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Abstract. Generalizing the definitions originally presented by Kuznetsov and Faenzi, we
study (possibly non locally free) instanton sheaves of arbitrary rank on Fano threefolds. We
classify rank 1 instanton sheaves and describe all curves whose structure sheaves are rank 0
instanton sheaves. In addition, we show that every rank 2 instanton sheaf is an elementary
transformation of a locally free instanton sheaf along a rank 0 instanton sheaf. To complete
the paper, we describe the moduli space of rank 2 instanton sheaves of charge 2 on a quadric
threefold X and show that the full moduli space of rank 2 semistable sheaves on X with
Chern classes (c1, c2, c3) = (− 1, 2, 0) is connected and contains, besides the instanton
component, just one other irreducible component which is also fully described.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
2. Background and notation . . . . . . . . . . . . . . . . . . . . . . . . 296

2.1. Classification of Fano threefolds . . . . . . . . . . . . . . . . . . 296
2.2. Stability of sheaves . . . . . . . . . . . . . . . . . . . . . . . . . 296

3. Serre correspondence for torsion-free sheaves . . . . . . . . . . . . . . 298
4. Instanton sheaves on Fano threefolds . . . . . . . . . . . . . . . . . . 301

4.1. Classification of rank 1 instanton sheaves . . . . . . . . . . . . . 307
4.2. Classification of rank 2 instanton sheaves . . . . . . . . . . . . . 308
4.3. Stability of rank 2 instanton sheaves . . . . . . . . . . . . . . . . 311
4.4. Instantons via Serre correspondence . . . . . . . . . . . . . . . . 314

5. Instanton sheaves on quadric threefolds . . . . . . . . . . . . . . . . . 318
5.1. Instanton sheaves of charge 1 . . . . . . . . . . . . . . . . . . . . 319
5.2. Instantons of charge 2 . . . . . . . . . . . . . . . . . . . . . . . . 321
5.3. A description of L(2) via Serre correspondence . . . . . . . . . . 324

6. The moduli space MX (2;−1, 2, 0) . . . . . . . . . . . . . . . . . . . 330
6.1. The moduli space MX (2;−1, 2, 2) . . . . . . . . . . . . . . . . . 332

G. Comaschi · M. Jardim (B): Departamento de Matemática, Estatística e Com-
putação Científica, Instituto de Matemática, Universidade Estadual de Campinas (UNI-
CAMP), Rua Sérgio Buarque de Holanda, 651, Campinas, SP 13083-970, Brazil. e-mail:
jardim@ime.unicamp.br

G. Comaschi: e-mail: gaia.comaschi@gmail.com

Mathematics Subject Classification: Primary 14J60 · 14F06; Secondary 14J45

https://doi.org/10.1007/s00229-024-01559-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s00229-024-01559-x&domain=pdf
http://orcid.org/0000-0002-8419-7044


294 G. Comaschi, M. Jardim

6.2. Description of C . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
6.3. Intersection of C and L(2) . . . . . . . . . . . . . . . . . . . . . . 340

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

1. Introduction

In their seminal work [2], Atiyah, Drinfeld, Hitchin, and Manin presented the
notion of mathematical instantons, rank 2 holomorphic vector bundles on P

3 that
correspond to anti-self-dual connections, a.k.a. instantons, on the sphere S4. More
precisely, a mathematical instanton of charge n is defined as a stable rank 2 vector
bundle E with Chern classes c1(E) = 0, c2(E) = n and such that Hi (E(−2)) = 0
for i = 1, 2.

In the following years, several authors presented different generalizations of
mathematical instanton, first to odd-dimensional projective spaces [25], then to
non-locally free sheaves of any rank on arbitrary projective spaces [18], and to
other Fano threefolds besidesP3 [7,11,23], andmore recently to arbitrary polarized
projective varieties [3,4].

In the present paper, we introduce a definition of instanton sheaves on a Fano
threefold X of Picard rank one, compatible with all the aforementioned ones.
Namely, a torsion-free sheaf E on X is said to be an instanton sheaf of charge
n if it is μ-semistable and it satisfies c1(E) = −rX · rk(E)/2, c2(E) = n
and hi (E(−qX )) = 0 for i = 1, 2, with rX , qX integers such that KX ∼
−(2qX + rX )HX where KX and HX are, respectively the anti-canonical class and
the ample generator of Pic(X). These requirements are nevertheless sufficient to
guarantee that several expected properties for instanton sheaves still hold in this
more general setting.

Once the notion of an instanton sheaf has been provided and their main features
have been illustrated, we focus our attention on how they behave in families with
a particular emphasis on the rank 2 case. Indeed, there exists a vast literature on
moduli spaces of rank 2 instanton sheaves.

OnP3, themoduli space I(n) of rank 2 instanton bundles onP3 has been proved
to be an irreducible [32,33] smooth [19] affine [8] variety of dimension 8n − 3.
A more comprehensive picture of I(n), the closure of I(n) within the Gieseker–
Maruyama moduli scheme MP3(0, n, 0) of rank 2 semistable sheaves on P

3 with
Chern classes c1 = 0, c2 = n, c3 = 0, can then be obtained taking into account
also the non locally free instanton sheaves, as shown in [21,22]. Moreover, the
moduli space L(n) of all rank 2 instanton sheaves of charge n was shown in [20]
to be connected for n ≤ 4.

Moduli spaces of rank 2 instanton bundles on other Fano threefolds X have
been widely inspected as well: among them, we mention for example [9,26,31].
In these works, a frequently used technique to construct instantons and study their
moduli is the so-called Serre correspondence. This latter establishes a correspon-
dence between global sections of rank 2 reflexive sheaves on X and locally Cohen
Macaulay (l.c.m.) curves on X ; it is then possible to deduce geometrical properties
of moduli spaces of sheaves from the geometry of the Hilbert scheme of curves on
X .



Instanton sheaves on Fano threefolds 295

In order to carry on these pursuits, we present in this paper a more general form
of the Serre correspondence that applies to torsion-free sheaves. This will allow us
to describe in greater detail the geometry of the curves corresponding to the non
locally free rank 2 instanton sheaves, and then apply these results to study moduli
spaces of rank 2 instanton sheaves on the quadric threefold.

Here is the plan for the paper. In Sect. 2 we set up the notation for the rest of the
paper by recalling the classification of Fano threefolds of Picard rank one, and some
features of (semi)stable sheaves. Section3 is dedicated to formulating the Serre
correspondence for torsion-free sheaves, generalizing the classical correspondence
presented in [1,13,14].

Instanton sheaves on Fano threefolds, the main characters of our tale, are
then introduced in Sect. 4. After going over some basic properties and examples
of instanton sheaves, we also introduce the notion of rank 0 instanton sheaves,
that is 1-dimensional sheaves T on X satisfying the cohomological vanishing
Hi (T (−qX )) = 0, i = 0, 1; for X = P

3, rank 0 instantons were originally
introduced in [15] and further studied in [12], and play a key role in the study of
non-reflexive instanton sheaves via a procedure known as elementary transforma-
tion. We present a classification of the rank 0 instantons T of the form T � OC

where C ⊂ X an l.c.m. curve (that will be therefore referred to as an instanton
curve) and as a direct consequence of this result we obtain a classification of rank
1 instanton sheaves, see Proposition 21.

The first main result of the paper is a classification of rank 2 instanton sheaves,
see Theorem 24. To be precise, we prove that in this case, an instanton sheaf E
is either locally free or its singular locus has pure dimension one. This implies
in particular that every non locally free rank 2 instanton sheaf E is obtained via
an elementary transformation of a locally free instanton sheaf F along a rank 0
instanton sheaf T ; if this occurs we moreover have E∨∨ � F and Sing(E) =
Supp(T ).

We complete Sect. 4 with a detailed description of the Serre correspondence
for non locally free rank 2 instanton sheaves. In particular, we describe how curves
corresponding to locally free instanton sheaves behave under elementary transfor-
mation; in this way, we can also relate the geometry of the curves corresponding
to non locally free instanton sheaves to the singularities of these sheaves.

This formulation of the Serre correspondence is the main tool used in Sect. 5 to
study the moduli space of instantons of charge 2 on the quadric threefold X ⊂ P

4.
The Serre correspondence was used in [31] to describe the moduli space I(2) of
instanton bundles of charge 2 on X and to prove that the latter is an irreducible
smooth variety of dimension 6. Our study of the families of curves corresponding
to non locally free instanton sheaves allows us to prove that these always deform
to locally free instanton sheaves and that they are parameterized by an irreducible
divisor in I(2).

Still relying on the Serre correspondence, we give a complete description of the
moduli space MX (2;−1, 2, 0) of rank 2 semistable sheaves with Chern classes
c1 = −1, c2 = 2, c3 = 0 in Sect. 6. We prove that this moduli space consists
of two irreducible components, namely I(2), and a 10-dimensional irreducible
component C whose general point is the kernel of an epimorphism F � Op, with
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F a stable reflexive sheaf with c1(F) = −1, c2(F) = 2, c3(F) = 2 and p ∈ X
a point. We will finally show that I(2) ∩ C 	= ∅ proving the connectedness of
MX (2;−1, 2, 0).

2. Background and notation

2.1. Classification of Fano threefolds

Let X be a smooth 3-dimensional projective variety whose Picard group has rank
one. Letting HX denote the ample generator of Pic(X), the canonical class KX can
be written in the form

KX = −iX HX iX ∈ Z;
X is said to be Fano whenever iX > 0. For each Fano threefold X , we define the
following numerical invariants:

• The index, defined as the integer iX ;
• The degree dX := H3

X ;

In addition, we let qX and rX denote the quotient and the remainder of the division
of iX by 2, so that we can write iX = 2qX + rX , with qX ≥ 0 and rX ∈ {0, 1}.

The cohomology groups of a Fano threefold X satisfy the following properties.
All the groups Hi,i (X) have dimension one, and for this reason throughout the
entire article, we will write the Chern classes of any sheaf F ∈ Coh(X) as integers.
By Kodaira vanishing we then compute:

hi (OX (k)) = 0, i = 1, 2, k ∈ Z

h0,p(X) = h p,0(X) = 0, p > 0.

Fano threefolds with Picard rank one were classified by Iskovskikh and Mukai
[17,28]. Recall that iX ≤ 4, and

• If iX = 4, then X � P
3;

• If iX = 3, then X is a smooth quadric hypersurface in P4.
• There are five families of Fano threefolds with iX = 2, up to deformation; these
families are classified according to its degree dX ∈ {1, 2, 3, 4, 5}.
• There are ten deformation families of Fano threefolds with iX = 1, which are
also classified according to their degrees dX taking all even values between 2
and 22, except 18.

Note that even if in some cases we have different isomorphism classes of Fano
threefolds, these belong to the same deformation family.

2.2. Stability of sheaves

Let E be a coherent sheaf on a non-singular projective variety X with Pic(X) = Z;
let E(t) := E ⊗ H⊗tX , where HX denotes the ample generator of Pic(X).
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Recall that E is (semi)stable if it is pure and, for every proper subsheaf F ⊂ E
we have

pF (t) < (≤) pE (t),

where pE (t) denotes the reduced Hilbert polynomial of the sheaf E . Furthermore,
when E is a torsion-free sheaf, E is μ-(semi)stable if for every proper subsheaf
F ⊂ E such that E/F is also torsion-free we have

c1(F) · Hd−1
X

rk(F)
< (≤)

c1(E) · Hd−1
X

rk(E)
.

Remark that for torsion-free sheaves:

μ− stability 
⇒ stability 
⇒ semistability 
⇒ μ− semistability,

see [16, Lemma 1.2.13]. In addition, E is μ-(semi)stable if and only if E∨ is
μ-(semi)stable.

Here is a simple characterization ofμ-(semi)stable rank 2 sheaves, which gener-
alizes well-known results for reflexive sheaves, cf. [29, Lemma II.1.2.5]. Recall that
a torsion-free sheaf E is said to be normalized if c1(E) ∈ {0,−1, . . . ,− rk(E)+1};
every torsion-free sheaf can be normalized after a twist by OX (k) for some suit-
able integer k. Recall also that a normalized torsion-free sheaf with c1(E) < 0 is
μ-stable if and only if it is μ-semistable.

Lemma 1. Let X be a non-singular projective variety X of dimension 3 with
Pic(X) = Z, and let E be a normalized torsion-free sheaf with rk(E) ≥ 2.

(1) Assuming c1(E) = 0, we have that
(1.1) if E is μ-stable then h3(E ⊗ ωX ) = 0;
(1.2) if E is μ-semistable then h3(E ⊗ ωX (1)) = 0;
(1.3) the converse of (1.1) and (1.2) hold when rk(E) = 2.

(2) Assuming c1(E) < 0, we have that
(2.1) if E is μ-semistable then h3(E ⊗ ωX ) = 0;
(2.2) the converse of (2.1) holds when rk(E) = 2.

Proof. By Serre duality, we know that H3(E ⊗ ωX ) � Hom(E,OX )∗. If h3(E ⊗
ωX ) > 0, then there is a non-trivial morphism ϕ : E → OX ; let F := ker(ϕ).
Since c1(F) = −c1(im(ϕ)) ≥ 0, we conclude that E cannot be μ-stable.

Conversely, assume that rk(E) = 2; if E is notμ-stable, let F be a destabilizing
subsheaf; since E has rank 2, we must have that both F and G := E/F are rank
1 torsion-free sheaves. It follows that G = I�(k) for some subscheme � ⊂ X and
k ≤ 0, thus there exists a monomorphism G ↪→ OX ; composing the epimorphism
E � G with the latter, we obtain a non-trivial morphism E → OX , showing that
h3(E ⊗ ωX ) > 0.

The proofs for items (1.2) and (2) are completely analogous. ��
We will need the following result regarding 1-dimensional sheaves.
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Lemma 2. Let T be a pure 1-dimensional sheaf with χ(T (t)) = d · (t + e). If
h0(T (−e)) = 0, then T is semistable.

Proof. If S ↪→ T is a subsheaf, then h0(S(−e)) = 0; if we set χ(S(t)) = s · t + x ,
then χ(S(−e)) = −se + x = −h1(S(−e)) ≤ 0, thus x ≤ se; note that s > 0
because T has pure dimension 1. It follows that

χ(T (t))

d
− χ(S(t))

s
= e − x

s
≥ 0,

proving that T is semistable. ��

3. Serre correspondence for torsion-free sheaves

The so-called Serre correspondence is one of the most efficient tools to construct
and study rank 2 sheaves on a threefold X .

Recall from [14, Theorem 4.1] (which generalizes [13, Theorem 1.1]) that this
is a correspondence relating pairs (C, ξ) consisting of a curve C in X and a global
section ξ of a twist of the dualizing sheaf ωC := Ext2(OC , ωX ), with pairs (E, s)
consisting of a rank 2 reflexive sheaf E and a global section s ∈ H0(E) whose
cokernel is torsion-free. Another version of the Serre correspondence was given by
Arrondo in [1, Theorem 1.1], including locally free sheaves of higher rank.

The main goal of this section is to consider a generalization of the Serre cor-
respondence for torsion-free sheaves on projective varieties generalizing all of the
results mentioned above.

Theorem 3. Let X be a non-singular, projective variety and let L be a line bundle
on X such that H1(L∨) = H2(L∨) = 0. There is a correspondence between

• Sets (E, s1, . . . , sr−1) consisting of a rank r torsion-free sheaf E with det(E) =
L, and global sections s1, . . . , sr−1 ∈ H0(E) whose dependency locus has
codimension at least 2;
• Sets (C, ξ1, . . . , ξr−1) consisting of a codimension 2 subscheme C ⊂ X and
sections ξ1, . . . , ξr−1 ∈ H0(ωC ⊗ ω−1X ⊗ L−1).

Proof. Starting with a set (E, s1, . . . , sr−1) as described in the first item, we form
a morphism

σ := (s1, . . . , sr−1) : O⊕(r−1)
X −→ E;

the hypothesis on (s1, . . . , sr−1), which means that the common zeros of si have
codimension at least 2, imply that σ is injective and coker(σ ) is a torsion-free sheaf.
It follows that coker(s) � IC ⊗ L , where C is a (possibly empty) subscheme of
codimension at least 2, which is precisely the dependency locus of (s1, . . . , sr−1),
and L is a line bundle. Therefore, we obtain a short exact sequence of the form

0 −→ O⊕(r−1)
X

σ−→ E −→ IC ⊗ L −→ 0; (1)
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in addition, this exact sequence defines an extension class

ξ ∈ Ext1(IC ⊗ L ,O⊕(r−1)
X ).

Using the spectral sequence for local-to-global Ext

H p(Extq(IC ,OX ))⇒ Ext p+q(IC ,OX ) (2)

one checks that the hypothesis H1(L∨) = H2(L∨) = 0 yields the first of the
following isomorphisms

Ext1(IC ⊗ L ,OX ) � H0(Ext1(IC ⊗ L ,OX ))

� H0(Ext2(OC , ωX )⊗ ω−1X ⊗ L∨). (3)

Thismeans that the extension class ξ canbe regarded as r−1 sections ξ1, . . . , ξr−1 ∈
H0(ωC ⊗ω−1X ⊗ L−1). We have thus obtained a set (C, ξ1, . . . , ξr−1) as described
in the second item.

