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Abstract. Let � be a prime number different from the residue characteristic of a non-
archimedean local field F . We give formulations of �-adic local Langlands correspondences
for connected reductive algebraic groups over F , which we conjecture to be independent of
a choice of an isomorphism between the �-adic coefficient field and the complex number
field.

Introduction

The local Langlands correspondence for a connected reductive algebraic group over
a non-archimedean local field F is usually formulatedwith coefficients inC because
of its relationwith automorphic representations.On the other hand,whenwediscuss
a realization of the local Langlands correspondence in �-adic cohomology, we need
a correspondence over Q�, where � is a prime number different from the residue
characteristic of F . We can take an isomorphism ι : C

∼→ Q� and use it to transfer
the local Langlands correspondence over C to a local Langlands correspondence
overQ�. However, the obtained correspondence overQ� depends on the choice of ι.
In [5], Bushnell–Henniart formulated an �-adic local Langlands correspondence for
GL2,which is independent of a choice of an isomorphismC

∼→ Q� bymaking some
twists of L-parameters. The �-adic local Langlands correspondence is suitable to
describe the non-abelianLubin–Tate theory in the sense that it is canonically defined
over Q� (cf. [16, 5]).

In this paper, we discuss formulations of �-adic local Langlands correspon-
dences for general connected reductive groups. A natural idea is to make similar
twists as GL2-case for L-parameters. However, we can not make such twists in
general as explained in Example 2.1. A problem is that we do not have enough
space inside the Langlands dual group to make an appropriate twist. To overcome
this problem, we have two approaches. One is to introduce �-adic C-parameters
using C-groups, which make spaces for twists. Another is to introduce Tannakian
�-adic L-parameters that incorporate necessary twists in the realizations. Using
these parameters, we formulate �-adic local Langlands correspondences, which we
conjecture to be independent of a choice of an isomorphism C

∼→ Q�. We show
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that two conjectures formulated by using �-adic C-parameters and Tannakian �-
adic L-parameters are equivalent. Further, we confirm that the conjectures are true
for GLn and PGLn . The formulation of the �-adic local Langlands correspondence
using Tannakian �-adic L-parameters is motivated by the Kottwitz conjecture for
local Shimura varieties in [26, Conjecture 7.4]. In the number field case, a relation
between C-groups and the Kottwitz conjecture for Shimura varieties is discussed
in [17].

In Sect. 1, we recall various versions of L-parameters and explain their relations.
In Sect. 2, after explaining the problem, we give formulations of the �-adic local
Langlands correspondences introducing the �-adic C-parameter and the Tannakian
�-adic L-parameter.

After we put a former version of this paper on arXiv, related papers [2,30]
appeared on arXiv. [2] also explains a relation between C-groups and the local
Langlands correspondence. In a similar philosophy as this paper, formulations of
Satake isomorphisms using C-groups are explained in [2,30].

Notation

For a field F , let �F denote the absolute Galois group of F . For a non-archimedean
local field F , letWF and IF denote theWeil groupof F and its inertia subgroup. For a
homomorphismφ : G → H of groups and g ∈ G, letφg denote the homomorphism
defined by φg(g′) = φ(gg′g−1) for g′ ∈ G. For a group G, let Z(G) denote the
center of G. For a group G, a subgroup H ⊂ G and a subset S ⊂ G, let ZH (S)

denote the centralizer of S in H . Let Ad denote the adjoint action of a group, and
ad denote the adjoint action of a Lie algebra.

1. Langlands parameters

1.1. Over fields of characteristic zero

Let F be a non-archimedean local field of residue characteristic p. Let q be the
number of elements of the residue field of F . Let vF : F× → Z be the normalized
valuation of F . Let

ArtF : F× ∼−→ W ab
F

be the Artin reciprocity isomorphism normalized so that a uniformizer is sent to a
lift of the geometric Frobenius element. For w ∈ WF , we put

dF (w) = vF (Art−1
F (w)), |w| = q−dF (w),

where w denotes the image of w in W ab
F .

Let G be a connected reductive algebraic group over F . Let C be a field of
characteristic 0. Let ̂G be the dual group of G over C . Let LG = ̂G � WF be the
L-group of G defined in [7, 2.3]. We say that an element of LG(C) is semisimple
if its image in ̂G(C) �Gal(F ′/F) is semisimple for any finite Galois extension F ′
over F that splits G. Let p

̂G : LG(C) → ̂G(C) denote the projection map.
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Definition 1.1. Let H be a group with action of WF . Let φ : H � WF → LG(C)

be a homomorphism of groups over WF .

(1) We say that φ is semisimple if all the elements of φ(WF ) are semisimple.
(2) We say that φ is relevant if any parabolic subgroup P of LG containing Im φ

is relevant in the sense of [7, 3.3].

We say that two homomorphisms H � WF → LG(C) of groups over WF are
equivalent if they are conjugate by an element of ̂G(C).

We say that a map from WF to a set is smooth if it is locally constant.

Lemma 1.2. Let φ : WF → LG(C) be a homomorphism of groups over WF such
that p

̂G ◦ φ is smooth. Let σq ∈ WF be a lift of the q-th power Frobenius element.
Assume that φ(σq) is semisimple. Then φ is semisimple.

Proof. We write w ∈ WF as σm
q σ for m ∈ Z and σ ∈ IF . Since (p

̂G ◦ φ)(IF ) is
finite, there is a positive integer d such that φ((σm

q σ)d) = φ(σ dm
q ). Then the claim

follows, because φ(w) is semisimple if and only if φ(w)d is semisimple. �	
LetWDF = Ga �WF be theWeil–Deligne group scheme over Q for F defined

in [9, 8.3.6].

