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Abstract. We study weak approximation for Châtelet surfaces over number fields when
all singular fibers are defined over rational points. We consider Châtelet surfaces which
satisfy weak approximation over every finite extension of the ground field. We prove many
of these results by showing that the Brauer–Manin obstruction vanishes, then apply results
of Colliot-Thélène, Sansuc, and Swinnerton-Dyer.

1. Introduction

A Châtelet surface over a number field k is a smooth projective model of the affine
surface given by the equation

y2 − az2 = P(x) (1.1)

where a ∈ k× \k×2 and P(x) is a separable polynomial of degree 3 or 4. The arith-
metic of these surfaces have been studied extensively by Colliot-Thélène, Sansuc,
and Swinnerton-Dyer in [3,4], where it was proven that over a number field, ratio-
nal points on these surfaces are controlled by the Brauer–Manin obstruction. More
precisely, if X is a Châtelet surface over a number field k, then X may fail weak
approximation, i.e., X (k) is not dense in X (A), but it is always dense in the Brauer–
Manin set X (A)Br.

In this paper, we focus on weak approximation on Châtelet surfaces. Since the
Brauer group is largest when P(x) splits into linear factors (see Sect. 2), one might
expect that weak approximation fails in this case. When P(x) splits linearly, we
obtain a complete characterization for when X fails weak approximation.

Theorem 1.1. Let X be a Châtelet surface over a number field k with X (k) �= ∅.
Assume that P(x) splits into linear factors. Then X fails weak approximation if
and only if either

(1) X has a place v of bad reduction where a /∈ k×2
v or,

(2) k has a real embedding where a < 0.
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See Sect. 4 for what wemean by bad reduction. Roughly, this translates to either
kv(

√
a)/kv being ramified or P(x) being nonseparable modulo v.

These conditions suggest that we expect weak approximation to fail when P(x)

splits linearly. This is in contrast to the casewhere P(x) is irreducible or is a product
of a linear and irreducible cubic where X always satisfies weak approximation [3,
TheoremB].We also collect some partial results and show that the situation is not as
simple in the remaining case when P(x) is a product of two irreducible quadratics,
see Examples 5.3, 5.4.

For Châtelet surfaces, behavior of the Hasse principle or weak approximation
under finite extensions have been studied in [8,9,11]. In [8,11], the authors give a
Châtelet surface over any arbitrary number field k, which satisfies weak approxi-
mation over k but fails over some finite extension. On the other hand, there exist
Châtelet surfaces that satisfy weak approximation over every finite extension K/k
(e.g. when X is rational), in which case we say that it satisfies perpetual weak
approximation. Using Theorem 1.1, we give a criterion for checking whether or
not a Châtelet surface satisfies perpetual weak approximation

Theorem 1.2. Let X be a Châtelet surface over a number field k. Let L be the
splitting field of P(x).

(1) X fails weak approximation over some finite field extension of k if either (1)
or (2) in Theorem 1.1 is satisfied for X L .

(2) X satisfies weak approximation over all finite field extensions of k if any of
the following conditions are satisfied, (Here D2n denotes the dihedral group
of order 2n)
(a) if both (1) and (2) of Theorem 1.1 fail for X L and Gal(L/k) � Z/3Z, {1},
(b) if Gal(L/k) � D8, (Z/2Z)2 and P(x) factors further over k(

√
a)/k,

(c) if Gal(L/k) � D6, Z/4Z, Z/2Z and
√

a ∈ L.

If neither of these conditions hold, then there is a subextension K/k inside L such
that P(x) factors into a product of two irreducible quadratics over K and

√
a ∈ L.

In this case, X satisfies perpetual weak approximation if and only if X K satisfies
weak approximation.

We prove (1) and (2)(a) as a direct corollary of Theorem 1.1 in §4 and the proof
for (2)(b)(c) is given in §2 where we discuss the Brauer group of Châtelet surfaces.

For (2)(b)(c), the conditions in fact imply that Br X K /Br0 X K = 0 for all finite
extensions K/k. This is enough to conclude that X K satisfies weak approximation.
In fact, when Gal(L/k) � D6 and L contains

√
a, then X is stably rational [1,

Theorem 1], from which it follows in particular that X satisfies perpetual weak
approximation. In the instances when

√
a is contained in the residue field of one

of the factors of P(x), X is rational.

In (2)(a), Br X L/Br0 X L � (Z/2Z)2 so in particular X is not rational. See
Example 4.15 for a surface in this category.



Weak approximation on Châtelet surfaces 1135

2. Cyclic algebras over local fields

In this section let k be a nonarchimedian local field containing an nth roots of unity
ζ . Let O be its ring of integers with uniformizer π ∈ O and Fq = O/(π). Recall
that the invariant map gives an isomorphism inv : Br k → Q/Z.