Conversely, given a set (C, ξ1, . . . , ξr−1) we can use the isomorphisms in dis-
play (3) to re-interpret ξ1, . . . , ξr−1 as an extension class in Ext1(IC⊗L ,O⊕(r−1)

X )

leading to an exact sequence as in display (1), which yields a set (E, s1, . . . , sr−1).
��

In general, the abelian groups Ext1(IC ⊗ L ,OX ) and H0(Ext1(IC ⊗ L ,OX ))

are related via the following exact sequence

0 −→ H1(L∨) −→ Ext1(IC ⊗ L ,OX ) −→ H0(Ext1(IC ⊗ L ,OX ))

−→ H2(L∨);

here, we used the isomorphism Hom(IC ⊗ L ,OX ) � L∨. Therefore, if one only
assumed that H2(L∨) = 0, then every set (C, ξ1, . . . , ξr−1) defines an extension
class in Ext1(IC ⊗ L ,O⊕(r−1)

X ) and thus a torsion-free sheaf of rank r .
In this paper, we will only be concerned with threefolds, so we fix dim(X) = 3

once and for all. Moreover, we will mostly consider only rank 2 sheaves.

Remark 4. Fix r = 2.

(1) E is reflexive if and only if the schemeC is locallyCohen–Macaulay (l.c.m.) and
ξ : OX → Ext2(OC ,OX )⊗ L−1 only vanishes on a 0-dimensional subscheme
Z ⊂ C . In addition, Z coincides with the singular locus of E .

(2) E is locally free if and only if the scheme C is locally complete intersection
(l.c.i.) and ξ : OX → ωC ⊗ ω−1X ⊗ L−1 is non vanishing.

Detailed explanations for these claims can be found in the classical references [14,
Theorem 4.1] and [13, Theorem 1.1], respectively.
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When E is not reflexive, set TE := E∨∨/E and consider the following com-
mutative diagram

0 0

OX

s

OX

ι◦s

0 E
ι

E∨∨ q
TE 0

0 IC ⊗ L G TE 0

0 0

(4)

where ι is the canonical embedding of E in its double-dual E∨∨ (E is indeed
assumed to be torsion free) G := coker(ι(s)) and L = det(E); we argue that G is
torsion-free, so that G � IC ′ ⊗ L for some l.c.m. curve C ′ ⊂ C .

Indeed, assume that G is not torsion-free and assume that P ↪→ G is the
maximal torsion subsheaf, so that G/P is torsion-free; the exact sequence in the
middle column implies that Ext p(G,OX ) = 0 for p > 1, thus Ext p(P,OX ) = 0
for p > 1 as well (since Ext3(G/P,OX ) = 0); it follows that P and Ext1(P,OX )

must be both sheaves of pure dimension 2. On the other hand, since dim TE ≤ 1,
one can dualize the exact sequence in the bottom line and conclude that G∨ � L∨
and

0 −→ Ext1(G,OX ) −→ Ext1(IC ⊗ L ,OX ) −→ Ext2(TE ,OX ) −→ 0, (5)

since Ext p(G,OX ) = 0 for p > 1. This means that dim Ext1(G,OX ) ≤ 1,
which is impossible. If ever this was the case, we would indeed have an inclusion
Ext1(G/P,OX ) ↪→ Ext1(G,OX ) whose cokernel is a subsheaf of Ext1(P,OX )

of dimension at most one; this is a contradiction since we proved that Ext1(P,OX )

has pure dimension 2. Therefore, G does not admit a torsion subsheaf.
In general, the quotient sheaf TE is not pure dimensional. Our next result char-

acterizes those torsion-free sheaves E for which TE has pure dimension 1.

Lemma 5. Assume that the pairs (E, s) and (C, ξ) correspond via the Serre cor-
respondence outlined in Theorem 3. The scheme C is l.c.m. if and only if TE is a
pure 1-dimensional sheaf.

Proof. Dualizing the bottom line of the diagram in display (4) yields the first of
the following isomorphisms

Ext3(TE ,OX ) � Ext2(IC ⊗ L ,OX ) � Ext3(OC ,OX );
the leftmost sheaf is 0-dimensional, so one can disregard the twist by the line bundle
L . Therefore, TE contains a 0-dimensional subsheaf if and only if OC also does,
meaning that C is not l.c.m. ��
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LetU ↪→ OC be themaximal 0-dimensional subsheaf, so thatExt3(OC ,OX ) �
Ext3(U,OX ). As a by-product of the previous proof, we also conclude that
Ext3(TE ,OX ) � Ext3(U,OX ). In other words, the 0-dimensional components
of the support of TE are always contained in the 0-dimensional components of C ,
regardless of the choice of section s.

4. Instanton sheaves on Fano threefolds

Let X be a Fano threefold of Picard rank one and of index iX , following all the
notation and definitions posed in Sect. 2.

The key point of the present paper is the introduction of the following definition,
which generalizes Faenzi’s ([11, Definition 1]) and Kuznetsov’s ([23, Definition
1.1]) definitions of instanton bundles on a Fano threefold.

Definition 6. An instanton sheaf E on X is a μ-semistable sheaf with first Chern
class c1(E) = −rX · rk(E)/2 and such that:

H1(E(−qX )) = H2(E(−qX )) = 0. (6)

The charge of E is defined to be c2(E).

The μ-semistability condition rules outOX (−rX )⊕r ⊕O⊕rX as instanton sheaf
when rX = 1 (i.e. when iX is odd); however,O⊕rX is considered an instanton sheaf
when rX = 0 (i.e. when iX is even).

Remark 7. When X = P
3 this definition is, in general, a bit more restrictive than

the definition of instanton sheaves adopted in [12,18,20,22]; in these references,
an instanton sheaf on P3 was defined as a torsion-free sheaf E with c1(E) = 0 and

h0(E(−1)) = h1(E(−2)) = h2(E(−2)) = h3(E(−3)) = 0.

Using this definition, one can find examples of instanton sheaves of rank 4 and
larger that are notμ-semistable, see [18, Example 3]. However, both definitions are
equivalent when rk(E) = 2, since every rank 2 sheaf onP3 satisfying the conditions
above is automatically μ-semistable.

The following technical results will be useful later on.

Lemma 8. Let E be an instanton sheaf of rank r .

(1) H0(E(−n)) = 0, ∀ n ≥ 1− rX and H3(E(n)) = 0, ∀ n ≥ −iX + 1.
(2) Hi (E(−qX )) = 0, Exti (E,OX (−qX − rX )) = 0, ∀ i.

In particular, we conclude that χ(E(−qX )) = 0.

Proof. Since E is a rank r μ-semistable sheaf, Hom(OX (n), E) = H0(E(−n)) =
0 whenever n > −rX

2 and since rX = 0 or 1, this happens if and only if n ≥ 1− rX .
An equivalent argument leads to Hom(E,OX (n)) = 0 whenever n < −rX

2 so that,
by duality, Ext3(OX (n), E) � H3(E(−n)) = 0 for n < iX − rX

2 that is to say,
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whenever n ≤ iX − 1. Since 1 − rX ≤ qX ≤ iX − 1 we get Hi (E(−qX )) = 0,
for i = 0, 3 and this together with (6) leads to Hi (E(−qX )) = 0, ∀ i . By Serre
duality, we have isomorphisms

Hi (E(−qX )) � Ext3−i (E(−qX ), ωX ))∗ � Ext3−i (E,OX (−qX − rX ))∗,

therefore Exti (E,OX (−qX − rX )) = 0, ∀ i . ��
From these computations, we determine the value of the third Chern class of

instanton sheaves.

Corollary 9. Let E be an instanton sheaf of rank r .

(1) If iX > 1, χ(E(−qX )) = c3(E)
2 = 0, hence c3(E) = 0.

(2) If iX = 1, χ(E(−qX )) = χ(E) = (r−2)+ c3(E)
2 = 0 hence c3(E) = 2(2−r).

Proof. χ(E(−qX )) = 0 by Lemma 8; by Grothendieck–Riemann–Roch theorem
we compute χ(E(−qX )) = c3(E)

2 whenever iX > 1 so that c3(E) = 0 and χ(E) =
(r − 2)+ c3(E)

2 for iX = 1 so that c3(E) = 2(2− r). ��
The main motivation behind Definition 6 is that non locally free instanton

sheaves naturally arise as degenerations of locally free ones. When X = P
3, this

phenomenon has been studied in [21,22]. To see it in greater generality, let us
consider some explicit examples of rank 2 instanton sheaves.

Let C := L1 � · · · � Ln be the disjoint union of lines in X , and set G :=
IC (qX − 1); note that for p = 1, 2, we have

H p(G(−qX )) = H p(IC (−1)) �
n⊕

k=1
H p−1(OLk (−1)) = 0.

We can then consider extensions of the form

0 −→ OX (−qX − rX + 1) −→ E −→ IC (qX − 1) −→ 0; (7)

clearly, c1(E) = −rX and one easily checks that H p(E(−qX )) = 0 for p = 1, 2.
Applying Lemma 1, we verify that E is μ-semistable when iX ≥ 2; however, such
sheaves are always properly μ-semistable when iX = 2 and are not μ-semistable
when iX = 1. Therefore, E is a rank 2 instanton sheaf provided iX ≥ 2. Inspired by
the traditional nomenclature for X = P

3, instanton sheaves given by an extension
as in display (7) are called ’t Hooft instantons; the charge of a ’t Hooft instanton
sheaf corresponding to n lines is n − 1

Example 10. Here is an example of a family of rank 2 locally free instanton sheaves
degenerating into a non locally free one. Assume that iX ≥ 2, and letC be a disjoint
union of n ≥ 2 lines in X , as above.

Since

Ext1(IC (qX − 1),OX (−qX − rX + 1)) = Ext1(IC , ωX (2)) � H0(ωC (2))
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=
n⊕

k=1
H0(OLk ),

we can consider extension classes ξt = (1, . . . , 1, t) with t ∈ C, inducing a family
of instanton sheaves Et , parametrized by C.

Note that Et is locally free when t 	= 0 since ξt is nonvanishing in this case. On
the other hand, ξ0 vanishes along Ln , so the corresponding ’t Hooft instanton sheaf
E0 is not locally free. Note that E0 satisfies the following short exact sequence

0 −→ E0 −→ F −→ OL(qX − 1) −→ 0,

where F is a locally free ’t Hooft instanton sheaf of charge n − 1.

When iX is even, instanton sheaves of rank larger than 2 can easily be produced
using rank 2 instantons and ideal sheaves, via the following claim.

Lemma 11. Assume that iX = 2, 4, so that rX = 0. If E1 and E2 are instanton
sheaves, then any extension of E1 by E2 is also an instanton sheaf.

Proof. If E is an extension of E1 by E2, then it is easy to check that E satisfies
the cohomological conditions in Definition 6. Since E1 and E2 are μ-semistable
sheaves with vanishing slopes, then so is E . ��

Next, we consider the generalization of a definition first introduced in [15,
Definition 6.1] for X = P

3, and further studied in [12,20].

Definition 12. A rank 0 instanton sheaf on a Fano threefold X is a pure 1-
dimensional sheaf T satisfying h0(T (−qX )) = h1(T (−qX )) = 0.

If T is a rank 0 instanton sheaf on X , then χ(T (t)) = d · (t + qX ), and the
coefficient d is called the degree of T . Moreover, Lemma 2 implies that T is always
semistable.

Proposition 13. If T is a rank 0 instanton sheaf, then so is TD⊗ω−1X (−rX ), where
TD := Ext2(T, ωX ).

Proof. Note first that TD is a pure 1-dimensional sheaf and, by definition,

H p(TD ⊗ ω−1X (−rX − qX )) = H p(Ext2(T,OX (−qX − rX ))), p = 0, 1.

Using the spectral sequence (2) for local to global Exts, we check that

H0(Ext2(T,OX (−qX − rX ))) � Ext2(T,OX (−qX − rX )) and

H1(Ext2(T,OX (−qX − rX )))⊕ H0(Ext3(T,OX (−qX − rX )))

� Ext3(T,OX (−qX − rX )).

Serre duality yields the isomorphisms (for p = 0, 1)

Ext p+2(T,OX (−qX − rX )) � H1−p(T (−qX ))∗

and the latter vanishes by the instantonic condition on T . ��
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Lemma 14. If T is a rank 0 instanton sheaf, then h0(T (−qX − n)) = 0 and
h1(T (−qX + n)) = 0 for every n ≥ 0.

Proof. Given a rank 0 instanton sheaf T , let S ⊂ X be a hyperplane section
transversal to the support of T (i.e. dim(Supp(T )∩S) = 0), so that Tor1(T,OS) =
0. This implies that we can twist the exact sequence 0 → OX (−1) → OX →
OS → 0 by T (k) to obtain the short exact sequence

0 −→ T (k − 1) −→ T (k) −→ T ⊗OS(k) −→ 0.

Taking cohomology, we conclude that h0(T (k − 1)) = 0 whenever h0(T (k)) = 0,
while h1(T (k)) = 0 whenever h1(T (k − 1)) = 0, since dim(T ⊗ OS) = 0. The
desired claims follow by induction. ��

We are now interested in detecting when a locally Cohen-Macaulay curve C is
such that the structure sheafOC is a rank 0 instanton. We refer to a curve C of such
a kind as an instanton curve.

Lemma 15. Let X be a Fano threefold of Picard rank one.

(1) There are no instanton curves when iX = 1, 4.
(2) When iX = 2, 3, every instanton curve C of degree d fits in a short exact

sequence of the form

0 −→ Ol −→ OC −→ OC ′ −→ 0 (8)

where l ⊂ X is a line and C ′ is an instanton curve of degree d − 1.

Proof. The fact that there are no instanton curves on a Fano threefold X of index
iX = 1 is simply because we can not have a projective algebraic curve C ⊂ X
such that H0(OC ) = 0 (the restriction map H0(OX )→ H0(OC ) is necessarily an
injection).

Let us now treat the cases qX > 0. Consider an instanton curve C ⊂ X of
degree d; if C is reduced, then

h0(OC ) = χ(OC )+ h1(OC ) ≥ d · qX ,

thus C has at least d · qX connected components.
If qX = 2 (i.e. X = P

3), then this is impossible since C can have at most d
connected components.

If qX = 1, then C is a reduced curve of degree d with at least d connected
components; the only possibility is for C to be a disjoint union of lines which
ensures that OC fits in a short exact sequence of the form (8).

IfC is not reduced, letCred be its reduction. This latter is a l.c.m. curve satisfying
h1(OCred (−qX )) = 0 and h0(OCred (−qX )) = 0 (since qX > 0 and Cred is reduced
and l.c.m.): in other words Cred is an instanton curve.

In particular, there are no instanton curves C for iX = 1, 4 and for iX = 2, 3,
Cred is a disjoint union of d ′ < d lines. It follows that

OC �
d ′⊕

j=1
OC j
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where 
 j := (C j )red are disjoint lines, and Hi (OC j (−1)), i = 0, 1. To prove our
claim it is therefore enough to show that eachOC j fits in a short exact sequence of
the form (8); this is obtained applying Lemma 16 below. ��
Lemma 16. Let C be a multiple structure of degree d on a line 
 ⊂ X. Suppose
that Hi (OC (−1)) = 0 for i = 0, 1. Then C fits in a short exact sequence of the
form

0→ O
 → OC → OC ′ → 0

where C ′ is a multiple structure of degree d − 1 on 
 such that Hi (OC ′(−1)) = 0
for i = 0, 1.

Proof. According to [5], a curve C satisfying the hypotheses above admits a filtra-
tion:

l = C1 ⊂ C2 ⊂ . . . ⊂ Cm = C (9)

where each C j is a multiple structure on 
 whose sheaf of ideals IC j is the kernel
of a surjection IC j−1 � L j−1 with L j−1 a vector bundle on 
. Furthermore there
exist induced generically surjective morphisms Li ⊗ L j → Li+ j for each i, j ∈
{1, . . .m} and, in particular, generically surjective maps L⊗ j

1 → L j . Note that
since in our case C1 = Cred is the line 
, each vector bundle L j splits as L j =⊕k j

i=1O
(aij ), k j ∈ {1, 2} (as l has codimension 2). Therefore, C = Cm fits into
a sort exact sequence of the form

0→ Lm−1→ OC → OCm−1 → 0;
in order to prove the lemma it is therefore sufficient to show that each summand of
Lm−1 has degree 0.

Consider the second stepC2 of thefiltration (9). Thismust satisfyH1(OC2(−1)) =
0 so that ai1 ≥ 0 for 1 ≤ i ≤ k1. Since we have a generically surjective mor-
phism L⊗m−11 → Lm−1 we deduce that aim−1 ≥ 0, 1 ≤ i ≤ km−1; but as
H0(OC (−1)) = 0, H0(Lm−1(−1)) = 0 we have aim−1 ≤ 0, 1 ≤ i ≤ km−1.
The only possibility is thus aim−1 = 0 for 1 ≤ i ≤ km−1. ��

From now on the l.c.m. curve of degree d constructed “inductively” via the short
exact sequences of the form (8), will be referred to as degree d line arrangements.

Remark 17. From the proof of Lemma 15 we learn that the degree d lines arrange-
ments are the only degree d l.c.m. curves C such that χ(OC ) = d. In particular we
notice that for a degree d l.c.m. curve C , since χ(OC (−1)) = −h1(OC (−1)) =
−d + χ(OC ) ≤ 0, we always have χ(OC ) ≤ d and equality holds if and only if C
is a degree d line arrangement.