Definition 1.3. [cf. [7, 8.2]]

(1) An L-homomorphism of Weil–Deligne type for G over C is a homomorphism

ξ : WDF (C) → LG(C)

of groups over WF such that ξ |Ga(C) is algebraic and (p
̂G ◦ ξ)|WF is smooth.

(2) An L-parameter of Weil–Deligne type for G over C is a semisimple relevant
L-homomorphism of Weil–Deligne type for G over C .

Let LWD
C (G) denote the set of equivalence classes of L-homomorphisms of

Weil–Deligne type forG overC . Let�WD
C (G) denote the set of equivalence classes

of L-parameters of Weil–Deligne type for G over C .

Definition 1.4. (1) AWeil–Deligne L-homomorphism forG overC is a pair (τ, N )

of a homomorphism τ : WF → LG(C) of groups overWF and N ∈ Lie(̂G)(C)

such that p
̂G ◦ τ is smooth and Ad(τ (w))N = |w|N for w ∈ WF . The second

component N of a Weil–Deligne L-homomorphism (τ, N ) is called a mon-
odromy operator. We say that twoWeil–Deligne L-homomorphisms for G over
C are equivalent if they are conjugate by an element of ̂G(C).

(2) AWeil–Deligne L-parameter forG overC is aWeil–Deligne L-homomorphism
(τ, N ) for G over C such that τ is semisimple and any parabolic subgroup P
of LG containing τ(WF ) and satisfying N ∈ Lie(P ∩ ̂G)(C) is relevant.

Let LM
C (G) denote the set of equivalence classes of Weil–Deligne L-

homomorphisms for G over C . Let �M
C (G) denote the set of equivalence classes

of Weil–Deligne L-parameters for G over C .
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Remark 1.5. Let ι : C ∼→ C ′ be an isomorphism of fields of characteristic 0. Then ι

induces bijectionsLWD
C (G) � LWD

C ′ (G),�WD
C (G) � �WD

C ′ (G),LM
C (G) � LM

C ′(G)

and �M
C (G) � �M

C ′(G).

Lemma 1.6. Let (τ, N ) be a Weil–Deligne L-homomorphism for G over C. Then
N is an nilpotent element of Lie(̂Gder(C)).

Proof. We take a finite separable extension F ′ of F that splits G. By the condition
Ad(τ (w))N = |w|N forw ∈ WF ′ , we have N ∈ Lie(̂Gder(C)). Further, the adjoint
endomorphism ad(N ) ∈ End(Lie(̂Gder(C))) satisfies

Ad(τ (w)) ◦ ad(N ) = |w| ad(N ) ◦ Ad(τ (w))

for w ∈ WF . Hence N is an nilpotent element. �	
Proposition 1.7. For an L-homomorphism ofWeil–Deligne type ξ for G over C, we
put τξ = ξ |WF and Nξ = Lie(ξ |Ga(C))(1). Then ξ �→ (τξ , Nξ ) induces bijections
LWD
C (G) � LM

C (G) and �WD
C (G) � �M

C (G).

Proof. Let (τ, N ) be a Weil–Deligne L-homomorphism for G over C . By
Lemma 1.6, there is a unipotent radical U of a Borel subgroup of ̂G such that
N ∈ Lie(U (C)). Then there is an exponential map

exp : Lie(U (C)) → U (C)

as in [27, 2.2]. We define

ξ(τ,N ) : WDF (C) → LG(C)

by ξ(τ,N )(a, w) = exp(aN )τ (w). Then (τ, N ) �→ ξ(τ,N ) defines the inverses. �	

1.2. Over C

Assume that C = C in this subsection.

Definition 1.8. [cf. [1, I.2]] An L-parameter for G is a semisimple relevant con-
tinuous homomorphism

φ : SU2(R) × WF → LG(C)

of groups over WF .

Let �(G) denote the set of equivalence classes of L-parameters for G.

Definition 1.9. [cf. [22, IV.2]] An L-parameter of SL2-type for G is a semisimple
relevant continuous homomorphism

φ : SL2(C) × WF → LG(C)

of groups over WF such that φ|SL2(C) is algebraic.
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Let �SL(G) denote the set of equivalence classes of L-parameters of SL2-type
for G.

Proposition 1.10. The map �SL(G) → �(G) induced by the restriction with
respect to SU2(R) ⊂ SL2(C) is a bijection.

Proof. Let φ : SU2(R) × WF → LG(C) be an L-parameter for G. Let H be the
centralizer of φ(WF ) in ̂G. ThenH is reductive by [21, 10.1.1 Lemma]. We take a
compact real formHc ofH such that φ(SU2(R)) ⊂ Hc(R). Let φSU2 : SU2(R) →
Hc(R) be the restriction of φ to SU2(R). The continuous homomorphism φSU2

extends to an algebraic morphism φSL2 : SL2(C) → H(C) uniquely by [25, 5.2.5
Theorem 11], since any continuous homomorphism between real Lie groups are
differentiable. Let φSL : SL2(C) ×WF → LG(C) be a homomorphism defined by
φSL2 and φ|WF . Then φ �→ φSL induces the inverse of the map �SL(G) → �(G).

�	
Lemma 1.11. Let H be a compact topological group. Let φ : H → LG(C) be a
continuous homomorphism. Then the centralizer of φ(H) in ̂G is reductive.