For a, b ∈ k×, let (a, b) = (a, b)ζ ∈ Br k be the class of the cyclic algebra as
defined in [6, §2.5]. When n = 2, we will simply write (a, b) = (a, b)−1.

Lemma 2.1. If k( n
√

a)/k is unramified, then for any b ∈ k×, inv(a, b)ζ = vπ(b)/n.

Proof. [10, §2.5 Proposition 2] �	
Lemma 2.2. Assume the characterisitic of Fq is even. If k(

√
a)/k is ramified, then

there exists u ∈ O such that inv(a, 1 − πu) = 1/2.

Proof. By local class field theory, there exists some b ∈ O× such that b /∈
Nk(

√
a)/k k(

√
a)× and so inv(a, b) = 1/2. Since the squaring map x 
→ x2 is

an isomorphism on F
×
q , there exists d ∈ O× such that b − d2 ≡ 0 mod π . Write

b − d2 = −πe for some e ∈ O. Then,

(a, b) = (a, d2 + b − d2) = (a, d2 − πe) = (a, 1 − π(e/d2)).

Setting u = e/d2 ∈ O gives our result. �	

3. Generators for the Brauer group

Throughout the rest of this paper, X will denote a Châtelet surface over a field k of
characteristic �= 2 with affine model given by the equation

y2 − az2 = P(x)

where a ∈ k× \ k×2 and P(x) is a separable polynomial of degree 3 or 4. The
morphism X → P

1 given by the x-coordinate gives X the structure of a conic
bundle. The singular fibers are precisely the roots of P(x) together with ∞ ∈ P

1

if deg(P(x)) = 3.
Let Br X = H2

et(X, Gm) denote the cohomological Brauer group of X . Let
Br0 X be the image of the natural map Br k → Br X . The Brauer group of Châtelet
surfaces, or more generally conic bundles, have been extensively studied, see [2,
§11.3] for a detailed exposition. We summarize the necessary results for our pur-
poses here.

Proposition 3.1. The Brauer group of X depends on the factorization of P(x) over
k. Then Br(X)/Br0(X) is isomorphic to

(1) (Z/2Z)2 if P(x) splits completely into linear factors,
(2) Z/2Z if P(x) has an irreducible quadratic factor and

√
a /∈ k(α) for all roots

α of P(x),
(3) {0} otherwise.
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Proof. [2, §11.3 Exercise 11.3.7] �	
The points on P

1
k corresponding to the singular fibers determine the generators

for the quotient Br X/Br0 X . In particular, if P(x) splits completely, we can map
three of the roots of P(x) to 0, 1, and∞ ∈ P

1 via an automorphism of P
1. In doing

so, we may assume that P(x) = cx(x − 1)(x − λ) for some λ ∈ k � {0, 1} and
c ∈ k.

The main proofs of this paper work with fixed generators for the Brauer groups,
and for the cases above where Br X/Br0 X �= 0, our generating algebras can be
explicitly computed (see [2, §11.3 Corollary 11.3.5]):

(1) If P(x) splits completely, then Br X/Br0 X is generated by quaternion alge-
bras of the form

A = (a, x(x − 1)) and B = (a, x(x − λ)).

(2) If P(x) = c f (x)g(x) where both f and g are monic and at least one of
f (x) or g(x) is an irreducible quadratic, then Br X/Br0 X is generated by the
quaternion algebra

C = (a, f (x)) = (a, cg(x)).

We now prove Theorem 1.2(2)(b)(c) from the introduction. It suffices to show
that the Brauer group consists of only constant algebras, in which case there is no
Brauer–Manin obstruction to weak approximation.

Theorem 3.2. Let X be a Châtelet surface over k and L/k the splitting field of
P(x). Then Br X K /Br0 X K = 0 for every finite extension K/k if and only if one
of the following holds

(1) Gal(L/k) � D8, (Z/2Z)2 and P(x) factors further over k(
√

a)/k.
(2) Gal(L/k) � D6, Z/4Z, Z/2Z and

√
a ∈ L.

Proof. Assume that either condition (1) or (2) listed above holds. Let K/k be a
finite extension. By Proposition 3.1, we only need to consider the case when P(x)

splits into quadratic or smaller factors over K . Since X K is rational if
√

a ∈ K , we
also assume

√
a /∈ K . In particular this means L � K . We break into cases based

on the factorization of P(x) over K .

(1) (Product of two quadratics) In this case Gal(L K/K ) is either Z/2Z or
(Z/2Z)2. In the former case, L K = K (

√
a) and

√
a is in the residue field of

one of the quadratic factors, so Br X K /Br0 X K = 0 by Proposition 3.1. In
the latter case, we must have Gal(L/k) either D8 or (Z/2Z)2. By assumption,
over K (

√
a), P(x) must contain a linear factor. This implies that over K , one

of the quadratic factors on P(x) has residue field K (
√

a).
(2) (Product of two linear and one quadratic) In this case L K = K (

√
a) and so

the quadratic factor of P(x) has residue field containing
√

a.