One of the main reasons that justify our interest in rank 0 instanton sheaves
is that these sheaves play a primary role in the study of non-reflexive instanton
sheaves. It is indeed possible to construct instanton sheaves out of non-reflexive
ones performing an elementary transformation along a rank 0 instanton sheaf.
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We recall that the elementary transformation consists of the following proce-
dure: let F be a reflexive instanton sheaf, let T be a rank 0 instanton sheaf, and
consider an epimorphism q : F � T . It is easy to check that E := ker q is also an
instanton sheaf. Indeed, consider the exact sequence

0 −→ E −→ F
q−→ T −→ 0; (10)

E isμ-semistable because F isμ-semistable andμ(F) = μ(E); the exact sequence
in cohomology (here, p = 1, 2)

H p−1(T (−qX )) −→ H p(E(−qX )) −→ H p(F(−qX ))

implies that h p(E(−qX )) = 0 (p = 1, 2) since T and F are instanton sheaves.
It is almost immediate to prove that whenever E is the elementary transforma-

tion of F along T , then the following holds

Lemma 18. Let E be an instanton sheaf obtained by elementary transformation of
a reflexive instanton F along a rank 0 instanton T . Then F � E∨∨.

Proof. Applying the functor Hom( · ,OX ) to (10), we get E∨ � F∨ (since T is
one-dimensional) hence E∨∨ � F∨∨ � F . ��

As it turns out not all the non-reflexive instanton sheaves are necessarily
obtained in this way. We can indeed prove that for a non reflexive instanton sheaf
E , E∨∨/E is always purely one-dimensional but not necessarily a rank 0 instanton
sheaf; accordingly E∨∨ is not necessarily an instanton sheaf either.

Proposition 19. Let E be a non reflexive instanton sheaf of rank r > 0. Then the
following hold:

(1) TE := E∨∨/E has pure dimension one;
(2) E has homological dimension 1;
(3) H p(E∨∨(−qX )) = 0, p = 0, 2, 3
(4) E∨∨ is an instanton if and only if T is a rank 0 instanton sheaf. This condition

is equivalent to c3(E∨∨) = 0 for iX > 1 and c3(E∨∨) = 2(2− r) for iX = 1.

Proof. Since E is torsion-free, it injects in its double dual, leading to a short exact
sequence:

0→ E → E∨∨ → TE → 0 (11)

where TE := E∨∨/E is a torsion sheaf supported on the locus of points where E
fails to be reflexive. Applying the functorHom( · ,OX ) to (11) we obtain an exact
sequence 0→ E∨ → E∨∨ → Ext1(TE ,OX )→ Ext1(E∨∨,OX ) from which we
deduce that dim(TE ) ≤ 1. Indeed, since E∨ is reflexive, E∨ � E∨∨ which implies
that Ext1(TE ,OX ) injects in Ext1(E∨∨,OX ); but this can clearly not happen if
ever TE had dimension > 1. If ever this was the case, Ext1(TE ,OX ) would have
dimension bigger than one as well, leading to a contradiction since Ext1(E∨∨,OX )
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is zero-dimensional due to the reflexivity of E∨∨. Twisting now (11) byOX (−qX )

and taking cohomology we get an exact sequence:

H0(E∨∨(−qX ))→ H0(TE (−qX ))→ H1(E(−qX )).

The left side term vanishes since E∨∨ is μ-semistable, the right side term van-
ishes since E is an instanton; accordingly H0(TE (−qX )) = 0 thus H0(TE (−n)) =
0, ∀n ≥ qX (apply 14) which allows us to conclude that TE has pure dimension
one ending the proof of (1). As a consequence of (1) we get that Ext2(E,OX ) �
Ext3(TE ,OX ) = 0 and since moreover 0 = Ext3(E∨∨,OX ) surjects onto
Ext3(E,OX ), we can conclude that E has homological dimension 1, proving (2).
The long exact sequence in cohomology from (11) twisted byOX (−qX ) now leads
to

Hi (E(−qX )) � Hi (E∨∨(−qX )) = 0, i = 2, 3, H1(E∨∨(−qX ))

= H1(TE (−qX )).

These equalities lead to (3) (as we have already pointed out that H0(E∨∨(−qX ))

vanishes by μ-semistability) and ensure that E∨∨ is an instanton if and only if TE
is a rank 0 instanton. Finally, we compute that χ(TE (−qX )) = c3(E∨∨)

2 for iX > 1

(resp. χ(TE ) = c3(E∨∨)
2 +r−2 for iX = 1) which holds if and only if c3(E∨∨) = 0

(resp. if and only if c3(E∨∨) = 2(2− r)). ��

4.1. Classification of rank 1 instanton sheaves

According to our definition, rank 1 instanton sheaves can only occur when rX = 0,
so iX is even. Since Pic(X) = Z, a locally free (or equivalently reflexive) instanton
sheaf of rank one is uniquely determined by its first Chern class; therefore, the only
instanton line bundle is OX . Let us now consider the non locally free case.

Lemma 20. Let L be a non locally free instanton sheaf of rank one. Then L∨∨ �
OX and L∨∨/L is a rank 0 instanton sheaf.

Proof. Applying Proposition 19 (recall that in rank one reflexivity is equivalent to
local freeness) we have that L always fits in a short exact sequence of the form:

0→ L → L∨∨ → T → 0 (12)

with T being a torsion sheaf of pure dimension one.Accordingly, L∨∨ is a rank one
reflexive sheaf with c1(L∨∨) = c1(L) = 0, that is to say L∨∨ � OX . Since OX is
an instanton, one can easily check that T is a rank 0 instanton sheaf. ��

We, therefore, understand that the classification of rank 1 instanton sheaves
reduces to the classification of rank 0 instanton sheaves T admitting an epimorphism
OX � T .

Proposition 21. Let L be a rank one instanton sheaf of charge d on aFano threefold
X with Picard rank one. The following hold:
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(1) if iX = 4, then d = 0 and L � OX ;
(2) if iX = 2, we have L � OX whenever d = 0 whilst for d > 0 L always fits in

a short exact sequence of the form:

0→ L → L ′ → O
 → 0

for a line 
 ⊂ X and L ′ a rank one instanton sheaf of charge d − 1.

Proof. By Lemma 20, the classification of rank one instanton sheaves L of charge
d, reduces to the classification of degree d rank 0 instanton sheaves T admitting a
surjectionOX � T , that is to say, to the classification of degree d l.c.m. curvesC ⊂
X such that OC is a rank 0 instanton. But this means that Hi (OC (−2)) = 0, i =
0, 1 for iX = 4 and Hi (OC (−1)), i = 0, 1 for iX = 2. The arguments used to prove
Lemma 15 (i) show then that there are no rank 1 non locally free instantons of rank
one on Fano threefolds of index 4. Similarly, from Lemma 15 (2) and Remark 17,
we know that the only degree d l.c.m. curves such that Hi (OC (−1)) = 0 are the
degree d lines arrangements. This proves the point (2). ��
Remark 22. Proposition 21 can be rephrased by saying that each rank one instanton
L of charge d > 0, on a Fano threefold X of index iX = 2, is always isomorphic
to IC for C a degree d line arrangement. Recall that a curve C of such a kind is
supported by d ′ ≤ d disjoint lines and can be constructed “inductively” from an
extension:

0→ O
 → OC → O′C → 0

with C ′ a degree d − 1 line arrangement. As a consequence, for iX = 2, rank
one instantons of strictly positive charge coincides with ideal sheaves of instanton
curves.

4.2. Classification of rank 2 instanton sheaves

In general, the double dual E∨∨ of a torsion-free sheaf E is a reflexive (possibly
non locally free) sheaf; if E is an instanton sheaf, we have that c1(E∨∨) = −rX
and that E∨∨ is μ-semistable, but E∨∨ may not satisfy the instantonic vanishing
conditions.

The main result of this section guarantees that E∨∨ is a locally free instanton
sheaf when rk(E) = 2. Recall that, since X has Picard rank one, we have in this
case an isomorphism:

E∨∨ � E∨(−rX ). (13)

In particular, this implies that Serre’s duality establishes isomorphisms:

Hi (E∨∨(n)) � H3−i (E∨(−n − iX ))∗ � H3−i (E∨∨(−2qX − n))∗, i = 0, 3.

(14)

When X is a Fano threefold, Lemma 1 says that a normalized rank 2 torsion-
free sheaf E on X is μ-semistable if and only if h3(E(−iX + 1)) = 0. In addition,
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note that μ-semistability implies that h0(E(rX − 1)) = 0, when we assume that
c1(E) = −rX .

Let us now focus on rank 2 instantons. To begin with, we show that, in the rank
2 case, the reflexivity of an instanton implies its local freeness.

Lemma 23. Let E be a rank 2 reflexive instanton. Then E is locally free.

Proof. Applying Corollary 9, χ(E(−qX )) = 0 leads to c3(E) = 0. The proof of
[14, Proposition 2.6] applies verbatim to arbitrary Fano threefolds of Picard rank
one which allows us to conclude that c3(E) = 0 if and only if E is locally free. ��

We are finally ready to prove our classification of non locally free rank 2 instan-
ton sheaves.

Theorem 24. Let E be a rank 2 instanton sheaf. Then E∨∨ is an instanton bundle
and TE := E∨∨/E is a rank 0 instanton sheaf whenever TE 	= 0.

Proof. By Propositions 19 and 23 it is enough to prove that for a non locally free
instanton E , h1(E∨∨(−qX )) = 0. Consider the local-to-global spectral sequence

E p,q
2 = H p(Extq(E∨∨,OX (−qX − rX )))⇒ Ext p+q(E∨∨,OX (−qX − rX )).

Hom(E∨∨,OX (−qX − rX )) � E∨∨(−qX ) hence E p,0 = 0 for p 	= 1 which
implies that the spectral sequence already degenerates at the r = 2 sheet. Therefore

Ext1(E∨∨,OX (−qX − rX ))

� H0(Ext1(E∨∨,OX (−qX − rX )))⊕ H1(E∨∨(−qX ));

since Ext1(E∨∨,OX (−rX − qX )) � H2(E∨∨(−qX ))∗ = 0, we then deduce that
H0(Ext1(E∨∨,OX (−qX − rX ))) = 0 and H1((E∨∨(−qX )) = 0. This ensures
that E∨∨ is an instanton bundle. ��
Remark 25. Theorem 24 generalizes [9, Proposition 3.1, Theorem 3.5] and [34,
Theorem 1.2], [35, Theorem 1.3].

Remark 26. It is worth pointing out that if in the definition of instanton, we replace
μ-semistability with a weaker cohomological condition, Theorem 24 no longer
holds. We can prove this with the following counterexample. Let us consider a
Fano threefold X of index iX = 1 and a sheaf E ∈ Coh(X) defined by:

0→ E → OX ⊕OX (−1)→ Op → 0

with p ∈ X a point. E is a μ-unstable rank 2 torsion free sheaf (it is destabilized
by Ip) such that Hi (E) = 0 for 0 ≤ i ≤ 2, but E∨∨/E � Op.

Corollary 27. Let E be a rank 2 non-locally free instanton. Then the sheaf SE :=
Ext1(E,OX (−rX )) is a rank 0 instanton.
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Proof. Whenever E is not locally free, it fits in an exact sequence of the form (11)
and since E∨∨ is locally free, we get an isomorphism:

Ext1(E,OX (−rX )) � Ext2(TE ,OX (−rX )).

Since TE is a rank 0 instanton, by Lemma 13, TD
E ⊗ω−1X (−rX ) is a rank 0 instanton

as well. The statement of the corollary then follows from the fact that we have an
isomorphism Ext2(TE ,OX (−rX )) � TD

E ⊗ ω−1X (−rX ). ��
Remark 28. If E is a rank 2 non locally free instanton, we then have an equality
Supp(TE ) = Sing(E) for TE := E∨∨/E . Note that thismight not hold for arbitrary
rank since a priori Supp(TE ) ⊂ Sing(E) and equality holds if and only if E∨∨ is
locally free.

Summing up these last results, we can affirm that in rank 2 an instanton sheaf
E is either locally free or Sing(E) has pure dimension one, and E is obtained by
elementary transformation of an instanton bundle along a rank 0 instanton supported
on Sing(E). Elementary transformation of rank 2 instanton bundles has beenwidely
used in [22] to construct and study families of non-locally free instantons on X =
P
3.Most importantly for the present paper, Faenzimade a very interesting use of this

construction in [11]: in loc. cit. elementary transformation is indeed used to prove
the existence of rank 2 instanton bundle of charge k,∀ k ≥ 2 on Fano threefolds of
index 2. Mimicking this approach, we can state the following theorem:

Theorem 29. Let X be a Fano threefold of index iX . Assume that F is a rank 2
locally free instanton sheaf, and 
 ⊂ X is a line such that the following hypotheses
hold:

• F is unobstructed, i.e. Ext2(F, F) = 0;
• N
/X � O
(qX − 1)⊕O
(iX − qX − 1) and F |
 � O
 ⊕O
(−rX ).

Then X admits rank 2 locally free instanton sheaves of charge k for every k ≥ c2(F).

Proof. The induction argument presented in [11, Theorem D] applies to any Fano
threefold X carrying an instanton bundle F and a line 
 satisfying the hypotheses
of the theorem. We summarize here the main steps of the proof. For any pair (F, 
)

as above, we get the existence of an epimorphism φ : F � O
(qX − 1) whose
kernel E is a non locally free instanton (as O
(qX − 1) is a rank 0 instanton) of
charge c2(F) + 1. One then proves that the assumptions made on (F, 
) ensure
then that Ext2(E, E) = 0 and that a general deformation of E is an instanton
bundle. This is done by showing at first that a general non-locally free deformation
of E is still an instanton singular along a line and obtained from a deformation of
(φ, F, 
). We then compute that the family of instantons whose singular locus is a
line has dimensions strictly less than ext1(E, E). As a consequence, E deforms to a
locally free sheaf, and by semicontinuity, a general deformation is a non-obstructed
instanton bundle. By induction, we, therefore, get the existence of an unobstructed
instanton bundle of rank 2 for each charge ≥ c2(F). ��

The theorem always applies on Fano threefold of index iX ≥ 2.
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• On X � P
3 a t’Hooft instanton of charge 1 and a general line lead to the

existence of rank 2 instantons of charge k for each k ≥ 1. The same result is
proved, with different techniques in [22].
• For iX = 3 the spinor bundle and any line 
 ⊂ X ensure the existence of

instanton bundles of charge k ≥ 1.
• The case iX = 2 was treated in [11] where the existence of instanton bundles
of charge k ≥ 2 is proved.

Fano threefolds of index one for which the theorem applies are treated in [6, The-
orem 3.7].

We end the section characterizing the dimensions of the intermediate cohomol-
ogy groups Hi (E(n)), i = 1, 2 of rank 2 instantons (the groups Hi (E(n)) for
i = 0, 3 where studied in Lemma 8).

Lemma 30. Let E be a rank 2 instanton and let m0 denote the smallest integer
such that m0H is very ample. Then the following hold:

(1) H1(E(−qX − n)) = 0 for n = m0 and ∀n ≥ 2m0
(2) H2(E(−qX + n)) = 0 for n = m0 and ∀n ≥ 2m0

Proof. Let D be a general element in the linear system |m0H |. By generality
assumption E |D is μ-semistable (see [27]), therefore H0(E |D(−qX )) = 0, and
H2(E |D(−qX + m0)) � Hom(E |D,OD(−qX − rX ))∗ = 0. Taking cohomology
in the short exact sequence:

0→ E(−qX − m0)→ E(−qX )→ E |D(−qX )→ 0 (15)

we therefore get that H1(E(−qX − m0)) = 0; twisting then (15) by OX (m0) and
taking cohomology, we obtain H2(E(−qX + m0)). These arguments apply to the
letter to any general divisor D ∈ |nH |, n ≥ 2m0 since under these assumptions D
is very ample and E |D is μ-semistable. ��

4.3. Stability of rank 2 instanton sheaves

Clearly, when iX is odd, every rank 2 instanton sheaf E on X is μ-stable, simply
because μ-stability coincides with μ-semistability when c1(E) = −1.

In [20], the authors showed that every nontrivial rank 2 instanton sheaf on
X = P

3 is stable, so thatO⊕2
P3

is the only properly semistable (meaning semistable
but not stable) rank 2 instanton sheaf. In addition, a rank 2 instanton sheaf is properly
μ-semistable only when E∨∨ = O⊕2

P3
.

The situation is quite different for Fano threefolds of index 2. Indeed, let E
be a properly μ-semistable rank 2 instanton sheaf on a Fano threefold X with
iX = 2. When E is locally free, this is equivalent to say that h0(E) > 0; choosing
a non-trivial section s ∈ H0(E), we obtain the exact sequence

0 −→ OX −→ E −→ IC −→ 0, (16)

and it is easy to check that IC is a rank one instanton, meaning that C is an
instanton curve; recall that the latter have been classified in Lemma 15. Summing
up, we proved the following claim.
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Lemma 31. Let E be a rank 2 locally free instanton sheaf on a Fano threefold X
of index iX = 2. If E is properly μ-semistable, then E fits into an exact sequence
as in display (16) where C is an instanton curve. In particular, such sheaves are
not semistable.