Proof. Let K be the image of φ(H) under Ad : LG → Aut(̂G). Then ̂GK is
reductive as in the proof of [21, 10.1.2 Lemma]. Hence we obtain the claim. �	

The following is a slight generalization of [11, Proposition 3.5] and [19, 2.4].

Lemma 1.12. Let G be a reductive group over C. Let s be a semisimple element of
G(C) and u be a unipotent element of G(C) such that sus−1 = uq . Then there is
an algebraic homomorphism θ : SL2(C) → G(C) such that

θ

((

1 1
0 1

))

= u, θ

((

q
1
2 0

0 q− 1
2

))

s−1 ∈ ZG(C)(Im θ).

Further, such θ is unique up to conjugation by ZG(C)({s, u}).
Proof. The first claim is proved in the same way as [11, Proposition 3.5]. We recall
the argument briefly. We take an algebraic homomorphism θ : SL2(C) → G(C)

such that

θ

((

1 1
0 1

))

= u.

We put G′ = G × Gm. We define

SG′(C)(u) = {(g, z) ∈ G′(C) | gug−1 = uz
2},

SG′(C)(θ) =
{

(g, z) ∈ G′(C)

∣

∣

∣

∣

Ad(g) ◦ θ = θ ◦ Ad

((

z 0
0 z−1

))}

.

Thenwecan see that SG′(C)(θ) is amaximal reductive subgroupof SG′(C)(u) as in the
proof of [8, Proposition 2.4]. Then any maximal reductive subgroup of SG′(C)(u) is
conjugate to SG′(C)(θ) by [14, VIII. Theorem 4.3] (cf. [24, Theorem 7.1]). Hence,

by replacing θ by its conjugate under SG′(C)(u), we may assume that (s, q
1
2 ) ∈

SG′(C)(θ). Then θ satisfies the conditions in the first claim.
The second claim is proved in the same way as [19, 2.4 (h)]. �	
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Let φ : SL2(C) × WF → LG(C) be an L-parameter of SL2-type for G. We
define ξφ : WDF (C) → LG(C) by

ξφ(a, w) = φ

(

(

1 a
0 1

)

(

|w| 12 0

0 |w|− 1
2

)

, w

)

.

We define � : �SL(G) → �WD
C

(G) by �([φ]) = [ξφ].
The following proposition is proved in [10, Proposition 2.2].We give a different

proof here.

Proposition 1.13. The map � is a bijection.

Proof. Let ξ be aWeil–Deligne L-parameter forG overC. LetH be the centralizer
of ξ(IF ) in ̂G. ThenH is reductive by Lemma 1.11. Take a lift σq ∈ WF of the q-th
power Frobenius element. Then H is stable under conjugation by ξ(σq), since IF
is a normal subgroup of WF . Take a positive integer m0 such that σ

m0
q commutes

with ̂G in LG and

(p
̂G ◦ ξ)(0, σm0

q σσ−m0
q ) = (p

̂G ◦ ξ)(0, σ )

for any σ ∈ IF . Then (1, σm0
q )Z is a normal subgroup of H · ξ(σq)

Z ⊂ LG. We
put

G =
(

H · ξ(σq)
Z

)

/(1, σm0
q )Z.

Then G is a reductive group, because the identity component of G is equal to the
identity component of H. We view H as an algebraic subgroup of G. Let s be the
image of ξ(0, σq) in G(C). Since ξ is semisimple, the element s is semisimple.
Let u ∈ ̂G(C) be the image of 1 ∈ Ga(C) under ξ . Then u belongs to H(C).
Hence we can view u as an element of G(C). By Lemma 1.12, there is a morphism
θ : SL2(C) → G(C) such that

θ

((

1 1
0 1

))

= u, θ

((

q
1
2 0

0 q− 1
2

))

s−1 ∈ ZG(C)(Im θ). (1.1)

Since θ factors through the identity component of G(C), it factors through H(C).
Hence θ determines a morphism θ

̂G : SL2(C) → ̂G(C). We note that

θ

((

q
1
2 0

0 q− 1
2

))

commutes with ξ(WF ), because it commutes with s by the latter condition in
(1.1) and we have Im θ

̂G ⊂ H(C). We define φξ : SL2(C) × WF → LG(C) by
φξ |SL2(C) = θ

̂G and

φξ (1, w) = θ
̂G

((

|w|− 1
2 0

0 |w| 12

))

ξ(0, w).



Local Langlands correspondences … 351

Let θ ′ be another choice of θ . Then θ ′ = Ad(g′)θ for some g′ ∈ ZG(C)({s, u}) by
Lemma 1.12. Since we have

θ

((

q
1
2 0

0 q− 1
2

))

s−1 ∈ ZG(C)(Im θ) ∩ ZG(C)({s, u})

by (1.1), we may replace g′ and assume that g′ ∈ ZH(C)({s, u}). Then g′ commutes
with ξ(WF ). Hence [φξ ] is independent of the choice of θ .We can see that ξ �→ [φξ ]
induces the inverse of �. �	
Remark 1.14. The bijectivity in Proposition 1.13 does not hold in general if we
drop the Frobenius semisimplicity conditions from the both sides (cf. [6, Example
3.5]).

1.3. Over Q�

Let � be a prime number different from p. Assume that C = Q� in this subsection.

Definition 1.15. (1) An �-adic L-homomorphism for G is a continuous homomor-
phism

ϕ : WF → LG(Q�)

of groups over WF . We say that an �-adic L-homomorphism ϕ for G is
Frobenius-semisimple if ϕ(σq) is semisimple for any lift σq ∈ WF of the
q-th power Frobenius element.