Conversely assume Br X K /Br0 X K = 0 for every finite extension K/k. If√
a /∈ L then Br X L/Br0 X L � (Z/2Z)2 by Proposition 3.1, so we may assume

that
√

a ∈ L . We eliminate some possibilities by dividing into cases based on the
isomorphism class of Gal(L/k).
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(S4) There is a unique quadratic extension contained in L/k corresponding
to A4 ⊂ S4 which must be k(

√
a). Let K/k be an extension such that

Gal(L K/K ) � (Z/2Z)2. Then P(x) factors over K as a product of two
quadratics. Since Gal(L K/K (

√
a)) must move both roots, it follows the

residuefields of either factors does not contain
√

a.HenceBr X K /Br0 X K �
Z/2Z.

(A4) There are no index 2 subgroups in this case.
(D8) If P(x) remains irreducible over k(

√
a), then let K/k be any distinct

quadratic extension so that P(x) factors into two quadratics over K . It fol-
lows neither of the residue fields contain

√
a by the initial assumption so

that Br X K /Br0 X K � Z/2Z.
(K4) If P(x) is irreducible over k then it must factor over k(

√
a). Otherwise,

assume P(x) is a product of two quadratics and remains so over k(
√

a).
Then the same conclusion as the case above applies.

This leaves us with either (1) or (2) highlighted in the theorem. �	
Corollary 3.3. Let P(x) satisfy either conditions (1) or (2) of Theorem 3.2. Then
the Châtelet surface

y2 − az2 = P(x)

satisfies weak approximation over all finite extensions K/k.

Proof. By Theorem 3.2, there is no Brauer–Manin obstruction to weak approxima-
tion over all such extensions K/k. So by [3, Theorem B(ii)(a)] they satisfy weak
approximation. �	

4. Failure of weak approximation when P(x) is split

Let k be a number field. In this section, we consider the case when P(x) factors
into linear factors. Our goal is to prove Theorem 1.1. As discussed in Sect. 3, after
moving one of the singular fibers to ∞ ∈ P

1, we may assume

P(x) = cx(x − 1)(x − λ) (4.1)

for some λ ∈ k not equal to 0, 1 and c ∈ k×.
Let v be a finite place of k where a /∈ k×2

v , and π ∈ Ok be a uniformizer. After
a change of coordinates, we may assume that v(c) = 0, 1. By considering the six
cross-ratios on P

1, we may also assume that v(λ) ≥ 0. This allows us to define a
model over Ov using the same equation. We say that X has bad reduction at v if
the special fiber of this model is singular. Concretely, this means that at least one
of v(c), v(λ), v(λ − 1) is nonzero or that k(

√
a)/k is ramified at v.

Suppose the Châtelet surface X has bad reduction at v.We analyze the surjectiv-
ity of the evaluation map evA : X (kv) → Br kv[2] for the algebraA ∈ Br(X) listed
in Sect. 3. We first consider the unramified case, and then deal with the ramified
case separately for odd and even primes.
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4.1. Unramified Case

Assume that kv(
√

a)/kv is unramified. For x ∈ kv , there exists a point in X (kv)

lying over the corresponding point in P
1 if v(P(x)) is even. By Lemma 2.1, for any

point Q = (x, y, z) ∈ X (kv),

invv(A(Q)) = invv(a, x(x − 1)) = v(x(x − 1))/2 ∈ Q/Z.

The map evA : X (kv) → Br kv[2] � Z/2Z is surjective if and only if it is noncon-
stant, and for A(Q) to be nontrivial it is equivalent to v(x(x − 1)) being odd.

Proposition 4.1. If kv(
√

a)/kv is unramified, then the evaluation map evA : X (kv)

→ Br kv[2] is surjective.

Proof. Observe that for any x ∈ kv , there exists Q ∈ X (kv) lying over x if and
only if v(cx(x − 1)(x − λ)) is even. So it suffices to prove there exists x1, x2 ∈ kv

such that v(P(x1)), v(P(x2)) are even and v(x1(x1 − 1)) �≡ v(x2(x2 − 1)) mod 2.
First assume that v(λ) = v(λ − 1) = 0. This implies we must have v(c) �= 0

so that v(c) = 1 by our initial setup. Take x = 1/π , then v(P(x)) = −2 and
v((1/π)(1/π − 1)) = −2 is even. On the other hand, if we take x = π , then
v(P(x)) = 2 and v((π)(π − 1)) = 1 is odd.

To finish, it suffices to consider when v(λ) > 0 (If v(λ − 1) > 0, then we may
reduce to this case after a change of coordinates). We divide further into two cases,
namely v(c) = 0 and v(c) = 1. Recall that

v(P(x)) = v(c) + v(x) + v(x − 1) + v(x − λ).

