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Abstract. Some classes of cubic fourfolds are birational to fibrations over P
2, where the

fibers are rational surfaces. This is the case for cubics containing a plane (resp. an elliptic
ruled surface), where the fibers are quadric surfaces (resp. del Pezzo sextic surfaces). It is
known that the rationality of these cubic hypersurfaces is related to the rationality of these
surfaces over the function field of P

2 and to the existence of rational (multi)sections of the
fibrations. We study, in the moduli space of cubic fourfolds, the intersection of the divisor C8
(resp. C18) with C14, C26 and C38, whose elements are known to be rational cubic fourfolds.
We provide descriptions of the irreducible components of these intersections and give new
explicit examples of rational cubics fibered in (quartic, quintic) del Pezzo surfaces or in
quadric surfaces over P

2. We also investigate the existence of rational sections for these
fibrations. Under some mild assumptions on the singularities of the fibers, these properties
can be translated in terms of Brauer classes on certain surfaces.

1. Introduction

A cubic fourfold is a smooth cubic hypersurface X ⊂ P
5, that is the vanishing locus

of a degree 3 homogeneous polynomial in 6 variables. Determining the rationality
(or not) of X is a very challenging open problem in algebraic geometry.

The fourfold X is called special if it contains an algebraic surface S which
is not homologous to a complete intersection. Hassett [12] defines the loci Cd of
special cubic fourfolds of discriminant d and shows that these loci are non-empty
irreducible divisors in themoduli space of cubic fourfolds C, for d > 6 and d ≡ 0, 2
(mod 6). The values d hence make up an infinite sequence of integers. Moreover,
for an infinite, proper subset of the set of the divisors Cd , the Hodge structure of the
nonspecial cohomology of the cubic fourfold is essentially the Hodge structure of
the primitive cohomology of aK3 surface. ThisK3 surface is said to be associated to
the special cubic fourfold. Hassett [12, Sect. 5] shows that special cubic fourfolds
of discriminant d have an associated K3 surface if and only if d � 4, 9, or any
odd prime p ≡ 2 (mod 3). A natural suspicion is that any rational smooth cubic
fourfold ought to have an associated K3 surface. For now, cubic fourfolds in C14,
C26, C38 and C42 are proved to be rational (see [6,8,18] or very recently [19]).
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In this paper, we are interested in classes of cubic fourfolds that are birational to
surface fibrations over P

2. This is the case for cubics in C8 (resp. C18) containing a
plane (resp. an elliptic ruled surface). The projection from the plane (resp. the linear
system of quadrics through the elliptic ruled surface) gives the cubic a structure
of quadric (resp. sextic del Pezzo) surface fibration over P

2 ([1,11]). The study
of these fibrations and in particular the rationality of the surfaces in question over
the function field of P

2 is strongly related to the birational geometry of the fibered
cubic fourfolds (see [1,5,11]).

In fact, Hassett [11] identifies countably many divisors in C8 consisting of
cubic fourfolds containing a plane whose Clifford invariant is trivial, which implies
rationality. We call Clifford invariant the Brauer class α ∈ Br(S) of the P

1-bundle
over a smooth degree twoK3 surface S, which is the relative Hilbert scheme of lines
H(0, 1) in the fibers of the quadric fibration. This is well defined if the discriminant
divisor of the quadric bundle is smooth [3,5]. The triviality of α is equivalent to
the existence of a rational section of the associated quadric surface bundle over P

2.
Each of these loci is a codimension two subvariety in the moduli space of cubic
fourfolds C. On the other hand, in [1], the authors show other examples of rational
cubic fourfolds in C18, fibered in del Pezzo sextics, parametrized by a countably
infinite union of codimension two subvarieties. A generic cubic fourfold X in C18
contains an elliptic ruled surface T of degree 6. The ideal of quadrics through T
define a rational map X ��� P

2 that displays the blow-up X̃ of X along T as a
fibration in sextic del Pezzo surfaces over P

2. Such a fibration is rational over the
function field C(P2) when it has a rational section, and the codimension two loci
described in [1] are exactly the loci were the associated del Pezzo fibration has a
rational section. If the fibration has some mild “good” proprieties (see Def 3.1 -
we will call these good del Pezzo fibrations ), one can associate two Brauer classes
to such a fibration: the class β2 ∈ Br(S) of a P

2-bundle H(0, 3) over a smooth
degree two K3 surface S and the class β3 ∈ Br(Z) of a P

1-bundle H(0, 2) over a
triple cover Z of P

2. Here,H(0, 3) andH(0, 2) denote the relative Hilbert schemes
over P

2 parametrizing connected genus zero curves of respectively anticanonical
degree three and two. The triviality of these Brauer classes β2 or β3 is equivalent
to the existence of respectively a rational 2- or 3- multisection (see [14]) of the del
Pezzo fibration. The existence of a rational section is equivalent to the triviality of
both Brauer classes.

The goal of this paper is twofold. First, we study the geography of certain
codimension two loci in themoduli spaceof cubic fourfold, obtained as intersections
of C8 and C18 with other divisors that parametrize rational cubic fourfolds, C14, C26
and C38. We give a complete description of the irreducible components of these
intersections. These results are obtained by studying the intersection lattices of
cubic fourfolds contained in these loci.1

Theorem 1.1. (1) The intersection C8 ∩ C26 in the moduli space of cubic four-
folds has eight irreducible components indexed by the discriminant d ∈
{29, 36, 48, 53, 61, 64, 68, 69} of the intersection pairing of generic elements
inside each component.

1 In fact, for C14 ∩ C8 these are already known from [5]
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(2) The intersection C8 ∩ C38 in the moduli space of cubic fourfolds has ten irre-
ducible components indexedby thediscriminant d ∈ {36, 45, 61, 68, 80, 85, 93,
96, 100, 101} of the intersection pairing of generic elements inside each com-
ponent.

Theorem 1.2. (1) The intersectionC18∩C14 has five irreducible components. Cubic
fourfolds from these components have intersection lattice containing primitively
embedded rank 3 sublattice of discriminant 84, 81, 72, 57 and 36.

(2) The intersection C18 ∩ C26 has eight irreducible components. Cubic fourfolds
from these components have intersection lattice containing a primitively embed-
ded rank 3 sublattice of discriminant 48, 81, 108, 129, 144, 153, 156 and 36.

(3) The intersection C18 ∩ C38 has eleven irreducible components. Cubic fourfolds
from these components have intersection lattice containing a primitively embed-
ded rank 3 sublattice of discriminant, 36, 81, 120, 153, 180, 201, 216, 225, 228,
45 and 57.

On the other hand, applying the results of the first part of the paper, we study the
existence of rational (multi-)sections of the surface fibrations in cubic fourfolds,
and study the birational geometry related to the existence of such cycles.

First we consider C8. Using our preceding intersection theoretical results, we
give new examples of rational cubic fourfolds in C8 fibered in quadric surfaces with
no rational section, hence not contained in the divisors of C8 described by Hassett.
We provide conditions on the intersection pairing of generic elements for the (non-)
existence of the rational section (see Sect. 3). The first example of such a cubic had
been given in [5].

Theorem 1.3. (1) Four of the components in the intersection C8 ∩ C26 contain
rational cubic fourfolds whose quadric fibration has no rational section.

(2) Five of the components in the intersection C8 ∩ C38 in the moduli space of
cubic fourfolds contain cubic fourfolds whose quadric fibration has no rational
section.

In order to translate this results in term of Brauer classes, we need the discrim-
inant of the quadric fibration to be smooth. This is true for the generic cubic in C8
but since our examples lie in higher codimension, we need to construct at least a
cubic with this property for each component.

Notably, with the help of Macaulay2, we produce an explicit rational example,
with smooth discriminant divisor, with no rational section inside the intersection
C8 ∩ C38. Hence the Brauer class α on the degree two K3 surface is well defined
and non-trivial.

For the case of C18, the scenario is far more complicated. Similarly to C8, we
would like to consider examples of rational fibered cubic fourfolds such that the
fibers are not rational over P

2. Our starting idea was to produce an example of
rational cubic fourfold fibrated in del Pezzo sextics, with no rational section over
P
2, using Macaulay2. But instead, we came across interesting examples of cubics

fibered in quartic and quintic del Pezzo fibrations over P
2. As far as we know, these

are the first examples of this kind.
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Theorem 1.4. (1) The generic cubic fourfold in the locus of codimension 3 in
C, where the intersection lattice of cubics contains the following primitively
embedded lattice is birational to a quintic del Pezzo fibration over P

2:
⎛
⎜⎜⎝
3 5 1 6
5 13 0 τ

1 0 3 0
6 τ 0 18

⎞
⎟⎟⎠ ,

where τ ∈ {9, 10, 11, 12, 13, 14}.
(2) The generic cubic fourfold in a locus of codimension 4, where the intersec-

tion lattices of cubics contain the following primitively embedded lattice, is
birational to a del Pezzo quartic fibration over P

2.
⎛
⎜⎜⎜⎜⎝

3 5 1 1 6
5 13 0 0 τ

1 0 3 0 0
1 0 0 3 0
6 τ 0 0 18

⎞
⎟⎟⎟⎟⎠

,

with τ ∈ {12, 13, 14}.
The existence of rational sections for these fibrations, and the related rationality

and unirationality conditions over the function field of P
2 are discussed in Sect. 4.2.

Unfortunately we do not manage to find explicit examples of cubic fourfolds
fibrated in del Pezzo sextics, contained in the intersection of C18 with other divisors.
Nevertheless, if we assume that these do exist in each component, our results easily
allow to find the components where rational cubics with no rational sections should
live.

Theorem 1.5. Let X be a cubic fourfold, and letDr denote the codimension 2 locus
in C18 ∩ Cm (m = 14, 26, 38), where generically cubics have rank 3 intersection
matrix of discriminant r . Suppose X lies in one of the following codimension 2 loci
of C :

• inside C18 ∩ C14: D36 and D81;
• inside C18 ∩ C26: D108 and D153;
• inside C18 ∩ C38: D45, D81, D180, and D225.

