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Abstract. In this paper, we study the Yau sequence concerning the minimal cycle over com-
plete intersection surface singularities of Brieskorn type, and consider the relations between
the minimal cycle A and the fundamental cycle Z . Further, we also give the coincidence
between the canonical cycles and the fundamental cycles from the Yau sequence concerning
the minimal cycle.

1. Introduction

After Artin’s work [1], the complex normal surface singularity theories have been
researching by many mathematicians (such as Wagreich, Brieskorn, Laufer, Saito,
Wahl, Neumann, Yau, etc.). It is well known that the topological type of a complex
normal surface singularity is determined by its resolution graph [14]. For a given
resolution graph of a complex normal surface singularity, there are various types
of complex structures which realize it. We are interested in finding the relations
between analytic invariants and topological invariants [7,13,15,16].

Let (X, o) be the germ of a complex normal surface singularity and let π :
(˜X , E) → (X, o) be a good resolution, where E = π−1(o) denotes the exceptional
divisor. Let E = ⋃r

i=1 Ei be the irreducible decomposition of E . Then
∑r

i=1 Ei

is a simple normal crossing divisor. A divisor on ˜X supported in E is called a
cycle. For any effective cycle D = ∑r

i=1 di Ei (di ∈ Z, di ≥ 0 for any i) on
E , χ(D) is defined by χ(D) = dimC H0(˜X ,OD) − dimC H1(˜X ,OD) where
OD = O

˜X/OX̃ (−D). From Riemann–Roch theorem, we have

χ(D) = −1

2
(D2 + K

˜X D), (1.1)

where K
˜X is the canonical divisor on ˜X . For any irreducible component Ei , we

have the adjunction formula

KX̃ Ei = −E2
i + 2g(Ei ) − 2 + 2δ(Ei ), (1.2)
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where g(Ei ) is the geometric genus of Ei and δ(Ei ) is the number of nodes and
cusps on Ei [9]. The arithmetic genus pa(D) of D is defined by pa(D) = 1−χ(D).
It follows that if B,C are cycles, we have

pa(B + C) = pa(B) + pa(C) − 1 + BC. (1.3)

Among the non-zero effective cycles which have a non-positive intersection
number with every irreducible component Ei of E , there is the smallest one, which
is called the fundamental cycle ZE on E . It is defined as follows (cf. [1]):

ZE = min

{

D =
r

∑

i=1

ai Ei

∣

∣

∣ ai > 0 and DEi ≤ 0 for any i

}

.

Obviously, −Z2
E is one of the most important numerically invariants of (X, o) and

it is independent of the choice of resolutions. The arithmetic genus of ZE is called
the fundamental genus of (X, o), denoted by p f (X, o) := pa(ZE ). This invariant
is also independent of the choice of resolutions. Furthermore, there is the smallest
non-zero effective cycle (≤ ZE ) whose arithmetic genus is equal to p f (X, o),
which is called theminimal cycle A on E . It is defined as follows (cf. [9, Definition
3.1], [18, Definition 1.2]):

A = min
{

D > 0| pa(D) = p f (X, o), 0 < D ≤ ZE
}

.

Yau gave the definition of Yau sequence concerning the minimal elliptic cycle
forweakly elliptic singularities (cf. [19,Definition 3.3]) and showedwhich is impor-
tant in his theories that if (X, o) is a numerically Gorenstein elliptic singularity,
then

−KBi − (−KBi+1) = ZBi

for any i , where KBi is the canonical cycle on Bi and {ZBi } is the Yau sequence
(cf. Proof of Theorem 3.7 in [19]). As a generalization of the minimal elliptic cycle
to the minimal cycle, Tomaru (cf. [18, Definition 5.1]) gave an analogue to Yau
sequence concerning the minimal cycle for hypersurface singularities of Brieskorn
type, and obtained a similar property for the case p f (X, o) ≥ 2 as Yau’s theory,
i.e.,

−KBi − (−KBi+1) = cZBi , c ∈ Q, (1.4)

where {ZBi } is the Yau sequence concerning the minimal cycle. It is well known
that complete intersection surface singularity of Brieskorn type is a generalization
of Brieskorn hypersurface singularity. It is a natural question to ask whether the
equation (1.4) also holds for Brieskorn complete intersection surface singularity.

In this paper, we consider a germ (W, o) ⊂ (Cm, o) of a Brieskorn complete
intersection surface singularity defined by

W = {(x1, x2, . . . , xm) ∈ C
m |q j1x

a1
1 + · · · + q jmx

am
m = 0, j = 3, . . . ,m},

where ai ≥ 2 are integers. We assume that (W, o) is an isolated singularity, this
condition is equivalent to that every maximal minor of the matrix (q ji ) does not
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vanish (cf. [4, Section 7]). By Serre’s criterion for normality, (W, o) is a normal
surface singularity. Let π : ( ˜W , E) → (W, o) be the good resolution of (W, o)
with exceptional divisor E , Meng-Okuma (cf. [11]) constructed a good resolution
of (W, o) by employing Konno-Nagashima’s method (cf. [5]) and gave the concrete
topological structure of (W, o), such as the weighted dual graph of the exceptional
divisor E , the genus of the central curve E0 in E , the fundamental genus p f (W, o)
and the concrete description of the fundamental cycle ZE in terms of a1, . . . , am .
Following these results, we obtain a similar equality as (1.4) for (W, o), that is,

−KBi − (−KBi+1) = c · ZBi , c ∈ Z.

This paper is organized as follows. In Sect. 2, we introduce some notations
and notions, and some fundamental results with respect to the minimal cycles. In
Sect. 3 and 4, we give the relations between the minimal cycles and the fundamen-
tal cycles, and also consider a sequence given by Tomaru which is analogous to
Yau sequence concerning the minimal cycle over Brieskorn complete intersection
surface singularities, and give some new results on these singularities.

2. Preliminaries

In this section, we introduce some notations used throughout this paper, some
fundamental results in terms of a1, a2, . . . , an , and some fundamental facts on the
minimal cycles over complex normal surface singularity.

2.1. Some fundamental results

Let a1, a2, . . . , am be positive integers. For 1 ≤ i ≤ m, we define positive integers
dm, dim, αi , eim as follows:

dm : = lcm(a1, . . . , am),

dim : = lcm(a1, . . . , ai−1, ai+1, . . . , am),

αi : = nim := ai
gcd(ai , dim)

,

eim : = dim
gcd(ai , dim)

.