Ifv(c) = 0 thenfirst set x = 1/π2 so thatv(P(x)) = −6 andv(x(x−1)) = −4.
Next, pick x such that 0 < v(x) and v(x) ≡ v(x − λ) ≡ 1 mod 2. Then v(P(x))

is even and v(x(x − 1)) = v(x) is odd.
If v(c) = 1, then first set x = 1/π so that v(P(x)) = −2 and v(x(x−1)) = −2.

Furthermore, if we set x = 1+π , then v(P(x)) = 2 and v(x(x−1)) = 1 as desired.
�	

4.2. Ramified case odd

If v is an odd place and kv(
√

a)/kv is ramified, then we may assume after a change
of coordinates that v(a) = 1.

Proposition 4.2. Assume that v(a) = 1 and P(x) has the form (4.1). Then the
evaluation map evα : X (kv) → Br kv[2] is surjective for some α ∈ {A,B}.
Proof. Dividing the Eq. (1.1) for X by a power of −a and exchanging y, z if
necessary, we can also assume that v(c) = 0. Let R ∈ X (k) be the unique rational
point over ∞ ∈ P

1. By using the following alternative formula forA,B defined at
R,

A = (a, w(1 − w)),B = (a, w(1 − λw)),
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where w = 1/x , we see that evA(R) = evB(R) = 0. To finish the proof, it suffices
to exhibit a point where the evaluation is nontrivial.

Assume first that λ �≡ 0, 1 mod π . Let E ⊂ X be the closed subset given by
z = 0. Then E is an elliptic curve given by

y2 = cx(x − 1)(x − λ).

For Q = (x, y) ∈ E(kv), the quantities

cx, cx − c, cx − cλ (4.2)

are all squares in kv if and only if Q ∈ 2E(kv) (use [7, §1.4 Theorem 4.1] after
suitable coordinate change).

Lemma 4.3. E(kv) \ 2E(kv) is nonempty

Proof. Since v � 2, E has good reduction at v and E(kv)[2∞] = ˜E(Fv)[2∞],
where ˜E is the reduction modulo v. In particular, this means E(kv)[2∞] is finite
andmoreover nontrivial as E(kv)[2] � (Z/2Z)2. If E(kv) = 2E(kv), then E(kv) is
a 2-divisible group which must be either trivial or of infinite order. Hence it follows
that E(kv) �= 2E(kv) and so E(kv) \ 2E(kv) is nonempty. �	

Remark 4.4. Although we will not need it, the previous lemma is true for v | 2 as
well. Then there is a subgroup E∗ ⊂ E(kv) of finite index such thatOv � E∗. Take
anyu ∈ Ov withv(u) = 0.Thenu is not divisible by2 in E∗, and iteratively dividing
by 2 in E(kv) would produce infinitely many points in the quotient E(kv)/E∗, a
contradiction. Hence u is not 2-divisible in E(kv).

Let Q ∈ E(kv) \ 2E(kv) so then not all of (4.2) are squares. Note also that
at most one of v(x), v(x − 1), v(x − λ) can be nonzero since λ �≡ 0, 1 mod π .
Moreover v(x) ≥ 0 since otherwise (4.2) will all be squares as their product is a
square. Lastly, they must all be even since v(x(x − 1)(x − λ)) is even.

If none or exactly two of (4.2) are squares then the product cx(x − 1)(x − λ)

cannot be a square. Hence exactly one of (4.2) is a square in kv . Similarly we also
obtain that at least one of x(x − 1), x(x − λ) is not a square. Hence, at least on of
those products is not a square with even valuation which implies it is not a norm
from kv(

√
a)/kv . Hence, invv α(Q) = 1/2 for some α ∈ {A,B}.

Now assume that λ ≡ 0 mod π . Choose x ∈ F
×
v \ F

×2
v such that x − 1 ∈ F

×2
v .

Lift x to x ∈ Ov . Then (a, x) = (a, x − λ) �= 0 but (a, x − 1) = 0. Hence, there
exists some point Q ∈ X (kv) lying over x ∈ P

1 where

invv A(Q) = (a, x(x − 1)) = 1/2.

The case λ ≡ 1 mod π is very similar. �	
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4.3. Ramified case even

Proposition 4.5. Let v be a place lying over 2. Assume that kv(
√

a)/kv is ramified
and P(x) has the form (4.1). Then the evaluation map evA : X (kv) → Br kv[2] is
surjective.

We give the proof of this result after establishing some basic facts on the distri-
bution of norms inside Ov . For the remainder of this section, v will denote a place
lying over 2 where kv(

√
a)/kv is ramified. Let w be the place lying over v and

Lw:=kv(
√

a). Let N : Lw → kv denote the norm map.