Assume that the linear system |2h−T | induces a sextic del Pezzo fibration over
P
2. Then the fibration has no rational section, and X is rational.

If furthermore the fibration is good, then the Brauer class β2 associated to the
cubics of Theorem 1.5 is non-trivial.

The structure of this paper is as follows. In Sect. 2, we give some notions and
introduce some Hodge Theory and lattices associated to cubic fourfolds. In Sect. 3,
we determine irreducible components of C8∩C26, C8∩C38 and study cubic fourfolds
in these intersections giving new examples of rational cubic fourfolds fibered in
quadric surfaces with a nontrivial Brauer class. In Sect. 4, we consider intersections
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of C18 with C14, C26 and C38 determining their irreducible components.We use these
results to produce new examples of rational cubic fourfolds that are birational to
fibrations in del Pezzo surfaces, and discuss their birational geometry. Section 5 is
the computational part of the paper, where the explicit examples that are necessary
in the rest of the paper are constructed with Macaulay2. A code explaining the
method to find other examples can be found attached.

2. Hodge theory for cubic fourfolds

Let X be a cubic fourfold over C. Let us denote by C the moduli space of smooth
cubic fourfolds inP

5. It is a quasi-projective twenty-dimensional variety. TheHodge
diamond of X is as follows

1
0 0

0 1 0
0 0 0 0

0 1 21 1 0

We focus on the middle cohomology of X, containing some nontrivial Hodge the-
oretic information.

Let L be the cohomology group H4(X, Z), known as the cohomology lattice,
and L prim = H4

prim(X, Z) := 〈h2〉⊥ the primitive cohomology lattice, where

h ∈ H2(X, Z) is the hyperplane class defined by the embedding X ⊂ P
5. Note

that L prim is an even lattice (see [12, Sect. 2]).
We consider more precisely the lattice of integral middle Hodge classes of X :

M(X) = H2,2(X) ∩ H4(X, Z) = H2(X,�2
X ) ∩ H4(X, Z)

equipped with the intersection form (−,−). M(X) is a positive definite lattice by
the Hodge-Riemann bilinear relations. For cubic fourfolds, the (integral) Hodge
conjecture holds (see [22, Theorem 18] or [15, Corollary 0.3] for a recent proof),
and rational, algebraic and homological equivalences coincide for cycles of codi-
mension 2. This means that the cycle map CH2(X) → H4(X, Z) is injective,
where CH2(X) is the Chow group of codimension 2 cycles on X up to rational
equivalence (see [9, Sect. 5] or [7]). In particular by the Hodge conjecture the
algebraic cycles are the (2, 2)-part of H4(X, Z). Denote by d(M(X)) ∈ Z the
discriminant of the lattice M(X), that is the determinant of the Gram matrix. The
definition of special cubic fourfold introduced in Sect. 1 can be interpreted using
M(X): a smooth cubic fourfold X is special if and only if the rank of M(X) is at
least 2.

Definition 2.1. A labelling of a special cubic fourfold consists of a positive definite
rank two saturated sublattice Kd , with h2 ∈ Kd ⊆ M(X). The discriminant d is
the determinant of the intersection form on Kd .
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Special cubic fourfolds form a countably infinite union of irreducible divisors
Cd in C with a labelling of discriminant d, where d takes some integer values.

Only few Cd ’s can be defined explicitly in terms of particular surfaces contained
in X. For example, C8 is defined as the locus of cubic fourfolds containing a plane,
C14 is the closure of the one containing a quartic scroll or equivalently a quintic del
del Pezzo surface, C18 is the closure of the locus of cubic fourfolds containing an
elliptic ruled surface, and a few others.

We conclude this section with an important definition for the rest of the paper.

Definition 2.2. By a fibration in quadric (resp. sextic, quintic, quartic del Pezzo)
surfaces over P

2, we mean a morphism σ : Z → P
2 from a fourfold Z , whose

generic fiber is a smooth quadric (resp. sextic, quintic, quartic del Pezzo) surface.

3. C8 and rational cubic fourfolds

3.1. Cubic fourfolds containing a plane

In this section, by lattice-theoretic calculations,we describe classes of rational cubic
fourfolds containing a plane whose fibration in quadric surfaces has no rational
section.

Let Y be a cubic fourfold in C8 containing a plane P . For h the hyperplane class
of Y , the associated labelling K8 has the following Gram matrix:

(h2 P

h2 3 1
P 1 3

)
.

Let Q denote the class of the quadric surface residual to P so that h2 = P + Q
and Ỹ the blow-up of Y along P . The projection from P resolves into a morphism

q : Ỹ → P
2.

The fibers of this morphism are quadric surfaces in the class Q and cubic fourfolds
containing a plane are birational to quadric surface bundles over P

2 (see [11]).
Hassett [11] identifies countably many divisors in C8 parametrizing rational cubic
fourfolds. Each of these loci is a codimension two subvariety in the moduli space
of cubic fourfolds C.

Recall that the discriminant divisor E is defined as the locus over which q
fails to be smooth. We say that the plane P is good if the fibers of q have at most
isolated singularities. This is equivalent to having E ⊂ P

2 smooth or also to having
X not containing another plane intersecting P (see [21, Sect. 1 Lemma 2], [3, Sect.
1.5]). In this case, the double cover S → P

2 branched over E , a sextic curve, is
a smooth K3 surface S of degree 2. If E is smooth, the relative Hilbert scheme of
linesH(0, 1) of the morphism q is an étale P

1-bundle over S (see [7, §5]). To such
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an object we can associate a Brauer class α ∈ Br(S) which is trivial if and only if
q has a rational section.

H(0, 1) P
1

S

2:1

Ỹ
q

P
2 ⊃ E

Theorem 3.1. ([11]) If there is a class C ∈ M(Y ) such that (C, Q) is odd then Y
is rational over C.

In particular, q has a rational section if and only if there exists an algebraic cycle
C ∈ M(Y ) such that (C, Q) = 1. In other words, the associated Brauer class α is
trivial if and only if there exists an algebraic cycleC ∈ M(Y ) such that (C, Q) = 1.
According to Hassett, the triviality of the Brauer class implies the rationality of Y
over C.

In the following, by lattice-theoretic calculations, we describe classes of ratio-
nal cubic fourfolds containing a plane whose fibration in quadric surfaces has no
rational section, respectively inside C8∩C26 and inside C8∩C38, hence not contained
in the class of cubics described by Hassett.

3.2. C8 ∩ C26:

Asmooth cubic fourfoldY is inC8 orC26 if and only ifM(Y ) has primitive sublattice
K8 := 〈h2, P〉 or K26 := 〈h2, S26〉 with the following Gram matrix

(h2 S26
h2 3 7
S26 7 25

)
,

such that P is a plane contained in a general element of C8 and S26 is a surface
with one node obtained as the projection of a smooth del Pezzo surface S ⊂ P

7 of
degree seven from a line intersecting the secant variety of S transversally (see [18,
Sect. 3]), contained in a general element of C26.

Thus a cubic fourfold Y ∈ C8 ∩ C26 has a sublattice 〈h2, P, S26〉 ⊂ M(Y ) with
the following Gram matrix

⎛
⎝

h2 P S26
h2 3 1 7
P 1 3 τ

S26 7 τ 25

⎞
⎠,

for some τ = (P, S26) ∈ Z depending on Y . The values of τ may be restricted
following some properties and works of Voisin [21] or Yang and Yu [23].
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Fig. 1. Irreducible components of C8 ∩ C26

Denote by Mτ the lattice of rank 3 whose bilinear form has the previous Gram
matrix. Let CMτ ⊂ C be the locus of smooth cubic fourfolds such that there is a
primitive embedding Mτ ⊂ M(Y ) of lattices preserving h2.

Proposition 3.2. The irreducible components of C8 ∩ C26 are the subvarieties of
codimension two CMτ for τ ∈ {−1, 0, 1, 2, 3, 4, 5, 6}.
Proof. We proceed as follows: first we find the set of possible values of τ for which
d(Mτ ) > 0 and possibly nonempty. Then, for these values of τ , we prove that Mτ

is saturated. Finally, we find the associated irreducible components CMτ which are
nonempty i.e. don’t have roots, that is vectors of norm 2.

By construction, C8 ∩ C26 = ∪τ∈Z CMτ . We determine which components of
CMτ are possibly nonempty. Since for Y ∈ C8 ∩ C26, M(Y ) is a positive definite
lattice, by Sylvester’s criterion, the sublattice Mτ must have positive discriminant.
As d(Mτ ) = −3τ 2+14τ +53, the only values of τ making a positive discriminant
are τ ∈ I = {−2,−1, 0, 1, 2, 3, 4, 5, 6, 7}. Hence, C8 ∩ C26 = ∪τ∈I CMτ .

Then, we prove that CMτ is empty for τ = −2, 7 by finding primitive roots
(that is, primitive vectors of norm 2) in Mτ,prim = 〈h2〉⊥. Indeed, the vectors
(1,−3, 0) and (−3, 2, 1) form a basis for Mτ,prim . For all Ra,b ∈ Mτ,prim , Ra,b =
(a−3b,−3a+2b, b) for some a, b ∈ Z, τ ∈ I ; for τ = −2, we find primitive roots
±R0,1; for τ = 7, we find primitive roots ±R1,1 = ±(−2,−1, 1). Hence, by [21,
Sect. 4 Proposition 1], CMτ is empty for τ = −2, 7. We are left with CMτ possibly
nonempty only for τ ∈ {−1, 0, 1, 2, 3, 4, 5, 6}. The corresponding discriminants
d(Mτ ) are 36, 53, 64, 69, 68, 61, 48 and 29.