In addition, we define integers βi := μim by the following condition:

eimμim + 1 ≡ 0 (mod nim), 0 ≤ μim < nim .

Let α = ∏m
i=1 αi and θ0 = min{emm, α}. We give the following Lemma 2.2 which

implies the relation between the coefficient of the central curve E0 in ZE and αi

from the cyclic quotient singularity of type Cαi ,βi for i = 1, 2, . . . ,m − 1.
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−c1 −c2 −cs· · ·
E1 E2 Es

Fig. 1. The weighted dual graph of the minimal resolution of Cn,μ

Remark 2.1. Let n and μ be positive integers that are relatively prime and μ < n.
Then the singularity of the quotient

C
2
/

〈(

εn 0
0 ε

μ
n

)〉

is called the cyclic quotient singularity of type Cn,μ, where εn denotes the primitive
n-th root exp(2π

√−1/n) of unity. If n = 1, μ = 0, then the type C1,0 means a
non-singular point. For integers ci ≥ 2, i = 1, 2, . . . , s, we put

[[c1, . . . , cs]] := c1 − 1

c2 − 1

. . . − 1

cs

.

Suppose n/μ = [[c1, . . . , cs]], it is known (cf. [3]) that if E = ⋃s
i=1 Ei is the

exceptional divisor of the minimal resolution of Cn,μ, then Ei 	 P
1 and the

weighted dual graph of E is chain-shaped as in Fig. 1.
It is well known that the complex structure of quotient surface singularity is

determined by its resolution graph (cf. [2,10]).

Lemma 2.2. Suppose that 2 ≤ a1 ≤ a2 ≤ · · · ≤ am. Then θ0 ≡ 0 (mod αi ) for
i ∈ {1, 2, . . . ,m − 1}.
Proof. If α ≤ emm , then the result is obvious following the assumption 2 ≤ a1 ≤
a2 ≤ · · · ≤ am . Suppose that emm ≤ α, then θ0 = emm . It suffices to prove that

ai
gcd(ai ,dim)

∣

∣

∣

dmm
gcd(am ,dmm )

for i ∈ {1, 2, . . . ,m − 1}. We can easily see that

ai · dim
gcd(ai , dim)

= lcm(ai , dim) = dm,

am · dmm

gcd(am, dmm)
= lcm(am, dmm) = dm .

Since dim ≡ 0 (mod am) for i ∈ {1, 2, . . . ,m − 1}, and

am · dm = am · ai · dim
gcd(ai , dim)

, dim · dm = dim · dmm · am
gcd(am, dmm)

,

we have

am · ai · dim
gcd(ai , dim)

∣

∣

∣

dim · dmm · am
gcd(am, dmm)

,

which implies that emm ≡ 0 (mod αi ) for i ∈ {1, 2, . . . ,m − 1}. Thus, we obtain
the assertion. 
�
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For any x ∈ R, we put �x
 = min{n ∈ Z|n ≥ x} and �x� = max{n ∈ Z|n ≤ x}.
The following Lemma 2.3 is essentially followingHirzebruch resolutions for cyclic
quotient singularities of type Cn,μ [3].

Lemma 2.3. Let λ0 be a positive integer and let ni and μi be positive integers that
are relatively prime with μi < ni . Suppose that εi := ni/μi = [[ci , . . . , cs]] with
ci ≥ 2 and λi = �λi−1/εi
, i = 1, 2, . . . , s, where

[[ci , . . . , cs]] = ci − 1

ci+1 − 1

. . . − 1

cs

.

If λ0 ≡ 0 (mod n1), then λs−1 ≥ 2 and λs = λs−1/cs .

Proof. It is clear that ns/μs = cs , that is ns = cs ≥ 2, and

n1
μ1

= [[c1, . . . , cs]] = c1 − 1

n2/μ2
= n2c1 − μ2

n2
.

Since gcd(n1, μ1) = 1 and λ0 ≡ 0 (mod n1), it follows that μ1 = n2 and λ1 =
�λ0/ε1
 = λ0μ1/n1. Thus λ1 ≡ 0 (mod n2). Further, since gcd(ni , μi ) = 1 for
i = 1, 2, . . . , s, we have

μ2 = n3, . . . , μk = nk+1, . . . , μs−1 = ns,

λ2 = λ1μ2/n2, . . . , λk = λk−1μk/nk, . . . ,

λs = λs−1μs/ns = λs−1/cs, k = 1, 2, . . . , s.

It follows that λs−1 ≡ 0 (mod ns). Thus, we obtain the assertion following the
fact ns ≥ 2. 
�
From Lemma 1.2 in [5], we have the following remark.

Remark 2.4. If either λ0 ≡ 0 (mod n1) or μ1λ0 + 1 ≡ 0 (mod n1), then λi−1 +
λi+1 = λi ci for i = 1, 2, . . . , s. Furthermore, λscs − λs−1 = 0 when λ0 ≡ 0
(mod n1), and λscs − λs−1 = 1 when μ1λ0 + 1 ≡ 0 (mod n1).

In order to complete the proofs of our results, we also need the following results.

Lemma 2.5. ([18, Lemma 5.4]) Let λ, 
 and d be integers satisfying 
λ + 1 ≡ 0
(mod d) and 0 < 
, λ < d. For a non-negative integer t , let λt be an integer

satisfying 
λt + 1 ≡ 0 (mod 
t + d) and 0 < λt < 
t + d. If
d

λ
= [[b1, . . . , br ]],

then

t + d

λt
= [[b1, . . . , br , 2, . . . , 2

︸ ︷︷ ︸

t

]].

Corollary 2.6. Suppose that n/μ = [[b1, . . . , br , 2, . . . , 2
︸ ︷︷ ︸

t

]], where t is a non-

negative integer. Let e, p be integers defined by eμ + 1 ≡ 0 (mod n) with 0 <

e < n and ep + 1 ≡ 0 (mod n − et) with 0 ≤ p < n − et, respectively. Then
(n − et)/p = [[b1, . . . , br ]].
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Proof. When t = 0, the assertion holds clearly. Assume that t ≥ 1. Since (n −
e)μ ≡ 1 (mod n), we have n/(n − e) = [[2 . . . , 2

︸ ︷︷ ︸

t

, br , . . . , b1]] and

1

2 − 1

2 − 1

. . .
1

2 − n
n−e

= n − et

n − e(t + 1)
= [[br , . . . , b1]].