4.3.1. Equidistribution of norms among residues The subgroup of norms {x ∈
O×

v | x ∈ N(O×
w)} has index 2 inside O×

v . For any subset H ⊂ kv , let H mod πn

denote the set of equivalence classes H/ ∼ where h1 ∼ h2 if h1 − h2 ∈ πnOv .

Lemma 4.6. Let r ∈ Ov . Then

lim
n→∞

#{x ∈ Ov | x ∈ N(Ow), x ≡ r mod π} mod πn

#{x ∈ Ov | x ≡ r mod π} mod πn
= 1

2
.

Proof. Let O(r)
v :={x ∈ Ov | x ≡ r mod π}. We first prove the case when r =

1. Note that N(Ow) ∩ O(1)
v ⊂ O(1)

v is a subgroup of index at most 2 under the
multiplicative structure. By Lemma 2.2, there exists u ∈ Ov such that 1 − πu /∈
N(Ow), and so 1 − πu ∈ O(1)

v \(N(Ow) ∩ O(1)
v ). Hence it follows N(Ow) ∩ O(1)

v

has index 2. Consider the quotient map

qn : O(1)
v → O(1)

v /πn .

The image qn(N(Ow)∩O(1)
v ) has either index 1 or 2. Since N (Ov) is closed inOv ,

it follows that for n large enough, 1 − πu + πnOv consists of non-norms. Hence
for such n, the image of qn has index 2. The statement about the limit follows
immediately.

Now assume r �≡ 0 mod π . Take any x ∈ Ov such that x ≡ r mod π . Multi-
plication by 1/x gives a bijection O(r)

v → O(1)
v . Depending on x , this map sends

N(Ow) ∩ O(r)
v to either N(Ow) ∩ O(1)

v or O(1)
v \N(Ow) ∩ O(1)

v . Hence, the limit
then follows from what we proved for O(1)

v above.
Finally assume r ≡ 0 mod π . Then noting that −π ∈ N(Ow) and setting

x ′ = x/(−π) gives

{x ∈ Ov | x ∈ N(Ow), x ≡ 0 mod π} = −π{x ′ ∈ Ov | x ′ ∈ N(Ow)}.
Hence the limit in question is

lim
n→∞

#{x ′ ∈ Ov | x ′ ∈ N(Ow)} mod πn−1

#Ov mod πn−1 .

Now,we can divide this limit according to the image of x ′ inOv/πOv .We can apply
our previous result for x ′ �≡ 0 mod π and argue inductively for those x ′ ≡ 0 mod π .
Hence, we obtain that the above limit is 1/2. �	
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Remark 4.7. As one can see from the proof, when r �= 0 mod π , the quantity in
question is in fact equal to 1/2 for n sufficiently large enough.

Lemma 4.8. Let an, bn, cn, dn be sequences of real numbers. Let An = ∑n
i=1 ai

and define Bn, Cn, Dn similarly. Assume that Bn, Dn > 0 for all n. Then

lim
n→∞

An

Bn
= lim

n→∞
Cn

Dn
= L �⇒ lim

n→∞
An + Cn

Bn + Dn
= L

Proof. Let ε > 0. There exist some large N such that for all n > N we have

L − ε <
An

Bn
,

Cn

Dn
< L + ε.

Hence

L − ε = (L − ε)Bn + (L − ε)Dn

Bn + Dn
<

An + Cn

Bn + Dn
<

(L + ε)Bn + (L + ε)Dn

Bn + Dn
= L + ε

for all n > N . The limit follows. �	
Applying the previous lemma inductively gives the following result

Lemma 4.9. Let a(i)
n , b(i)

n be sequences of real numbers for each i = 1, . . . , m. Let
A(i)

n = ∑n
j=1 a(i)

j and define B(i)
n similarly. Assume that B(i)

n > 0 for all i, n. Then

lim
n→∞

A(i)
n

B(i)
n

= L ∀i �⇒ lim
n→∞

∑m
i=1 A(i)

n
∑m

i=1 B(i)
n

= L .

The following limit follows immediately from Lemmas 4.6 and 4.9.

lim
n→∞

#{x ∈ O×
v | x ∈ N(Ow)} mod πn

#O×
v mod πn

= 1

2
.

Remark 4.10. Note that Lemma 4.6 fails when v does not lie over 2. Indeed whether
a unit x is a norm or not cannot be determined by looking modulo π .

Let O∗
v = Ov \ {0} be the nonzero elements (not to be confused with O×

v , the
nonzero units). Define the sets

A = {x ∈ Ov | x(x − 1) ∈ N(O∗
w)}, B = {x ∈ Ov | x − λ ∈ N(O∗

w)}.
Since x 
→ x(x − 1) and x 
→ x − λ are continuous endomorphisms on Ov , both
A, B, being inverse images of the open and closed subset N(O∗

w), are open and
closed insideOv \ {0, 1} andOv \ {λ} respectively. Our first goal is to establish the
following.