When E is not locally free, we have that E∨∨ is a properlyμ-semistable locally
free instanton sheaf of rank 2; taking the unique (up to scalar multiple) nontrivial
section s ∈ H0(E∨∨), we get the following commutative diagram

0 0

IC1 OX

0 E E∨∨ T 0

0 IC2 IC coker(φ) 0

0 0

s φ

q

Id

(17)

Here φ = q ◦ s; clearly, the kernel of φ is the ideal sheaf of a pure 1-dimensional
scheme, which we denote by C1; remark that if q = 0, then C1 is empty. Since
the cokernel of the inclusion IC1 ↪→ E must also be torsion-free, we complete the
leftmost column. Note that

H1(IC1(−1)) = H2(IC2(−1)) = 0 ⇐⇒ H0(OC1(−1))
= H1(OC2(−1)) = 0. (18)

Lemma 32. Let E be a rank 2 instanton sheaf on a Fano threefold of index 2. If E
is properly semistable, then E is S-equivalent to IC1 ⊕ IC2 where C1 and C2 are
instanton curves of the same degree.

Proof. As we have seen above, the hypothesis imply that E must be an extension
of ideal sheaves IC1 and IC2 satisfying

χ(IC j (t)) =
1

2
χ(E(t)) = χ(OX (t))− c2(E)

2
(t + 1);

(recall indeed that instantons on Fano threefolds of index 2 have c3 = 0). In
particular, χ(IC j (−1)) = 0; the vanishings in display (18) imply that C1 and C2
must be instanton curves. ��

From Lemma 32 we deduce the following corollaries.

Corollary 33. On a Fano threefold X of index 2, there are no properly semistable
rank 2 instanton sheaves of odd charge.

Proof. Each semistable instanton E is S-equivalent to a sheaf of the form IC1⊕ICi

where C1 and C2 are instanton curves of the same degree d; thus c2(E) = 2d. ��
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Corollary 34. On a Fano threefold X of index 2, there exist no properly semistable
locally free instanton sheaves of charge > 0.

Proof. If E is properly semistable and c2 > 0 then E fits in

0→ IC1 → E → IC2 → 0

with Ci being instanton curves of degree deg(C1) = deg(C2) = c2(E)
2 . From this

short exact sequence, we compute that E has depth 2 along all points x ∈ C1 hence
E can not be locally free. ��

At the beginning of the section, we observed that there are no properly μ-
semistable non locally free instanton sheaves on Fano threefolds of odd index
(since on these varieties μ-semistable rank 2 bundles are μ-stable) and that each
properly μ-semistable non locally instanton E on P

3 satisfies E∨∨ � O⊕2
P3

. The
Fano threefolds X of index iX = 2 are the only ones carrying families of properlyμ-
semistable non locally free instanton sheaves E such that c2(E∨∨) > 0. Moreover,
even if every properlyμ-semistable instanton bundle F with c2(F) > 0 is Gieseker
unstable, the instanton sheaves E obtained as an elementary transformation of F
along rank 0 instantons might be semistable or even stable.

Lemma 35. Let (F, T, q)be, respectively, a properlyμ-semistable rank 2 instanton
bundle F of charge n > 0 a rank 0 instanton T of degree d and an epimorphism
q : F � T . Let E be the sheaf defined as E := ker(q). Then E is stable, resp.
properly semi-stable, if and only if∀s ∈ H0(F), s 	= 0, ch2(im(q◦s)) > n+d

2 , resp.
if and only if T is the structure sheaf of an instanton curve and ∀s ∈ H0(F), s 	= 0
im(q ◦ s) is an instanton curve of degree n+d

2 .

Proof. As usual, we start considering the short exact sequence

0→ E → F
q−→ T → 0;

note that the charge of E is n + d.
Considering a diagram analogous to the one in display (17), we see that every

subsheaf of E with trivial determinant is the ideal sheaf IB of a scheme B such that
OB = im(q ◦ s) for a (hence for each) non zero section s ∈ H0(F) � C. Denoting
by d ′ and x the degree and the Euler characteristic of the curve B, respectively, we
have:

1

2
PE (t)− PIB (t) = −n + d

2
(t + 1)+ d ′t + x

=
(
d ′ − (n + d)

2

)
t + x ′ − (n + d)

2

It is therefore clear that if ever d ′ > n+d
2 , then E is stable whilst d ′ < n+d

2

leads to the unstability of E . In the case d ′ = (n+d)
2 , we can never have stability

since x ′ ≤ (n+d)
2 and equality occurs if and only if B is an instanton curve (or,

equivalently, a degree d ′ line arrangement). Indeed for a l.c.m. curve B of degree
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d ′, since h0(OB(−1)) = 0, χ(OB(−1)) = −d ′ + x ′ ≤ 0 and equality holds if and
only if B is an instanton curve.

This shows that E is stable, resp. properly semistable, if and only if for each non-
zero global section s ∈ H0(F), ch2(im(q ◦s)) > n+d

2 (resp. ch2(im(q ◦s)) = n+d
2

and im(q ◦ s) is an instanton curve). To conclude the proof of the proposition we
still need to show that if E is properly semistable then T itself is the structure
sheaf of an instanton curve. Once again we consider the diagram (17) induced
by s ∈ H0(F) (recall that F � E∨∨); since im(q ◦ s) is the structure sheaf of an
instanton curve, then coker(q◦s)must be a rank 0 instanton sheaf aswell;moreover,
by the fact that IC surjects onto coker(q ◦ s), we deduce that coker(q ◦ s) must
as well be isomorphic to OB′ with B ′ being an instanton curve of degree (d−n)

2 .
This last assertion is because a rank 0 instanton sheaf T ′ on a l.c.m. curve C has
always degree (as a OC -module) deg(C) − χ(OC ) ≥ 0 with equality holding if
and only if C is an instanton curve (indeed, whenever PC (t) = deg(C)t + deg(C),
h0(OC (−1)) = 0 implies h1(OC (−1)) = 0) and T ′ � OC . Therefore T is the
structure sheaf of an instanton curve given by an extension of OB′ by OB . ��

4.4. Instantons via Serre correspondence

Let X be a Fano threefold of Picard rank 1, index iX , and take a rank 2 instanton
sheaf E of charge c2. Following the Serre correspondence outlined in Sect. 3, we
choose a section s ∈ H0(E(n)) with torsion-free cokernel and obtain a short exact
sequence

0 −→ OX (−n) −→ E −→ IC (n − rX ) −→ 0

which yields a l.c.m. curve C ⊂ X ; its arithmetic genus pa(C) and the degree d
are given by

pa(C) = 1− [(dXn2 − dXnrX + c2)(
iX
2
+ rX − n)+ 1

2
rX (nrX − n2 − c2)]

(19)

d = dXn
2 − dXnrX + c2; (20)

moreover, its sheaf of ideals will satisfy the cohomological conditions:

H0(IC (n − rX − 1)) = 0, Hi (IC (n − rX − qX )) = 0, i = 1, 2. (21)

Our aim now is to characterize in detail those curves that “Serre correspond”
to non locally free instanton sheaves of rank 2.

We consider therefore a non locally free instanton sheaf E and we let n be
a non-negative integer such that h0(E(n) > 0; take s ∈ H0(E(n)) such that
coker(s) is a torsion-free sheaf, and let s∨∨ ∈ H0(E∨∨(n)) be the image of s
via the injective map H0(E(n)) ↪→ H0(E∨∨(n)). According to the argument just
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below the diagram in display (4), we obtain the following commutative diagram

0 0

OX (−n)

s

OX (−n)

s∨∨

0 E E∨∨ TE 0

0 IC (n − rX ) IC ′(n − rX ) TE 0

0 0

(22)

where C and C ′ are the curves corresponding to the pairs (E, s) and (E∨∨, s∨∨),
respectively; Lemma 5 guarantees that C ′ is l.c.m. To figure out the associated
extension classes, we note that the short exact sequence in display (5) can be
rewritten as follows

0→ ωC ′(rX + iX − 2n)→ ωC (rX + iX − 2n)→ Ext2(TE (n),OX )→ 0.(23)

Lemma 36. If (C, ξ) corresponds to a pair (E(n), s) where E is a non locally free
instanton sheaf of rank 2, and n is a non-negative integer, then the pair (C ′, ξ ′)
corresponding to (E∨∨(n), s∨∨) satisfies the following conditions:

(1) 0→ IC → IC ′ → TE (rX − n)→ 0;
(2) ξ is the image of ξ ′ ∈ H0(ωC ′(iX + rX − 2n)) under the inclusion:

0→ H0(ωC ′(iX + rX − 2n))
ι−→ H0(ωC (iX + rX − 2n))

Proof. The first item is just the bottom line of the diagram in display (22). As for
the second item, applying Hom( ·OX (rX − 2n)) to the short exact sequence in
condition (1) of the statement and taking global sections, we obtain:

0→ H0(ωC ′(iX + rX − 2n))
ι−→ H0(ωC (iX + rX − 2n))

→ H0(Ext2(TE (n),OX )), (24)

where the rightmost and middle terms are isomorphic to Ext1(IC ′(2n − rX ),OX )

and Ext1(IC (2n − rX ),OX ), respectively. The middle column of the diagram in
display (22) corresponds to a section ξ ′ ∈ H0(ωC ′(iX + rX − 2n)); its image
ι(ξ ′) ∈ H0(ωC (iX + rX − 2n)) will precisely correspond, when regarded as an
extension, to the first column of the same diagram. ��
Remark 37. Note that whenever we are given a pair of l.c.m curve C, C ′ whose
sheaves of ideals fit 0 → IC → IC ′ → TE (rX − n) → 0, we obtain a short
exact sequence like the one in display (23) and, taking global sections, a short
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exact sequence like the one in display (24). In particular, if n ≥ rX + qX , then
H0(Ext2(TE (n),OX )) = 0 (recall that Ext2(T,OX (−rX )) is a rank 0 instanton)
which means that there are no instanton bundles corresponding to the curve C and
every ξ ∈ H0(ωC (rX + iX −2n)) corresponds to a non locally free instanton sheaf
that is singular along Supp(TE ). The only cases in which a curve can correspond
both to locally free and to non locally free instanton sheaves occur therefore for
iX = 3, 4 and n = 1. Since a curveC of such a kind satisfies (cf. 21) Hi (IC (−1)) =
Hi−1(OC (−1)) = 0, i = 1, 2, from remark 17, we see that the only curves
corresponding both locally free and non-locally free rank 2 instantons of charge n
are the lines arrangement of degreen+1−rX (degree ofC is computed applying 19).
An example of a family of instanton bundles corresponding to a degree n line
arrangement C and degenerating to a non locally free instanton, still corresponding
to C was exhibited in example 10.

Next, we consider the reverse construction: let (C ′, ξ ′) be a pair consisting of
a l.c.i. curve C ′ satisfying

Hi (IC ′(n − rX − qX )) = 0, i = 1, 2,

and a nowhere vanishing section ξ ′ ∈ H0(ωC ′(iX + rX − 2n)). Considering the
short exact sequence

0 −→ OX (−n)
r−→ F −→ IC ′(n − rX ) −→ 0 (25)

given by regarding ξ ′ as a class in Ext1(IC ′(n− rX ),OX (−n)) and the second part
of Remark 4, it follows that the rank 2 sheaf F in the corresponding pair (F(n), r)
is a locally free instanton sheaf.

Lemma 38. Any pair (C, ξ) consisting of

(1) A l.c.m. curve C containing C ′ such that T := IC ′(n − rX )/IC (n − rX ) is a
rank 0 instanton sheaf;

(2) A section ξ ∈ H0(ωC (iX + rX − 2n)) lying in the image of the induced map

H0(ωC ′(iX + rX − 2n)) ↪→ H0(ωC (iX + rX − 2n))

corresponds to a pair (E(n), s)where E is a non locally free rank 2 instanton sheaf
which is singular along Supp(T ).



Instanton sheaves on Fano threefolds 317

Proof. The sequence in display 25 and the way the curve C is chosen provides us
with the diagram

0

OX (−n)

r

F
q

0 IC (n − rX ) IC ′(n − rX ) T 0

0

(26)

The sheaf E := ker(q) satisfies two short exact sequences; the first one

0 −→ E −→ F −→ T −→ 0

implies that E is an instanton sheaf, while the second

0 −→ OX (−n) −→ E −→ IC (n − rX ) −→ 0

induces the section ξ ∈ H0(ωC (iX + rX − 2n)) which vanishes on Supp(T ), and
therefore lies in the image of the map given in the statement of the lemma. ��

The reason why we chose to portray in detail how the Serre correspondence
works for rank 2 instantons is simply because we are mainly concerned with mod-
uli spaces of rank 2 sheaves. Of course, these arguments can be generalized to
instantons of arbitrary rank. Doing so we can in particular provide examples of
non-locally free reflexive instantons of rank > 2 (we recall indeed that in rank 2
the reflexivity of instantons is equivalent to their local freeness).

Example 39. We can construct a non locally free reflexive instanton on X being
either P3 or a quadric threefold as follows. LetC ⊂ X be a smooth rational curve of
degree d ≥ 4 and we consider two linearly independent sections ξi ∈ H0(OC ((d−
2)·p)), i = 1, 2, for p a point onC , whose zero loci intersect along a 0-dimensional
scheme Z ⊂ C of length d ′ < d − 2. Since OC ((d − 2)·p) � ωC (1), these two
sections correspond to an extension class in Ext1(IC (2 − rX ),OX (−1)⊕2), thus
giving rise to a short exact sequence

0→ OX (−1)⊕2 → E → IC (2− rX )→ 0; (27)

we argue that the middle term E is the sheaf we are looking for.
Indeed, the exact sequence in display (27) yield

Hi (E(−qX )) � Hi (IC ) = 0, ∀ i.
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Dualizing the same exact sequence and recalling that Ext1(IC (2 − rX ),OX ) �
ωC (2), we obtain:

0→ OX (rX − 2)→ E∨ → OX (1)⊕2 ξ−→ ωC (2)→ Ext1(E,OX )→ 0

where the morphism ξ is defined by the two sections (ξ1, ξ2) ∈ H0(ωC (1)⊕2) we
started with. By construction, ξ fails to be surjective along Z , so that Ext1(E,OX )

is supported on Z . This, together with the vanishing of Exti (E,OX ) for i > 1
implies that E is reflexive with Sing(E) = Z , thus non locally free.

Finally, to see that E isμ-semistable it is enough to check that H0(E(rX−1)) =
H0(E∨(rX − 1)) = 0, cf. [29, Remark 1.2.6]. H0(E(rX − 1)) vanishes since it
is isomorphic to H0(IC (1 − 2rX )) = 0 (this is clearly zero for rX = 1 whilst for
rX = 0 it is ensured by the fact that C is not a planar curve). Setting F := ker(ξ),
note that H0(E∨(rX − 1)) = H0(F(rX − 1)), and that the latter coincides with
the kernel of the induced map

H0(OX (rX )⊕2) (ξ1,ξ2)−→ H0(ωC (rX + 1)),

given by multiplication by the sections ξi , i = 1, 2.
When rX = 0 (i.e. X = P

3) the fact that ξi are linearly independent is enough
to guarantee that this map is injective, thus H0(F(rX − 1)) = 0, as desired.

If rX = 1, one must argue that (ξ1, ξ2) does have not a syzygy (σ1, σ2) ∈
H0(OC (d · p)) of degree d that lies in the image of the restriction map

H0(OX (1)⊕2)→ H0(OC (1)⊕2) � H0(OC (d · p)).
This seems to be a generic condition when d − d ′ is sufficiently large, but we have
not been able to prove it.

5. Instanton sheaves on quadric threefolds

Let V be a 5-dimensional vector space and consider a smooth quadric hypersurface
X ⊂ P(V ) � P

4. X is the only Fano 3-fold of Picard rank one and index 3,
therefore an instanton sheaf E on X is defined as a torsion-free μ-semistable sheaf
with c1(E) = −1 and such that:

Hi (E(−1)) = 0, i = 1, 2. (28)

Recall that since c1(E) is odd, every instanton sheaf on X is actually μ-stable; this
ensures the vanishing of Hi (E(−1)) for i = 0, 3 as well (cf. Lemma 8). From now
on we will only be concerned with instanton sheaves of rank 2 (therefore when
referring to an instanton sheaf we will always imply that its rank is 2).

The Chern character of a rank 2 instanton E of charge n is:

ch(E) =
(
2,−[H ], (1− n)[l], −1

3
+ n

2

)
(29)
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(by Corollary 9, c3(E) = 0); applying Riemann–Roch, we compute the Hilbert
polynomial of E :

PE (t) = 2

3
t3 + 2t2 +

(
7

3
− n

)
t + (1− n) (30)

In this section, we present some results on instanton sheaves on X . We will
focus our attention on instanton sheaves E of charge 2, emphasizing the relation
that these sheaves have with the curves corresponding to global sections of E(1) via
Serre correspondence. The Serre correspondence allows us not only to describe the
instanton moduli space but to obtain also a complete picture of the entire Gieseker–
Maruyama moduli space M := MX (2,−1, 2, 0) of semistable rank 2 sheaves
with Chern classes (c1, c2, c3) = (−1, 2, 0), together with its relation with the
Hilbert scheme Hilb2t+2(X).