We prove now that the components CMτ are irreducible. We first note that the
rank of the lattice M(X) is an upper-semicontinuous function on C; the irreducible
components of CMτ correspond then to rank 3 overlattices B of Mτ (a finite index
sublattice for some τ i.e. B/Mτ is a finite abelian group) which is primitively
embedded into L . By standard lattice theory, we have that for an embedding Mτ ↪→
B with finite index [B : Mτ ] = |B/Mτ |, |d(B)|.[B : Mτ ]2 = |d(Mτ )| (see [16] or
[20]);

We will prove that no proper finite overlattices exist; for τ = 0, 2, 4, 6 the
discriminants of Mτ are squarefree, so there are no proper finite overlattices.

For the remaining cases, we can take h2 and P as a part of a basis of the
overlattice B. Let U be a vector that completes this to a basis such that U =
xh2 + yP + zS26, with x, y, z ∈ Q. Consider the natural embedding of Mτ in B
that can be written as follows:

⎛
⎝
1 0 x
0 1 y
0 0 z

⎞
⎠

−1

=
⎛
⎝
1 0 −x/z
0 1 −y/z
0 0 1/z

⎞
⎠ ∈ M3,3(Z).
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We can take z = 1
n , for some n ∈ Z and x ′ = nx, y′ = yn ∈ Z; then U =

1
n (x ′h2 + y′P + S26). By adding multiples of h2 and P , we may ensure that
0 ≤ x ′, y′ < n.

Computing intersections, we have the following:

(U, h2) = 1

n
(3x ′ + y′ + 7) = a0,

(U, P) = 1

n
(x ′ + 3y′ + τ) = b0,

(U,U ) = 1

n2
(3x ′2 + 3y′2 + 14x ′ + 2τ y′ + 2x ′y′ + 25) = c0.

Hence, the Gram matrix of B is:

⎛
⎝

h2 P U

h2 3 1 a0
P 1 3 b0
U a0 b0 c0

⎞
⎠.

Now we check each case separately for possible values of τ, n, x ′ and y′:
(1) τ = −1: We see that n can be 2, 3 or 6.

Remark that for all possible values of n, x ′ and y′ other than (n = 3, x ′ = 1 and
y′ = 2), the Gram matrix of B /∈ M3,3(Z). For (n = 3, x ′ = 1 and y′ = 2),
B has the following Gram matrix:

⎛
⎝
3 1 4
1 3 2
4 2 6

⎞
⎠ ,

which has the root (−2, 0, 1). Then no such overlattices exist. Thus CM−1 is
irreducible.

(2) τ = 1: We see that n can be 2, 4 or 8.
Observe that for all possible values of n, x ′ and y′, the Gram matrix of B is not
inM3,3(Z). Thus CM1 is irreducible.

(3) τ = 3: n can be 2.
We notice that for all possible values of x ′ and y′, the Gram matrix of B is
non-integral. Then no such overlattices exist. Thus CM3 is irreducible.

(4) τ = 5: We observe that n can be 2 or 4.
Remark that for n = 4, |d(B)| = 3 which is impossible by [24, Lemma 7.8].
Otherwise, for all possible values of x ′ and y′, the Gram matrix of B is non-
integral. Then no such overlattices exist. Thus CM5 is irreducible.
To check the (non)emptiness of these CMτ , we proceed as follows; for all τ ∈
{−1, 0, 1, 2, 3, 4, 5, 6}, Mτ is a positive definite saturated sublattice of rank 3:

h2 ∈ Mτ ⊂ M(Y ) ⊂ L .

Furthermore, let v = xh2 + yP + zS26 ∈ Mτ for x, y, z ∈ Z, we get

(v, v) = 3x2 + 3y2 + 25z2 + 2xy + 14xz + 2τ yz, τ ∈ {−1, 0, 1, 2, 3, 4, 5, 6}.
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For these values of τ , there exists no v ∈ Mτ such that (v, v) = 2. Thus, by
[23, Lemma 2.4], CMτ is nonempty and has codimension two.
Note that the rank of the lattices is small compared to 21 so there is no issues
with finding a primitive embedding in L .

��
In the following, we address the question of the (non)triviality of the Brauer

class.

Theorem 3.3. Let Y be a general cubic fourfold in C8∩C26 (so that M(Y ) has rank
3) containing a good plane P. The Brauer class α ∈ Br(S) of Y is trivial if and
only if τ is even.

Proof. If τ is even, then a cycle S26+3P ∈ M(Y ) exists such that (S26+3P, Q) =
1 − τ ≡ 1 (mod 2) (odd). Hence α is trivial by the application of the criterion of
Hassett (see [11]).

If τ is odd, then Mτ has rank 3 and even discriminant, hence α is nontrivial (see
[5, Proposition 2]). ��
Corollary 3.4. The four irreducible components CMτ of C8 ∩ C26 corresponding to
τ = −1, 1, 3, 5 contain examples of rational cubic fourfolds whose associated
quadric surface bundles do not have a rational section.

3.3. C8 ∩ C38
Using same methods as before, we compute the intersection between C8 and C38.

A cubic fourfold Y is in C8 or C38 if and only if M(Y ) has primitive sublattice
K8 := 〈h2, P〉 or K38 := 〈h2, S38〉 with the following Gram matrix

(h2 S38
h2 3 10
S38 10 46

)
,

such that P is a plane and S38 is the general degree 10 smooth surface of sectional
genus 6 obtained as the image of P

2 by the linear system of plane curves of degree
10 having 10 fixed triple points (see [18, Sect. 4]), contained in a general element
of C38.

Hence, Y ∈ C8 ∩ C38 has a sublattice 〈h2, P, S38〉 ⊂ M(Y ) with Gram matrix:

⎛
⎝

h2 P S38
h2 3 1 10
P 1 3 τ

S38 10 τ 46

⎞
⎠,

for some τ ∈ Z depending on Y .

Proposition 3.5. The irreducible components of C8 ∩ C38 are the subvarieties of
codimension two CMτ for τ ∈ {−1, 0, 1, 2, 3, 4, 5, 6, 7, 8}.
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Proof. As d(Mτ ) = −3τ 2 + 20τ + 68, the only values of τ inducing a positive
discriminant are τ ∈ J = {−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Let Mτ,prim = {(x, y, z) ∈ Z
3 | 3x + y + 10z = 0}; indeed, the vectors

(1,−3, 0) and (−3,−1, 1) form a basis for Mτ,prim ; for all Ra,b ∈ Mτ,prim ,
Ra,b = (a − 3b,−3a − b, b) for some a, b ∈ Z, τ ∈ J .

For τ = −2, we find primitive roots ±R−1,1 = ±(−4, 2, 1). Hence, by [21,
Sect. 4 Proposition 1], CM−2 is empty ;We are left with CMτ possibly nonempty only
for τ ∈ {−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The corresponding discriminants d(Mτ ) are
45, 68, 85, 96, 101, 100, 93, 80, 61, 36 and 5.

Similarly to the previous section, we prove that the components CMτ are irre-
ducible. For τ = 1, 3, 5, 7 the discriminants are squarefree, so there are no proper
finite overlattices. For the remaining cases, we can prove the any overlattice in
M3,3(Z) has a primitive root. Therefore no such proper overlattices exist.

Hence, for all τ ∈ {−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, Mτ is a positive definite
saturated sublattice of rank 3:

h2 ∈ Mτ ⊂ M(Y ) ⊂ L .

Furthermore, let v = xh2 + yP + zS38 ∈ Mτ , for x, y, z ∈ Z, we get

(v, v) = 3x2 + 3y2 + 46z2 + 2xy + 20xz + 2τ yz;

for τ = 9, we have that (−2h2−2P+S38,−2h2−2P+S38) = 2. Then CM9 ⊂ C is
empty (see [23, Lemma 2.4]). For the rest of the values of τ , there exists no v ∈ Mτ

such that (v, v) = 2, CMτ ⊂ C are nonempty irreducible and have codimension 2
(see [23, Lemma 2.4]). ��

τ −1 0 1 2 3 4 5 6 7 8

d(Mτ ) 45 68 85 96 101 100 93 80 61 36

Theorem 3.6. Let Y be a general cubic fourfold in C8∩C38 (so that M(Y ) has rank
3) containing a good plane P. The Brauer class α ∈ Br(S) of Y is trivial if and
only if τ is odd.

Proof. If τ is odd, then a cycle S38+5P ∈ M(Y ) exists such that (S38+5P, Q) =
−τ ≡ 1 (mod 2) (odd). Hence α is trivial by the application of the criterion (see
[11]).

If τ is even, then Mτ has rank 3 and even discriminant, hence α is nontrivial
(see [5, Proposition 2]). ��
Corollary 3.7. C8 ∩ C38 has five smooth irreducible components, corresponding to
τ = 0, 2, 4, 6, 8, containing examples of rational cubic fourfolds whose associated
quadric surface bundles do not have a rational section.
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In Sect. 5.1, we construct an explicit example of rational smooth cubic fourfold
containing a good plane in each irreducible component of the intersection C8 ∩C38.
This means that it makes sense to consider the associated Brauer class α ∈ Br(S)

on the degree 2 K3 surface. In particular, in our explicit example the associated
Brauer class is nontrivial since the quadric bundle has no rational section.

4. C18 and rational cubic fourfolds

The goal of this section is twofold. First we describe the irreducible components
of the intersection of C18 with the divisors C14, C26, and C38. Then we use these
intersection theoretical results to showcase loci of rational cubic fourfolds, which
are fibered in del Pezzo surfaces. In each case, we consider gemetric conditions
that imply the rationality of the fibers over the function field of P

2 and hence of the
associated cubic fourfolds.

4.1. Cubic fourfolds containing an elliptic ruled surface

A generic cubic fourfold in C18 contains an elliptic ruled surface of degree 6 (see
[1]).

Let X ∈ C18 be a generic cubic fourfold containing an elliptic ruled surface T .
The Gram matrix of the associated labelling K18 is as follows:

(h2 T

h2 3 6
T 6 18

)
.

