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Abstract. In this paper we define a Moebius invariant metric and a Moebius invariant
second fundamental form for submanifoldsSihand show that in case of a hypersurface
with n > 4 they determine the hypersurface up to Moebius transformations. Using these
Moebius invariants we calculate the first variation of the moebius volume functional. We
show that any minimal surface 8% is also Moebius minimal and that the imageSihof

any minimal surface iiR" unter the inverse of a stereographic projection is also Moebius
minimal. Finally we use the relations between Moebius invariants to classify all surfaces
in S with vanishing Moebius form.

0. Introduction

In this paper we study submanifoldsShiunter the Moebius group. We define

a Moebius invariant metrig and a Moebius invariant 2-forf called the
Moebius second fundamental form. We show that in case of hypersurface
with n > 4 {g, B} form a complete invariant system which determines the
hypersurface up to Moebius transformations (cf. Theorem 3.1). Using these
Moebius invariants we calculate the Euler-Lagrange equations for the volume
functional with respect t@ (cf. Theorem 4.1). In case of surfacesSh

a critical surface to this functional is exactly a Willmore surface, which is
well-studied (cf. [2], [5], [8]). We show that any minimal surfaceSihis also
Moebius minimal and that the imageSh of any minimal surface iiR” under

the inverse of a stereographic projection is also Moebius minimal, known for
n = 3(cf. [2], pp24). Finally we use the relations between Moebius invariants
to classify all surfaces i with vanishing Moebius form. We show that the
image inRR? of such surface unter a stereographic projection is Moebius
equivalent to a circular cylinder, or a torus of revolution, or a circular cone
(cf. Theorem 5.1).
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1. The Moebius metric for submanifold inS™

Let R’{” be the Lorentz spade"+? with the inner product, ) given by

(X, Y) = —xoyo+x1y1+ - + Xnt1Vn+1, (11
whereX = (xg, x1, -+, Xp41), ¥ = (yo, Y1, - - » yus1) € R"T2. We denote
by C'-* the half cone irR% "2 and byQ" the quadric iR P+ :

Cili= (X e R{™? | (X, X) = 0, x0 = p(X) > 0}, (1.2)
Q" :={[X] e RP"™ | (X, X) =0}, (1.3)

wherep : ]RTZ — R is the projection ofX to its first coordinater,. Let
O(n + 1,1) be the Lorentz group dR'{*Z keeping the inner produdt )
invariant. ThenO (n + 1, 1) is a transformation group a@" defined by

T(X]) :=[XT], X eC™  Te O(n+1,1).
A classical theorem states that

Theorem 1.1. Two submanifolds, x : M — S" are Moebius equivalent if
and only if there exist® € O(n + 1, 1) such thafl, x] = T([1,x]) : M —
Q"

Letx : M — §" be a m-dimensional submanifold §f. We defineX =
[1,x]: M — Q". For any local liftZ of the standard projection : C’ﬁl —
Q" we get alocal lifty := Z o X of X : M — Q". Such lifty exists around
each point oM.

Lety : U — CTl bealiftof X =[1,x] : M — Q" defined in an
open subset/ of M. Then we have = A(1, x) for some smooth positive
functioni : U — R. Thus(dy, dy) = A%dx - dx is a metric conformal to
the induced metridx - dx of x : M — S". We denote by, A andk the
gradient, the Laplacian operator and the normalized scalar curvature of the
metric(dy, dy). Then we have

Theorem 1.2. The 2-form
g = ((Ay, Ay) — m®k) (dy, dy) (L4

is a globally defined Moebius invariant af : M — S". Moreover,g is
positive definite at any non-umbilic point lgf.

Proof. Let y be another lift of [1x] defined on an open sét of M with
UNV # ¢. We denote byA andk the Laplacian operator and the normalized
scalarcurvature iy, dy). Thenwe can find a smooth functien UNV —
R such thaty = ey onU N V. Since(y, y) = 0 and{dy, y) = 0 we have