(2) An �-adic L-parameter for G is an Frobenius-semisimple relevant �-adic L-
homomorphism for G.

LetL�(G)denote the set of the equivalence classes of�-adicL-homomorphisms.
Let ��(G) denote the set of the equivalence classes of �-adic L-parameters of G.

Let t� : IF → Z�(1) be the �-adic tame character. We take an isomorphism
Z�(1) � Z� and let

t ′� : IF t�−→Z�(1) � Z�.

Let ξ be an L-homomorphism of Weil–Deligne type for G over Q�. We take a lift
σq ∈ WF of the q-th power Frobenius element and define ϕξ : WF → LG(Q�) by

ϕξ (σ
m
q σ) = ξ

(

t ′�(σ ), σm
q σ

)

for m ∈ Z and σ ∈ IF .

Lemma 1.16. The equivalence class [ϕξ ] ∈ L�(G) of ϕξ constructed above is
independent of choices of σq and an isomorphism Z�(1) � Z�.
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Proof. Let σ ′
q be another choice of a lift of the q-th power Frobenius element. Then

σ ′
q = σqσ

′ for some σ ′ ∈ IF . We define ϕ′
ξ similarly as ϕξ using σ ′

q instead of σq .
We put

g = ξ

(

t ′�(σ ′)
q − 1

, 1

)

.

Then we have

Ad(g)(ϕξ (σ )) = ξ(t ′�(σ ), σ ) = ϕ′
ξ (σ )

for σ ∈ IF , and

Ad(g)(ϕξ (σq)) = g
(

Ad(ϕξ (σq))(g
−1)

)

ϕξ (σq) = ξ(−t ′�(σ ′), σq) = ϕ′
ξ (σq).

Hence we have [ϕξ ] = [ϕ′
ξ ].

Let

t ′′� : IF t�−→ Z�(1) � Z�

be a homomorphism obtained from another choice of an isomorphism Z�(1) � Z�.
Then we have t ′′� = ut ′� for some u ∈ Z

×
� . Take a positive integer m0 such that σ

m0
q

commutes with ̂G in LG and

(p
̂G ◦ ξ)(0, σm0

q σσ−m0
q ) = (p

̂G ◦ ξ)(0, σ ) (1.2)

for any σ ∈ IF . We put h0 = (p
̂G ◦ ξ)(0, σm0

q ). If ξ |
Ga(Q�)

is trivial, there is
nothing to prove. Hence we assume that ξ |

Ga(Q�)
is non-trivial. Let Uξ be the

algebraic subgroup of ̂G defined by ξ(Ga(Q�)). Let H be the intersection of the
normalizer of Uξ in ̂G and the centralizer of ξ(WF ) in ̂G. We have

Ad(h0)(ξ(a, 1)) = Ad(ξ(σm0
q ))(ξ(a, 1)) = ξ(qm0a, 1)

for a ∈ Ga(Q�) and

Ad(h0)(ξ(0, σq)) = Ad((1, σ−m0
q ))Ad(ξ(0, σm0

q ))(ξ(0, σq)) = ξ(0, σq),

Ad(h0)(ξ(0, σ )) = Ad((1, σ−m0
q ))(ξ(0, σm0

q σσ−m0
q )) = ξ(0, σ )

for σ ∈ IF using (1.2). Hence we have h0 ∈ H(Q�). The morphism

f : H → Aut(Uξ ) � Gm

induced by the adjoint action is surjective, because f (h0) = qm0 is not of finite
order. Hence we can take h ∈ H(Q�) such that f (h) = u. Then we have

Ad(h)
(

ξ
(

t ′�(σ ), σm
q σ

))

=
(

t ′′� (σ ), σm
q σ

)

for m ∈ Z and σ ∈ IF . Therefore [ϕξ ] is independent of a choice an isomorphism
Z�(1) � Z�. �	
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We define  : LWD
Q�

(G) → L�(G) by ([ξ ]) = [ϕξ ].

Proposition 1.17. The map  is a bijection. Further it induces a bijection
�WD

Q�

(G) → ��(G).

Proof. Let ϕ be an �-adic L-homomorphism for G. Take a finite Galois extension
F ′ of F such that G splits over F ′. Take a representation

η : LG(Q�) → GLn(Q�)

which factors through a faithful algebraic representation

η : ̂G(Q�) � Gal(F ′/F) → GLn(Q�).

Applying Grothendieck’s monodromy theorem (cf. [28, Appendix, Proposition])
to η ◦ ϕ, we obtain a homomorphism

ξGLn : WDF (Q�) → GLn(Q�)

such that ξGLn |Ga(Q�)
is algebraic, ξGLn |WF is smooth and

ξGLn

(

t ′�(σ ), σm
q σ

)

= (η ◦ ϕ)(σm
q σ)

for m ∈ Z and σ ∈ IF . Take a finite separable extension F ′′ of F ′ such that
ξGLn |IF ′′ is trivial. Since t

′
�(IF ′′) is Zariski dense inGa(Q�), the algebraicmorphism

ξGLn |Ga(Q�)
factors through the inclusion

̂G(Q�) ↪→ ̂G(Q�) � Gal(F ′/F)
η

↪→ GLn(Q�)

via an algebraic morphism α : Ga(Q�) → ̂G(Q�). We define a homomorphism

ξϕ : WDF (Q�) → LG(Q�)

by

ξϕ

(

a, σm
q σ

)

= α(a − t ′�(σ ))ϕ(σm
q σ)

for a ∈ Ga(Q�), m ∈ Z and σ ∈ IF . Then ϕ �→ ξϕ induces the inverse of . The
bijection  induces a bijection �WD

Q�

(G) → ��(G) by Lemmas 1.2 and 1.16. �	

Corollary 1.18. Letσq ∈ WF be a lift of the q-th power Frobenius element. Then an
�-adic L-homomorphism ϕ for G is Frobenius-semisimple if ϕ(σq) is semisimple.