To construct T , we start by fixing two disjoint planes P ′ and P . Then, we choose
3 quadrics {Q1, Q2, Q3} containing the 2 disjoint planes. The intersection of the
quadrics Q1 ∩ Q2 ∩ Q3 has degree 8, and it is the union of T and of the two planes
P and P ′.

Let X̃ denote the blow-up of X along T and let

π : X̃ → P
2

be themorphism induced by the linear system of quadrics containing T . For generic
X, the generic fiber of π is a del Pezzo surface of degree 6.

Note that a singular del Pezzo surface is a surface P with ADE singularities and
ample anticanonical class such that K 2

S = 6. They are classified as follows (see
[14, Sect. 2] or [1, Sect. 5] for a complete description):

• Type I: P has one A1 singularity.
• Type II: P has one A1 singularity obtained in a different way from Type I.
• Type III: P has two A1 singularities.
• Type IV: P has one A2 singularity.
• Type V: P has a A1 and a A2 singularity.
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Type I and II occur in codimension one in the moduli stack of sextic del Pezzo
surfaces. Type III and IV occur in codimension two; type V occurs in codimension
three.

Definition 4.1. [1, Definition 11] Let P be a smooth complex projective surface. A
good sextic del Pezzo fibration consists of a smooth fourfold Z and a flat projective
morphism π : Z → P

2 with connected fibers such that the fibers are either smooth
or singular sextic del Pezzo surfaces of Type I, II, III, IV or V. Let Bi denote the
closure of the locus of Type i fibers in P

2. Bi has the following properties:

• BI is a non-singular curve;
• BI I is a curve, non-singular away from BIV ;
• BI I I is finite and coincides with the intersection of BI and BI I , which is
tranverse;

• BIV is finite and BI I has cusps at BIV ;
• BV is empty.

The discriminant curve of a good sextic del Pezzofibrationπ has two irreducible
components, a smooth sextic curve BI and a sextic curve BI I with 9 cusps (see
[1,14] or [7] for more details). In this section, if a cubic X ∈ C18 has an associated
good del Pezzo fibration, we will call it a good cubic. More generally, for a good
del Pezzo fibration π we consider the following construction.

Recall that a smooth sextic del Pezzo surface can be described as the blow up
of P

2 in three general points. Let us now consider two different Hilbert schemes of
curves in the fibers of π . Let us denote by H(0, 3) the relative Hilbert scheme of
connected genus zero curves with anticanonical degree 3 contained in the fibers.
There are two 2-dimensional families of such curves on a smooth del Pezzo sextic.
One is given by the strict transforms of the lines in P

2 that do not pass through any
of the three blown up points p1, p2 and p3 ∈ P

2 of the corresponding del Pezzo
surface. The second one is given by conics passing through the three base points.
Hence the Stein factorization of H(0, 3) → P

2 yields an étale P
2-bundle H(0, 3)

over a smooth degree two K3 surface S branched on BI .

H(0, 3) P
2

S

2:1

X̃
π

P
2 ⊃ BI

We will denote by β2 the Brauer class of this P
2-bundle in Br(S).

Let us consider now H(0, 2) → P
2 the relative Hilbert scheme of connected

genus zero curves with anticanonical degree 2 contained in the fibers. The Stein
factorization yields an étale P

1-bundle H(0, 2) over a non singular surface Z . In
fact, associated to a good del Pezzo fibration π , there is a non-singular triple cover
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Z → P
2 branched along a cuspidal sextic BI I . On every geometric fiber, the P

1-
bundle is given by the strict transform of the lines through each of the 3 base points
of the corresponding del Pezzo sextic.

H(0, 2) P
1

Z

3:1

X̃
π

P
2 ⊃ BI I

Similarly to the preceding case, we will denote by β3 ∈ Br(Z) the Brauer class
of this P

1-bundle.
For more details on the Brauer classes of a sextic del Pezzo surface see [2] or

[13].
Furthermore, for a good sextic del Pezzo fibration π : X̃ → P

2, we have the
following (see [14, Proposition 5.20]).

Proposition 4.2. (1) The Brauer class β2 ∈ Br(S) is trivial if and only if π has a
rational 2-multisection.

(2) The Brauer class β3 ∈ Br(Z) is trivial if and only if π has a rational 3-
multisection.

It is known [1, Theorem 6] that the del Pezzo fibration associated to a good
cubic fourfold X ∈ C18 always has a rational 3-section. It is worth to note that this
rational 3-section does not come as the strict transform of a 2-dimensional algebraic
cycle in X but rather as a surface obtained as the inverse image of a curve inside
the elliptic ruled surface. This is surely of interest, but our analysis concentrates on
2-cycles on cubic fourfolds, since are the ones we can control better on special loci
of the moduli space. This is why in the following we will concentrate on rational
(multi)sections that are obtained from 2-cycles on the cubic fourfold. In this sense,
it is worth recalling the following results ([17, Proposition 2.3] and [1, Proposition
8]).

Let F ∈ M(X) denote the class of the fiber of the rationalmap given by quadrics
through T , for a cubic fourfold X ∈ C18. That is,

F = 4h2 − T .

Proposition 4.3. The del Pezzo fibration π : X̃ → P
2 has a rational section if and

only if there is an algebraic cycle class R ∈ H2,2(X, Z) such that the intersection
(R, F) is 1 or 2.

Proposition 4.4. Let G → P
2 be a del Pezzo sextic fibration. The following are

equivalent:

(1) G is rational over the function field C(P2);
(2) G admits an rational section P

2 ��� G;
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(3) G admits a rational multi-section of degree prime to six;
(4) if G is good, the Brauer classes β2 and β3 are trivial.

In the next section we will describe the interplay between special surfaces
contained in cubic fourfolds and irreducible components of C18 ∩ C14.

4.2. C18 ∩ C14
Let X be a cubic fourfold in C18 ∩ C14; M(X) has primitive sublattices K18 :=
〈h2, T 〉 and K14 := 〈h2, D〉 with its Gram matrix

(h2 D

h2 3 5
D 5 13

)
,

such that D is (possibly a degeneration of) a quintic del Pezzo surface (see [8]), T
is (possibly a degeneration of) an elliptic ruled surface.

Hence, X ∈ C18 ∩ C14 has a sublattice 〈h2, D, T 〉 ⊂ M(X) with the following
Gram matrix

⎛
⎝

h2 D T

h2 3 5 6
D 5 13 τ

T 6 τ 18

⎞
⎠,

for some τ ∈ Z depending on X .
Denote by Mτ the lattice of rank 3 whose bilinear form has the previous Gram

matrix (by abuse of notation, we use Mτ to denote the Gram matrix too) We will
denote by CMτ ⊂ C the locus of cubic fourfolds such that there is a primitive
embedding Mτ ⊂ M(X) of lattices preserving h2.

Theorem 4.5. The irreducible components of C18 ∩ C14 are the subvarieties of
codimension two CMτ given by the following rank 3g matrix

Mτ :=
⎛
⎝

h2 D T

h2 3 5 6
D 5 13 τ

T 6 τ 18

⎞
⎠,

where 10 ≤ τ ≤ 14. Moreover, the associated discriminants d(M10), . . . , d(M14)

are 84, 81, 72, 57, 36 respectively.

Proof. We proceed as follows: first we find the set of possible values of τ for which
d(Mτ ) > 0. Then, for these values of τ , we prove that Mτ is saturated. Finally,
we find the associated irreducible components CMτ which are nonempty i.e. don’t
have roots, that is vectors of norm 2.

Note that Mτ , defined as a sublattice of a positive definite lattice, must
have positive discriminant by Sylvester’s criterion. As d(Mτ ) = −3τ 2 +
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60τ − 216, the only values of τ making a positive discriminant are τ ∈
{5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}.

For these values of τ , Mτ is a positive definite sublattice of rank 3 containing
h2. The corresponding discriminants d(Mτ ) are 9, 36, 57, 72, 81, 84, 81, 72, 57,
36, 9. Note that there are isometries between the lattices M5, M6, M7, M8, M9, and
M15, M14, M13, M12, M11 respectively (see [24, Remark 7.7]). Thus, next, we may
only consider Mτ for τ = 10, 11, 12, 13, 14, 15.

We check whether CMτ is irreducible. For τ = 5, the discriminant d(M5) is
squarefree, so there are no proper finite overlattices of M5. For the remaining cases,
we can take h2 and D as a part of a basis of an overlattice B of Mτ and complete
it with V such that V = xh2 + yD + zT with x, y, z ∈ Q.

We can take z = 1
n , for some n ∈ Z and x ′ = nx, y′ = yn ∈ Z; then

V = 1
n (x ′h2 + y′D + T ). By adding multiples of h2 and D, we may ensure that

0 ≤ x ′, y′ < n.
Note that n = [B : Mτ ] = [Bprim : Mτ,prim], with Bprim the finite proper
overlattice of Mτ,prim (this follows from standard lattice theory).

Computing intersections:

(V, h2) = 1

n
(3x ′ + 5y′ + 6) = a1,

(V, D) = 1

n
(5x ′ + 13y′ + τ) = b1,

(V, V ) = 1

n2
(3(x ′)2 + 13(y′)2 + 12x ′ + 2τ y′ + 10x ′y′ + 18) = c1.

Then B has the following Gram matrix:

⎛
⎝

h2 D V

h2 3 5 a1
D 5 13 b1
V a1 b1 c1

⎞
⎠.

Now we check each case separately for possible values of τ, n, x ′ and y′.
For (τ = 10, n = 2, x ′ = 1, y′ = 1), B has the following Gram matrix

⎛
⎝
3 5 7
5 13 14
7 14 19

⎞
⎠ ,

of discriminant 21. The vectors (−5, 3, 0) and (−7, 0, 3) form a basis for Bprim

which has the following Gram matrix:

(
42 21
21 33

)
.