5.1. Instanton sheaves of charge 1

Since every instanton sheaf E is a μ-semistable sheaf with c1(E) = −1, the
Bogomolov inequality implies that c2(E) ≥ 1. In the case c2 = 1, a well-known
example of an instanton bundle is provided by the so-called spinor bundle which
will be henceforth denoted by S.

Recall that it can be defined as follows, cf. [30, Definition 1.3] for which we
refer to for all details in this paragraph. There is an embedding s : X → G(1, 3),
the grassmannian of lines in P3 and S := s∗U , where U is the universal bundle on
G(1, 3). This is a μ-stable rank 2 bundle on X with c1(S) = −1 and c2(S) = 1.
In addition, S is rigid [30, Theorem 2.1], and every μ-stable rank 2 bundle E on X
with c1(E) = −1 and c2(E) = 1 is isomorphic to the spinor bundle S.

Since h0(S(1)) = 4, Serre construction provides the following short exact
sequence

0 −→ OX (−1) −→ S −→ I
 −→ 0 (31)

where 
 is a line in X . It is then easy to see that S is a rank 2 instanton bundle of
charge 1. This observation allows us to give the following characterization of the
family F(X) of lines on X . Since h0(S) = 0 (by stability) we deduce then that
∀s ∈ H0(S(1)), s 	= 0, coker(s) is torsion-free and isomorphic to Il(1) for a line
l ⊂ X (this last assertion follows from a simple Chern character computation).
Conversely, ∀ [l] ∈ F(X), every sheaf fitting in a non-split short exact sequence of
the form (31) is a μ-stable vector bundle with c1 = −1, c2 = 1 and is, therefore,
isomorphic to S. Accordingly F(X) � P

3 � P(H0(S(1)).

Proposition 40. Every rank 2 instanton sheaf of charge 1 on X is isomorphic to
the spinor bundle.

Proof. Let E be a rank 2 instanton sheaf of charge 1. If E is reflexive, then it must
be locally free and therefore it is isomorphic to the spinor bundle.

If E is not reflexive, thenTheorem24 implies that E∨∨ is a locally free instanton
sheaf of charge c2(E∨∨) ≥ 1. However, c2(E∨∨) + deg(TE ) = c2(E) = 1, thus
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in fact c2(E∨∨) = 1 and deg(TE ) = 0. It follows that TE = 0, contradicting the
hypothesis that E was not reflexive. ��

The following result will also be useful later on.

Lemma 41. Every μ-stable rank 2 reflexive sheaf with Chern classes c1 = −1 and
c2 = 1 is isomorphic to the spinor bundle.

Proof. Let F be aμ-stable rank 2 reflexive sheaf with c1(F) = −1 and c2(F) = 1,
so that

χ(F) = c3(F)

2
= h2(F)− h1(F)

since h0(F) = h3(F) = 0 by μ-stability. We claim that h1(F(n)) = 0, ∀n ≤ 0.
Indeed, take a general hyperplane section Q ∈ |OX (1)| and consider the restric-

tion sequence

0 −→ F(−1) −→ F −→ F |Q −→ 0, (32)

with F |Q being aμ-semistable locally free sheaf on Q (the reflexivity of F implies
indeed that Sing(F) is zero dimensional hence, for Q general, F |Q is locally free)
with c1(F |Q) = (−1,−1). The μ-semistability of F |Q leads to the vanishing
of H0(F |Q(n)), ∀n ≤ 0 and of H2(F |Q(n)), ∀n ≥ −1. In addition, since
χ(F |Q) = 1 − c2(F) = 0, we conclude that h1(F |Q) = 0; Serre duality then
implies that h1(F |Q(−1)) = 0. From the fact that h1(F |Q) = h2(F |Q(−1)) = 0,
we deduce that F |Q is 1-regular which implies that h1(F |Q(n)) = 0, ∀n ≥ 0.
Since by Serre duality h1(F |Q(n)) = h1(F |Q(−n − 1)), we can finally conclude
that h1(F |Q(n)) = 0, ∀n ∈ Z. Twisting the sequence in display (32) and taking
cohomology, we thus get h1(F(n)) = h1(F(n + 1)), ∀n ≤ −1; but from the
reflexivity of F , H1(F(n)) = 0 for n � 0 hence h1(F(n)) = 0, ∀n ≤ 0, as
desired.

It follows that h2(F) = c3(F)

2
; since hi (F |Q(n)) = 0 for i = 1, 2 and ∀n ≥

−1 we also get, inductively, that h2(F(n)) = h2(F(n + 1)) ∀n ≥ −2 so that

h2(F(n)) = c3(F)

2
, ∀n ≥ −2. By the Serre vanishing theorem, we must have that

h2(F(n)) = 0 when n � 0, thus in fact h2(F(n)) = 0 for every n ≥ −2, and
hence c3(F) = 0, implying that F must be locally free. But every rank 2 locally
free sheaf with c1 = −1 and c2 = 1 on X is a spinor bundle. ��

We end this preliminary section summoning some properties of F(X), the
family of lines on X .Wehave already recalled that F(X) � P

3 � P(H0(S(1)). One
“geometric” way to realize F(X) as P3 is the following. We start by constructing
X as a hyperplane section of the Grassmannian G(1, 3) ⊂ P

5 of lines in P
3.

Recall now that we have 2 families of planes contained in G(1, 3): we have planes
corresponding to families of lines passing through a point (we call them planes of
type I), and planes parameterizing families of lines contained in a plane P2 ⊂ P

3

(these will be referred to as planes of type II). For each line l ⊂ X there exists a
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unique pair of planes (�I , �I I ) with �I of type I , �I I of type I I , containing l;
these planes are both parameterized by a 3-dimensional linear space P3.

Several of our next results will rely on the geometry of linear spaces of lines;
for this reason, we recall here briefly some of their fundamental property. We have
two families of pencils of lines in F(X). Consider indeed a pencil P1 ⊂ F(X) and
denote by l0, l1 a pair of generators. If ever l0 ∩ l1 = ∅, then the entire P

1 is a
ruling in the quadric surface Q := 〈l0, l1〉∩ X . In particular, we must have that any
pair of lines in P

1 are disjoint hence Q must be smooth since we have no disjoint
lines in a singular hyperplane section of X . For the same reason, we deduce that if
ever l0 ∩ l1 	= ∅, then any pair of lines in P1 must intersect so that this family must
coincide with the family of lines on a singular hyperplane section of X .

This implies in particular that these lines all have the form qp with p fixed and
q varying along a conic. From these observations, we deduce that there exists a
morphism

G(1, F(X))
γ−→ P

4∗

and that moreover, denoting by P
4∗
sm := P

4∗\X∗ the open subscheme of smooth
hyperplane sections and by U := γ−1(P4∗

sm) (this latter is, by construction, open
in G(1, F(X)) hence irreducible), γ |U is a degree 2 covering over P4∗

sm .
Finally we recall that ∀ l ⊂ X we have a hyperplane P

2 ⊂ F(X) of lines
meeting l (isomorphic to the family of planes in P

4 containing l) and that all the
hyperplanes in F(X) are of this form.

5.2. Instantons of charge 2

Our study of the moduli spaceM starts with the study ofL(2), the open subscheme
parameterizing rank 2 instanton sheaves of charge 2. We will prove the following:

Theorem 42. L(2) is a smooth, irreducible, 6-dimensional open subscheme ofM
whose general element is a locally free instanton sheaf. Its closure L(2) is an
irreducible component of M. The moduli space M is smooth along L(2).

Themoduli space I(2) of locally free instanton sheaves of charge 2 was studied
in [31]. In loc. cit the authors proved the following.

Theorem 43. [31, Theorem4.1]Themoduli spaceI(2) is locally a trivial algebraic
fibration over (P4)∗sm with fibre being two disjoint copies of P2 \ C2, for a smooth
conic C2. In particular, it is a Stein manifold of dimension 6, rational irreducible,
and smooth.

The key ingredient of this result is the description of the families of curves
arising as zero loci of global sections of E(1) for [E] ∈ I(2).

Proposition 44. [31, Proposition 4.4] The zero set V (s) of a global section s of
E(1) is a divisor of type (2, 0) on a smooth hyperplane section Q ⊂ X (and hence
it is either the union of two disjoint lines or a double line of arithmetic genus -1).
The zero sets V (s), V (t) of two sections s, t of E(1) lie on the same smooth quadric
Q and cut a system g12 without base point.
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This characterisation of the linear spaces P(H0(E(1))) implies indeed the exis-
tence of a morphism:

I(2)
φ−→ P

4∗
sm,

mapping a point [E] ∈ I(2) to the quadric surface containing all the curves
V (s), s ∈ H0(E(1)). The fiber of φ over Q consists of the base point free pencils
of divisors of type (2, 0) or (0, 2) on Q, namely of two copies of P2\C2 whereC2 is
a smooth conic. The pencils of divisors of type (2, 0) are indeed parameterized by
the projective space G(1, |OQ(2, 0)|) � |OQ(2, 0)|∗ � P

2; inside this projective
space, the locus of pencils with a base point identifies with C2, the smooth conic
of lines tangent to �2 ⊂ |OQ(2, 0)|, the conic parameterizing double lines.

Remark 45. Note that, by construction, themorphismφ factors through amorphism
φU : I(2)→ U where we recall thatU ⊂ G(1, F(X)) is defined as the open subset
parameterizing rulings of smooth hyperplane sections of X .

We now pass to the study of non locally free instantons [E] ∈ M. By The-
orem 24, if E is a non locally free instanton, E∨∨ is an instanton bundle of
charge c2(E∨∨) < c2(E) and TE := E∨∨/E is a rank 0 instanton of degree
c2(E)− c2(E∨∨). Since c2(E) = 2 and the minimal charge of an instanton sheaf
on X is 1, the only possibility is that E∨∨ � S so that TE is a rank 0 instanton
of degree 1. It is not difficult to prove that TE � Ol for a line l ⊂ X . Since
PTE (t) = t + 1 and as h1(TE (−1)) implies h1(TE ) = 0, we have h0(TE ) = 1.

For s ∈ H0(TE ), the image im(s) of the corresponding morphismOX
s−→ TE must

therefore be of the form OC for C a degree one l.c.m curve. But this means C � l
for a line l ⊂ X and since POl = PTE we conclude that TE � Ol . Summing up,
each non locally free instanton E of charge 2 is defined by a short exact sequence
of the form:

0→ E → S q−→ Ol → 0. (33)

Our next aim is to formulate results similar to Proposition 44 and Theorem 43
for non locally free instanton sheaf. We start describing the families of curves
corresponding to global sections of E(1).

Proposition 46. Let E be a non locally free instanton of charge 2 singular along a
line l. Then H0(E(1)) � C

2 and ∀s ∈ H0(E(1)), s 	= 0, coker(s) � Il ′∪l with l ′
varying in a ruling of a smooth hyperplane section of X containing l.

Proof. Let us start with the computation of H0(E(1)). Twisting (33) and taking
global sections, we obtain a linear map H0(S(1)) → H0(Ol(1)) that can not be
injective, (as h0(S(1)) = 4) hence H0(E(1)) 	= 0. Denote now by ι the inclusion ι :
H0(E(1)) ↪→ H0(S(1)). Since every non-zero element in H0(S(1)) has torsion-
free cokernel, the same holds for any non-zero s ∈ H0(E(1)); this implies that
coker(s) � IY (1) for a l.c.m subscheme Y ⊂ X .
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For any s ∈ H0(E(1)), s 	= 0, we have coker(ι(s)) � Il ′(1) for a line l ′ ⊂ X
and we get a commutative diagram:

0 OX OX 0 0

0 E(1) S(1) Ol(1) 0

0 IY (1) Il ′(1) Ol(1) 0

s ι(s)
q

id
(34)

From it we compute that PY (n) = 2n+2 and we deduce that Supp(Y ) = l ′ ∪ l.
Since Y must be l.c.m. and as Il ′ surjects onto Ol , the only possibilities are either
l ′ = l, in which case Il |l � Ol ⊕ Ol(−1) and Y is a double structure on l with
arithmetic genus −1 and, or l ′ ∩ l = ∅ in which case Il ′ |l � Ol and Y is simply
the union of l and l ′. In each of these cases, the scheme Y is contained in the
unique hyperplane 〈Y 〉 � P

3 thus, from the first column of (34) we compute that
h0(E(1)) = 2. To complete the proof of the propositionwe still need to describe the
pencilP(H0(E(1))). By construction the space of section rl ∈ H0(S(1)) vanishing
on l locates a point in P(ι(H0(E(1))) � P

1 (since rl ⊗ Ol=0); the arguments
previously presented show that a generic element in ι(H0(E(1))) corresponds to a
line disjoint from l. From the discussion held at the end of section 5.1, the pencil
P(ι(H0(E(1)))) must therefore coincide with the ruling of a smooth hyperplane
section Q of X containing l and the curves corresponding to non zero sections of
E(1) are thus all of the form l ∪ l ′ with l ′ varying in P(ι(H0(E(1)))). ��

Remark 47. Proposition 46 allows us to deduce that, given a l.c.m. curve Y with
Hilbert polynomial 2t+2 and Supp(Y ) = l∪l ′, a pair (s, E(1))with E a non locally
free instanton singular along l, corresponds to a pair (Y, ξ) with ξ ∈ H0(ωY (2)) �
H0(Ol)⊕ H0(O′l) of the form (0, e), e 	= 0.

We now want to understand how non locally free instantons behave in families.
We consider therefore the setD(1, 1) := L(2)\I(2) that parameterizes non locally
free instantons.

Proposition 48. D(1, 1) is a locally closed subscheme of M; it is smooth, irre-
ducible and of dimension 5.

Proof. By semicontinuity, the instanton locus L(2) is open in M; since being
non locally free is a closed condition, we have that D(1, 1) is locally closed in
M. To prove the rest of the proposition we mimic the proof of Theorem 43.
From Proposition 46 we know that for [E] ∈ D(1, 1), the curves in the pencil
P(H0(E(1))) ⊂ Hilb2t+2(X) are of the form l ∪ l ′ with l = Sing(E) and with the
l ′s varying in a ruling of a smooth hyperplane section of X .
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As it was the case for I(2), D(1, 1) is endowed as well with a surjective map

D(1, 1)
φ(1,1)

−−−→ P
4∗
sm fitting in a commutative diagram

D(1, 1)
φ(1,1)

φ
(1,1)
U

P
4∗
sm

U

but this time the fibre over a ruling |OQ(1, 0)| � P
1 ∈ U , [Q] ∈ (P4)∗sm consists

of pencils of divisors of type (2, 0) with a base point. Each fiber of φ
(1,1)
U is,

therefore, isomorphic to C2 ⊂ G(1, |OQ(2, 0)|); the smooth conic parameterizing
the tangents to the locus of singular divisors in |OQ(2, 0)|. This proves thatD(1, 1)
is smooth irreducible and of dimension equal to five. ��
Remark 49. Applying arguments equivalent to Lemma 9.3 of [13], we can make
the following considerations. Let [E] be a point corresponding to an instanton and
let us consider the short exact sequence

0→ OX
s−→ E(1)→ IY (1)→ 0

induced by s ∈ H0(E(1)). From this short exact sequence, we deduce that the
image of t ∈ H0(E(1)) in H0(IY (1)) gives an equation for the hyperplane 〈Y 〉 and
that moreover for any t ∈ H0(E(1)) independent from s, E(1)/(s, t) � IY,Q(1),
for Q := X ∩ 〈Y 〉. We have therefore a well defined linear map H0(E(1)) →
H0(OQ(2, 0)) that maps each s ∈ H0(E(1)) to the form defining V (s) on Q.

5.3. A description of L(2) via Serre correspondence

For themomentwe just know that I(2) andD(1, 1) are locally trivial fibrations over
U . Using Serre correspondence we are now going to show that actually, the entire
L(2) identifies with a P2-bundle over U and thatD(1, 1) and I(2) are, respectively,
a divisor and an open subset of L(2). The key ingredient to prove this is the Serre
correspondence which enables us to collect information about the geometry of
L(2) by studying the geometric properties of the families of the corresponding
curves. Our starting point is therefore the inspection of the openH ⊂ Hilb2t+2(X)

that parameterises locally Cohen Macaulay curves. Note that any locally Cohen
Macaulay curve with Hilbert’s polynomial 2t + 2 is indeed either the union of two
disjoint lines or a double structure on a line of arithmetic genus -1.

Lemma 50. ∀ [Y ] ∈ H, h0(NY/X ) = 6 and h1(NY/X ) = 0.

Proof. Wefirst show that for [Y ] ∈ H, Y lies in a unique smooth hyperplane section
Q ⊂ X .
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IfY = l1∪l2, l1∩l2 = ∅ then the only hyperplane containingY is 〈Y 〉 = 〈l1, l2〉.
If otherwise Y is a double line supported on l, we have that IY fits in the exact
sequence

0→ IY → Il → Ol → 0

from which we compute that h0(IY (1)) 	= 0 (since H0(Il(1)) can not inject in
H0(Ol(1))) and h0(IY (1)) < 2 (since no planar l.c.m. curve has negative arithmetic
genus). Thus h0(IY (1)) = 1 and Y is contained in a unique hyperplane section Q
of X . Q must be smooth since a degree 2 l.c.m. curves on a singular hyperplane
section of X is planar. The only degree 2 l.c.m. curve on a cone of vertex p over
a smooth conic C indeed are C itself or cones over degree 2 divisors D ⊂ C of
C . A curve of this former kind is always contained in a plane of the form 〈p, LD〉,
where LD is the unique line spanned by D if D is reduced, whilst LD = TqC if D
is supported on a unique point q instead.