(d3,d5) = e* (dy,dy). (1.5)
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Let {u?, u? , u"} be alocal coordinate systemnhn V. For any function
F:M— R we denote byF; the derlvatlv . Then we have

m

(dy,dy) = > (v yj)du’ @ du? =Y gidu' @ du’. (1.6)
i,j=1 i,j=1

We denote byg”/) the inverse matrix ofg;;), by {I'};}, {1“" } the Levi-Civita
connection ofdy, dy) and{dy, dy) respectively. By a dlrect calculation we
have

f‘lk] = Flk] + 'E,'8§ + rjél{‘ — kagklgij; (17)
2 -2
=20 — At =25 v P): (1.8)
m m
Aj=e " S (AT+m—D|VTIP)y+Ay+m Y ugiyp. (L9
i,k=1

Sinceg;; = (y:, y;), we have

<Hes$y)ljs yk <)’z/ Zr,j)’x, yk>

= {vij, y) = E“gkf)f + (gri)j — (8ip)0) = 0.
In particular we get
(Ay,y) =0, 1<k <m. (1.10)

Using (1.6) we get

(Ay,y) =) g <y,, ZF,]yx, >— > 8 (v y)
ij=1 '

==Y ¢’ (yi.yj)=—m.

ij=1

It follows from (1.9) and (1.10) that

(1.11)

<A§, Ay) = e 2 [(Ay, Ay) — 2mAT —m(m — 2)|VT|2}. (112
Thus (1.5), (1.8) and (1.12) yield

((85. &5) = m?k) 5. d5) = (Ay. Ay) =) (dy.dy) . (113
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From (1.13) and Theorem 1.1 we know that the 2-fgrdefined by (1.4) is a
globally defined Moebius invariant of: M — S". To show thag, is positive
definite at any non-umbilical point we take= (1, x) . Let{e1, e2, - - - , e}
be an orthonormal basis fafM with dual basis{6,, 0-, --- , 6,,} and let
{ems1, -+ - , €} DE @an orthonormal basis to the normal bundle of S”. We
write the second fundamental forhd of x as

Z Zhae ®6)e,.
a=m+1i,j=1

Then from the structure equations for M — S" we have

Z Z h)e, — (1.14)

a=m+1 i=1

From (1.13) and the Gauss equation we get

(Ay, Ay) —m%
= Z (Zh ) + m?
a=m+1
2 ha 2 . . hq' 2
" (m—l) (a;l(; ) azm;lijz_l( D (L1s)

- S LS ()
a=m+1i,j=1 am+l

2
m 1
= l”ll——tr(ll)]

’

wherel = dx - dx is the first fundamental form of. This shows thag
is positive definite at any non-umbilical point and tigat= 0 at umbilical
points. O

Definition 1.3. The metricg defined by (1.4) is called the Moebius metric
forx : M — §".

2. Moebius invariants for submanifolds inS™

In this section we assume that: M — S" is a connected submanifold
without umbilical point. Since in this case the Moebius megris positive
definite, there exist a unique lifft : M — C’fl of[1,x]: M — Q" such
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thatg = (dY, dY). We callY the canonical lift of [1x]. By takingy .= Y
in (1.4) we get

(AY, AY) = 1+ m?. (2.1)
Let {E1, Eo,--- , E,,} be a local orthonormal basis fgr with dual basis
{w1, w2, -+, wy}. FOrany functionF : M — R we denote byF; the partial
derivativeE; (F). Then fromg = (dY, dY) we get
(Yi,Y;) =8y, 1<i,j<m. (2.2)
We define 1 1
N =—=—AY — — (AY,AY)Y. (2.3)
m 2m?
From the facts (cf. (1.10), (1.11)) that
(AY,Y)=—-m, (AY,Y)=0, 1<k <m, (2.5)

one can easily verify that
(N,Y)=1, (N,N)=(N,Y)=0, 1<k <m. (2.6)
Thus spafv, Y} 1 span{Yy, --- , Y,,}. We define
V = {span{N, Y} @ span(Yy, - - - , Y, }} ™. (2.7)
ThenV is a positive definite subspace®} ™2 such that
R = span(N, Y} @ span(Yy, --- , ¥,,} ® V. (2.8

We call V the Moebius normal bundle far: M — §".