Proposition 4.11.

lim
n→∞

#A mod πn

#Ov mod πn
= lim

n→∞
#B mod πn

#Ov mod πn
= 1

2
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Proof. Since {x − λ | x ∈ Ov} = Ov , the limit for B follows immediately in view
of Lemma 4.6. To prove the limit for A, we first divide Ov in the following way

O(0)
v = {x ∈ Ov | x ≡ 0 mod π},O(1)

v = {x ∈ Ov | x ≡ 1 mod π},
O′

v = Ov \ (O(0)
v ∪ O(1)

v ).

We divide the set A in the analogous way

A(0) = {x ∈ A | x ≡ 0 mod π}, A(1) = {x ∈ A | x ≡ 1 mod π},
A′ = A \ (A(0) ∪ A(1)).

By Lemma 4.9, it suffices to prove each of the following limits,

lim
n→∞

#A(0) mod πn

#O(0)
v mod πn

= lim
n→∞

#A(1) mod πn

#O(1)
v mod πn

= lim
n→∞

#A′ mod πn

#O′
v mod πn

= 1

2
.

Define the map f : k×
v → kv \ {1} given by f (x) = 1 − 1/x . Observe that f

is a bijection. Moreover, for any x ∈ O∗
v \ {1}, x(x − 1)/ f (x) = x2. Hence,

x(x − 1) ∈ N(O∗
w) if and only if f (x) ∈ N(L×

w). In particular, this means that
x ∈ A if and only if f (x) ∈ N(L×

w).
Let n be a positive integer and x ∈ O×

v . Then

f (x + πnOv) = 1 − 1/x + πnOv = y + πnOv

where y = 1−1/x ∈ Ov . Observe that y �≡ 1 mod π . Hence, f induces a bijection
between the following two sets,

{x + πnOv | x ∈ O×
v } f←→ {y + πnOv | y ∈ Ov, y �≡ 1 mod π}.

We may further decompose into the following bijections

{x + πnOv | x ∈ Ov, x �≡ 0, 1 mod π} f←→ {y + πnOv | y ∈ Ov, y �≡ 0, 1 mod π},
{x + πnOv | x ∈ Ov, x ≡ 1 mod π} f←→ {y + πnOv | y ∈ Ov, y ≡ 0 mod π}.

Written another way, f induces bijections

O′
v mod πn f←→ O′

v mod πn,

O(1)
v mod πn f←→ O(0)

v mod πn .

Moreover, under this bijection, A mod πn maps to

A′ mod πn f←→ {y ∈ Ov | y ∈ N(Ow), y �≡ 0, 1 mod π} mod πn,

A(1) mod πn f←→ {y ∈ Ov | y ∈ N(Ow), y ≡ 0 mod π} mod πn .
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Therefore,

lim
n→∞

#A′ mod πn

#O′
v mod πn = lim

n→∞
#{y ∈ Ov | y ∈ N(Ow), y �≡ 0, 1 mod π} mod πn

#O′
v mod πn = 1

2
,

lim
n→∞

#A(1) mod πn

#O(1)
v mod πn

= lim
n→∞

#{y ∈ Ov | y ∈ N(Ow), y ≡ 0 mod π} mod πn

#O(0)
v mod πn

= 1

2

by Lemma 4.6. It remains to prove the limit for A(0). For this, consider the map
g : Ov → Ov given by g(x) = 1 − x . This is clearly a bijection and sends O(0)

v

to O(1)
v . Moreover, since x(x − 1) = (g(x))(g(x) − 1), g sends A(0) bijectively to

A(1). Hence,

lim
n→∞

#A(0) mod πn

#O(0)
v mod πn

= lim
n→∞

#A(1) mod πn

#O(1)
v mod πn

= 1

2
.

�	

4.3.2. Applying the equidistribution results Finally, we return to the proof of
Proposition 4.5.

Proof of Proposition 4.5. We first consider the case when (a, c) = 0. This means
in particular that the fiber over ∞ ∈ P

1 has a point Q ∈ X∞(kv) and invv A(Q) =
invv B(Q) = 0. So it suffices to find another point with invariant 1/2.

Lemma 4.12. Let U ⊆ Ov be a non-empty open subset. Then

lim
n→∞

#U mod πn

#Ov mod πn
> 0.

Proof. First, the limit exists since the fraction inside the limit is nonincreasing and
nonnegative in n. As U is open, there exists some positive integer N and u ∈ Ov

such that u + π NOv ⊆ U . Thus

#U mod πn

#Ov mod πn
≥ #{u + π NOv} mod πn

#Ov mod πn
≥ 1

#Ov mod π N
.