Since Bprim is not even, no such overlattices exist and this component is irreducible.
No overlattices exist in the following cases.
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For (τ = 11, n = 3, x ′ = 2, y′ = 0), B has the following Gram matrix
⎛
⎝
3 5 4
5 13 7
4 7 6

⎞
⎠ ,

which has a root (−3, 1, 1).
For (τ = 12, n = 2, x ′ = 1, y′ = 1), B has the following Gram matrix

⎛
⎝
3 5 7
5 13 15
7 15 20

⎞
⎠ ,

which has roots ±(−1,−1, 1).
For (τ = 12, n = 3, x ′ = 0, y′ = 0), B has the following Gram matrix

⎛
⎝
3 5 2
5 13 4
2 4 2

⎞
⎠ ,

which has roots ±(0, 0, 1).
For (τ = 12, n = 6, x ′ = 3, y′ = 3), B has the following Gram matrix

⎛
⎝
3 5 5
5 13 11
5 11 10

⎞
⎠ ,

which has a root (−1,−1, 2).
For (τ = 14, n = 2, x ′ = 1, y′ = 1), the Gram matrix of B is:

⎛
⎝
3 5 7
5 13 16
7 16 21

⎞
⎠ .

B has roots such as (0,−1, 1).
For (τ = 14, n = 3, x ′ = 2, y′ = 0), the Gram matrix of B is:

⎛
⎝
3 5 4
5 13 8
4 8 6

⎞
⎠ .

B has roots such as (1, 1,−2).
For (τ = 14, n = 6, x ′ = 5, y′ = 3), the Gram matrix of B is:

⎛
⎝
3 5 6
5 13 13
6 13 14

⎞
⎠ .

B has roots such as (−2, 0, 1).
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For (τ = 15, n = 3, x ′ = 0, y′ = 0), B has the following form

⎛
⎝
3 5 2
5 13 5
2 5 2

⎞
⎠ ,

which has roots ±(0, 0, 1).
For all other possible values τ, n, x ′ and y′, the Gram matrices of B are not in

M3,3(Z).
The lattice Mτ is saturated definite positive of rank 3 such that:

h2 ∈ Mτ ⊂ M(X) ⊂ L .

Let v = xh2 + yS14 + zT ∈ Mτ . For x, y, z ∈ Z, we get

(v, v) = 3x2 + 10y2 + 18z2 + 8xy + 12xz + 2τ yz.

Weprove thatCM15 is emptybyfinding roots. Indeed, (−h2−D+T,−h2−D+T ) =
2; for the remaining values of τ , Mτ has no vectors v such that (v, v) = 2. Hence,
CMτ ⊂ C is irreducible nonempty (see [23, Lemma 2.4]). ��

In the rest of this section wewill consider cubics living in (at least) codimension
1 loci inside C18, and hence the existence of the sextic del Pezzo fibration is not
guaranteed by [1]. For some of these irreducible loci we will find explicit examples
of cubics which are birational to fibrations in (quartic, quintic) del Pezzo surfaces
over P

2. This implies that the generic cubic has the same feature. For the loci
where we do not show explicit examples, we tacitly assume that the generic cubic
is birational to a sextic del Pezzo fibration.

Definition 4.6. Let F ∈ M(X) be the class 4h2 − T . We will call a 1-sectional
(resp. 2 or 3-sectional) cycle a dimension 2 algebraic cycle W ∈ M(X) such that
we have (W, F) = 1 (resp. 2 or 3).

Let us assume that the class F = 4h2 − T ∈ M(X) gives a two-dimensional
linear system of sextic del Pezzo surfaces. Under this assumption, we now check
the existence of 1,2 and 3-sectional cycles inM(X) for the corresponding del Pezzo
fibration on each component of C18 ∩ C14. LetWa,b,c ∈ M(X) be a cycle such that

Wa,b,c := ah2 + bD + cT, for a, b, c ∈ Z,

with D a (degeneration of) quintic del Pezzo surface and T an elliptic ruled surface
(or a degeneration of such surface).

We have that (Wa,b,c, F) = 6a + (20 − τ)b + 6c. We will now check, for the
possible values of τ , the existence of a 1, 2 or 3-sectional cycles.

In the following table, we collect our results about the existence of sectional
cycles for the different components of C18 ∩ C14. The symbol ∅ means that there
are no sectional cycles of that given type.
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τ (Wa,b,c, F) = 1 (Wa,b,c, F) = 2 (Wa,b,c, F) = 3

10 ∅ W0,2,−3 ∅
11 ∅ ∅ W0,1,−1
12 ∅ W0,1,−1 ∅
13 W0,1,−1 W0,2,−2 W0,3,−3
14 ∅ ∅ ∅

Remark 4.7. (1) We observe that, by Proposition 4.3, the del Pezzo fibrations for
τ = 11, 14 have no rational section, hence - byProposition 4.4 - X̃ in these cases
is not rational on C(P2) but nevertheless rational since the cubic is contained
in C14.

(2) Again by Proposition 4.4, this means that, if one of these cubics is good, then β2
and β3 are not both trivial for cubics in these components. Since by [1, Theorem
6] there is always a rational 3-section of the corresponding del Pezzo fibration,
then by Proposition 4.2 the class β3 is always trivial. This means that the class
β2 is nontrivial for good cubics in this component.

(3) Of course, the existence of a 1-sectional cycle is the strongest condition, and
implies the existence of 2 and 3-sectional cycles.

(4) For the components with τ = 10 and 12 it is worth observing that, by Propo-
sition 4.3, the associated del Pezzo sextic fibrations have a rational section,
though this does not come from a 1-sectional cycle in the cubic. It is neverthe-
less not hard to construct a rational section of the del Pezzo fibration, starting
from the strict transform of a 2-sectional cycle, in the spirit of the proof of [17,
Proposition 2.3].

The upshot is that for cubics in the component obtained with τ = 11, 14, if
they are birational to a fibration in del Pezzo sextics over P

2, the rationality of the
del Pezzo surfaces over the function field of P

2 is not necessary for rationality,
and these examples are not contained in the codimension 2 loci of rational cubics
described in [1].

All the explicit examples of cubics X in the intersection C18 ∩ C14 that we were
able to construct with Macaulay2 contain not only T , but also one of or both the
disjoint planes P and P ′ that are residual to T in the complete intersection of the
three quadrics (see Sect. 4.1). The consequence is that they are indeed birational to a
del Pezzo fibration, but of lower degree. We will now give a theoretical description
of these loci, where our explicit examples live.

In particular, let us consider the sublocus of C18 ∩ C14 parametrizing cubics
containing the elliptic ruled surface T , P , P ′ and a del Pezzo surface that intersects
both P and P ′ along a smooth conic. In fact, a cubic X containing T and D
automatically contains P and P ′, since X ∩ P (resp. X ∩ P ′) contains a plane cubic
and a conic, hence P ⊂ X (resp. P ′ ⊂ X ). This locus has codimension 4 in the
moduli space, and its generic element has M(X) of rank 5. Such cubics can be
found following instructions in the attached file using Macaulay2. Moreover, an
explicit example is given in Sect. 5. Recall that the two planes intersect T along a
cubic curve.
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Proposition 4.8. Let P and P ′ be two disjoint planes in P
5, T the elliptic ruled

surfaces obtained from P and P ′, and D a del Pezzo surface intersecting each of
the planes in a smooth conic. Let X ∈ C18 ∩ C14 be a cubic containing T, P, P ′
and D. Then X has a sublattice Mτ := 〈h2, D, P, P ′, T 〉 ⊂ M(X) of rank 5 whose
bilinear form has the following Gram matrix:

⎛
⎜⎜⎜⎜⎝

h2 D P P ′ T

h2 3 5 1 1 6
D 5 13 0 0 τ

P 1 0 3 0 0
P ′ 1 0 0 3 0
T 6 τ 0 0 18

⎞
⎟⎟⎟⎟⎠

,

for some τ = (D, T ) ∈ Z depending on X.

Proof. Let S1, S2 be two smooth surfaces in a smooth cubic hypersurface such that
the scheme-theoretic intersection S1 ∩ S2 contains a smooth curve C of degree d
and genus g. Then the multiplicity of intersection of S1 and S2 along C is given
(see [8]) by:

multC (S1, S2) = 3d + KS1 .C + KS2 .C + 2 − 2g

where KSi denotes the canonical class of Si .
In our case, we have that KP = KP ′ = −3 H and KD = −H , with H the

hyperplane class. Since the quintic del Pezzo surface D and the two disjoint planes
intersect in a smooth conic curve C of genus 0, we have the following:

multC (D, P) = multC (D, P ′) = 3.2 − 3.2 − 2 + 2 = 0.

We do the same in order to compute the intersection (T, P) = (T, P ′). Since T
and the plane intersect in a curve C ′ of degree 3 and genus 1. The formula gives
us:

multC ′(T, P) = multC ′(T, P ′) = 3.3 − 3.3 + 2 − 2 = 0.

��
We will denote by CMτ ⊂ C the locus of cubic fourfolds such that there is a

primitive embedding Mτ ⊂ M(X) of lattices preserving h2.

Theorem 4.9. The locus of smooth cubic fourfolds associated to the the following
rank 5g matrix

⎛
⎜⎜⎜⎜⎝

h2 D P P ′ T

h2 3 5 1 1 6
D 5 13 0 0 τ

P 1 0 3 0 0
P ′ 1 0 0 3 0
T 6 τ 0 0 18

⎞
⎟⎟⎟⎟⎠

with τ = (D, T ), has exactly 3 irreducible components CM12 , CM13 and CM14 .
Moreover, the associated discriminants d(M12), d(M13) and d(M14) are 108, 123
and 96 respectively.
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Proof. Since Mτ is defined as a sublattice of a positive definite lattice, it must have
positive discriminant by Sylvester’s criterion. We find the set of possible values of
τ for which d(Mτ ) > 0.