Furthermore, since ((n − et) − e)p ≡ 1 (mod n − et), we have (n − et)/p =
[[b1, . . . , br ]]. 
�

2.2. Minimal cycles over normal surface singularities

Let (X, o) be the germ of a complex normal surface singularity and π : (˜X , E) →
(X, o) a good resolution of (X, o), whereπ−1(o) = E = ⋃r

i=1 Ei is the irreducible
decomposition of E . Let ZE be the fundamental cycle on E and D a non-zero
effective cycle with D < ZE . Then we can construct a computation sequence from
D to ZE as in [8]. For the relation between the arithmetic genus of D and the
arithmetic genus of ZE , we have the following Lemma.

Lemma 2.7. ([18, Lemma 1.1]) Let D be a cycle on E such that 0 ≤ D ≤ ZE .
Then pa(D) ≤ pa(ZE ) = p f (X, o).

Among the effective cycles (≤ ZE ), there is the smallest one whose arithmetic
genus is equal to pa(ZE ), which is defined as follows.

Definition 2.8. ([9,18]) Let A be an effective cycle on E satisfying 0 < A ≤ ZE .
Suppose p f (X, o) ≥ 1. Then A is said to be a minimal cycle on E if pa(A) =
p f (X, o) and pa(D) < p f (X, o) for any cycle D with 0 ≤ D < A, that is,

A = min
{

D > 0|pa(D) = p f (X, o), 0 < D ≤ ZE
}

.

In 1977, Laufer showed that if (X, o) is an elliptic singularity (i.e., p f (X, o) =
1), then A is the minimally elliptical cycle (cf. [9]). Further, the existence and
the uniqueness of the minimal cycle A can be shown as in [9]. Also, Stevens
(cf. [17]) defined the minimal cycle on the minimal resolution space and called
it characteristic cycle for complex normal surface singularity (X, o). In fact, it is
not easy to give the concrete descriptions of the minimal cycle A when A �= ZE

for the complex normal surface singularities. For the case A = ZE , Tomaru (cf.
[18]) proved that A = ZE if lcm(a1, a2) ≤ a3 < 2 · lcm(a1, a2) on the minimal
resolution space for Brieskorn hypersurface singularity (V, o) with p f (V, o) ≥ 1,
which is given as follows.

Theorem 2.9. ([18], Theorem 4.4) Let (˜V , E) → (V, o) be the minimal resolution
with p f (V, o) ≥ 1, where (V, o) is the hypersurface singularity of Brieskorn type
{(x1, x2, x3) ∈ C

3|xa11 + xa22 = xa33 }, if lcm(a1, a2) ≤ a3 < 2 · lcm(a1, a2), then
A = ZE on E.
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Consequently, Meng et al. (cf. [12]) considered the Brieskorn complete intersection
surface singularity (W, o) defined as in Sect. 1 and proved that A = ZE on the
minimal resolution space if lcm(a1, . . . , am−1) ≤ am < 2 · lcm(a1, . . . , am−1),
which is given as follows.

Theorem 2.10. ([12], Theorem 3.3) Let ( ˜W , E) → (W, o) be the minimal reso-
lution, where (W, o) is the complete intersection surface singularity of Brieskorn
type {(x1, x2, . . . , xm) ∈ C

m |q j1x
a1
1 + · · · + q jmx

am
m = 0, j = 3, . . . ,m}, if

lcm(a1, . . . , am−1) ≤ am < 2 · lcm(a1, . . . , am−1), then A = ZE on E.

Clearly, we always have A ≤ ZE . Since ZE has been given the formula con-
cretely, so in the case A = ZE , they have the same status. However, for the case
A < ZE , it is useful to give the concrete descriptions of the minimal cycle A, which
associate to (X, o) some new numerical invariants, such as the Yau cycle Y , −Y 2,
pa(Y ) and dimH1(Y,OY ) [6].

3. Yau sequence concerning the minimal cycle over (W, o) when ZE = A

Let π : (˜X , E) → (X, o) be the minimal good resolution of a complex normal
surface singularity (X, o), whereπ−1(o) = E = ⋃r

i=1 Ei is the irreducible decom-
position of the exceptional divisor E . Let ZE and A be the fundamental cycle and
minimal cycle on E , respectively. If D = ∑r

i=1 di Ei is an effective cycle, we write
SuppD = ⋃

Ei , di �= 0. Suppose p f (X, o) ≥ 2, Tomaru (cf. [18]) defined the
following sequence concerning the minimal cycle which is an analogue to the Yau
sequence concerning the minimal elliptic cycle (cf. [19, Definition 3.3]).

Definition 3.1. ([18, Definition 5.1]) If ZE A < 0, we say that the Yau sequence
concerning A is {ZE } and the length of the Yau sequence is 1.

Suppose ZE A = 0. Let B1 be the maximal connected subvariety of E such
that B1 ⊇ Supp A and ZE Ei = 0 for any Ei ⊆ B1. Since Z2

E < 0, B1 is properly
contained in E . Let ZB1 be the fundamental cycle on B1.

Suppose ZB1 A = 0. Let B2 be the maximal connected subvariety of B1 such
that B2 ⊇ Supp A and ZB1Ei = 0 for any Ei ⊆ B2. By the same argument as
above, B2 is properly contained in B1.

We continue this process, if we obtain Bt with ZBt A < 0, we call {ZB0 =
ZE , ZB1 , . . . , ZBt } the Yau sequence concerning A of (X, o) and the length of
the Yau sequence is t + 1. A connected component of

⋃

Ei�Supp A Ei is called an
eliminative branch of (X, o).