The limit then follows as the right side is independent of n. �	
Lemma 4.13.

lim
n→∞

#Ov \ (A ∪ B) mod πn

#Ov mod πn
> 0.

.

Proof. Using a smooth v-adic analytic neighborhood around any point in X (kv) �=
∅ (which is nonempty since there is a point on the fiber above 0 ∈ P

1), there exists
x ∈ Ov with x �= 0, 1, λ such that x(x − 1)(x − λ) ∈ N(Ow). This means either
x ∈ Ov \ (A ∪ B) or x ∈ A ∩ B. In the former case, since A, B are closed in Ov ,
it follows Ov \ (A ∪ B) is a nonempty open set. The positivity of the limit then
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follows from Lemma 4.12. In the latter case, we apply Lemma 4.12 again to obtain
limn→∞(#A ∩ B mod πn)/(#Ov mod πn) > 0. We may write

#A ∪ B mod πn

#Ov mod πn
= #A mod πn

#Ov mod πn
+ #B mod πn

#Ov mod πn
− #A ∩ B mod πn

#Ov mod πn

Taking limit as n → ∞ on both sides show that RHS is < 1 by Proposition 4.11.
The lemma then follows. �	

Let x ∈ Ov\(A ∪ B) and x �= 0, 1, λ. This means x(x − 1)(x − λ) ∈ N(Lw)

but x(x − 1) /∈ N(Lw). Let Q ∈ X (kv) be a point with x-coordinate is x . Then

invv A(Q) = (a, x(x − 1)) = 1/2.

For the case (a, c) �= 0, we have the following

Lemma 4.14.

lim
n→∞

#(A \ B) mod πn

#Ov mod πn
> 0, lim

n→∞
#(B \ A) mod πn

#Ov mod πn
> 0.

Proof. By Proposition 4.11, it suffices to show at least one of the limit is positive
since that will imply the other is positive as well. Since X (kv) �= ∅ by assumption,
there exists x ∈ Ov with x �= 0, 1, λ such that one of the following two cases
happen

Case 1, x(x − 1) ∈ N(Ow) and x − λ /∈ N(Ow) OR
Case 2, x(x − 1) /∈ N(Ow) and x − λ ∈ N(Ow)

Either case, at least one of A \ B or B \ A is nonempty, and the limit must also
be positive since both are open in Ov . �	

To finish the proof, we choose x1 ∈ A\B and x2 ∈ B\A. Then there exists
Q1, Q2 ∈ X (kv) with x coordinate corresponding to x1, x2 respectively. It follows
that

invv A(Q1) = 0, invv A(Q2) = 1/2.

�	

4.4. Proof of Theorem 1.1

Proof of Theorem 1.1. Let X be a Châtelet surface where P(x) has the form (4.1).
First assume that for every nonarchimedian place v, either X has good reduction
or

√
a ∈ kv . In the first case, kv(

√
a)/kv must be unramified, so that any gen-

erator α listed in Sect. 3 is in the kernel of Br X → Br Xknrv
where knrv is the

maximal unramified extension of kv . Then by [5, Lemma 2.2]the evaluation map
evα : X (kv) → Br kv[2] must be constant for any α ∈ Br X . In the latter case,
evα is also constant since the Brauer classes listed in §3 are trivial over kv . More-
over, if a > 0 for all real embeddings or k does not have a real embedding, then
for any archimedian place v,

√
a ∈ kv , so the evaluation map is constant again.
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Since X (k) is clearly nonempty (take any root of P(x)), it follows X satisfies weak
approximation.

Conversely, assume either X has a place v of bad reduction with
√

a /∈ kv or
v is a real place and a < 0. To show failure of weak approximation, it suffices
to show that there is a Brauer–Manin obstruction given by the surjectivity of the
evaluation map evA : X (kv) → Br kv[2].

If a < 0, then the evaluation map is surjective at v since taking x such that
exactly two of x, x − 1, x − λ is negative gives rise to a real point Q where either
evA(Q) or evB(Q) is nontrivial. On the other hand, taking x so that all x, x−1, x−λ

are positive gives rise to a real point Q such that evA(Q) = evB(Q) = 0.
Now assume v is a place of bad reduction. If k(

√
a)/k is unramified at v, then

one of v(c), v(λ), v(λ − 1) must be nonzero. Then Proposition 4.1 implies the
result. If k(

√
a)/k is ramified then Proposition 4.2 for odd v or Proposition 4.5 for

even v gives the desired result.