Proof. By Proposition 1.17, we take an L-homomorphism ξ of Weil–Deligne type
for G over Q� such that [ϕ] = [ϕξ ], where ϕξ is defined using σq . Then ξ |WF is
semisimple by Lemma 1.2, because ξ(0, σq) = ϕξ (σq) is semisimple. Let σ ′

q ∈ WF

be another lift of the q-th power Frobenius element. We define ϕ′
ξ using σ ′

q . Then
[ϕ] = [ϕ′

ξ ] byLemma1.16.Henceϕ(σ ′
q ) is semisimple, becauseϕ′

ξ (σ
′
q) = ξ(0, σ ′

q)

is semisimple. �	
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2. Local Langlands correspondence

2.1. Problem

Let Irr(G(F)) denote the set of isomorphism classes of irreducible smooth repre-
sentations of G(F) over C. The conjectured local Langlands correspondence is a
surjective map

LLG : Irr(G(F)) → �(G)

with finite fibers satisfying various properties (cf. [7, 10], [18, Conjecture G]). We
assume the existence of the local Langlands correspondence in the sequel.

Let Irr�(G(F)) denote the set of isomorphism classes of irreducible smooth
representations of G(F) over Q�. If we fix an isomorphism ι : C

∼→ Q�, we have
a surjection

LLι
G,� : Irr�(G(F)) → ��(G)

sending [π ] ∈ Irr�(G(F)) to the image of LLG([π ⊗
Q�,ι

−1 C]) under the bijection

�(G) � �SL(G) � �WD
C

(G)
�WD

ι (G)� �WD
Q�

(G) � ��(G),

where �WD
ι (G) is a bijection induced by ι as in Remark 1.5. However, LLι

G,�

depends on the choice of an isomorphism ι : C
∼→ Q�.

In [5, 35.1], an �-adic local Langlands correspondence for GL2 is constructed.
We recall the construction here. For [φ] ∈ �(GL2), we define [˜φ] ∈ �(GL2) by

˜φ(g, w) =
((

|w| 12 0

0 |w| 12

)

, 1

)

φ(g, w).

We define a bijection � : �(GL2) → �(GL2) by [φ] �→ [˜φ]. We define

LLGL2,� : Irr�(GL2(F)) → ��(GL2)

by sending [π ] ∈ Irr�(GL2(F)) to the image of LLGL2([π ⊗
Q�,ι

−1 C]) under the
bijection

�(GL2)
�� �(GL2)��SL(GL2)��WD

C
(GL2)

�WD
ι (GL2)� �WD

Q�
(GL2) � ��(GL2)

using an isomorphism ι : C
∼→ Q�. Then LLGL2,� is independent of the choice of ι.

We can not make a similar twist for an L-parameter of a general connected
reductive group G as the following example suggests.
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Example 2.1. We have a commutative diagram

Irr(PGL2(F))
LLPGL2

�(PGL2)

Irr(GL2(F))
LLGL2

�(GL2)

by functoriality. On the other hand, there does not exist a map

LLPGL2,� : Irr�(PGL2(F)) → ��(PGL2)

which makes the commutative diagram

Irr�(PGL2(F))
LLPGL2,�

��(PGL2)

Irr�(GL2(F))
LLGL2,�

��(GL2),

because (det ◦ p̂GL2
◦ ϕ)(w) = |w| for w ∈ WF if [ϕ] ∈ ��(GL2) is the image

under LLGL2,� of an element of Irr�(GL2(F)) coming from Irr�(PGL2(F)) by the
construction of LLGL2,� and [7, 10.1].

2.2. �-adic C-parameter

A C-group is constructed in [3, Definition 5.38] for a connected reductive group
over a number field. We recall the construction here in our setting. Let Gad be
the adjoint quotient of G, and Gsc be the simply-connected cover of Gad. Let
γ : Z(Gsc) → Gm be the restriction to Z(Gsc) of the half sum of the positive roots
of Gsc, where we take a maximal torus T sc and a Borel subgroup Bsc of Gsc

F
such

that T sc ⊂ Bsc to define the positive roots, but γ is independent of the choice. By
pushing forward the exact sequence

1 → Z(Gsc) → Gsc → Gad → 1

by γ , we obtain an extension

1 → Gm → G1 → Gad → 1.

By taking the pullback of this extension along the natural morphism G → Gad, we
obtain an extension

1 → Gm → ˜G → G → 1.

We define the C-group CG of G as the L-group L
˜G of ˜G.

The character

Gsc × Gm → Gm; (g, z) �→ z2
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induces a character G1 → Gm, since γ 2 = 1 by the construction of γ . It further
induces a character ˜G → Gm by taking composition with the natural morphism
˜G → G1. Hence we obtain a morphism

˜G → G × Gm. (2.1)

We take a Borel subgroup B ⊂ GF and a maximal torus T ⊂ B over F . Let
ρG denote the half sum of positive roots of G with respect to T and B. Then 2ρG

defines a cocharacter δG : Gm → ̂T . We put

zG = δG(−1).