Let{E, 1, -, E,} be alocal orthonormal basis for the bun3ever
M. Then{Y, N, Yy, ---,Y,, E i1, -+, E,} forms a moving frame iﬂR’f’z
alongM. By using the range of indices:

1<i,jk,A<m; m+1<a B,y <n;

and (2.4), (2.6) we can write the structure equations as follows:

dy = oY (2.9)
AN =Y YiYi+ ) fuEa: (2.10
dY; = =¥ =N + ) oY+ ) ik (211)

j o
dEy, = —¢oY — ZwiaYi + Za)aﬁEﬁ; (212)
i B
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where{y;, wij, ®ia, ¢o, wap} are 1-forms oM with w;; = —w;; andw,g =
—wg,. By exterior differentiation of these equations we get

Y winyi =0 ) wigAw; =0 (213

dow; = Zwi./ Nwj; (214)
J

dVi =Y i AV =Y O A a (2.15)
J o

g — ) wop A b == D wia A Vi (2.16)
B i

da),'j — Za)ik NWgj = — Zwm NWjy — Wi N\ 1#/ — 1,01' Nwj; (217)
k o

da),-a—Za)i,g/\w,ga—Za)ij/\a)ja—i—a)i/\qﬁazo; (2.18
B J

dweg — Za)ay N wyg = — Zwm A wig. (2.19
14 i

By (2.13) and the Cartan’s Lemma we can write

Vi = ZAijwj7 Aij =Aji; wig = Zfojwj, B, =Bj; (220
J J

where{A;;} and{B;"j} are locally defined functions. It is clear that

A= ZA,-ja),-@a)j; B:.= ZZB;;Q)Z'(@C()]'EO,; (221)
i,j @ ij
=) ¢uEy =) ClwiE, (2.22)

are Moebius invariants. We will cdll the Moebius second fundamental from
of x and® the Moebius form of. We define

dC + ) Ciwji+ ) Cloga =) Cjo;. 223
j B j
dA;; + Z Ajrwij + Z Ajori = Z Ajj k. (2.29
k k k
dBf + ) Bjow + ) Bfow + ) Bloga =) B (225
k k B k

1
dw;j — Zwik Ny =—3 Z Riji.wr Ay, Riji. = —Rijuk;  (2.26)
k 3
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1
% ij

Then (2.15)—(2.19) are equivalent to the following equations:

l] kK — 1k j— Z(Bﬁcca ) (228)
Z(B Arj — B Au):; (2.29
B — BY ;= 8;;CF — 8y C%; (2.30)

Riji. = Z(Bﬁ(B?A—quxB?k)-i-(fsikAj,\-i-ijxAik—5iAAjk—5jkAi,\)§ (2.31)

o

Rapij = Y (BYBJ, — B} Bf). (2.32)
k

By (2.11) we have
Y =—tr(A)Y —mN + Y " BYE,.
It follows from (2.1) and (2.3) that
1 2 o
tr(A) = o—(L+mc); Z BY =0. (2.33)

By taking trace in (2.30) and (2.31) we get

- Z Bf ;= (m —DC}: (2.34)

Ry == 203D BBG Fir (ks +m = DAy (239

Taking trace in (2.35) and using (2.33) we get

3 Z(B“)Z - 1. (2.36)

From (2.34) and (2.35) we know that in case> 3 all coefficients inthe PDE
system (2.9)—(2.12) are determined by the Moebius metribe Moebius
second fundamental fori& and the normal connectioii* := {w.s} in the
Moebius normal bundl¥ .
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3. Fundamental theorem for hypersurfaces irs™

In this section we give the relations between the Moebius invariants intro-
duced in 82 andSO(n + 1l)-invariants ofx : M — S". We give also a
Moebius fundamental theorem for hypersurfaceS"in

Letx : M — S" be a submanifold without umbilical point i§"'. Let
{e1, e2, -+ , ey} be alocal orthonormal basis f@MM with respect t@ix - dx.
Let{61, 62, - -- , 6,,} beits dual basis. L€t,,.1, - - - , ¢,} be alocal orthonor-
mal basis for the normal bundl¥ (M) of x in S”. We write the second
fundamental fornT 7 and the mean curvature vectérof x by

1= "h6;®0jeq, H= %ZZh?ﬁ-ea =Y He,. @1
ij o i o

o

Then we have the structure equationsifarM — S":

dx = 6ie;(x); (3.2)

d(ei(x) = Oije;(x)+ Y Y h¥feq — Oix; (3.3)
J a

dew ==Y hii0jei+ Y Oupep: (3.4)
ij 5

where{6,,} is the normal connection afin N(M). SinceY = p(1, x) for

m 1
p = ——=II——tr(IDI],
m—1 m

ei(Y) = ei(logp)Y + p(0, ¢; (x)). (3.9

Thus{E; := p~le;} is a local orthonormal basis for the Moebius megic
From (3.5) we get

we have

dY; =(0,de;) (modY, Y;)