From Lemma 2.7 and the definition of minimal cycle, we know that for any
non-zero effective cycle D with A ≤ D ≤ ZE , we have pa(D) = p f (X, o) for
a complex normal surface singularity (X, o). Thus, if {ZE = ZB0 , ZB1 , . . . , ZBt }
is the Yau sequence of (X, o) and (XBi , oi ) is the complex normal surface singu-
larity obtained by contracting Bi , i = 1, . . . , t , we have p f (XB1 , o1) = · · · =
p f (XBt , ot ) = p f (X, o). Tomaru (cf. [18, 5]) showed that if (X, o) is a Brieskorn
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E0 −c0

[g]

−c1,1

E1,1,1

−c1,2

E1,2,1

−c1,s1

E1,s1,1

−c1,1

E1,1,ĝ1

−c1,2

E1,2,ĝ1

−c1,s1

E1,s1,ĝ1

−cm,1

Em,1,1

−cm,2

Em,2,1

−cm,sm

Em,sm,1

−cm,1

Em,1,ĝm

−cm,2

Em,2,ĝm

−cm,sm

Em,sm,ĝm

· · ·

· · ·

· · ·

· · ·

···

·
·
·

···

Cα1,β1

ĝ1

Cαm,βm

ĝm

Fig. 2. The weighted dual graph of the exceptional divisor E

hypersurface singularity defined by xa11 + xa22 = xa33 (2 ≤ a1 ≤ a2 ≤ a3) with
p f (X, o) ≥ 2 in a restrictive situation, then

−KBi − (−KBi+1) = cZBi , i = 0, 1, . . . , t − 1,

where c ∈ Q is a suitable positive rational number and KBi is the canonical cycle on
Bi (A rational cycle K is called the canonical cycle if K Ei = −K

˜X Ei for all Ei , and
the canonical cycle K exists such that−K is a canonical divisor of ˜X for Gorenstein
surface singularity (cf. [19])). It is well known that the complete intersection surface
singularity of Brieskorn type is the generalization of hypersurface singularity of
Brieskorn type. In the following, we consider the Brieskorn complete intersection
surface singularity (W, o) defined as in Section 1 with the assumption 2 ≤ a1 ≤
a2 ≤ · · · ≤ am , and give some new results.

Let π : ( ˜W , E) → (W, o) be the minimal good resolution of (W, o) with
exceptional divisor E . For 1 ≤ i ≤ m, we define integers ĝ and ĝi as follows:

ĝ := a1 · · · am
lcm(a1, . . . , am)

, ĝi := a1 · · · ai−1 · ai+1 · · · am
lcm(a1, . . . , ai−1, ai+1, . . . , am)

.

Theorem 3.2. ([11, Theorem 4.4]) Let g and −c0 denote the genus and the self-
intersection number of E0, respectively. Then the weighted dual graph of the excep-
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tional set E is as in Fig. 2, where the invariants are as follows:

2g − 2 = (m − 2)ĝ −
m

∑

i=1

ĝi ,

c0 =
m

∑

w=1

ĝwβw

αw

+ a1 · · · am
d2m

, βw/αw =
{ [[cw,1, . . . , cw,sw ]]−1 i f αw ≥ 2,
0 i f αw = 1.

Theorem 3.3. ([11, Theorem 5.1]) Let εw,ν = [[cw,ν, . . . , cw,sw ]] if sw > 0 and
let

ZE = θ0E0 +
m

∑

w=1

sw
∑

ν=1

ĝw
∑

ξ=1

θw,ν,ξ Ew,ν,ξ .

Then θ0 and the sequence {θw,ν,ξ } are determined by the following:

θw,0,ξ := θ0 := min

(

em,

m
∏

w=1

αw

)

, θw,ν,ξ := �θw,ν−1,ξ /εw,ν
.

3.1. For the case 2 ≤ a1 ≤ a2 ≤ · · · ≤ am

By Lemma 2.2, we know that emm ≡ 0 (mod αi ) for i ∈ {1, 2, . . . ,m − 1}, and
following Definition 2.8, we obtain the following Theorem.

Theorem 3.4. Suppose that 2 ≤ a1 ≤ a2 ≤ · · · ≤ am−1 ≤ am and αw > 1 for any
w ∈ {1, 2, . . . ,m − 1}, then

pa(ZE − Ew,sw,ξ ) < pa(A), ξ = 1, 2, . . . , ĝw,w = 1, 2, . . . ,m − 1.

Proof. Following Definition 2.8, we have pa(A) = pa(ZE ), that is,

Z2
E + K

˜W ZE = A2 + K
˜W A,

where K
˜W is the canonical divisor on ˜W . To prove pa(ZE−Ew,sw,ξ ) < pa(A), w ∈

{1, 2, . . . ,m − 1}, by the adjunction formula (1.2), it suffices to prove that

−ZE Ew,sw,ξ + E2
w,sw,ξ + 1 < 0.

From Theorem 3.3, we have

−ZE Ew,sw,ξ + E2
w,sw,ξ + 1 = −θw,sw−1,ξ + θw,sw,ξ cw,sw − cw,sw + 1

= −(θw,sw−1,ξ − 1) + (θw,sw,ξ − 1)cw,sw .

If emm ≥ ∏m
w=1 αw, then θ0 = ∏m

w=1 αw. By Lemma 2.3, we have θw,sw−1,ξ ≥
2 and

θw,sw,ξ = �θw,sw−1,ξ /cw,sw
 = θw,sw−1,ξ /cw,sw .
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E0 −c0

[g]

−cm,1

Em,1,1

−cm,2

Em,2,1

−cm,sm

Em,sm,1

−cm,1

Em,1,ĝm

−cm,2

Em,2,ĝm

−cm,sm

Em,sm,ĝm

· · ·

· · ·

···

Cαm,βm

ĝm

Fig. 3. The weighted dual graph of E for am−1 = lcm(a1, . . . , am−2)

Thus,

−ZE Ew,sw,ξ + E2
w,sw,ξ + 1 = −(θw,sw−1,ξ − 1) + (θw,sw−1,ξ /cw,sw − 1)cw,sw

= 1 − cw,sw < 0.

Similar for the case emm ≤ ∏m
w=1 αw following Lemmas 2.2 and 2.3. Thus, we

complete the proof. 
�
From Theorem 3.4, we note that the length of the Yau sequence concerning the
minimal cycle A mainly depends on em, αm and the structure of the cyclic quotient
singularity Cαm ,βm if we assume 2 ≤ a1 ≤ a2 ≤ · · · ≤ am−1 ≤ am . For sim-
plicity, we may first exclude the influences of the structures of the cyclic quotient
singularities Cαi ,βi for i = 1, 2, . . . ,m − 1.