Let us now compute hi (NY/X ), i = 0, 1. Consider the smooth quadric surface
Q := 〈Y 〉 ∩ X and denote by LA, LB the two generators of Pic(Q). The only
degree 2 effective divisors in Q having arithmetic genus -1 belong either to the
class 2L A or to 2LB .

Without loss of generality, we suppose then Y ∼ 2LA and we consider

0→ OQ → OQ(2L A)→ OY (2L A)→ 0.

From this short exact sequence, since Hi (OQ) = Hi (OQ(L A)) = 0, ∀ i ≥ 1, we
compute h0(OY (2L A)) = 2 and h1(OY (2L A)) = h1(NY/Q) = 0.

We finally consider:

0→ NY/Q → NY/X → NQ/X |Y → 0.

NQ/X |Y is isomorphic to OY (1) and from

0→ Ol(1)→ OY (1)→ Ol(1)→ 0

we obtain h0(OY (1)) = 4 and h1(OY (1)) = 0.
From these argumentswededuce the vanishing of H1(NY/X ),which implies the

smoothness ofHilb2t+2(X) at [Y ], andwe compute that Hilb2t+2(X) has dimension
6 = h0(NY/X ) = h0(OY (1))+ h0(OY (2L A)) at [Y ]. ��
Lemma 51. H is a P2-bundle over U ⊂ G(1, F(X)).

Proof. Denote by TU the restriction of the tautological bundle overG(1, F(X)) to
U . Take then the rank 3 vector bundle Sym2(T ∨U ) and the projective bundle

P(Sym2(T ∨U ))→ U .

For a point h ∈ P(Sym2(T ∨U )) we denote by l1,h, l2,h the corresponding (possibly
coincident) lines. The incidence correspondence � ⊂ P(Sym2(T ∨U ))× X

� := {(h, p) ∈ P(Sym2(T ∨U ))× X | p ∈ l1,h ∪ l2,h}
induces a bijectivemorphismP(Sym2(T ∨U ))→ H that, sinceH andP(Sym2(T ∨U ))

are smooth, is, therefore, an isomorphism (this is due to Zariski main theorem). ��
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From now on we denote by πH : H→ U the standard projection.
Let us now pass to the study ofL(2). To begin with we show howwe can deduce

the smoothness of M along L(2) from the smoothness of H.

Lemma 52. For any [E] ∈ I(2), ext1(E, E) = 6 and ext2(E, E) = 0.

Proof. Consider the short exact sequence:

0→ OX (−1)→ E → IY → 0. (35)

Applying Hom(E, · ) we obtain an exact sequence of vector spaces

Ext2(E,OX (−1))→ Ext2(E, E)→ Ext2(E, IY ).

The left side term is zero since it is dual to H1(E(−2)) � H1(IY (−2)) = 0. Let us
now prove that the right side term vanishes as well. By stability and by Lemma 30,
we have hi (E(1)) = h3−i (E(−3)) = 0 for i = 2, 3; as moreover PE (1) = 2 and
h0(E(1)) = 2, we conclude that h1(E(1)) = 0 as well. This implies the vanishing
of Exti (E,OX ) � Exti (OX , E(1)) for i = 1, 2 which leads to an isomorphism
Ext2(E, IY ) � Ext1(E,OY ). But E is locally free, therefore:

Ext1(E,OY ) � H1(Hom(E,OY )) � H1(E |∨Y ) � H1(NY/X ) = 0

(the isomorphism E |∨Y � NY/X is obtained tensoring (35) for OY and the van-
ishing of H1(NY/X ) is due to Lemma (50)). Therefore Ext2(E, IY ) = 0 which
implies Ext2(E, E) = 0. Now, the stability of E leads to Hom(E, E) � C and
Ext3(E, E) � Hom(E, E(−3))∗ = 0. Since E has homological dimension one,
we can apply an argument equivalent to [14, Proposition 3.4], obtaining:

χ(E, E) = 3

2
c1(E)2 − 6c2(E)+ 4 = −5. (36)

which allows to conclude that ext1(E, E) = 6. This ensures that the moduli space
M is smooth along I(2) and that I(2) is the only component passing through any
point in I(2). ��

We pass now to the case of non locally free instantons.

Proposition 53. M is smooth of dimension 6 at any point [E] ∈ D(1, 1).

Proof. We know that E fits in a short exact sequence:

0→ E → S → Ol → 0 (37)

where E∨∨ � S and l = Sing(E).ApplyingHom(·, E)we end upwith a sequence
of vector spaces:

Ext2(S, E)→ Ext2(E, E)→ Ext3(Ol , E);
Ext3(Ol , E) � Hom(E,Ol(−3))∗ � Hom(E |l ,Ol(−3))∗. Tensoring (37) for
⊗Ol we obtain:

0→ Tor1(Ol ,Ol)
α−→ E |l β−→ S|l γ−→ Ol → 0
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and consequently:

0→ Tor1(Ol ,Ol)
α−→ E |l β−→ Im(β)→ 0, (38)

0→ Im(β)→ S|l γ−→ Ol → 0. (39)

Tor1(Ol ,Ol) � N∨l/X � Ol ⊕Ol(−1), thus Hom(Tor1(Ol ,Ol),Ol(−3)) = 0 so
that Hom(E |l ,Ol(−3)) � Hom(Im(β),Ol(−3)). From (39), Im(β) is a rank one
torsion-free sheaf of degree -1; but l is a line, therefore Im(β) is a line bundle of
degree -1, so that Im(β) � Ol(−1). From thiswe deduceHom(Im(β),Ol(−3)) =
0 and consequently that Hom(E |l ,Ol(−3)) � Ext3(Ol , E) = 0.

To prove the vanishing of Ext2(S, E), we apply Hom(S, ·) to (37), getting:

Ext1(S,Ol)→ Ext2(S, E)→ Ext2(S,S).

The space Ext2(S,S) is zero. Formula (36) (that holds for every rank 2 sheaf
having homological dimension at most 1) leads indeed to χ(S,S) = 1; since, by
stability, Hom(S,S) � C, Ext3(S,S) = 0 and as Ext1(S,S) � H1(S∗ ⊗S) = 0
(this is proven e.g. in [30, Theorem 2.10]) we conclude that ext2(S,S) = 0. Now,
since S is locally free, Ext1(S,Ol) � H1(Hom(S,Ol)) and this latter vanishes
again due to S|l � Ol ⊕ Ol(−1). These computations yield Ext2(E, E) = 0
implying the smoothness of M at E . Also this time the stability of E ensures
that hom(E, E) = 1 and ext3(E, E) = 0, and once again, applying formula
(36), we compute χ(E, E) = 3

2c1(E)2 − 6c2(E) + 4 = −5. This implies that
ext1(E, E) = 6, ending our proof. ��

Weconsider now the schemeB parameterizing thepencils of curvesP(H0(E(1))
for [E] ∈ L(2). B identifies with the Grassmann bundle:

B := G2(Sym
2(T ∨U )) � P(Sym2(T ∨U )∨) πB−→ U . (40)

To see that we indeed have the identification above notice that the dual of the
tautological quotient bundles on P(Sym2(T ∨U )∨) and G2(Sym2(T ∨U )) induce,
respectively, morphisms ψ : P(Sym2(T ∨U )∨) → G2(Sym2(T ∨U ))) and φ :
G2(Sym2(T ∨U )) → P(Sym2(T ∨U )∨) and that are inverses of each other. By con-
struction, B is a smooth and irreducible 6-dimensional variety. Our next goal is to
show that B is isomorphic to L(2). To prove this we will construct a projective
bundle P(E) → B that carries a family of instantons and such that the induced
morphism P(E)→ L(2) factors trough an isomorphism B→ L(2).

We start by considering the universal curve Y ⊂ H × X and the relative ext
sheaf E := Ext1p1(IY(1),OH×X ) ∈ Coh(H), where p1 is the projection onto the
first factor (here for F ∈ Coh(H× X) we define F(n) := F ⊗ p2∗OX (n).)

Proposition 54. E is a rank 2 vector bundle on H and the projective bundle P(E)

admits the structure of a P1 bundle over B.
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Proof. Recall that E := R1(p1∗Hom(IY(1), · ))(OH×X ) hence, from the spectral
sequence Rp p1∗(Extq(IY(1),OH×X )) ⇒ Ext p+qp1 (IY(1),OH×X ) we obtain an
exact sequence:

0→ R1 p1∗(Hom(IY(1),OH×X ))→ E →
→ p1∗(Ext1(IY(1),OH×X ))→ R2 p1∗(Hom(IY(1),OH×X ))→ 0.

As Ri p1∗(Hom(IY(1),OH×X )) = 0, i = 1, 2, we get

E � p1∗(Ext1(IY(1),OH×X )) � p1∗(ω̃Y(2)),

where ω̃Y is the relative dualizing sheaf. ∀ [Y ] ∈ H, h0(ωY (2)) = 2 and since H
is integral, we can conclude that E is a rank 2 vector bundle.

The isomorphism E � p1∗(ω̃Y(2)) also implies that E commutes with base
change, and since p1∗Hom(IY(1),OH×X ) = 0, from [24, Corollary 4.5] we get
the existence of a universal extension on P(E)× X :

0→ OP(E)×X ⊗ p1
∗OP(E)(1)→ Ê→ IŶ → 0 (41)

where Ŷ ⊂ P(E)×X is the pullback of the universal curveY. Twisting and applying
the functor p1∗ we obtain a short exact sequence of vector bundles on P(E):

0→ OP(E)(1)→ p1∗(Ê(1))→ π∗E (p1∗(IY(1)))→ 0 (42)

(πE : P(E)→ H is the standard projection).We claim that the rank 2 vector bundle
p1∗(Ê(1)) on P(E) induces a morphism P(E)→ B. This is obtained via a relative
version of the argument presented in Remark 49.

Take an affine cover Vi = Spec(Ai ) of P(E) that is trivialising for p1∗(Ê(1));
on each Vi we have

p1∗(Ê(1)))|Vi � H0(Ê(1)|Vi×X )∼ � (A2
i )
∼.

For any non zero si ∈ H0(Ê(1)|Vi×X ), its image in H0(IŶ(1)|Vi×X ) determines

a family Q̂i of hyperplane sections whose fibre over v ∈ Vi is 〈Ŷv〉 ∩ X . More-
over for any pair si , ti of generators of H0(Ê(1)|Vi×X ), we have isomorphisms
(Ê(1)|Vi×X )/(si , ti ) � IŶi ,Q̂i

(1) (Ŷi being the restriction of Ŷ to Vi × X ). We get

therefore injective Ai -linear maps p1∗(Ê(1))|Vi ↪→ (πH ◦ πE )∗(Sym2(T ∨U )|Vi )
that glue defining an injective morphism p1∗(Ê(1)) ↪→ (πH ◦ πE )∗ Sym2(T ∨U ).
By the universal property of B, πH ◦ πE factors therefore trough a morphism
ρ : P(E)→ B.

We finally show that P(E)
ρ−→ B is a projective bundle. Denote by TB ⊂

π∗B(Sym2(T ∨U )) the tautological rank 2 sub-bundle. By construction ρ∗(TB) �
p1∗(Ê(1)) and since OP(E)(1) ↪→ p1∗(Ê(1)), we get that ρ factors through

a morphism P(E)
ρ′−→ P(TB) such that ρ′∗(OP(TB)(−1)) � OP(E)(1). ρ′ is

the morphism mapping a point (Y, e), [Y ] ∈ H, e ∈ Ext1(IY (1),OX ) to
([P(H0(E(1)))], Y ) ∈ P(TB), E = Ê(Y,e). ρ′ is a bijective morphism between
smooth varieties, therefore it is an isomorphism. ��
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Remark 55. The variety P(E) � P(TB) identifies with the following incidence
variety

P(E) � P(TB) � {(Y,P1) ∈ H× B | [Y ] ∈ P
1}

From the proof of Proposition 54, we learn in particular that P(E) carries a
family of instantons Ê. Accordingly, we have the following:

Corollary 56. There exists a morphism ψ : P(E)→ L(2) that locally, in the étale
topology, has the structure of a P

1-bundle.

Proof. The family Ê induces a morphism ψ : P(E)→M that, by Propositions 44
and 46, surjects onto L(2). To prove the rest of the current proposition, we argue as
in [26, Lemma 5.3]. We start considering an étale coverWi → L(2) of L(2) such
that eachWi × X carries a universal sheaf Ei . Define Gi := p1∗(Ei (1)). This is a
rank 2 vector bundle onWi . Denote by EWi the pullback of E to P(E)×L(2) Wi , so
that P(E)×L(2)Wi � P(EWi ). Defineψi as the induced morphism P(EWi )→Wi ,
and let ÊWi denote the pullback of Ê to P(EWi ); by the universal property of Ei ,
ψ∗i (Ei ) � ÊWi × L, for some line bundle L on P(EWi ). Observe now that pulling
back (42) to P(EWi ), we obtain an injection OP(EWi )

(1) ⊗ L∗ ↪→ ψ∗i (Gi ); this
induces a morphism P(EWi ) → P(Gi ) and once again since this is a bijective
morphism between smooth varieties, we conclude that it is an isomorphism. ��

From the irreducibility of P(E)we deduce the irreducibility ofL(2); this obser-
vation together with Lemma 52 and Proposition 53 lead to the following claim.

Corollary 57. L(2) is a smooth and irreducible scheme of dimension 6.

Next, we argue that L(2) is not just locally a fibration over the open subset
U ⊂ G(1, F(X)) (see Remark 45), but that actually, it is a projective bundle
isomorphic to the scheme B defined in display (40).

Proposition 58. There exists an isomorphism L(2)
ζ−→ B such that ρ = ζ ◦ ψ .

Proof. Set theoretically, ζ is the map sending [E] ∈ L(2) to the pencil of
curves defined by P(H0(E(1))). Let us check that it is actually a morphism of
schemes. For each open V ⊂ B, ζ−1(V ) = ψ(ρ−1(V )) is open in L(2) since
ψ is open (this is a consequence of Proposition 56). We have then a morphism
OB(V ) → OL(2)(ζ

−1(V )) induced by OB(V ) → OP(E)(ρ
−1(V )): indeed from

Corollary 56, ψ∗OP(E) � OL(2), thus OL(2)(ζ
−1(V )) � OP(E)(ψ

−1(ζ−1(V ))) �
OP(E)(ρ

−1(V )). ζ is bijective by construction thus, by the smoothness of L(2) and
B, is an isomorphism. ��

We now denote by I(2) the closure of I(2) in M and by I(2)
inst

its open
subscheme parameterizing instantons.

Corollary 59. L(2) � I(2)
inst

.



330 G. Comaschi, M. Jardim

Proof. L(2) is a smooth irreducible 6-dimensional variety that contains the moduli
I(2) = L(2) \ D(1, 1) as an open dense subset. Therefore we have equalities

L(2) = L(2)∩L(2) = I(2)∩L(2) := I(2)
inst

. Note that I(2) identifies with the
following open subset of L(2): for B̊, the open subset of base point free pencils,
we have I(2) = ζ−1(B̊). ��
Corollary 60. D(1, 1) is contained in I(2); in particular a general deformation of
a non locally free instanton [E] in L(2) is an instanton bundle.

Proof. D(1, 1) ⊂ I(2) is an immediate consequence of Corollary 59.
The possibility to deform [E] ∈ D(1, 1) to an instanton bundle is due to the

smoothness ofL(2). Note in particular that we have the following. The locus of pen-
cils of curves with a base point is a smooth and irreducible divisor Z ⊂ B = B\B̊
and it is the image ofD(1, 1) trough ζ . A deformation of E to an instanton bundle,
for [E] ∈ D(1, 1) corresponds therefore to a deformation of [P1(H0(E(1)))] ∈ Z
along a direction normal to Z (the smoothness of B and Z implies that such a
deformation is always possible). ��

6. The moduli space MX (2;−1, 2, 0)

In this section, we provide a full description ofM :=MX (2;−1, 2, 0), the moduli
space of semistable rank 2 sheaves with Chern classes (−1, 2, 0), on the quadric
threefold X . In the previous section we proved that the closureL(2) of the instanton
moduli space is an irreducible component ofM; to complete our description ofM
we pass then to the study of the closed subscheme C :=M\L(2) ⊂M consisting
of the non instanton sheaves in M. Such sheaves can be characterized as follows.