= Z (o, > e — aijx> plw; (ModY, ¥). (3.6)

J o

Thus we have
AY =mp~t (o, > Hey — x> (modY, Yy). (3.7)

We define
E,=(H" e, +H); m+1<a<n. (3.8)
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Then we have
(Eq,Y) = (Eq, Yi) = (Eq, AY) =0, (Eq, Eg) = 3ap. (3.9

Thus{E,} is a local orthonormal basis for the Moebius normal buridle
From (3.6), (3.8) and (2.11) we get

o -1/ o
Bij =p (hij —H 8,']'), (310)

where{Bl.aj} are the components of the ten®mwith respect to E;}. Thus
we have

B=Y Y p(hf; — H*8;)6; ® 0;(H*, eo + Hx). (3.1
o ij
From (3.8) we have
dE, = (dH%,dey, + dH*x + H%dx). (3.12
Thus we get
Wyp = <dEa, Elg> = (dea, eﬂ> = Uqpp- (313)

Therefore, the bundle map: N(M) — V defined by
fley) = (H*, eq + H"x)

preserves the inner product and the connection. In particular, the normal
connectionf,g} in N(M) is a Moebius invariant.

By a direct calculation we get the following expression of the Moebius
invariantsA and® := )", Cfw; E,:

Ajj=—p? (Hes$j (logp) — ei(logp)e;(log p) — Z Hah?j)

1
— 50 (IV logp[* — 1+ DH“)Z) Bij: (3.14)

Cy=—p 2| HY+ D (hf; — H*S;)ej(logp) | : (319
i

where{Hess;} and{H} are Hessian-Matrix oflx - dx and the covariant
derivative of the mean curvature vector fieldxah the normal bundlev (M)
(with respect to the basig;} and{e,}).

Now we consider the case that M — S" is a hypersurface, i.en =
n — 1. In this case we get from (3.10) that

S:=p NS — Hid) =) _ Blw;E}, (3.16)
ij
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wheresS is the Weingarten operator far: M — S”. It follows from (3.12)
that p~1(S — Hid) is a Moebius invariant which determines the terBor
We call p~1(S — Hid) the Moebius shape operator of Since form =

n — 1 > 3 all coefficients of the PDE system (2.9)—(2.12) are determined by
{g, p~X(S — Hid)}, we get the following theorem:

Theorem 3.1. Two hypersurface;,x : M — §" (n > 4) are Moebius
equivalent if and only if there exists a diffeomorphsim M — M which
preserves the Moebius metgi@and the Moebius shape operafe p~1(S—

Hid).

Remark 3.2.In case n=3 a complete Moebius invariant system is given in
[10].

4. The first variation of the Moebius volume functional

Letxp : M — S" be a compact submanifold with boundayl . We denote

by d My the volume form ofg with respect to the metrié€xg - dxo. Then we

define the generalized Willmore functiorf@l as the volume functional of
the Moebius metrig:

WM) = (ml_l)

wherel = dxg-dxo, II andH is the first, the second fundamental form and
the mean curvature vector gf in S” respectively. In this section we assume
thatxo has no umbilical point.

Letx : M x R — §" be a smooth variation ofy such thatc(-, ) = xg
anddx, (T M) = dxo(T M) ondM for each (smally. We call such variation
an admissible variation ofy. We note that the two boundary conditions for
an admissible variation disappeani¥l = ¢. For eachr we denote bye;}

a local orthonormal basis f&fFM with respect taix; - dx, with dual basis
{6;} and by{e,} a local orthonormal basis for the normal bundlexpfLet
Y=pLx) MxR— C’jfl be the canonical lift ok; andg, = (dY, dY)
be the Moebius metric of,. Let {E; := p~te;} be a local orthonormal basis
for g, with dual basidw; = p6;}. Using the Laplacian operatax of g, and
(2.3)we candefinethemap: M xR — IR'{JFZ. Let{E,} bethe orthonormal
basis for the Moebius normal bund¥g of x; defined by (2.7). We denote by
d the differential operator ol x R. Since{Y, N, Y;, E,} is a moving frame
alongM x R, we can find 1-forms