Then zG is central in ̂G and independent of choices of B and T as in [3, Proposition
5.39]. By the independent of choices, we see that zG ∈ Z(̂G)�F ⊂ LG.

Then the morphism (2.1) induces the isomorphism

(̂G × Gm/〈(zG,−1)〉) � WF � CG (2.2)

as in [3, Proposition 5.39].We sometimes express a point of CG as [(g, z, w)] using
the above isomorphism. We define tGm : CG → Gm by tGm ([(g, z, w)]) = z2. We
have an exact sequence

1 → LG → CG
tGm−→ Gm → 1.

Definition 2.2. An �-adic C-parameter forG is an �-adic L-parameter ϕ for ˜G such
that (tGm ◦ ϕ)(w) = |w|.

Let �C
� (G) denote the equivalence classes of �-adic C-parameters for G. We

take c ∈ Q� such that c2 = q. We define

ic : LG → CG

by ic(g, w) = [(g, c−dF (w), w)]. For an �-adic L-parameter ϕ for G, we put

ϕc = ic ◦ ϕ.

Lemma 2.3. We have a bijection between the set of the �-adic L-parameters for G
and the set of the �-adic C-parameters for G given by sending ϕ to ϕc. Further, this
induces a bijection ��(G) � �C

� (G).

Proof. The first claim follows from the definitions. If two �-adic L-parameters for
˜G are conjugate by an element of ̂

˜G(Q�), then they are conjugate by an element
of ̂G(Q�), since

̂
˜G(Q�) is generated by ̂G(Q�) and Z

̂
˜G(Q�)

(CG(Q�)). Hence the
second claim follows from the first one. �	

We define a map

CcG,� : ��(G) → �C
� (G)

by sending [ϕ] to [ϕc]. Then CcG,� is a bijection by Lemma 2.3. For an isomorphism

ι : C
∼→ Q�, we define

LLC,ι
G,� : Irr�(G(F)) → �C

� (G)

as Cι(q
1
2 )

G,� ◦ LLι
G,�.



Local Langlands correspondences … 357

Conjecture 2.4. The map LLC,ι
G,� is independent of a choice of ι : C

∼→ Q�.

2.3. Tannakian �-adic L-parameter

Assume that C = Q�. For a topological group H , let Rep
Q�

(H) be the category

of continuous finite dimensional representations of H over Q�. For an algebraic
group H over a field, a character χ of H and a cocharacter μ of H , we define
〈χ,μ〉H ∈ Z by

(χ ◦ μ)(z) = z〈χ,μ〉H .

For a cocharacter μ ∈ X∗(T ) of a torus T over F , let μ̂ ∈ X∗(̂T ) denote the
corresponding character of the dual torus ̂T .

Let MG be the conjugacy classes of cocharacters Gm → GF . Let [μ] ∈ MG .
We put

dG([μ]) = 〈2ρG , μ〉T ,

where we take a Borel subgroup B ⊂ GF , a maximal torus T ⊂ B defined over
F and a dominant representative μ ∈ X∗(T ). Let E[μ] be the field of definition
of [μ]. Let r

̂G,[μ] be the irreducible representation of ̂G(Q�) of highest weight μ̂

viewed as a dominant character of a maximal torus of ̂G.
We take c ∈ Q� such that c2 = q. For an integer m, let

(m

2

)

c

denote the twist by the character WF → Q� sending w to c−mdF (w).
Let Repalg

Q�

(LG) denote the category of continuous finite dimensional repre-

sentations of LG(Q�) over Q� whose restrictions to ̂G(Q�) are algebraic. Let
r : LG(Q�) → Aut(V ) be an object in Repalg

Q�

(LG). Then we have a decompo-

sition

V =
⊕

[μ]∈MG

V[μ]

as representations of ̂G(Q�) where V[μ] is the r̂G,[μ]-typic part of V . For an �-adic
L-parameter ϕ, we define (r ◦ ϕ)c : WF → Aut(V ) by

V =
⊕

[μ]∈MG

V[μ]
(

dG([μ])
2

)

c
,

which means that we twist r ◦ ϕ : WF → Aut(V ) by
(

dG([μ])
2

)

c
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on each direct summand V[μ]. This is well-defined, because dG(w[μ]) = dG([μ])
for w ∈ WF .

For an �-adic L-parameter ϕ for G, we define a tensor functor

Fϕ,c : Repalg
Q�

(LG) → Rep
Q�

(WF )

by

Fϕ,c(r) = (r ◦ ϕ)c.

Definition 2.5. A Tannakian �-adic L-parameter for G is a functor

F : Repalg
Q�

(LG) → Rep
Q�

(WF )

which is equal toFϕ,c for an �-adic L-parameter ϕ forG.We say that twoTannakian
�-adic L-parameters F and F ′ are equivalent if there is g ∈ ̂G(Q�) such that, for
all r ∈ Repalg

Q�

(LG), we have F(r) = F ′(r)r(g).

Lemma 2.6. The set of the Tannakian �-adic L-parameters for G is independent of
a choice of c ∈ Q� such that c2 = q.

Proof. We have

μ̂(zG) = (−1)〈μ̂,δG 〉
̂T = (−1)dG ([μ]) (2.3)

for μ ∈ X∗(T ). Let

ωzG : WF → Z(̂G)�F (Q�) ↪→ LG(Q�)

be the character sending w to zdF (w)
G . By (2.3), we have

(r ◦ ϕ)−c = (r ◦ (ωzGϕ))c (2.4)

for an �-adic L-parameter ϕ and r ∈ Repalg
Q�

(LG). Since ωzGϕ is also an �-adic

L-parameter, the claim follows. �	
Let �T

� (G) be the set of equivalence classes of Tannakian �-adic L-parameters
for G. This set is independent of a choice of c by Lemma 2.6.