Proposition 61. Each sheaf E corresponding to a point [E] ∈ C is obtained by
elementary transformation of a μ-stable sheaf F with Chern classes (−1, 2, 2)
along a point. Conversely, for each sheaf F such that [F] ∈MX (2;−1, 2, 2) the
kernel of a surjection F � Op locates a point in C

Proof. Let us take a non instanton sheaf E and consider E∨∨. This latter must
be a μ-stable reflexive sheaf having c1(E∨∨) = −1 and by Lemma 41, either
c2(E∨∨) = 1 and E∨∨ � S or c2(E∨∨) = 2. In the first case, E∨∨/E is a one-
dimensional sheaf T with Hilbert polynomial n+ 1; we denote by T0 the maximal
zero-dimensional subsheaf of T and by T1 the quotient T1 := T/T0. T1 is thus a
line bundle on a line l ⊂ X and since S surjects onto T1, S|l � Ol(−1)⊕Ol and
[E] /∈ L(2), we conclude that T1 � Ol(−1) and that T0 � Op, p = Supp(T0).
Denote by F the kernel of the surection S � Ol(−1); this is a μ-stable sheaf with
Chern classes (−1, 2, 2) and from the commutative diagram:

0 E S T 0

0 F S Ol(−1) 0
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we see that E � ker(F � Op). Suppose now that c2(E∨∨) = 2. In this case T :=
E∨∨/E is a zero-dimensional and has Chern character ch(T ) = (0, 0, 0, c3(E∨∨)

2 ).
Applying [10, Theorem 2.2] the spectrum of E∨∨ can only consists of the integer
k = −2 = −1− c3

2 ; see Remark 62 below.
Indeed, recall that for a stable rank 2 reflexive sheaf F with c1(F) = −1, the

spectrum consists of c2(F)− 1 integers k1, . . . , kc2(F)−1 satisfying
∑c2(F)−1

i=1 ki =
− c3(F)

2 − c2(F)+ 1 and such that, for H :=∑
i OP1(ki ), we have:

h1(F( j)) = h0(H( j + 1)), for j ≤ 0, h2(F( j))

= h1(H( j + 1)), for j ≥ −2 (43)

Since c3(E∨∨) ≥ 0 and c2(E∨∨) = 2, the spectrum of E∨∨ must consist of
a unique negative integer k. Such a k must be < −1 otherwise we would have
E � E∨∨ and E would be an instanton by (43), a contradiction. If k < −2 the
integers−2, . . . , k would belong to the spectrum aswell, which again is impossible.
Thus the only possibility is that k = −2. This implies that c3(E) = 2 hence that
T � Op, p = Supp(T ).

For the converse implication, we just need to check that the elementary transfor-
mation E of a sheaf F , [F] ∈MX (2;−1, 2, 2) along a point p is indeed semistable.
Arguing as above, for [F] ∈MX (2;−1, 2, 2) we have that F∨∨ is reflexive with
c1(F∨∨) = −1 and c2(F∨∨) = 1 or 2. In the first case F∨∨ = S; in the second,
applying again [10, Theorem 2.2], we get c3(F∨∨) = 2 hence F � F∨∨. In both
cases F∨∨ is μ-stable therefore, if E = ker(F � Op), E is μ-stable as well since
E∨∨ � F∨∨. ��
Remark 62. Theorem 2.2 of [10], as stated in loc. cit., presents an inaccuracy. Given
a stable rank 2 reflexive sheaf E on the quadric X , we have indeed that item 2(b) of
the cited theorem holds whenever c1(E) = 0; however, when c1(E) = −1, having
−2 in the spectrum of E no longer implies that−1 belongs to the spectrum as well.

To see this, following the proof of Theorem 2.2 of [10], adopting the same
notation, let us consider the module

R := ker
{⊕l H

2(E(l))
x−→ ⊕l H

2(E(l + 1))
}

where x ∈ H0(OX (1)) is a general linear form defining a hyperplane section
Q2 ⊂ X ; in addition, let us consider the graded module

N := im
{⊕l H

1(E(l))
ρ−→ ⊕l H

1(E |Q2(l)),

where ρ denotes the cohomology map induced by the restriction morphism E →
E |Q2 .

Denote by Rl (respectively Nl ) the graded component of R (respectively N )
of degree l and define rl := dim(Rl) and nl := dim(Nl). The following identities
hold:

rl+1 = h2(E(l))− h2(E(l + 1)) = #{k ∈ spectrum of E | k ≤ −l − 3},
nl = h1(E(l))− h1(E(l − 1)) = #{k ∈ spectrum of E | k ≥ −l − 1}.
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Let us look at r−1 − r0, which coincides with the number of times -1 occurs in the
spectrum of E . By [10, Lemma 2.1 item (2)], if c1(E) = −1, r0 	= 0 (which occurs
if ever we have an integer ≤ −2 in the spectrum of E) does not imply r−1 > r0
whenever r0 is not strictly less than h1(E |Q2(−1)); this is the case, for example,
of the sheaves inR(2;−1, 2, 2). In particular, since

n0 + r0 = n−1 + r−1 = h1(E |Q2(−1)) = c2 − 1,

cf. proof of [10, Theorem 2.2], if c2(E) = 2, then it is clear that none of the
summands can be strictly larger than 1 so that, if ever r0 	= 0, we must have
r−1 = r0 = 1.

Now, if [E] ∈ C and c2(E∨∨) = 2, the spectrum of E∨∨ must consist of
a unique negative integer k = − c3(E)∨∨

2 − 1; if ever k = −1 we would have
E � E∨∨ (as c3(E∨∨) = 0) and h1(E(−1)) = h2(E(−1)) = 0, which is a
contradiction. If k < −2, by [10, Lemma 2.1 item 1(b)], −2, . . . , k would all
belong to the spectrum which again is impossible. Therefore the only possibility is
that k = −2 hence c3(E∨∨) = 2.

Once again we will use the Serre correspondence to deduce the geometric
properties of C from the geometry of the family of the corresponding curves; these
curves will still belong to the Hilbert scheme Hilb2t+2(X) but this time they won’t
be l.c.m.

The study of C will lead us to prove the main result of this section:

Theorem 63. The moduli space M is connected and consists of two irreducible
components:

(1) A 6-dimensional component L(2) given by the closure of the open subset of
instanton sheaves;

(2) A 10-dimensional irreducible component C consisting of non instanton sheaves.

In addition, M is generically smooth along both components.

6.1. The moduli space MX (2;−1, 2, 2)

In order to better understand the geometry of C, we first need to study
MX (2;−1, 2, 2). From the proof of Proposition 61 we have already learned that
we have two families of sheaves in MX (2;−1, 2, 2):
Lemma 64. Let F be a rank 2 semistable sheaf F with Chern classes (−1, 2, 2).
Then F is μ-stable and either F is reflexive and Sing(F) is zero dimensional of
length 2, or F∨∨ � S and S/F � Ol(−1) for a line l ⊂ X.

We are going to prove the following:

Theorem 65. MX (2;−1, 2, 2) is a smooth 6-dimensional irreducible variety iso-
morphic to G(1,P(V )).
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Also on this occasion, our main tool to study sheaves inMX (2;−1, 2, 2) is the
Serre correspondence. Towards the rest of the section, we denote byR(2;−1, 2, 2)
the open subset ofMX (2;−1, 2, 2) parameterizing reflexive sheaves.

Lemma 66. Let [F] be a point in MX (2;−1, 2, 2). Then h0(F(1)) = 3 and for
each s ∈ H0(E(1)), s 	= 0, coker(s) � IC (1) for a conic C ⊂ X.

Proof. Let us start by considering the case [F] ∈ R(2;−1, 2, 2). We show that
F(1) always admits global sections. By Riemann–Roch χ(F(1)) = 3 and by
stability h3(F(1)) = 0. As already claimed in the proof of Proposition 61, the
spectrum of F consists just of the integer −2 (due to [10, Theorem 2.2]) which
implies the following:

h1(F( j)) = h0(OP1( j − 1)), ∀ j ≤ 0, h2(F( j))

= h1(OP1( j − 1)), ∀ j ≥ −2. (44)

This means that h2(F(1)) = 0 hence we necessarily have h0(F(1)) > 0. Now,
since H0(F) = 0, for any nonzero section s ∈ H0(F(1)), coker(s) is torsion-free
and of the form IC (1) for a l.c.m. curve C ⊂ X .

A Chern class computation leads to PC (n) = 2n + 1 hence C is a plane conic
and from the short exact sequence

0→ OX → F(1)→ IC (1)→ 0 (45)

we compute that h0(F(1)) = 3 hence h1(F(1)) = 0. If F∨∨ � S instead, from
the short exact sequence

0→ F → S → Ol(−1)→ 0,

we get hi (F(1)) = hi (S(1)) = 0, i = 2, 3; as moreover H0(S(1)) → H0(Ol)

can not be the zero map (for l ′ ⊂ X general, there are no surjection Il ′(1) � Ol)

we conclude that h0(F(1)) = 3 and h1(F(1)) = 0. Since any global section of S
has torsion-free cokernel, for any non-zero s ∈ H0(F(1)), coker(s) � IZ (1) fits
in

0→ IZ (1)→ Il ′(1)→ Ol → 0. (46)

with l ′ = coker(ι(s)), ι := H0(F(1)) ↪→ H0(S(1)). Therefore Z is a reducible
conic supported on l ∪ l ′ (note that for s general, as Il ′ surjects ontoOl(−1), l ′ will
meet l at a point). ��

It is straightforward to check that this construction can be “reversed", leading
to the following claim.

Lemma 67. Serre correspondence establishes a 1-1 correspondence between

• Pairs (F, s) with [F] ∈ R(2;−1, 2, 2), s ∈ P(H0(F(1))) (resp. pairs (F, s)
with [F] ∈MX (2;−1, 2, 2)\R(2;−1, 2, 2), s ∈ P(H0(F(1))))
• Pairs (C, ξ) with [C] ∈ Hilb2t+1(X), ξ ∈ P(H0(ωC (2))) vanishing along 2
points on C (resp. (C, ξ), [C] ∈ Hilb2t+1(X), reducible ξ ∈ P(H0(ωC (2)))
vanishing along a component of C)
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Mimicking what we have done for sheaves in L(2), we are now going to
describe in detail the linear system P(H0(F(1))) � P

2 of conics associated to
[F] ∈MX (−2;−1, 2, 2). This will help us to better understand the geometry of
the scheme MX (2;−1, 2, 2).
Proposition 68. (1) If [F] ∈ R(2;−1, 2, 2) and Sing(F) consists of two distinct

points p1, p2, P(H0(F(1))) identifies with the linear system of conics contain-
ing pi , i = 1, 2 and its image under the isomorphismHilb2t+1(X) � G(2, V ∗)
is the Schubert variety of planes containing p1 p2.

(2) If [F] ∈ R(2;−1, 2, 2) and Sing(F)red = p, there exists a line l ⊂ P
4 tan-

gent at p to each conic in P(H0(F(1))) and the image of P(H0(F(1))) under
the isomorphism Hilb2t+1(X) � G(2, V ∗) is the Schubert variety of planes
containing l.

(3) If [F] ∈ MX (2;−1, 2, 2)\R(2;−1, 2, 2), P(H0(F(1))) identifies with the
Schubert variety of planes containing the line Sing(F).

Proof. (1) Suppose at first that F reflexive with Sing(F) = {p1, p2}, p1 	= p2.
It is easy then to compute that the conics in X passing through these points
are parameterized by a plane: a conic C ⊂ X passes indeed through the points
p1, p2 if and only if p1 p2 ⊂ 〈C〉. This means that the image of the fam-
ily of conics passing through the pi s, under the isomorphism Hilb2t+1(X) �
G(2, V ∗), C �→ 〈C〉 is the Schubert variety of planes containing p1 p2 that is a
plane in G(2, V ∗). The proposition follows since every conic in P(H0(F(1)))
contains pi , i = 1, 2.

(2) Whenever Sing(F) is supported on a single point p we can compute again that
the linear system of conics containing Sing(F) is a plane in G(2, V ∗). The
scheme Sing(F) corresponds indeed to the data of the point p together with a
tangent direction v ∈ TpX or equivalently, to a line l tangent to X at p. A conic
C contains Sing(F) if and only if 〈C〉 contains l, hence P(H0(F(1))) identifies
with the Schubert variety P

2 ⊂ G(2, V ∗) of planes containing l.
(3) Finally if F is singular along a line l, consider the inclusion ι : H0(F(1)) ↪→

H0(S(1)). Each ι(s) defines a line l ′ giving rise to a short exact sequence of
the form (46). Since Il ′ surjects onto Ol(−1) if and only if either l = l ′ or
l ∩ l ′ consists of a point, we deduce therefore that P(ι(H0(F(1))) identifies
with the space of lines meeting l and that P(H0(F(1)) identifies therefore with
the family of planes containing l. ��
From now on the family of conics associated to [F] ∈ MX (2;−1, 2, 2) will

simply be denoted by P(H0(F(1))) and the line contained in every plane 〈C〉,
C ∈ P(H0(F(1))) will be denoted by lF (note that for [F] belonging to the closed
subscheme MX (2;−1, 2, 2)\R(2;−1, 2, 2), lF = Sing(F)).

Lemma 69. [F] ∈ R(2;−1, 2, 2) if and only if lF 	⊂ X.

Proof. If lF ⊂ X , all the conics C ∈ P(H0(F(1))) contain lF and Sing(F) ⊂ lF .
This can not happen if F is reflexive, since if ever a section ξ ∈ H0(ωC (2)),
[C] ∈ P(H0(F(1)) vanishes along 2 points on lF ⊂ C , it would vanish along the
entire lF contradicting the reflexivity of F . The converse implication is obvious
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since lF 	⊂ X ensures that Sing(F) = lF ∩ X consists of two points hence, by
Lemma 64, [F] ∈ R(2;−1, 2, 2). ��

Let us now analyze the local behavior of the moduli space MX (2;−1, 2, 2).
Proposition 70. For each point [F] ∈MX (2;−1, 2, 2) we have ext2(F, F) = 0
and ext1(F, F) = 6

Proof. A general section s ∈ H0(F(1)) defines a short exact sequence of the form
(45).

Applying the functor Hom( · , F) we get a sequence:

Ext2(IC , F)→ Ext2(F, F)→ Ext2(OX (−1), F);
The right side term is zero since, from (44), H2(F(1)) = 0; from (45) we compute
the vanishing of Hi (F) = 0, i = 2, 3 yielding:

Ext2(IC , F) � Ext3(OC , F) � Hom(F,OC (−3))∗.
Applying −⊗OC to (45), we obtain an exact sequence

0→ TorOX
1 (F,OC )

a−→ TorOX
1 (IC ,OC )

b−→ OC (−1) c−→ F |C d−→ N∨C/X → 0

from which we extract the short exact sequences:

0→ ker(d)→ F |C d−→ N∨C/X → 0 (47)

0→ ker(c)→ OC (−1)→ ker(d)→ 0 (48)

Applying Hom( ·OC (−3)) to (48), we get that Hom(ker(d),OC (−3)) injects into
Hom(OC (−1),OC (−3)) � H0(OC (−2)) = 0. Therefore, from (47), we get
Hom(F |C ,OC (−3)) � Hom(N∨C/X ,OC (−3)) � H0(NC/X (−3)). C is a plane

section of X , therefore NC/X � OC (1)⊕2 hence H0(NC/X (−3)) = 0 implying
Hom(F,OC (−3)) = 0 and finally, Ext2(F, F) = 0. Let us now compute χ(F, F).

Since this value is constant on the entiremoduliMX (2;−1, 2, 2) (the Euler bilinear
is indeed defined on the Grothendieck group K0(X)), it is sufficient to compute it
for F reflexive. In this case we can then argue as in [14, Proposition 3.4], getting

χ(F, F) = −5.
The stability of F implies that hom(F, F) = 1 and that ext3(F, F) = 0; from our
previous arguments ext2(F, F) = 0 hence ext1(F, F) = 6. ��

We consider now Hilbt2+tn+2(G(1,P(V ∗))), the Hilbert scheme of planes in
G(1,P(V ∗)). Recall that this scheme has two components: a component � param-
eterizing families of planes contained in the same hyperplane and a second com-
ponent � parameterizing families of planes �l containing a fixed line l. This latter
is isomorphic to G(1,P(V )) via the morphism:

G(1,P(V )) −→ �, l �→ �l � G(1,P(H0(Il(1))).

We consider now the map:

MX (2;−1, 2, 2) α−→ � � G(1,P(V )), [F] �→ P(H0(F(1)))↔ lF .
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Proposition 71. α is an isomorphism of scheme; it identifiesR(2;−1, 2, 2) (resp.
MX (2;−1, 2, 2)\R(2;−1, 2, 2)) with G(1,P(V ))\F(X) (resp. F(X)).

Proof. We apply verbatim the arguments used in the proof of Proposition 54.
Doing so we show that the sheaf G := Ext1p1(IC,OX×Gr(−1)) on Hilb2t+1 �
G(1,P(V )∗), for C ⊂ G(1,P(V ∗))× X the universal curve, is locally free of rank
3 and that the projective bundle P(G) carries a family F̂ ∈ Coh(P(G)×X) such that
[F̂(C,e)] is the sheaf constructed from e ∈ Ext1(IC ,OX (−1)). p1∗(F̂(1)) defines a

family of linear systems of conics over P(G) inducing a morphism P(G)
γ−→ � such

that p1∗(F̂(1)) � γ ∗(T ) for T the tautological rank 3 bundle over� (that is to say,
T is the bundlewhosefibre over�l ∈ � is the vector space

∧2
(H0(Il(1))) � C

3 of
planes belonging to�l ). γ is the morphismmapping (C, e) to�lF � P(H0(F(1)))
for F the sheaf arising from e ∈ Ext1(IC ,OX (−1)).