As d(Mτ ) = −21τ 2 + 540τ − 3348, the only values of τ making a positive
discriminant are τ ∈ {11, 12, 13, 14, 15}. For these values of τ , Mτ is a positive
definite sublattice of rank 5 containing h2 with discriminants d(Mτ ) equal to 51,
108, 123, 96, 27 respectively.

We now prove that Mτ is saturated for the possible values of τ .
Wewill prove that no proper finite overlattices exist; for τ = 11 the discriminant

is squarefree, so there are no proper finite overlattices. For the remaining cases, we
can take h2, D, P and P ′ as a part of a basis of an overlattice B and complete it
with V such that V = xh2 + yD+ zP + t P ′ +uT with x, y, z, t, u ∈ Q. Consider
the natural embedding of Mτ in B that can be written as follows:

⎛
⎜⎜⎜⎜⎝

1 0 0 0 x
0 1 0 0 y
0 0 1 0 z
0 0 0 1 t
0 0 0 0 u

⎞
⎟⎟⎟⎟⎠

−1

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0 −x/u
0 1 0 0 −y/u
0 0 1 0 −z/u
0 0 0 1 −t/u
0 0 0 0 1/u

⎞
⎟⎟⎟⎟⎠

∈ M5,5(Z).

We can take u = 1
n , for some n ∈ Z and x ′ = nx, y′ = yn, z′ = zn, t ′ = tn ∈ Z;

then V = 1
n (x ′h2 + y′D + z′P + t ′P ′ + T ). By adding multiples of h2, D, P and

P ′, we may ensure that 0 ≤ x ′, y′, z′, t ′ < n. Computing intersections, we have
the following:

(V, h2) = 1

n
(3x ′ + y′ + z′ + t ′ + 6) = a,

(V, D) = 1

n
(5x ′ + 13y′ + τ) = b,

(V, P) = 1

n
(x ′ + 3z′) = c,

(V, P ′) = 1

n
(x ′ + 3t ′) = d,

(V, V ) = 1

n2
(3(x ′)2 + 13(y′)2 + 3(z′)2 + 3(t ′)2 + 10x ′y′ + 2y′z′ + 2x ′t ′ + 12x ′

+2τ y′ + 18) = e.

Then the Gram matrix of B is:

⎛
⎜⎜⎜⎜⎝

h2 D P P ′ V

h2 3 5 1 1 a
D 5 13 0 0 b
P 1 0 3 0 c
P ′ 1 0 0 3 d
V a b c d e

⎞
⎟⎟⎟⎟⎠

.

Now we check each case separately for possible values of τ, n, x ′, y′ z′ and t ′.
The cases mentioned down below correspond to the ones such that B ∈ M5,5(Z).
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For all other possible values τ, n, x ′, y′, z′ and t ′, the Gram matrices of B are
non-integers.

For (τ = 12, n = 3, x ′ = 0, y′ = 0, z′ = 0, t ′ = 0), B has the following
Gram matrix

⎛
⎜⎜⎜⎜⎝

3 5 1 1 2
5 13 0 0 4
1 0 3 0 0
1 0 0 3 0
2 4 0 0 2

⎞
⎟⎟⎟⎟⎠

,

which has a primitive short root ±(2, 0,−1,−1,−2).
For (τ = 15, n = 3, x ′ = 0, y′ = 0, z′ = 0, t ′ = 0), B has the following

Gram matrix

⎛
⎜⎜⎜⎜⎝

3 5 1 1 2
5 13 0 0 5
1 0 3 0 0
1 0 0 3 0
2 5 0 0 2

⎞
⎟⎟⎟⎟⎠

,

which has primitive roots ±(1, 0, 0,−1,−1).
Therefore, by [21, Sect. 4 Proposition 1], no overlattices exist in these two

cases.
Thus, for τ = 11, 12, 13, 14, 15, Mτ are saturated.
The saturated lattice Mτ is definite positive of rank 5 such that:

h2 ∈ Mτ ⊂ M(X) ⊂ L .

Let v = xh2 + yD + zP + t P ′ + uT ∈ Mτ . For x, y, z, t, u ∈ Z, we get

(v, v) = 3x2 + 13y2 + 3z2 + 3t2 + 18u2 + 10xy + 2xz + 2xt + 12xt + 2τ yu.

We prove that CM11 and CM15 are empty by finding roots. Indeed, (5h2 − D −
2P − 2P ′ − T, 5h2 − D − 2P − 2P ′ − T ) = 2 is a short root for CM11 and
(h2 + D− T, h2 + D− T ) = 2 is a short root for CM15 ; for the remaining values of
τ , Mτ has no vectors v such that (v, v) = 2. Hence, by [23, Lemma 2.4], CMτ ⊂ C
is irreducible and nonempty for τ = 11, 12, 13. ��

Remark 4.10. In Sect. 5 we give an example of cubic with τ = 12. Examples with
τ = 13, 14 are easy to construct in the same way, and this is explained in the
ancillary file.

Proposition 4.11. Let X be a generic cubic fourfold in CM12 , CM13 or CM14 . Then
the full linear system |2h − T − P − P ′| defines a fibration in del Pezzo quartics
over P

2.
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Proof. The three quadrics that define |2h − T | automatically contain also P and
P ′, since T intersects the two planes along cubic curves. This means that |2h−T −
P − P ′| = |2h − T |. Clearly the fibers have degree 4 and it is easy to see that the
anticanonical bundle of a fiber F isOF (1). In order to show the smoothness of the
generic fiber, we can construct explicit examples with at least one smooth fiber (and
hence the generic fiber is smooth as well) inside each component of Theorem 4.9
(see Sect. 5, or the attached file for general method). This in turn implies that for the
generic cubic in the three components, the generic quartic fiber is smooth. We can
even compute that the fibers are (generically) smooth intersections of two quadrics
in P

4. ��
Let F ∈ M(X) be the class 4h2 − P − P ′ − T of the fiber, a quartic del Pezzo

surface. Let W ∈ M(X) be a 2−cycle on X such that

W := ah2 + bD + cP + dP ′ + eT, for a, b, c, d, e ∈ Z

Wehave that (W, F) = −5a+b+(20−τ)c+d+6e.We observe that a rational
1−section exists always (i.e. (W, F) = 1) for cubics CM12 , CM13 or CM14 . Recall
that, if a quartic del Pezzo surface has k−rational points, then it is unirational over
k. In our case, the quartic del Pezzo surface is unirational over the function field of
P
2 and hence unirational over C. This is not surprising since the quartic del Pezzo

fibration is birational to the cubic fourfold which is known to be unirational.
As far as the author knows, only one sufficient condition is known for the

rationality of a del Pezzo quartic over an arbitrary field. If a quartic del Pezzo surface
contains a line defined over the base field then it is rational (see [4, Proposition 5.4]).

We cannot exclude that a line defined over the base field inside the del Pezzo
fibration exists, but we can give some evidence for its non existence.

Remark 4.12. The existence of a line over P
2, contained in the quartic del Pezzo

fibration birational to the cubic X is equivalent to saying that there exists an open
subset U ⊂ P

2, and a P
1-bundle W over U contained in the family of quartic

surfaces over the same open set U . Let us show that, under some hypotheses, this
P
1-bundle cannot be contained in the cubic fourfold. Suppose that W is contained

in the cubic X (i.e. it does not come from the exceptional divisors of the base locus
of the linear system |2h − T |) and consider the closure W of W in X . The Chow
group CH1(X) = Z = 〈h〉 is infinite cyclic, generated by the hyperplane section.
Hence the cycle W is a complete intersection of type (3, d). We claim that, if a
(3, d) complete intersection has canonical singularities, then it cannot contain a
2-dimensional family of lines. The case (3, 2) is classical and known since Fano.
If d ≥ 3, then the canonical bundle of the complete intersection is effective, and
if the C.I. contained the family of lines, it would be uniruled, which is absurd. Of
course if the complete intersection is highly singular, then the canonical class can
be negative and this argument does not work.

Remark 4.13. (1) It is not hard to construct cubic fourfolds in C18 ∩ C14 containing
only one plane. We can choose the same P , and a second disjoint plane P ′′
such that P ′′ ∩ D = ∅ (see Sect. 5 for details). This means that in this case we
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consider the locus of smooth cubic fourfolds whose lattice of 2-cycles have a
sublattice as follows

⎛
⎜⎜⎝

h2 D P T

h2 3 5 1 6
D 5 13 0 τ

P 1 0 3 0
T 6 τ 0 18

⎞
⎟⎟⎠,

where τ = (D, T ). A calculation similar to the previous ones shows that this
locus has exactly 6 irreducible components CMτ for τ ∈ {9, 10, 11, 12, 13, 14}.
An argument similar to Proposition 4.11, shows that these components give rise
to fibrations in quintic surfaces over P

2, given by F ′ = 4h2 − P − T , with
ample anticanonical bundle.We construct an explicit example in the component
τ = 12 for which the generic fiber is smooth, hence a quintic del Pezzo surface.
Also in this case, one can check that the fibration has a rational section. This
implies rationality. In fact, a classical theorem by Enriques states that a del
Pezzo quintic defined over an infinite field k is always rational over k.

(2) Despite many attempts, we were unable to produce an example of a cubic
fourfold in the intersection of C18 and C14 not containing any plane (i.e. with
rk(M(X)) = 3). It is likely that non-generic cubics of this kind have a different
geometric construction.

4.3. C18 ∩ C26
Let X be a cubic fourfold in C18 ∩ C26; M(X) has primitive sublattices K18 :=
〈h2, T 〉 and K26 := 〈h2, S26〉, such that h2 is the square of the hyperplane class, T
is (possibly a degeneration of) an elliptic ruled surface and S26 is a surface contained
in a general element of C26 (as defined in Sect. 3.2). Hence X ∈ C18 ∩ C26 has a
sublattice Mτ := 〈h2, T, S26〉 ⊂ M(X) with Gram matrix:

⎛
⎝

h2 T S26
h2 3 6 7
T 6 18 τ

S26 7 τ 25

⎞
⎠,

for some τ ∈ Z depending on X .