3.2. For the case am−1 ≡ 0 (mod lcm(a1, . . . , am−2))

Assume that am−1 ≡ 0 (mod lcm(a1, . . . , am−2)). Then we have α1 = α2 =
· · · = αm−1 = 1. However, there are many cases for the relations between em and
αm , and the structure of the Cαm ,βm , where αm/βm = [[cm,1, . . . , cm,sm ]], such as
emm ≤ αm or αm ≤ emm , and [[cm,k, . . . , cm,sm ]] = t+1

t or [[cm,k, . . . , cm,sm ]] �=
t+1
t for some positive integer t with 1 ≤ k ≤ sm . According to Definition 3.1,

we should exclude some special cases satisfying pa(ZE − Em,sm ,ξ ) �= pa(A) for
ξ ∈ {1, 2, . . . , ĝm}, and we obtain the following Theorem.

Theorem 3.5. Suppose that 2 ≤ a1 ≤ a2 ≤ · · · ≤ am−1 ≤ am and am−1 ≡ 0
(mod lcm(a1, . . . , am−2)). If am/βm = [[cm,1, . . . , cm,sm ]] with cm,sm > 2, then
pa(ZE − Em,sm ,ξ ) < pa(A) for ξ = 1, 2, . . . , ĝm.

Proof. Suppose am−1 ≡ 0 (mod lcm(a1, . . . , am−2)), then α1 = α2 = · · · =
αm−1 = 1. Thus the weighted dual graph of the exceptional divisor E is as in Fig.
3.

It is obvious that

θ0 = emm = am−1

gcd(am, am−1)
≤

m
∏

w=1

αw = αm = am
gcd(am, am−1)

.
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−16

E0

−2

E11

−9

E12

−2

E30,1

−9

E30,2

[44] ··· ĝ5=30

Fig. 4. The weighted dual graph of E for a1 = 2, a2 = 3, a3 = 5, a4 = 30, a5 = 34

FromLemma 1.2 in [5], we have ZE Em,sm ,ξ = −1 or 0 for ξ = 1, 2, . . . , ĝm . Since
cm,sm > 2, following the formula (1.3), we have pa(A) = pa(ZE ) > pa(ZE −
Em,sm ,ξ ) for ξ = 1, 2, . . . , ĝm if and only if (ZE − Em,sm ,ξ )Em,sm ,ξ ≥ 0, i.e.,
ZE Em,sm ,ξ ≥ E2

m,sm ,ξ = −cm,sm . According to the assumption cm,sm > 2, we
obtain the assertion. 
�

Remark 3.6. From Theorems 3.4 and 3.5, we note that the length of the Yau
sequence concerning the minimal cycle A is 1 if cm,sm > 2. In other words, we
have ZE = A if cm,sm > 2 and 2 ≤ a1 ≤ a2 ≤ · · · ≤ am−1 ≤ am .

In fact, by Theorems 3.4 and 3.5, we have the following corollary.

Corollary 3.7. Suppose that 2 ≤ a1 ≤ a2 ≤ · · · ≤ am−1 ≤ am. If am/βm =
[[cm,1, . . . , cm,sm ]] with cm,sm > 2, then

pa(ZE − Em,sm ,ξ ) < pa(A), ξ = 1, 2, . . . , ĝm .

Example 3.8. Let a1 = 2, a2 = 3, a3 = 5 and a4 = lcm(a1, a2, a3) = 30, a5 =
34. Suppose that (W, o) ⊂ (C5, o) is defined by

{x21 + x32 = x53 , 2x
2
1 + 3x32 = x304 , 5x21 + 7x32 = x345 }.

Then the weighted dual graph of E on theminimal good resolution of (W, o) is as in
Fig. 4. Furthermore, the fundamental cycle ZE = 15E0+8

∑30
i=1 Ei1+∑30

i=1 Ei2,
the fundamental genus p f (W, o) = 856and−Z2

E = 30.However, for any Ek2, k =
1, 2, . . . , 30, we have pa(ZE − Ek2) = 849 < pa(A). In fact, we have ZE = A.

4. Yau sequence concerning the minimal cycle over (W, o) when ZE �= A

According to Theorem 3.5 and Corollary 3.7, in order to study the length of the
Yau sequence concerning the minimal cycle A, it is enough to consider the case
[[cm,k, . . . , cm,sm ]] = [[2, 2, . . . , 2]] for some k ∈ {1, 2, . . . , sm}. Obviously, if
am−1 ≡ 0 (mod lcm(a1, a2, . . . , am−2)) and am ≡ 0 (mod am−1), then α1 =
α2 = · · · = αm−1 = αm = 1. This tells us that the length of the Yau sequence is
always 1, that is ZE = A. Without loss of generality, we may assume that am �≡ 0
(mod am−1).
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−c0

E0

−2 −2

−2 −2

−cm,1 −cm,sm

−cm,1 −cm,sm

· · ·

· · ·

· · ·

· · ·

···
Em,sm−t+1,1 Em,sm,1

Em,sm−t+1,ĝm Em,sm,ĝm

Em,1,1 Em,sm,1

Em,1,ĝm Em,sm,ĝm

SuppA

[g]
ĝm

Ct+1,t
Cαm−tem,pm

Fig. 5. The weighted dual graph of E

4.1. For the case am−1 ≡ 0 (mod lcm(a1, . . . , am−2)) and am �≡ 0 (mod am−1)

Tomaru ([18, Proposition 5.2]) condidered the Yau sequence concerning the min-
imal cycle A over Brieskorn hypersurface singularities under restrictive situation
and we consider the Brieskorn complete intersection surface singularities (W, o)
and obtained some new results. Suppose p f (W, o) ≥ 2, 2 ≤ a1 ≤ a2 ≤ · · · ≤
am−1 ≤ am and am−1 ≡ 0 (mod lcm(a1, . . . , am−2)). Let t be a non-negative
integer, and let pm be a non-negative integer defined by

pmem + 1 ≡ 0 (mod (αm − tem))

with 0 ≤ pm < αm − tem . By Theorem 3.2 and Corollary 2.6, we get the following
theorem.

