — 2701k (X) A W)
= —2nikj(x)aj = —Zrikj(x)zj(w)

and therefore

x.zj=-—2mirj(x)z; VYj=1..m, xet (15)
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Using thatt acts by derivations of€[W] (i.e. x.(pq) = (x.p)g + p(x.q), where
pq denotes ordinary multiplication i€[W]) and (15) it is easy to see that any
x € tacts on a monomial dE[W] by

X (2802 = —27i (kg () + oo A hn (X))ZAE 2K

We then obtain thaf[ W] will be multiplicity free if and only ifkg A1 +... +kp Ay #
kiii + ... + ky Ay forall (ka, ..., k) # (kq, ..., k;,) (€ (Z=0)™). This condition
is equivalent to the sdhq, ..., A} C t* beingZ-linearly independent, and since
the a; are integral (see (14)), we have that this is equivalerit.10..., A,,} being
R-linearly independent, as it was to be shown.

Example 4.6.Consider the groupy/ (su(n), C"), n > 2, whereC" is the standard
representation afu(n) regarded as a real representation. The subspaiceu ()
given by
ihy
t=1H= :> hj=0 h;eR
ihy J

is a maximal torus ou(n). The representatiofl” is of complex type, thug™® x

U® = 7 x S1 (see Definition 3.10). Furthermore, sin@")o = 0, we have that
V = C". The Lie algebra 0¢”V x S! can be identified with @ R, and thus the
weights ofC" are given byP (C") = {A1 + A, ..., Ay + A}, Wherer;(H, r) = ih;
andA(H,r) = ir forall H € t,r € R. SinceP(C") is a linearly independent
subset of t ® R)*, we obtain from Lemma 4.5 that the actionedf? x S onC”

is multiplicity free and henceV (su(n), C") is a commutative space by Theorem
4.4.

Example 4.7 We consider the groupy (so(n), R"), n > 2, whereR" denotes the
standard representation @(n). In this case™® x U% = ¢™®| sinceR” is of
real type. Ifn = 2k + 1 we choose the maximal torus e (n)

0 —hy
hy O

L 0_
and ifn = 2k we take the samebut with the last row and column deleted. It is
clear that in both cases we have to analyze the actiefi8fon V = C given by
e (cq1, ..., cx) = (ihict, ..., ihgcy) (see 4.1). The Lie algebra ef V) is t and
P(CK) = {1, ..., A}, wherex;(H) = ihj, thus P(C*) is a linearly independent
subset oft*. By Lemma 4.5 we have that the actionadf® on Ck is multiplicity
free and thusV (so(n), R") is a commutative space (see Theorem 4.4).
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Remark 4.8.Itis easy to see that the grodf(so(n), R") is precisely the so called

free two-step nilpotent Lie group engeneratorsThese groups have been consid-
ered by many authors, see [4,55,50] for instance, and the commutativity has been
proved in [4]. Moreover, it was also proved in this work that the only Gelfand pair
of the form(K, N (so(n), R")) is (SO(n), N(so(n), R™")).

Lemma 4.9. Let W be a complex representation gfsuch thatdim¢ W, = 1 for
all » € P(W) — {0}. Thendim¢c Wp < rank(g).

Proof. If r = rank(g) we takeA = {w, ..., a,} the set of simple roots of.
Denote byr; € P(W) the maximum weight oW and letw; € W,, — {0}. If
X—q) X, W1 € Wo with X0 € B—oy» thenx_aiz...x_ait wy € Wafl’ and thus
X—q; - X—;, W1 € X—oy Wey, . SinceWp is C-linearly generated by the elements of
the formx_a,.1 X gy W1 WE have that

Wo C<x_qWe U...Ux_o, Wy, >cC .
Now, using that din#¥,, < 1 for alli we obtain that dinWp < r. O

The following theorem gives a large family of non-commutative naturally re-
ductive spaces. The first examples of this kind were given in [27,28].

Theorem 4.10. If the groupN (g, V), with g semisimple and’ irreducible of real
type (see Definition 3.10) is a commutative space, then/ < 3rank(g).

Proof. We will use Theorem 4.4. In this case we have #fap x U0 =™ |f
V =V & Vp as in the theorem we take a real basid/of

V = {vlv wlv sy Un’ wn}R

such that
0 —xj(h)

n(h)|{vj,wj}R = [)\.](h) 0 Vh et.
Thus, as a complex vector spadé,: {v1, ..., vy }c and the action is given by
m(h)v; =ir;(h)v; forall h € t. Suppose thaW (g, V) is commutative. Since the
action ofe™® on V is multiplicity free, we obtain from Lemma 4.5 that< dim
and{X1, ..., A, } is a linearly independent subset 8f SinceV is of real type,
we have that its complexificatioW = C ® V, which is naturally a complex
representation aof, is also irreducible. Furthermore,

dimc W — dimg Wo = dimV — dim Vo = dimg V = 21 < 2dimt.
We thus obtain that the complex representatidiof g satisfies:
dim¢c W < 2rank(g) + dim¢ Wo.
dimc Wy, =1 Vie P(W)—{0},
whereW, denotes the.-weight space of¥. Now, using (16) and Lemma 4.9, we
obtain that dimV = dimg W < 3rankg. O

As an example, we takg = su(2). All the odd dimensional irreducible rep-
resentations ofu(2) are of real type, but in view of Theorem 4.10, we have that
only N(su(2), V) with the 3-dimensional representatibh= R3 is a commuta-
tive space. Note thatu(2) = so(3), andV = R3 is the standard representation of
50(3).

(16)
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5. Applications to weakly symmetric spaces

A connected riemannian manifold is said to baveakly symmetriif for any two
points p, g € M there exists an isometry @ff mappingp to ¢ andg to p. This
notion was introduced by A. Selberg in [49]. This is not the original definition given
by Selberg, but it is equivalent to it (see [8]). It is easy to see that any symmetric
space is weakly symmetric.

We note that the commutativity of a space (see Sect. 4) is defined sometimes
with respectto the fullisometry groupl ). The equivalence of these two notions is
still an open problem. However, in the class of two-step homogeneous nilmanifolds
both notions coincide (see Theorem 4.2 (ii),(iii) and [6]).

Theorem 5.1 (49]). Any weakly symmetric spaééis a commutative space (with
respect td (M)-invariance).

The converse is known to be false, there are examples in [40,41] of modified H-
type groups which are commutative spaces and not weakly symmetric. A motivation
for the study of the commutativity and weak symmetry on manifoMgy, V), (, ))
has been the fact that, up to now, there were no examples of non-weakly symmetric
naturally reductive spaces. The following result provides a large family of such
examples, and its proof follows from Theorems 4.10, 5.1.

Theorem 5.2. Any (N (g, V), (, )) with g semisimple} irreducible of real type
anddimV > 3rank(g) is a non-weakly symmetric naturally reductive space.
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