Theorem 4.14. The intersectionC18∩C26 has exactly seven irreducible components
CMτ given by the following Gram matrix

Mτ :=
⎛
⎝

h2 T S26
h2 3 6 7
T 1 18 τ

S26 7 τ 25

⎞
⎠or B12 :=

⎛
⎝
3 6 8
6 18 18
8 18 24

⎞
⎠

where τ ∈ {8, 9, 10, 11, 12, 13, 14} and B12 is an overlattice of M12. Moreover
the corresponding discriminants of M8, .., M14 and B12 are 48, 81, 108, 129, 144,
153, 156 and 36 respectively.
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Proof. The cubic fourfold X ∈ C18 ∩ C26 has a sublattice Mτ := 〈h2, T, S26〉 ⊂
M(X) with the Gram matrix:

⎛
⎝

h2 T S26
h2 3 6 7
T 6 18 τ

S26 7 τ 25

⎞
⎠

For some τ ∈ Z depending on X .
As d(Mτ ) = −3(τ 2 − 28τ + 144), the only values making a positive discrim-

inant are τ ∈ {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}.
Note that there are isometries between the latticesM7, M8,M9,M10,M11,M12,

M13 and M21, M20, M19, M18, M17, M16, M15 respectively (see [24, Remark 7.7]).
Thus, we may consider only Mτ for τ = 7, 8, 9, 10, 11, 12, 12, 13, 14 of
discriminant d(Mτ ) respectively 9, 48, 81, 108, 129, 144, 153, 156.

For these values of τ , no overlattices exist for Mτ except for (τ = 12; n =
2; x ′ = 1; y′ = 1), an overlattice B12 exists given by

B12 :=
⎛
⎝
3 6 8
6 18 18
8 18 24

⎞
⎠

of discriminant 36.
For these values of τ , Mτ (or B12) is a positive definite saturated sublattice of

rank 3:

h2 ∈ Mτ ⊂ M(X) ⊂ L

Furthermore, let v = xh2 + yT + zS26 ∈ Mτ x, y, z ∈ Z, we get

(v, v) = 3x2 + 18y2 + 25z2 + 12xy + 14xz + 2τ yz.

M7 has roots ±(5h2 + T + S26). For the remaining values of τ , there exists no
v ∈ Mτ such that (v, v) = 2. Then for these values of τ , CMτ ⊂ C is irreducible
nonempty and has codimension 2 (see [23, Lemma 2.4]). ��

Let us assume that the class 4h2 − T ∈ M(X) gives a two-dimensional linear
system of sextic del Pezzo surfaces. Under this assumption, we now check the
existence of 1,2 and 3-sectional cycles in M(X) for the corresponding del Pezzo
fibration.

For Wa,b,c a cycle in M(X) such that

Wa,b,c = ah2 + bT + cS26, for a, b, c ∈ Z,

we have that (Wa,b,c, F) = 6a + 6b + (28 − τ)c.
The following table resumes the situation, according to the different values of

τ .
All the observations from Remark 4.7 hold true also in this case. The compo-

nents with τ = 10, 13 parametrize rational cubic fourfolds in C18 such that the
associated del Pezzo fibration has no rational section. If the cubics are good, the
Brauer class β2 is nontrivial.
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τ (Wa,b,c, F) = 1 (Wa,b,c, F) = 2 (Wa,b,c, F) = 3

8 ∅ W0,7,−2 ∅
9 W0,16,−5 W0,13,−4 W0,10,−3
10 ∅ ∅ ∅
11 W0,3,−1 W0,6,−2 W0,9,−3
12 ∅ W0,3,−1 ∅
13 ∅ ∅ W0,3,−1
14 ∅ W0,5,−2 ∅

4.4. C18 ∩ C38

Let X be a cubic fourfold in C18 ∩ C38; M(X) has primitive sublattices K18 :=
〈h2, T 〉 and K38 := 〈h2, S38〉, such that T is (a degeneration of) an elliptic ruled
surface and S38 is as defined in Sect. 3.3.

Hence X ∈ C18 ∩ C38 has a sublattice Mτ := 〈h2, T, S38〉 ⊂ M(X) with Gram
matrix:

⎛
⎝

h2 T S38
h2 3 6 10
T 6 18 τ

S38 10 τ 46

⎞
⎠,

for some τ ∈ Z depending on X .

Theorem 4.15. The irreducible components of C18 ∩ C38 are the subvarieties of
codimension two CMτ given by rank 3 lattices represented by

Mτ :=
⎛
⎝

3 6 10
6 18 τ

10 τ 46

⎞
⎠ or B16 :=

⎛
⎝
3 6 8
6 18 17
8 17 24

⎞
⎠ or B20 :=

⎛
⎝
3 6 8
6 18 19
8 19 26

⎞
⎠

where 12 ≤ τ ≤ 20, B16 and B20 are overlattices of M16 and M20 respectively.
Moreover the associated discriminants d(M12), .., d(M20), d(B16) and d(B20) are
36, 81, 120, 153, 180, 201, 216, 225, 228, 45, and 57 respectively.

Proof. As d(Mτ ) = −3(τ 2 − 40τ + 324), the only values of τ making a positive
discriminant are τ ∈ {12, 13, . . . , 28}. Note that there are isometries between the
lattices M12, M13, M14, M15, M16, M17, M18, M19 and M28, M27, M26, M25, M24,
M23, M22, M21 respectively (see [24, Remark 7.7]). Thus, we may consider only
Mτ for τ = 12, 13, 14, 15, 16, 17, 18, 19, 20. The corresponding discriminants
d(Mτ ) are 36, 81, 120, 153, 180, 201, 216, 225, 228.

Overlattices exist only for τ = 16 and 20 such that :

B16 :=
⎛
⎝
3 6 8
6 18 17
8 17 24

⎞
⎠ and B20 :=

⎛
⎝
3 6 6
8 18 19
8 19 26

⎞
⎠ .
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For each of these values of τ , Mτ (as well as B16 or B20) is a positive definite
saturated sublattice of rank 3 containing h2.

Let v = xh2 + yT + zS38 ∈ Mτ , for x, y, z ∈ Z, we get

(v, v) = 3x2 + 18y2 + 46z2 + 12xy + 20xz + 2τ yz.

There exists no v ∈ Mτ such that (v, v) = 2; thus CMτ ⊂ C is a nonempty
irreducible component and has codimension 2 (see [24, Theorem 5.2]). ��

We now look for 1, 2 and 3-sectional cycles inside cubics in the irreducible
components of C18 ∩ C38, assuming that the linear system |2h − T | defines a sextic
del Pezzo fibration on P

2.
ForWa,b,c a cycle in M(X) such thatWa,b,c = ah2+bT +cS38, for a, b, c ∈ Z

and F = 4 h2 − T ∈ M(X), we have that

(Wa,b,c, F) = 6a + 6b + (40 − τ)c.

τ (Wa,b,c, F) = 1 (Wa,b,c, F) = 2 (Wa,b,c, F) = 3

12 ∅ W0,5,−1 ∅
13 ∅ ∅ W0,5,−1
14 ∅ W0,9,−2 ∅
15 W0,21,−5 W0,17,−4 W0,13,−3
16 ∅ ∅ ∅
17 W0,4,−1 W0,8,−2 W0,12,−3
18 ∅ W0,4,−1 ∅
19 ∅ ∅ W0,4,−1
20 ∅ W0,7,−2 ∅

Cubic fourfolds from the components with τ = 13, 16, 19 are examples of
rational cubics in C18 s.t. the associated del Pezzo fibration has no rational section.
If the cubics are good, then the Brauer class β2 is non-trivial.

5. Explicit examples

In this section, we shall give explicit examples of rational cubic fourfolds which
are fibered in quadric or del Pezzo surfaces. All our computations have been done
using Macaulay2 [10]. We work over the finite field F3331 but our equations hold
over fields of characteristic zero. Hence wewill setP5 := Proj (F3331[x0, . . . , x5])
and P

2 := Proj (F3331[t0, . . . , t2]).



28 H. Awada

5.1. Cubic fourfold in C8

We provide first an example of rational cubic fourfold in C8∩C38 containing a good
plane with nontrivial Brauer class using Sect. 3.3. This is equivalent to the fact that
the quadric fibration does not have a rational section. Let S38 be the smooth surface
of degree 10 contained in a general element of C38 as defined in Sect. 3.3. It is given
by the image of a plane via the linear system of curves of degree 10 with 10 general
triple points (see [18]).

Let P be the plane whose ideal is generated by P1, P2 and P3 as follows:

P1 = x2 + 884x3 + 1526x4 + 99x5,

P2 = x1 + 363x3 + 1053x4 + 605x5,

P3 = x0 + 229x3 + 1382x4 + 1193x5.

One can compute that P and S38 intersect transversally in 2 points. They are con-
tained in the cubic fourfold Y cut out by

C := x30 − 559x20 x1 − 647x0x
2
1 + 501x31 + 1640x20 x2 − 878x0x1x2 − 417x21 x2

+ 1333x0x
2
2 − 289x1x

2
2 + 472x32 + 103x20 x3 + 792x0x1x3 + 183x21 x3

− 1078x0x2x3 − 514x1x2x3 + 1030x22 x3 + 886x0x
2
3 − 727x1x

2
3 − 1509x2x

2
3

+ 609x33 − 1146x20 x4 + 1639x0x1x4 − 397x21 x4 + 744x0x2x4 − 1035x1x2x4

+ 174x22 x4 + 3x0x3x4 − 153x1x3x4 − 239x2x3x4 + 907x23 x4 − 771x0x
2
4

− 1025x1x
2
4 + 876x2x

2
4 + 633x3x

2
4 − 844x34 − 505x20 x5 − 889x0x1x5 − 30x21 x5

+ 822x0x2x5 − 30x1x2x5 − 10x22 x5 + 159x0x3x5 + 744x1x3x5 − 851x2x3x5

+ 1187x23 x5 + 1473x0x4x5 − 1372x1x4x5 − 1106x2x4x5 + 566x3x4x5 + 957x24 x5

+ 440x0x
2
5 − 714x1x

2
5 + 278x2x

2
5 − 957x3x

2
5

Y is a smooth cubic hypersurface in P
5 contained in the intersection C8 ∩ C38.