NIE

/ |11 — HI|"dMo = Vol,(M), (4.1)
M

{V’ VD(’ "Ilia q)()lv Qia Qija Qio{a QD(,B}
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onM x R with ;; = —Qj; andQ,s = —Qp, such that

dY =VY + > QY+ Y VoEq: (4.2)
i o
AN = —VN+Y WY, + Y OyEq; (4.3)
dY; = —W;Y — Q;N + > sz,;,Y,,: > QiaEa: (4.4)
dE, = —®,Y — V,N — iszmyi + Y QupEp. (4.5)
i B

Taking the differential of (4.2)—(4.5) we get

dV:Z\IJiAQ[+ZCDa/\Va; (46)
dQ,‘:ZQU‘/\QJ"FV/\QI'_ZVO{/\QW; (47)
j a
AVo = Qup AVp+ D QA Qg+ VAV 4.8
B i
d\IJl-:ZQU‘/\\IJ]'—ZCDQ/\Q,'Q+\I"1‘/\V; (49)
j a
APy = Qup A Dp+ Y U AQig+ P AV (4.10
B i

dQij = QAU — Y Qs A Qja — Wi AQ — AV (41D)
k o

dQig =Y Qi A Qo+ D Qp AQpa — Vi AV — Qi A Dz (412)
J B
anﬁZZQay/\Qyﬂ_ZQia/\Qiﬂ_q)a/\Vﬂ_Va/\cDﬂ- (413)

14 i
SinceY = p(1, x), if we write the variation vector field of in TS" by

ox 1
5P (Z vie; + Xa: Uoteot) , (4.19

i

then by (3.5) and (3.8) we can find a functionM x R — R such that

%:UY_{_ZWY,--{—Z‘X:U“EQ. (4.15
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From (4.2) and the fact thatt= ), w, E; + dt% onC*®(M x R) we get
V =vdt; V,=uv.dt; Q; =w;+ vdt. (4.16)
SinceT*(M x R) = T*M & T*(R), we have the decomposition
U, = y; +a;dt; Dy = ¢y + bydt,; (4.17)
Qi = wj; + Pijdt; Quy = wig + Ligdt; Qup = wep + Qupdt, (4.18)

where{a;, by, P;j, Lio, Qup} arelocal functions with?;; = —P;; andQ.p =
—Qpa- We denote byi,, the differential operator of*M, then we have
d= dM+th onT*M @ T*(R). Using (4.7), (4.16), (4.18) and comparing
the terms mT*M A dt we get

dwi
Y= Z (v, Py U — Y UO,B”> w;, (4.19)

o

where{v; ;} is the covariant derivative df; v; E; with respect tg,. Here we
have used the notations of Moebius invariaf§, A;;, C;'} for x; defined
by §2. By the same way we get from (4.8) and (4 12) that

Lig = Va,i +Zv, & (4.20)

Ba)m
ar

Y | Liwj+ Y PuBf—Y Bl QputAijva+bubij—viCY | ),
J k B
(4.21)
where {v,;} and {L;, ;} are covariant derivatives ob_, v, E, and
> iw Licwi E4 respectively. Using (4.21), (4.19), (4.20) and the second equa-
tion of (2.20) and (2.33) we get

BB“
at + vaz/ +kaBlk] +Z(PlkBk] PkJBlO;C)

— Z Bij Qﬁa + Z UﬁBﬁchj + A,’jva + ba&j — U,'C?.

B kB
(4.22)
It follows from (2.36) that
Y B Y BB+ Y A
ijo aff ijk ijo
+ > wBf B — > viCYBf. (4.23

ijka ijo
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From (2.30) and (2.36) we get

Z w By B = Z v CY B

ijka ijo
Thus we get from (4.23) that

L D BSvay+Y > BLBEBLus+ Y AyBive. (4.24)

ijo af  ijk ijo

Now we calculate the variation of

V() = Vol(g) = /

M
whered M is the volume form fog,. From (4.19) and (4.24) we get

V’(t):/M<IZvi,i+mv> dM:m/MvdM
ZB Vaij T Y Y BYBEBLvs+ > AijBEv, { dM.

ijo af ijk ijo

a)l/\wz/\---/\wmzf dM,
M

(4.25

From the fact thak (-, 1) = xg anddx,(TM) = dxo(TM) on dM for all
small¢, we know that at each point &M we havev; = v, = 0 and

0 0x 1
0= 5(6{)61) =d (E) =p <zi:dviei + Xa:dvaeﬂt) :

Thus we get also, ; = 0 ondM. It follows from (4.25) and Green’s formula
that

V(t)_—f Z ZBU!]