Theorem 4.1. Assume that the length of the Yau sequence concerning theminmimal
cycle A of (W, o) is t+1with t ≥ 1, ZBt = A, and E2

m,ν,ξ = −2 for each Em,ν,ξ �

Supp A, the coefficient of Em,ν,ξ in ZE is 1, where 1 ≤ ν ≤ sm, 1 ≤ ξ ≤ ĝm. Then
the weighted dual graph of E is given as in Fig. 5, where s′

m = sm − t . Furthermore,
A = ZE − ∑

Em,ν,ξ �Supp A Em,ν,ξ and Z2
E = −ĝm.

Proof. Let D = ∑

Em,ν,ξ �Supp A Em,ν,ξ . It is easy to see that A + D ≤ ZE and
the coefficient of any irreducible component of SuppA in A which intersects an
eliminative branch is always one. Since ZBt = A, (A + D)Ei ≤ 0 for each
irreducible component Ei of E , which implies ZE ≤ A + D. In fact, for each
irreducible component Ei of SuppD, it is clear that (A + D)Ei ≤ 0. On the other
hand, for every irreducible component E j of SuppA = SuppZBt , since ZBt−1E j =
0, it is clear that (A + D)E j = AE j + DE j ≤ 0. Thus ZE = A + D.

Since t ≥ 1, ZE A = 0, which implies that −A2 = AD, i.e., the number of
eliminative branches of (W, o). Since am−1 ≡ 0 (mod lcm(a1, . . . , am−2)), we
have α1 = · · · = αm−1 = 1. Hence

Z2
E = ZE (A + D) = (A + D)D = ĝm − 2ĝm = −ĝm

following t ≥ 1 and Fig. 2. Furthermore, any eliminative branch is a chain whose
component is a rational curve with self-intersection number −2. Following Corol-
lary 2.6 and Theorem 3.2, we obtain that the weighted dual graph of E is as in Fig.
5. 
�
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Theorem 4.2. ([11, Thoerem 5.4]) If emm ≥ ∏m
w=1 αw, then

p f (W, o) = 1

2

m
∏

w=1

αw

{

(m − 2)ĝ −
(∏m

w=1 αw − 1
)

ĝ

dm
−

m
∑

w=1

ĝw

αw

}

+ 1.

If emm ≤ ∏m
w=1 αw, then

p f (W, o) = 1

2
emm

{

(m − 2)ĝ − (2�emm/αm
 − 1)ĝm
emm

−
m−1
∑

w=1

ĝw

αw

}

+ 1.

Theorem 4.3. In the situation of Theorem 4.1, assume that t ≥ 1 and the Yau
sequence of (W, o) is {ZB0 = ZE , ZB1 , . . . , ZBt }. Then

−KBi − (−KBi+1) = 2p f (W, o) − 2 + ĝm
ĝm

ZBi , i = 0, 1, . . . , t − 1,

where KBi is the canonical cycle on Bi .

Proof. Since (W, o) is a Gorenstein singularity, the canonical cycle K on E exists.
Thus we may write −K as follows:

−K =
sm−t
∑

ν=1

ĝm
∑

ξ=1

ai Em,ν,ξ +
sm
∑

ν=sm−t+1

ĝm
∑

ξ=1

xνEm,ν,ξ ,

where
⋃sm−t

ν=1

⋃ĝm
ξ=1 Em,ν,ξ = Supp A. Since E2

m,ν,ξ = −2 for each Em,ν,ξ �

Supp A, it follows from (1.1) and (1.3) that

−K Em,sm ,ξ = xsm−1 − 2xsm = 0, −K Em,ν,ξ = xν−1 − 2xν + xν+1 = 0

for ν = sm−t+1, . . . , sm−1,where xsm−t is the coefficient of Em,sm−t,ξ ⊂ Supp A
in −K which intersects Em,sm−t+1,ξ . Therefore,

−K =
sm−t
∑

ν=1

ĝm
∑

ξ=1

ai Em,ν,ξ + c ·
sm
∑

ν=sm−t+1

ĝm
∑

ξ=1

(sm − ν + 1)Em,ν,ξ , (4.1)

where c = xsm . Similarly, following Definition 3.1, there is a constant c′ such that

−KB1 =
sm−t
∑

ν=1

ĝm
∑

ξ=1

bi Em,ν,ξ + c′ ·
sm−1
∑

ν=sm−t+1

ĝm
∑

ξ=1

(sm − ν)Em,ν,ξ , (4.2)

where KB1 is the canonical cycle on B1. Since t ≥ 1 and from the assumption, it is
easy to see that ZE A = 0, ZE Em,sm ,ξ = −1 and −KB1Em,sm ,ξ = c′. Then

(−K − (−KB1))E j = c′ZE E j

for any irreducible component E j of E , which implies that

−K − (−KB1) = c′ZE , (4.3)
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−6

E0

−3

E11

−2

E12

−2

E13

−3

E12,1

−2

E12,2

−2

E12,3

[43]
···

ĝ4=12

C7,3

Fig. 6. The weighted dual graph of E for a1 = 3, a2 = 4, a3 = 12, a4 = 42

and then c′ ∈ Z following the definition of canonical cycle. From (4.1), (4.2)
and (4.3), we have c = c′ ∈ Z. Hence −K − (−KB1) = cZE . Since ZBi is
the fundamental cycle on Bi , the coefficient of Em,ν,ξ in ZBi is also 1 for every
Em,ν,ξ � Supp A. Continuing this process, we obtain that

−KBi − (−KBi+1) = cZBi , i = 0, 1, . . . , t − 1,

where −KB0 = −K and ZB0 = ZE . Since ZE KB1 = 0, −K ZE = cZ2
E . From

Theorem 4.1, we have

c = K ZE

−Z2
E

= 2p f (W, o) − 2 − Z2
E

−Z2
E

= 2p f (W, o) − 2 + ĝm
ĝm

.

From Theorem 4.2, we can obtain the integer c. 
�
Remark 4.4. If p f (W, o) = 2, then ĝm ≤ 2 since c ∈ Z. In fact, we have

ĝm |(2p f (W, o) − 2).

Example 4.5. Let a1 = 3, a2 = 4 and a3 = lcm(a1, a2) = 12, a4 = 42. Suppose
that

(W, o) =
(

{x31 + x42 + x123 = 0, 2x31 + 3x42 + x424 = 0}, o
)

⊂ (C4, o).