Let Ỹ be the blow-up of Y along P . The discriminant divisor E ∈ P
2 of the map

q : Ỹ → P
2 is a smooth sextic curve defined as follows:

E :t60 + 1046t50 t1 − 804t40 t
2
1 − 887t30 t

3
1 + 1253t20 t

4
1 + 58t0t

5
1 + 1280t61 − 164t50 t2

+ 786t40 t1t2 − 674t30 t
2
1 t2 + 960t20 t

3
1 t2 − 574t0t

4
1 t2 − 524t51 t2 + 783t40 t

2
2

+ 1353t30 t1t
2
2 − 1607t20 t

2
1 t

2
2 − 686t0t

3
1 t

2
2 + 491t41 t

2
2 − 379t30 t

3
2 + 706t20 t1t

3
2

− 602t0t
2
1 t

3
2 − 159t31 t

3
2 + 784t20 t

4
2 + 824t0t1t

4
2 − 854t21 t

4
2 + 448t0t

5
2 + 1062t1t

5
2

+ 760t62 = 0

Hence, Y is a smooth rational cubic fourfold containing a good plane P inside the
irreducible component of C8 ∩C38 indexed by τ = (P, S38) = 2. By Corollary 3.7,
the quadric surface bundle associated to cubic fourfolds in this component has no
rational section.
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5.2. Cubic fourfold in C18
We exhibit now examples of rational cubic fourfolds X ∈ C18∩C14. The associated
del Pezzo fibrations have rational sections in these cases.

5.2.1. A cubic fourfold with a quartic del Pezzo fibration We will now construct
an example of cubic fourfold containing an elliptic ruled surface T , the two planes
	1 and 	2 that we use to construct T , and a del Pezzo quintic D that intersects the
two planes along smooth conics. From Sect. 4.2, we know the possible values of
τ = (D, T ) for cubic fourfolds of this kind. Our example will lie in the component
with τ = 12, but the same method allows to construct examples in each component
(see the ancillary file).

Let D be a quintic del Pezzo surface in P
5 as defined in [8, Sect. 4].

To construct T , we define three quadrics Q1, Q2 and Q3 as follows:

Q1 = x21 − 884x0x2 + 1331x1x2 − 336x22 + 538x1x3 − 895x2x3 − 538x0x4

−1580x1x4 + 531x2x4 − 644x24 − 1405x0x5 − 1650x1x5 + 1251x2x5

−305x3x5 − 1097x4x5 − 131x25 ,

Q2 = x0x1 − 871x0x2 − 512x1x2 − 1526x22 − 1367x1x3 − 336x2x3 − 213x0x4

−304x2x4 − 644x3x4 + 813x0x5 − 169x1x5 − 564x2x5 + 1316x3x5 − 41x4x5

+99x25 ,

Q3 = x20 − 1020x0x2 − 102x1x2 − 948x22 − 1580x0x3 − 1432x1x3 + 1471x2x3

−644x23 + 1432x0x4 − 500x2x4 + 1256x0x5 − 1559x1x5 − 1110x2x5

+673x3x5 − 932x4x5 + 939x25 .

Each of these quadrics contains the two disjoint planes:

	1 = {x2 − 1188x5 = x1 − 1188x4 = x0 − 1188x3 = 0} and
	2 = {x2 − 392x5 = x1 − 392x4 = x0 − 392x3 = 0}

T is obtained by saturating the ideal generated by Q1, Q2 and Q3 with respect to
the defining ideals of the planes 	1 and 	2.

The surfaces T and D are contained in the cubic fourfold X cut out by

C ′ := x20 x1 + 1200x0x
2
1 + 1052x0x1x2 − 1200x21 x2 − 1053x1x

2
2 + 1516x0x1x3

+ 1133x21 x3 + 1218x0x2x3 + 696x1x2x3 + 333x22 x3 − 1459x1x
2
3

− 1145x2x
2
3 + 235x20 x4 + 1537x0x1x4 − 1420x0x2x4 + 1093x1x2x4

+ 688x22 x4 + 815x0x3x4 + 1301x1x3x4 − 161x2x3x4 − 1309x0x
2
4 − 398x2x

2
4

− 1219x20 x5 − 466x0x1x5 + 768x21 x5 − 1386x0x2x5 − 1395x1x2x5

− 606x0x3x5 − 646x1x3x5 + 1442x2x3x5 + 644x23 x5 − 1407x0x4x5

− 255x1x4x5 + 1394x2x4x5 − 636x3x4x5 − 8x24 x5 + 129x0x
2
5 − 1026x1x

2
5

− 1392x3x
2
5 + 1392x4x

2
5 .

X is a smooth irreducible subscheme of P
5 of dimension 4 and degree 3. The

surface T (resp. D) cuts a smooth cubic curve (resp. smooth conic) out of 	1 and
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	2. This implies directly that X contains the two planes, and that (T, D) ≥ 12,
since the intersection of the plane cubic and conic gives 6 points.AquickMacaulay2
calculation shows that T and D indeed intersect transversally in 12 points and this
in turn means that our example belongs to the discriminant 108 component (see
Theorem 4.9).

The linear system |2h − T | = P
2 contains also 	1 and 	2 in its base locus,

since T ∩	i is a cubic curve for i = 1, 2, hence the fibers have degree 4. Let X̃ be
the blow-up of X along T . The discriminant locus of the map π : X̃ → P

2 given
by |2h − T | is a reducible curve of degree 12 with two irreducible components.
The generic fiber is a del Pezzo surface of degree 4 (a smooth intersection of two
quadrics).

5.2.2. Cubic fourfold with a quintic del Pezzo fibration To construct T , we define
three quadrics Q′

1, Q
′
2 and Q′

3 as follows:

Q′
1 = x21 + 1065x0x2 + 175x1x2 − 70x22 + 1044x0x3 − 1139x1x3 + 1091x2x3

−1140x23 − 1024x0x4 + 1571x1x4 + 1184x2x4 + 1443x3x4 + 12x24
−1027x0x5 + 802x1x5 − 1655x2x5 − 339x3x5 + 768x4x5 + 801x25 ,

Q′
2 = x0x1 + 840x0x2 − 1358x1x2 + 77x22 − 37x0x3 + 653x1x3 + 726x2x3

+653x23 − 1360x0x4 − 618x1x4 − 759x2x4 + 1504x3x4 + 1364x24
−161x0x5 + 1577x1x5 + 1014x2x5 − 1101x3x5 − 1415x4x5 + 1577x25 ,

Q′
3 = x20 + 1415x0x2 − 34x1x2 + 765x22 − 615x0x3 − 1200x1x3 + 1008x2x3

−1200x23 + 1194x0x4 − 1191x1x4 − 222x2x4 + 466x3x4 − 767x24
−901x0x5 − 13x1x5 − 1058x2x5 − 1213x3x5 − 1314x4x5 − 13x25 .

Each of these quadrics contains the two disjoint planes:

	1 = {x2 − 1188x5 = x1 − 1188x4 = x0 − 1188x3 = 0} and
O = {x2 + x4 = x1 + x3 + x5 = x0 − x4 = 0}

T is obtained by saturating the ideal generated by Q1, Q2 and Q3 with respect
to the defining ideals of the planes 	1 and O . While 	1 is the same plane as
in the preceding example (hence cutting out a cubic and a conic on T and D),
O is a different plane, that still intersects T along a smooth cubic but has empty
intersection with D. The surfaces T and D are contained in the cubic fourfold X
of equation

C ′′ := x20 x1 − 634x0x
2
1 − 983x0x1x2 + 634x21 x2 + 982x1x

2
2 − 769x0x1x3 − 1007x21 x3

+ 730x0x2x3 − 208x1x2x3 − 1249x22 x3 − 528x1x
2
3 − 911x2x

2
3 − 572x20 x4

+ 371x0x1x4 − 133x0x2x4 + 59x1x2x4 − 1255x22 x4 − 913x0x3x4 + 560x1x3x4

+ 1154x2x3x4 + 1092x0x
2
4 + 77x2x

2
4 − 731x20 x5 + 137x0x1x5 − 57x21 x5

− 1100x0x2x5 − 878x1x2x5 − 1079x0x3x5 − 1578x1x3x5 + 1172x2x3x5

+ 1441x23 x5 + 127x0x4x5 + 966x1x4x5 + 1009x2x4x5 + 238x3x4x5 + 1652x24 x5

+ 1008x0x
2
5 + 1175x1x

2
5 + 1033x3x

2
5 − 1033x4x

2
5 .
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X is a smooth irreducible subscheme ofP5 of dimension 4 and degree 3 that contains
	1 (by the same argument as the preceding example), T and D. A Macaulay2
computation shows that (D, T ) = 12, and 6 of these points are contained in 	1.
The linear system |2h − T | = P

2 contains also 	1 in its base locus, since T ∩ 	1
is a cubic curve, hence the degree of the fibers of the induced map X → P

2 is five.
The discriminant locus of the map X̃ → P

2 is a reducible curve of degree 12 with
two irreducible components: a singular curve of degree 6 and a smooth curve of
degree 6. The generic fiber F is smooth, has degree 5, and it is not hard to show that
OF (1) is the anticanonical bundle. Hence the generic fiber is a del Pezzo quintic
surface.
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