(4.26)
+ Z > BLB B + Z Ay BS t ved M.
ijk
It follows from (4.14) and (4.26) that

Theorem 4.1. The volume variation of the Moebius metric depends only
on the normal component of the variation vector field. A submanifoid

M — §" is a Moebius minimal submanifold (i.e. a critical submanifold to
the Moebius volume functional) if and only if

ZB’]l]+ZzBﬁBﬁBk]+ZAIJ l,—O, m+1<a=<n. (427

ijk
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Using (2.34) and (2.35) we can write the Euler—Lagrange equations (4.27) as
Zc +Z (—R,, Al-j) B=0 m+l<a<n (428

Theorem 4.2. Any minimal surface ii§" is also Moebius minimal.

Proof. Letx : M — S" be asurfaceiff". Let{es, e5} be alocal orthonormal
basis ofdx - dx and{e,} a local orthonormal basis for the normal bundle. We
use the notations in 82 and §3. From (3.10) and (3.14) we get

Z AijBf; = =) p~*(Hess;(log p) — e;(log p)e; (log p)) B, (4.29)
ij
-1 B pb
+po 'Y HPBLBE.
ijB
Since we have the following relations of connections
wij =0;; +e;(10gp)0; —e;(109p)0;; wup = Oug,
a direct calculation implies
> Cii=—)_ p» *(Hess;(logp) — ei(log p)e;(l0g p)) B — p~*AH",
i ij

(4.30)
whereAH® := ), H%. Thus we have

> ocy ZA” B =—p | AH*+p? Y HPBlB:]. (43D
i ijB

If x is a minimal surface, that i#* = 0 andR;; = «4;;, we know from
(4.28) and (4.31) that is Moebius minimal. O

Theorem 4.3. Letu : M — R"” beaminimal surfaceiR”. Leto : R" — §"
be the inverse of a stereographic projection. Ther= o ou : M — S" is
Moebius minimal.

Proof. We may assume that is the inverse of the stereographic projection
from the point(0, - - - , 0, —1) given by

2u 1-— ||u||2>
= , , e R”". 4.32
o (1+ 2 T+ uz) (492

Then we have

4
dx -dx = ——=du - du. 4.33
(1 + [Jul?)?
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Let {e1, e2} be a local orthonormal basis féiM with respect talu - du gnd
{e,} alocal orthonormal basis for the normal bundle 0fVe denote th;”j}
the second fundamental form @fwith respect tde;, .} and by)_, H"¢,
the mean curvature vector of Then the basiée; } and{e,} defined by
1 2 1 2
o = 2, 2 G (4.34)
2 2

is alocal orthonormal basiBM with respect telx - dx and the normal bundle
of x respectively. We use the notations in 82 and 83«fef o o u. Then we
have the following relations between the second fundamental fonraof
u:

1+ Jlul®
2

_ 1

5 H® +¢é,-u. (4.35

h?j: hf‘j—l-éa-u&-j, Ha
Let {6;;} and{6,s} (resp.{d;;} and{d,s}) be the Levi-Civita connection and
the normal connection of : M — S” (resp.u : M — RR") with respect to
{e;, ey} (resp.ie;, e,}). Then we have

2u-e;(u)~ 2u-e) -~ -
u-e;(u) _ u - e;(u) Oup = B, (4.36)

0ij = 0 + i B
T T ui? T4 flul?

where {61, 65} is the dual basis fofé;}. Now let A and A be the Lapla-
cian operator with respect toandu respectively. Then by a staightforward
calculation we get

2 B
AH*+p* Y HPB/ B}
ijB

3

1+ flul? < ~8 B g 7

= (T AH® + § HP (hf; — HP8;j)hs;
ijB

(4.37)

Thus Theorem 4.3 follows from (4.31) and (4.37)1
Remark 4.4.Letu : M™ — R”" be a submanifold ifR”. Then
~ m o 7
gr=—g Z(hij)z —m Y (H*)* { du - du
ijo o
isa Moebius invariant metriciR”. In case m=2 the Euler-Lagrange equations
to the variation of the volume functional gfis given by
AR+ " HP (R, — HP8;j)hf; = 0. (4.38)
ijB
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5. Special Moebius surfaces ii$3

In this section we use the formulas given by §2 to classify all surfacg? in
with vanishing Moebius forn® := ¢, defined by (2.22).