Then the weighted dual graph of the minimal good resolution of (W, o) is as in
Fig. 6, the fundamental cycle ZE = 2E0 + ∑12

i=1
∑3

j=1 Ei j , Z2
E = −12 and

p f (W, o) = 91. The minimal cycle A = 2E0 + ∑12
i=1 Ei1. It is easy to see

that A = ZE − ∑12
i=1

∑3
j=2 Ei j , ZE A = 0, B1 = E0 ∪ (∪12

i=1 ∪2
j=1 Ei j ) and

B2 = E0 ∪ (∪12
i=1Ei1). Then we have ZB1 = 2E0 + ∑12

i=1
∑2

j=1 Ei j , ZB1 A =
0 and ZB2 = A = 2E0 + ∑12

i=1 Ei1, ZB2 A < 0. Hence the Yau sequence is
{ZE , ZB1 , ZB2} and the length of Yau sequence is 3. After computation, we have

−K = 111E0 + 48
12
∑

i=1

Ei1 + 32
12
∑

i=1

Ei2 + 16
12
∑

i=1

Ei3,

−KB1 = 79E0 + 32
12
∑

i=1

Ei1 + 16
12
∑

i=1

Ei2,
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−c0

E0

−2 −2

−2 −2

−cm,1 −cm,sm

−cm,1 −cm,sm

· · ·

· · ·

· · ·

· · ·

···
Em,sm−t+1,1 Em,sm,1

Em,sm−t+1,ĝm Em,sm,ĝm

Em,1,1 Em,sm,1

Em,1,ĝm Em,sm,ĝm

[g]
ĝm

Ct+1,t
Cαm−tem,pm

Fig. 7. The weighted dual graph of E

−KB2 = 47E0 + 16
12
∑

i=1

Ei1.

It is clear that c = 16 and −K − (−KB1) = 16ZE , −KB1 − (−KB2) = 16ZB1 and
ĝ4|2p f (W, o) − 2, i.e., 2p f (W, o) − 2 = 15ĝ4.

Corollary 4.6. Assume that the weighted dual graph of E is given as in Fig. 7,
where s′

m = sm − t and cm,s′m > 2, and the coefficient of some Em,ν,ξ in ZE is 1
with sm−t+1 ≤ ν ≤ sm, 1 ≤ ξ ≤ ĝm. Then the length of Yau sequence concerning
the minimal cycle A is t + 1 and

A = ZE −
sm
∑

ν=sm−t+1

ĝm
∑

ξ=1

Em,ν,ξ .

Furthermore, we have Z2
E = −ĝm and

−KBi − (−KBi+1) = 2p f (W, o) − 2 + ĝm
ĝm

ZBi , i = 0, 1, . . . , t − 1,

where KBi is the canonical cycle on Bi , and {ZB0 = ZE , ZB1 , . . . , ZBt } is the Yau
sequence concerning the minimal cycle A.

4.2. For the general case 2 ≤ a1 ≤ · · · ≤ am

According to Lemma 1.2 in [5], we know that if emmβm + 1 ≡ 0 (mod αm) and
am−1 = lcm(a1, a2, . . . , am−2), then for the fundamental cycle ZE ,

θ0 = emm = am−1

gcd(am−1, am)
≤ αm = am

gcd(am−1, am)
,

and θm,sm ,ξ = �θ0/αm
 = 1, ξ = 1, 2, . . . , ĝm . Further, if [[cm,k, . . . , cm,sm ]] =
[[2, 2, . . . , 2]] for some k ∈ {1, 2, . . . , sm}, then θm,ν,ξ = 1 for k ≤ ν ≤ sm, 1 ≤
ξ ≤ ĝm following Lemma 1.2 in [5]. This means that we should consider the length
of Yau sequence concerning minimal cycle A without the assumption am−1 =
lcm(a1, a2, . . . , am−2). That is, for a connected part containing the curve Em,sm ,ξ

in the minimal resolution graph of Cαm ,βm with all E2
m,ν,ξ = −2 and the coefficient

of Em,sm ,ξ in ZE is not 1 for 1 ≤ ξ ≤ ĝm , then we obtain the following theorem.
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Fig. 8. The weighted dual graph of E

Theorem 4.7. Assume that the weighted dual graph of E is given as in Fig. 8,
where s′

m = sm − t and cm,s′m > 2, and the coefficient of Em,sm ,ξ in ZE is not 1
with 1 ≤ ξ ≤ ĝm. Then the length of Yau sequence concerning the minimal cycle
A is t + 1 and

A = ZE −
sm
∑

ν=sm−t+1

ĝm
∑

ξ=1

Em,ν,ξ .

Proof. If t = 0, then it is clear by Corollary 3.7. Assume that t ≥ 1 and the
coefficient of Em,sm ,ξ with 1 ≤ ξ ≤ ĝm in ZE is θsm ,ξ := θm,sm ,ξ ≥ 2. Since
cm,s′m > 2, we have ZE Em,sm ,ξ = −1 following Lemma 1.2 in [5]. Thus, by (1.3),
we have

pa(ZE − Em,sm ,ξ ) = pa(ZE ) + pa(−Em,sm ,ξ ) − 1 − ZE Em,sm ,ξ = pa(ZE ).

Continuously, let D = ZE − ∑sm
ν=sm−t+1

∑ĝm
ξ=1 Em,ν,ξ , following Lemma 1.2 in

[5] and (1.3), we have

pa (ZE − D) = pa(ZE ) + pa(−D) − 1 − ZE D
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Fig. 9. The weighted dual graph of E for a1 = 3, a2 = 4, a3 = 22, a4 = 42

= pa(ZE ) + 1

2
D2 − ZE D

= pa(ZE ) − ĝm + ĝm
= pa(ZE ).

Further, since cm,s′m > 2, according to Theorem 3.5, we have

pa(D − Em,s′m ,ξ ) < pa(ZE ) = pa(A), 1 ≤ ξ ≤ ĝm .

By Definitions 2.8 and 3.1, we have

ZBt = ZE −
sm
∑

ν=sm−t+1

ĝm
∑

ξ=1

Em,ν,ξ = A.

Hence we complete the proof. 
�
Let a1 = 3, a2 = 4, a3 = 22 and a4 = 42. Assume that

(W, o) =
(

{x31 + x42 = x223 , 2x31 + 3x42 = x424 }, o
)

⊂ (C4, o).