The family F̂ induces a morphism P(G)
β−→MX (2;−1, 2, 2), and applying the

argument used in the proof of Corollary 56we show that β is, in the étale topology, a
P
2-bundle. In thiswaywe also deduce thatMX (2;−1, 2, 2) is irreducible of dimen-

sion 6 hence, by Proposition 70, we get ext1(F, F) = 6, ∀[F] ∈MX (2;−1, 2, 2).
Reasoning then as in Proposition 58, we show that due to the properties of β, α is
well defined as a morphism of schemes. Since α maps bijectivelyMX (2;−1, 2, 2)
into � � G(1,P(V )) and since both schemes are smooth, we conclude that α is
an isomorphism. The fact that α(R(2;−1, 2, 2)) = G(1,P(V )) \ F(X) is due to
lemma 69. This ends the proof of the proposition. ��

This completes the proof of Theorem 65.

6.2. Description of C

We can finally come back to the description of C.

Proposition 72. For [E] ∈ C, h0(E(1)) = 2 and for all s ∈ H0(E(1)), s 	= 0,
coker(s) � I�(1), for � a curve union of a conic and a point. More precisely, all
the curves � in P(H0(E(1))) are of the form:

0→ Op → O� → OC → 0

with p fixed andwithC varying in a pencil of conics contained in a fixed hyperplane.

Proof. From Proposition 61, E always fits in a short exact sequence:

0→ E → F → Op → 0 (49)

with [F] ∈MX (2;−1, 2, 2). Twisting (49) and taking global section, we deduce
that h0(E(1)) 	= 0; moreover the fact that ∀s ∈ H0(F(1)), coker(s) is torsion-free,
ensures that the same holds for all non-zero s ∈ H0(E(1)). As usual we denote by
ι the inclusion ι : H0(E(1)) ↪→ H0(F(1)). For any non-zero s ∈ H0(E(1)) we
therefore have
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0 OX OX 0 0

0 E(1) F(1) Op(1) 0

0 I�(1) IC (1) Op(1) 0

s ι(s)

id

fromwhichwededuce that coker(s) � I�(1), for� a curvewithHilbert polynomial
2t+2 and supported onC ∪ p. Since we can have no plane section of X containing
�, we have h0(I�(1)) = 1 hence h0(E(1)) = 2. Now, P(ι(H0(E(1))) is a pencil in
P(H0(F(1))) � �lF , therefore there exists a unique hyperplane section containing
all the conics in P(ι(H0(E(1))). ��
Remark 73. Suppose that p /∈ Sing(F). From the proof of the previous propo-
sition, we learn that each f ∈ P(Hom(F,Op)) locates a unique hyperplane
H ∈ P(H0(I〈lF ,p〉(1))) containing the curves P(H0(E(1))), E := ker( f ). For
C ∈ P(ι(H0(E(1)))) general, this is the hyperplane generated by 〈C〉 and p. Notice
also that for f, f ′ ∈ P(Hom(F,Op)), f 	= f ′, denoting by E := ker( f ), E ′ :=
ker( f ′), the pencils P(ι(H0(E(1)))) and P(ι(H0(E ′(1))))meet just at 〈lF , p〉∩ X .
If everP(ι(H0(E(1)))) = P(ι(H0(E ′(1)))),wewould indeedhave that for all conic
C ∈ P(ι(H0(E(1))) such that p /∈ C , C ∪ p ∈ P(H0(E(1))) ∩ P(H0(E ′(1))).
Since Ext1(IC∪p,OX (−1)) � Ext1(IC ,OX (−1)), E and E ′ would then both
arise from the unique extension class image of the element ξ ∈ Ext1(IC ,OX (−1))
defining F , which would lead to E � E ′, a contradiction.

We describe in this way a pencil (parameterized by P(Hom(F,Op))) of lines
in P(H0(F(1))) that identifies with the family of hyperplanes containing 〈lF , p〉.

Now, since each point [E] ∈ C uniquely determines a pair (F, p) ∈
MX (2;−1, 2, 2) × X , we have a well-defined map (for the moment just defined
at the level of sets)

δ : C −→MX (2;−1, 2, 2)× X, [E] �→ (F, p)

where (F, p) are such that E is obtained by elementary transformation of F along
p. Consider now the open subset (MX (2;−1, 2, 2) × X)0 parameterizing pairs
(F, p) such that p /∈ Sing(F) and denote by C0 ⊂ C its preimage under δ.

Proposition 74. For each point [E] ∈ C0, ext1(E, E) = 10.

Proof. We know that E always fits in a short exact sequence:

0→ E → F → Op → 0 (50)

with [F] ∈MX (2;−1, 2, 2). We apply Hom( · , E) to it. We can see immediately
that the stability of E and of F imposes Hom(F, E) = 0; therefore, we obtain the
following exact sequence:

0→ Hom(E, E)→ Ext1(Op, E)→ Ext1(F, E)→
→ Ext1(E, E)→ Ext2(Op, E)→ Ext2(F, E) (51)
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The term Ext2(F, E) fits into:

Ext1(F,Op)→ Ext2(F, E)→ Ext2(F, F)

The right side term vanishes due to Proposition 70; sincemoreover we are assuming
[E] ∈ C0, F is locally free at p so that Ext1(F,Op) � H1(Hom(F,Op)) = 0.

These computations lead to Ext2(F, E) = 0. Let us now compute the dimen-
sions of the spaces Ext3−i (Op, E) � Exti (E,Op(−3))∗, i = 1, 2. Again, since
p /∈ Sing(F), Exti (F,Op(−3)) = 0, i = 1, 2, therefore

Exti (E,Op(−3)) � Exti+1(Op,Op(−3)) � Ext2−i (Op,Op)
∗, i = 1, 2.

For i = 2 we thus get ext1(Op, E) = 1 = hom(Op,Op), which implies
that Hom(E, E) � Ext1(Op, E), whilst for i = 1 we obtain ext2(Op, E) =
ext1(OpOp) = h0(Np/X ) = 3, so that ext1(E, E) = ext1(F, E) + 3. In order to
determine ext1(F, E), we apply this time Hom(F, · ) to (50) which leads to:

0→ Hom(F, F)→ Hom(F,Op)→ Ext1(F, E)→ Ext1(F, F)→ 0 (52)

(Hom(F, E) vanishes due to the stability of E and F). Since F must be simple and
as p /∈ Sing(F), hom(F, F) = 1, hom(F,Op) = 2 so that, as ext1(F, F) = 6
(cf. Proposition 70), we obtain ext1(F, E) = 7. This allows us to conclude that
ext1(E, E) = 10. ��
Proposition 75. C0 is a smooth 10-dimensional irreducible scheme.

Proof. Wewill construct aP1 bundleP(A) over (MX (2;−1, 2, 2)×X)0 and show
that this is endowed with a morphism P(A)→M mapping P(A) bijectively into
C0. We consider the Grassmanniann of lines G(1,P(V )) in P(V ) � P

4. For the
ease of notations towards the rest of the proof this latter will always be denoted
simply by Gr. We define (Gr×X)0 as the open set:

(Gr×X)0 := {([l], p) ∈ Gr×X | p /∈ l}.
This scheme carries a family of planes �̃ ⊂ (Gr×X)0×X such that �̃(l,p) � 〈l, p〉
and the sheaf A := p1∗(I�̃(1)) is a rank 2 vector bundle on (Gr×X)0.

Now, the isomorphism β : MX (2;−1, 2, 2) → Gr (see Proposition 65)

induces an isomorphism (Gr×X)0
�−→ (MX (2;−1, 2, 2)× X)0, hence P(A) is

a P
1-bundle over (MX (2;−1, 2, 2)× X)0 as well (the fibre over a point (F, p)

identifies with the pencil P(H0(I〈lF ,p〉(1))) of hyperplanes containing 〈lF , p〉). In
order to prove that P(A) admits a morphism to M, we consider an étale cover W
of MX (2;−1, 2, 2) supporting a universal sheaf FW. This induces an étale cover
W̃ → (MX (2;−1, 2, 2)× X)0, we denote by ÃW the pullback of A to W̃ and
by F̃W the pullback of FW to W̃ × X . P(ÃW) identifies with the P1 subbundle of
G2(p1∗(F̃W(1))) whose fibre over a point (w, p) ∈ W̃ is the 1-dimensional linear
space:

π−1ÃW
(w, p) = {P1 ⊂ P(H0(Fw(1))) � �lFw

| [〈lFw , p〉] ∈ P
1}
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Define now �̃W as the pullback to W̃ × X of the diagonal � ⊂ X × X and
consider the sheaf τW := p1∗(Hom(F̃W,O�̃W

)). This is a rank 2 vector bundle

over W̃ × X whose fibre over (w, p) identifies with Hom(Fw,Op). We claim
that we have an isomorphism: P(ÃW) � P(τW). Denote by F̂W, �̂W the pullback
to P(τW) of F̃W, �̃W, respectively. The image of the identity idτW ∈ End(τW)

through the isomorphism:

Hom(τW, τW) � H0(τW ⊗ τ∨W) � H0(τW ⊗ πτW∗O(1)) �
� H0(p1∗Hom(F̂W,O

�̂W
)⊗OP(τW)(1))

� Hom(F̂W,O
�̂W
⊗ p1

∗OP(τW)(1))

defines a morphism F̂W → O
�̂W
⊗ p1∗O(1) inducing a short exact sequence on

P(τW)× X :

0→ ÊW → F̂W → O
�̂W
⊗ p1

∗OP(τW)(1)→ 0.

Twisting and applying p1∗, we obtain a rank 2 vector bundle p1∗(ÊW(1)); this
latter induces an embeddingP(τW)→ G2(p1∗F̃W(1)) that mapsP(τW) bijectively
into P(ÃW). This induces an isomorphism P(τW) � P(ÃW) mapping a point
f ∈ Hom(Fw,Op) in π−1τW

to P(H0(Ew(1))), Ew = ker f . The sheaves ÊW

determine morphisms ψW̃ : P(ÃW)
�−→ P(τW)→M that descend to a morphism

P(A)→M which maps P(A) bijectively to C0. This means that C0 is irreducible
and has dimension 10. Since byProposition 74, the dimension of theZarisky tangent
space at each point [E] ∈ C0 is 10, we conclude that C0 inherits from P(A) the
structure of a smooth 10-dimensional scheme. ��

From these last results, we deduce that C0 is an irreducible component of C and
that this latter is smooth along C0. We finally want to show that actually, we have
an equality C = C0, that is to say, that C is irreducible.

Proposition 76. C is an irreducible 10-dimensional scheme that coincides with C0.

Proof. We show that C0 is dense in C. From Proposition 72, we learn that pairs
(E, s), [E] ∈ C\C0, s ∈ P(H0(E(1)) corresponds to pairs (�, ξ) with � a non
l.cm. curve consisting of a conic C with an embedded point p ∈ C and ξ ∈
Ext1(I�,OX (−1)) � Ext1(IC ,OX (−1)) � H0(OC (2 · p)) vanishing at the point
p. For a point [E] ∈ C\C0, let then � be a curve defined by a global section s ∈
H0(E(1)) and ξ the corresponding element in Ext1(I�,OX (−1)). The projective
space P(Ext1(I�,OX (−1))) � P

2 determines a family E, flat over P2 such that
E[ξ ] � E . Now, the points x ∈ P(Ext1(I�,OX (−1))) such that Ex ∈ C \ C0 are
parameterized by a divisor isomorphic to P

1. We can therefore always deform [ξ ]
in a direction normal to this divisor and produce in this way a family E′ whose
central fiber is isomorphic to [E] and whose general fiber lies in C0. ��
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6.3. Intersection of C and L(2)

We end our description of the moduli space M addressing the issue of its con-
nectedness. Since we have already proved that M is the union of two irreducible
components, this reduces to proving that their intersection is non-empty.We present
here how to construct a 5-dimensional irreducible family P contained in C ∩L(2).
To begin with we consider Tan(X) ⊂ G(1,P(V )), the variety of tangent lines to X
and we construct then the variety �T ⊂ G(1,P(V ))× X defined as

�T := {([l], p) ∈ Tan(X)× X | l ⊂ Tp X};
where Tp X denotes the projective tangent space to X at p, that is to say, the lin-
ear space defined by the linear form dpq = ∑4

i=0
∂q
∂Xi

(p)Xi , for q(X0, . . . , X4)

the quadratic form defining X . The fibers of the projection on the second fac-
tor �T → X are isomorphic to P

2, hence �T is a smooth and irreducible 5-
dimensional variety (note that since the projection on the first factor �T →
G(1,P(V )) is 1-1 onto Tan(X), Tan(X) has dimension 5 as well). We denote
now by RT ⊂ R(2;−1, 2, 2) × X the image of �T under the isomorphism

G(1,P(V ))× X
�−→MX (2;−1, 2, 2)× X . By definition, for each ([F], p) ∈ RT ,

lF is tangent to X at p = Sing(F)red. Now, reasoning exactly as in the proof
of Proposition 75, starting from an étale cover W of MX (2;−1, 2, 2) supporting
a Poincare sheaf FW, we construct an étale cover WT of RT and we consider
the sheaf p1∗(Hom(FWT ,O�WT

)) on WT , where FWT ∈ Coh(WT × X) and
�WT ⊂ WT × X are, respectively, the pullback of the universal sheaf and the
diagonal.

The sheaf p1∗(Hom(FWT ,O�WT
)) is a rank 3 vector bundle and replying the

reasoningpresented in the proof ofProposition75, onP(p1∗(Hom(FWT ,O�WT
))×

X , there exists a family ÊWT ↪→ F̂WT , F̂WT being the pullback of FWT , whose
direct image under the projection p1 fits in:

0→ p1∗(ÊWT (1))→ p1∗(F̂WT (1))→ p1∗(O�̂WT
)⊗O(1)→ 0.

Denote now by lWT ⊂ �T ×RT WT the pullback of the universal line l ⊂ �T × X .
We observe that the projective bundle P(p1∗IWT (1)) identifies with the Grass-
mann bundle G2(p1∗(FWT (1)) (since for F ∈ R(2;−1, 2, 2) such that p ∈ lF
G(1,P(H0(F(1)))) � P(H0(IlF (1))) � P

2); as p1∗(ÊWT (1)) is a rank-2 subbun-
dle of p1∗(F̂WT (1)) it induces therefore a morphism of �T schemes:

ε : P(p1∗(Hom(FWT ,O�WT
))→ P(p1∗IlWT

(1))

(ε is themorphismmapping f ∈ Hom(F,Op) to the unique hyperplane containing
all curves in P(H0(E(1))) for E := ker f ). This morphism is bijective hence, by
the smoothness of both P(p1∗(Hom(FWT ,O�WT

)) and P(p1∗IlWT
(1)) it is an

isomorphism.
Also this time, the families of sheaves ÊWT inducesmorphismsP(p1∗IlWT

(1))→
C that descend to a well defined morphism ψ : P(p1∗Il(1)) → C. Consider now
the variety

�̃T := {([l], p, H) ∈ �T × X∗ | H = Tp X}
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�̃T is isomorphic to �T and it identifies with a subset of P(p1∗(Il(1)); we finally
define P as the scheme theoretic image of �̃T under the morphism ψ .

Proposition 77. P is a 5 dimensional irreducible scheme contained in L(2) ∩ C.
Proof. The dimension and the irreducibility of P are immediate consequences of
the fact that �̃T is irreducible and of dimension 5. Let us now prove that P is
indeed contained in both components of M. For a general point [E] ∈ ψ(�̃T ),
E∨∨ := F ∈ R(2;−1, 2, 2) and F/E � Op, Sing(F)red = p. Let us give a
geometric interpretation of the family of curves defined by H0(E(1)). Consider
the short exact sequence:

0→ H0(E(1))
ι−→ H0(F(1))→ H0(Op)→ 0.

Bydefinition the pencilP(ι(H0(E(1)))) identifieswith the pencil of planes contain-
ing lF and contained in Tp X ; accordingly it identifies with the locus of singular
conics in P(H0(F(1)) (to see this just notice that the singular plane sections in
�lF � P(H0(F(1))) identifies with the locus of tangents to P(H0(IlF (1))) ∩ X∗
i.e. with the pencils 〈h,Tp X〉 with h a hyperplane containing lF .)

Consider now the singular quadric surface Qp := Tp X∩X . Qp is the conewith
vertex p over a smooth conic C and the pencil P(H0(E(1))) uniquely determines
a 1-dimensional linear system P

1
E ⊂ P(H0(OC (1)) hence, a point in the projective

bundle

P(Sym2(T ∨)) −→ G(1, F(X))

where, as usual, T is the tautological bundle. This projective bundle is a smooth
6-dimensional variety containing the variety B � L(2) (see Sect. 5.2) as an open
subset. We can therefore always construct a regular affine curve with a marked
point (Spec(A), 0) and a 1-parameter family of pencils P1

t , flat over Spec(A), such
that P1

t ∈ B for t general and whose central fiber P1
0 is isomorphic to P

1
E . Define

Et := ζ−1(P1
t ), t 	= 0. This is a family of instantons, flat over Spec(A) \ {0} such

that the pencil of curves P(H0(Et (1))) coincides with P
1
t . Et admits a flat limit

E0 ∈ L(2) and since for such a sheaf, the pencil of curves P(H0(E0(1))) must be
the flat limit of P1

t , we conclude that E0 � E . This means that ψ(�̃T ) ⊂ L(2)∩ C
therefore the same holds for P . ��

This shows the connectedness ofM, ending the proof of Theorem 63.
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