Letx : M — S® be a surface without umbilic point. We assume that for
x the Moebius formd = 0. We use the notations in §2 and omit@land
B in the formulas because the codimension now is one. Since the Moebius
shape operatd® for a surface has eigenvaluésand—%, we can find an
orthonormal basi$E, E,} of the Moebous metrig such that

1 1
Bi1=—=, Bi2=B»1=0, Byy=——. 51
=7z b 21 22 5 (5.1)
From the assumption thgt = ) . C;w; = 0, we know from (2.30) that
{B;;«} are totally symmetric. Since

dBij+ Y Byow + Y Buwi; = Bijxx. (5.2
k k k

we getB11, = Byy1 = 0.Bytakingi = 1andj = 2in (5.2) we geto;, = 0.
Thus the Moebius metrig is flat. From (2.29) we know that the matrices
(A;j) and(B;;) commute, which implies that

Ann=a, Aip=A2»n1=0, Ap=>. (5.3

Let (u, v) be a coordinate system ft such thate; = .= andE, = 2,
then by (2.28) we know that depends only om andb depends only om.
Moreover, from (2.33) we have + b = %, which implies thatz andb are
constant. Thus we can write the structure equations (2.9)-(2.12) as

N, =aY,, N,=0Y,; (5.4
1 1
Yuu=—aY—N+§E, Y., =0, YUU=—bY—N—§E; (5.5)
1 1
E, = _EYM’ E, = EYU. (5.6)

By (5.4) and (5.5) we know that = f(u) + g(v) for some l-variable
functionsf andg, which satisfy

£+ <2a + %) Faw =0, g+ (Zb + %) JW =0 (57

We define: = 2a+3,then 3+ = 1—r. By exchanging andv if necessary
we may assume that < 3. Thus we have to consider the following three

1
case: (i = 0; (i) 0 < y Z L (iiiy r < 0.
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In case (i) we can easily get a unique adapted solution (up to transforma-
tionsin0O (4, 1)):

1 : 1
Y = (—u2 + 1, cosv, sinv, u, ——u2) ) (5.8)
2 2
From the fact that = p (1, x), we get the surface

(2 cosv, 2 sinv, 2u, —u?), (5.9)

TR +2
whose imgae unter the stereographic projection from the §oj@ 0, —1)
is the circular cylindef(cosv, sinv, u), (1, v) € R?}.
In case (ii) we get a unique adapted solution (up to transformations in
o4, ).

Y =(\/r(11_ = \/11_ = cos(«/ﬁv) = sin <\/Ev> ,
% cos(v/ru) % sin (ﬁu)) (5.10

The corresponding surface$1 is the flat torus

X = (\/7 cos(@v) . /7 sin (mv> ,
(5.11)
1—rcos(+vru),~1—rsin (ﬁu))

In case (iii) we get a unique adapted solution (up to transformations in
0(4,1)):

cosh(v/—ru),

cos(\/ﬁ v)

1 1
=D V=

The corresponding surface $1 is given by

x :COSh(f/—_ru) (\/z cos(«/ﬁv) ,

- i 1 sin («/Ev) , _JllTr’ sinh(\/—_rv)),

1
A=
sin («/ 1- rv) ,

1
~
v=r (5.12)

sinh(\/—_ru)).

1—r

(5.13)
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whose image unter the stereographic projection from the §oj@ 0, —1)
is the circular cone

{e_ﬁ“ ( - i 1cos<«/ﬁv),

1 2
—m>,(u,U)ER}

! 1sin («/Ev)

r —

in R3.
Thus we have the following classification theorem:

Theorem 5.1. Any surface ir§° with vanishing Moebius invarianb := ¢,
defined by (2.22) is Moebius equivalent to one of the surfaces given by (5.9),
(5.11) and (5.13).
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