Then the weighted dual graph of the minimal good resolution of (W, o) is as in
Fig. 9 following Theorem 3.2. Further, by Theorems 3.3 and 4.2, we obtain that the
fundamental cycle

ZE =22E0 + 11
6

∑

ξ=1

E1,1,ξ + 12
6

∑

ξ=1

E2,1,ξ + 2
6

∑

ξ=1

E2,2,ξ + 19
2

∑

ξ=1

E3,1,ξ

+ 16
2

∑

ξ=1

E3,2,ξ + 13
2

∑

ξ=1

E3,3,ξ + 10
2

∑

ξ=1

E3,4,ξ + 7
2

∑

ξ=1

E3,5,ξ + 4
2

∑

ξ=1

E3,6,ξ ,
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and pa(ZE ) = 179. Let

D = ZE −
6

∑

ν=1

2
∑

ξ=1

E3,ν,ξ = 22E0 + 11
6

∑

ξ=1

E1,1,ξ + 12
6

∑

ξ=1

E2,1,ξ + 2
6

∑

ξ=1

E2,2,ξ

+ 18
2

∑

ξ=1

E3,1,ξ + 15
2

∑

ξ=1

E3,2,ξ + 12
2

∑

ξ=1

E3,3,ξ

+ 9
2

∑

ξ=1

E3,4,ξ + 6
2

∑

ξ=1

E3,5,ξ + 3
2

∑

ξ=1

E3,6,ξ ,

then pa(D) = 179. Furthermore, for any E3,ν,ξ , ν = 1, 2, . . . , 6, ξ = 1, 2, we
have pa(D − E3,ν,ξ ) < pa(ZE ). Therefore, following Theorem 3.5 and Corollary
3.7, we obtain that the minimal cycle A = D.

Acknowledgements The author would like to express thanks to Professors Tomohiro Okuma
and Tadashi Tomaru for their many useful and valuable advices.

Declarations

DataAvailability Statement The data used to support the findings of this study are included
within the article.

References

[1] Artin, M.: On isolated rational singularities of surfaces. Am. J. Math. 88(1), 129–138
(1966)

[2] Brieskorn, E.: Rationale Singularitäten komplexer Flächen (German), Inventiones
Mathematicae, 1967/68, 4, 336–358

[3] Hirzebruch, F.: Uber vierdimensionale Riemannsche Flachen mehrdeutiger analytis-
cher Funktionen von zwei komplexen Veranderlichen. Math. Ann. 126, 1–22 (1953)

[4] Jankins, M., Neumann, W.D.: Lectures on Seifert Manifolds ( Brandeis Lecture Notes,
2). Brandeis University, Waltham (1983)

[5] Konno, K., Nagashima, D.: Maximal ideal cycles over normal surface singularities of
Brieskorn type. Osaka J. Math. 49(1), 225–245 (2012)

[6] Konno, K.: On the Yau cycle of a normal surface singularity. Asian J. Math. 16(2),
279–298 (2012)

[7] László, T., Szilágyi, Z.: On Poincaré series associated with links of normal surface
singularities. Trans. Am. Math. Soc. 372(9), 6403–6436 (2019)

[8] Laufer, H.B.: On rational singularities. Am. J. Math. 94, 597–608 (1972)
[9] Laufer, H.B.: On minimally elliptic singularities. Am. J. Math. 99(6), 1257–1295

(1972)
[10] Laufer, H.B.: Taut two-dimensional singularities. Math. Ann. 205, 131–164 (1973)
[11] Meng, F.N., Okuma, T.: The maximal ideal cycles over complete intersection surface

singularities of Brieskorn type. Kyushu J. Math. 68(1), 121–137 (2014)



On Yau sequence over complete intersection surface singularities... 115

[12] Meng, F.N., Yuan, W.J., Wang, Z.G.: The minimal cycles over Brieskorn complete
intersection surface singularities. Taiwan. J. Math. 20(2), 277–286 (2016)

[13] Némethi, A.: Normal Surface Singularities. A Series of Modern Surveys in Mathemat-
ics, vol. 74. Springer, New York (2022)

[14] Neumann, W.D.: A calculus for plumbing applied to the topology of complex surface
singularities and degenerating complex curves. Trans.Am.Math. Soc. 268(2), 299–344
(1981)

[15] Okuma, T., Watanabe, K., Yoshida, K.: Normal reduction numbers for normal surface
singularities with application to elliptic singularities of Brieskorn type. Acta Math.
Vietnam 44(1), 87–100 (2019)

[16] Okuma, T., Rossi, M.E., Watanabe, K.-I., Yoshida, K.-I.: Normal Hilbert coefficients
and elliptic ideals in normal two-dimensional singularities. Nagoya Math. J. 248, 779–
800 (2022)

[17] Stevens, J.: Kulikov singularities. Universiteit Leiden, Holland, Thesis (1985)
[18] Tomaru, T.: OnGorenstein surface singularities with fundamental genus p f ≥ 2which

satisfy some minimality conditions. Pac. J. Math. 170(1), 271–295 (1995)
[19] Yau, S.S.-T.: On maximally elliptic singularities. Trans. Am. Math. Soc. 257(2), 269–

329 (1980)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this
article under a publishing agreement with the author(s) or other rightsholder(s); author self-
archiving of the accepted manuscript version of this article is solely governed by the terms
of such publishing agreement and applicable law.


	On Yau sequence over complete intersection surface singularities of Brieskorn type
	Abstract.
	1 Introduction
	2 Preliminaries
	2.1 Some fundamental results
	2.2 Minimal cycles over normal surface singularities

	3 Yau sequence concerning the minimal cycle over (W,o) when ZE=A
	3.1 For the case 2leqa1leqa2leq@汥瑀瑯步渠leqam
	3.2 For the case am-1equiv08mu(mod6mulcm(a1,…,am-2))

	4 Yau sequence concerning the minimal cycle over (W,o) when ZE=A
	4.1 For the case am-1equiv08mu(mod6mulcm(a1,…,am-2)) and amequiv08mu(mod6muam-1)
	4.2 For the general case 2leqa1leq@汥瑀瑯步渠leqam

	Acknowledgements
	References