Lemma 2.7. We have a bijection between the set of the �-adic L-parameters for G
and the set of the Tannakian �-adic L-parameters for G given by sending ϕ to Fϕ,c.
Further, this induces a bijection ��(G) � �T

� (G).

Proof. We show the first claim. The map is surjective by Definition 2.5. Assume
that ϕ and ϕ′ are different �-adic L-parameters for G and Fϕ,c = Fϕ′,c. We take
w ∈ WF such that ϕ(w) �= ϕ′(w). Further, we take a finite Galois extension F ′ of F
such thatG splits over F ′ and the images of ϕ(w) and ϕ′(w) in ̂G(Q�)�Gal(F ′/F)

are different. By considering a representation of LG(Q�) which factors through a
faithful algebraic representation of ̂G(Q�) � Gal(F ′/F), we have a contradiction
to Fϕ,c = Fϕ′,c. Hence the map is injective.

The second claim follows from the first one. �	
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For a Tannakian �-adic L-parameter F for G, we take an �-adic L-parameter ϕ

for G such that F = Fϕ,c. Then the centralizer Sϕ = Z
̂G(Q�)

(Im ϕ) is independent
of a choice of c by (2.4). We write SF for Sϕ . Then F naturally factors through

FS : Repalg
Q�

(LG) → Rep
Q�

(SF × WF ).

For a finite separable extension F ′ of F , we define the restriction

F |F ′ : Repalg
Q�

(LGF ′) → Rep
Q�

(WF ′)

of F to F ′ by the usual restriction to WF ′ of an �-adic L-parameter for G and
bijections given by Lemma 2.7. Let

FS|F ′ : Repalg
Q�

(LGF ′) → Rep
Q�

(SF × WF ′)

be the composition of

(F |F ′)S : Repalg
Q�

(LGF ′) → Rep
Q�

(SF |F ′ × WF ′)

and the natural functor

Rep
Q�

(SF |F ′ × WF ′) → Rep
Q�

(SF × WF ′)

induced by the restriction with respect to SF ⊂ SF |F ′ .
We define a map

T c
G,� : ��(G) → �T

� (G)

by sending [ϕ] to [Fϕ,c]. ThenT c
G,� is a bijection byLemma2.7. For an isomorphism

ι : C
∼→ Q�, we define

LLT,ι
G,� : Irr�(G(F)) → �T

� (G)

as T ι(q
1
2 )

G,� ◦ LLι
G,�.

Conjecture 2.8. The map LLT,ι
G,� is independent of a choice of ι : C

∼→ Q�.

Remark 2.9. Conjecture 2.8 is motivated by the Kottwitz conjecture for local
Shimura varieties in [26, Conjecture 7.4]. Let (G, [b], [μ]) be a local Shimura
datum as [26, Definition 5.1]. Let MG,[b],[μ],K be the local Shimura variety over
the reflex field E[μ] attached to (G, [b], [μ]) and K ⊂ G(F), which is constructed
in [29, 24.1]. Let J denote the σ -centralizer of b. Let [ρ] ∈ Irr�(J ). We put

H•((G, [b], [μ]))[ρ] = (−1)dG ([μ]) ∑

i, j≥0

(−1)i+ j H i, j ((G, [b], [μ]))[ρ]

where

Hi, j ((G, [b], [μ]))[ρ] = lim−→
K

Ext jJ (F)(H
i
c (MG,[b],[μ],K ,̂E

, Q�), ρ).
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We put

[F ι] = LLT,ι
J,�([ρ]).

For [π ] ∈ Irr�(G) such that LLT,ι
G,�([π ]) = [F ι], let δι

π,ρ be the representation of

SF ι over Q� determined by ι and τ̌π ′ ⊗ τρ′ constructed in [26, p. 312] (cf. [13,
2.3] for a construction in a more general case), where π ′ = π ⊗

Q�,ι
−1 C and

ρ′ = ρ ⊗
Q�,ι

−1 C. Let r[μ] be an extension of r̂G,[μ] to LGE[μ] constructed by [20,
(1.1.3), (2.1.2)] using [7, 2.4 Remark (3)]. Then the Kottwitz conjecture says that

H•((G, [b], [μ]))[ρ] =
∑

[π ]
π � HomSF ι (δ

ι
π,ρ,F ι

S|E[μ](r[μ])),

where [π ] runs [π ] ∈ Irr�(G) such that LLT,ι
G,�([π ]) = [F ι]. If the Kottwitz con-

jecture is true, then the isomorphism class of the WE[μ]-representation

HomSF ι (δ
ι
π,ρ,F ι

S|E[μ](r[μ]))

is independent of ι, since the �-adic cohomology of local Shimura varieties and
their group actions are independent of ι. If Conjecture 2.8 is true, F ι

S and SF ι

are independent of ι. By the observation above, we conjecture also that δι
π,ρ is

independent of ι.

2.4. Comparison

Theorem 2.10. There is a canonical bijection

CT G,� : �C
� (G) → �T

� (G)

such that for any square root c of q in Q� the diagram

��(G)
Cc
G,�

T c
G,�

�C
� (G)

CT G,�

�T
� (G)

is commutative.

Proof. Let ϕ̃ be an �-adic C-parameter for G. We construct an �-adic T-parameter
Fϕ̃ for G. Let r : LG(Q�) → Aut(V ) be an object in Repalg

Q�

(LG). Then we have a

decomposition

V =
⊕

[μ]∈MG

V[μ]
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as representations of ̂G(Q�) where V[μ] is the r̂G,[μ]-typic part of V . We extend r

to r̃ ∈ Repalg
Q�

(CG) by letting Gm act on V[μ] by z �→ zdG ([μ]) using (2.2), where

the extension is well-defined by (2.3). Then we define Fϕ̃ by

Fϕ̃(r) = r̃ ◦ ϕ̃.

If two �-adic C-parameters for G are conjugate by an element of ̂
˜G(Q�), then they

are conjugate by an element of ̂G(Q�). Hence,

CT G,�([ϕ̃]) = [Fϕ̃]
is well-defined. We have the commutative diagram in the claim by

r̃ ◦ ϕc = r̃ ◦ ic ◦ ϕ = Fϕ,c(r).

Then CT G,� is a bijection because CcG,� and T c
G,� are bijections by Lemmas 2.3 and

2.7. �	
Corollary 2.11. Conjecture 2.4 and Conjecture 2.8 are equivalent.

Proof. We have

CT G,� ◦ LLC,ι
G,� = LLT,ι

G,�

for any ι : C
∼→ Q� by Theorem 2.10. Since CT G,� is a canonical bijection inde-

pendent of ι, the claim follows. �	
Corollary 2.12. Conjecture 2.4 and Conjecture 2.8 are true for GLn.

Proof. Recall that the local Langlands correspondence for GLn is known by [23]
and [15]. By Corollary 2.11, it suffices to check Conjecture 2.4. Assume that
LLC,ι

GLn ,�
([π ]) = [ϕι]. Note that zGLn = (−1)n−1, because

δGLn : Gm → ̂Tn ⊂ ĜLn; z �→

⎛

⎜

⎜

⎜

⎝

zn−1 0 . . . 0
0 zn−3 . . . 0
...

...
. . .

...

0 0 . . . z1−n

⎞

⎟

⎟

⎟

⎠

,

where we define δGLn using the diagonal maximal torus Tn of GLn and the Borel
subgroup of the upper triangular matrices in GLn . Let

r̃ : CGLn → ĜLn; [(g, z, w)] �→ gzn−1.

We show that [̃r ◦ ϕι] is independent of ι in a similar way as the proof of [5, 35.1
Theorem]. For [ρ] ∈ Irr(GLn), we write LLWD

GLn
([ρ]) for the image of LLGLn ([ρ])

under �(GLn) � �WD
C

(GLn), and define τn([ρ]) as the twist of LLWD
GLn

([ρ]) by
(a, w) �→ q−(n−1)dF (w)/2. Then τn([π ⊗

Q�,ι
−1 C]) and [̃r ◦ ϕι] corresponds under

the identification by

�WD
C

(GLn)
�WD

ι (GLn)� �WD
Q�

(GLn) � ��(GLn).
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Therefore it suffices to show that [ρ] �→ τn([ρ]) is compatible with twists by
Aut(C). By [12, 1.8 Corollaire], {τn}n≥1 is characterized by the compatibility of
τ1 with the local class field theory and the equalities

L

(

[ρ] × [ρ′], s + n + n′

2
− 1

)

= L(τn([ρ]) ⊗ τn′([ρ′]), s),

ε

(

[ρ] × [ρ′], s + n + n′

2
− 1, ψ

)

= ε(τn([ρ]) ⊗ τn′([ρ′]), s, ψ)

for n′ < n, [ρ] ∈ Irr(GLn) and [ρ′] ∈ Irr(GLn′), where ψ is a non-trivial character
of F . The compatibility with twists by Aut(C) follows from this characterization,
[4, 3.2 Theorem] and [5, 35.3].

Let ι′ : C
∼→ Q� be another choice. Taking a conjugation of ϕ

ι′ by an element of
ĜLn(Q�), we may assume that r̃ ◦ϕι = r̃ ◦ϕι′ . Hence there is a map χ : WF → Q

×
�

such that

ϕι(w) = ϕι′(w)[(χ(w)1−n, χ(w), 1)]

for w ∈ WF . By Definition 2.2, we have tGm ◦ ϕι = tGm ◦ ϕι′ . Hence we have
χ(w)2 = 1 for w ∈ WF . This implies that ϕι = ϕι′ by zGLn = (−1)n−1 and (2.2).
Hence Conjecture 2.4 is true. �	

Remark 2.13. We can also show Corollary 2.12 using the geometric realization of
the local Langlands correspondence for GLn in the �-adic etale cohomology of the
Lubin–Tate spaces after the reduction to the supercuspidal case in the same spirit as
Remark 2.9 (cf. [15, LemmaVII.1.6]). Here we gave a proof by the characterization
without appealing to such a geometric realization.

Corollary 2.14. Conjecture 2.4 and Conjecture 2.8 are true for PGLn.

Proof. By Corollary 2.11, it suffices to check Conjecture 2.4. This follows from
Corollary 2.12 and the commutative diagram

Irr�(PGLn(F))
LLι

PGLn ,�
��(PGLn)

Cι(q
1
2 )

PGLn ,�
�C

� (PGLn)

Irr�(GLn(F))
LLι

GLn ,�
��(GLn)

Cι(q
1
2 )

GLn ,�
�C

� (GLn)

since the vertical injections are independent of ι. �	
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