Proof of Theorem 1.2(1). Let L be the splitting field of P(x) as stated in the the-
orem. If v is a place of bad reduction as given in the hypothesis, then there exists
a place w of L lying over v such that X L has bad reduction at w and a /∈ L×2

w .
Theorem 1.1 then implies that X L fails weak approximation. �	
Proof of Theorem 1.2(2)(a). Let K/k be a finite extension. By our assumption,
either P(x) has an irreducible factor of degree 3 or splits completely over K . In
the first case, there is no obstruction to weak approximation by Proposition 3.1. In
the latter case, if

√
a ∈ K , then X K is rational so weak approximation holds as

well. Hence, assume
√

a /∈ K . Then Theorem 1.2 implies that X K satisfies weak
approximation. �	
Example 4.15. Let us give an example of a surface satisfying the conditions of
Theorem 1.2(2)(a). Let ω be a primitive cube root of unity and let k = Q(ω,

√
97).

Then k has class number 2 and so theHilbert class field L = k(
√

a) is an everywhere
unramified quadratic extension. Let X be the Châtelet surface

y2 − az2 = x(x − 1)(x + ω).

Observe that X has everywhere good reduction and satisfies the conditions given
in Theorem 1.2(2)(a). Hence X satisfies weak approximation over all finite field
extensions.

5. Weak approximation in the quadratic case

In this section, we consider the case when P(x) factors as

y2 − az2 = cP1(x)P2(x)

where P1, P2 are irreducible monic quadratic polynomials. By §2, the Brauer group
modulo Br0 X is generated by the quaternion algebra

C = (a, P1(x)) = (a, cP2(x)).
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If the above Brauer class is constant (meaning it comes from Br k), then X satisfies
weak approximation. Hence, for the rest of this section, we assume that the class
above is nonconstant. This is equivalent to the fact that

√
a is not in the splitting

field of P1(x) or P2(x). Moreover, after a change of coordinates, we assume the
coefficients of P1(x), P2(x) are in Ok .

Let v be a nonarchimedian place of k with odd residue characteristic andπ ∈ Ok

a uniformizer.

Lemma 5.1. Let R(x) ∈ Fv[x] be a monic irreducible quadratic polynomial. Then
for exactly (q − 1)/2 many of the values x ∈ Fv , R(x) is a square in Fv .

Proof. It suffices to show that R(x) = y2 has q − 1 solutions in (x, y) ∈ F
2
v (since

R(x) is irreducible, y is never 0). We may homogenize to define a smooth conic
in P

2
Fv
. Since this conic has two points at infinity, it is isomorphic to P

1
Fv

and thus
has q + 1 points. Removing the two points at infinity gives q − 1 solutions to the
original equation. �	
Proposition 5.2. Assume that v(a) = 1. If P1(x), P2(x) are irreducible modulo π ,
then there is an obstruction to weak approximation.

Proof. Write

Pi (x) = x2 + di x + ri

where di , ri ∈ Ov . Since Pi (x) is irreducible modulo π , we must have ri ∈ O×
v .

Suppose X has a kv point on a smooth fiber x = x0 ∈ kv . If v(x0) < 0, then the
fiber over ∞ ∈ P

1 also has a kv point. Applying the automorphism x 
→ 1/x on
P
1, we may rewrite the equation for X as

y2 − az2 = cr1r2(x2 + d1x/r1 + 1/r1)(x2 + d2x/r2 + 1/r2)

which has a kv point over the smooth fiber x = 0. Hence, we may reduce to the
case where there exists a point Q0 = [y0, z0, x0] ∈ X (kv) on a smooth fiber where
v(x0) ≥ 0.

It suffices to find a point Q1 ∈ X (kv) such that invv A(Q0) �= invv A(Q1). Let
α = x0 mod π ∈ Fv . By Lemma 5.1, there must be another β ∈ P

1(Fv) such that

(1) P1(α) is a square if and only if P1(β) is a nonsquare, and
(2) P2(α) is a square if and only if P2(β) is a nonsquare.

Here we take the convention that P1(∞) = P2(∞) = 1 are squares. This is only
needed if both P1(α), P2(α) are nonsquares. Then P1(β)P2(β) is nonzero and in
the same square class as P1(α)P2(α). Therefore, we may use Hensel’s lemma to
lift to a point Q1 = (y1, z1, x1) ∈ X (kv) where x1 ≡ β mod π . But then

invv C(Q0) = (a, x0) �= (a, x1) = invv C(Q1).

The inequality of the two Hilbert symbols is due to (1) and (2) above. �	
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If the hypothesis of Proposition 5.2 does not hold, the existence of an obstruc-
tion to weak approximation is much more intrinsic to the surface in question. In
particular, one cannot expect a uniform result similar to the case when P(x) splits
completely or is irreducible. We illustrate this subtlety by considering two Châtelet
surfaces whose defining equation differs by one coefficient.

Example 5.3. Let X/Q be the Châtelet surface given by

y2 − 17z2 = 3(x2 − 7)(17x2 − 43).

By Proposition 3.1, Br X/Br0 X is generated by C = (17, x2−7) = (17, 3(17x2−
43)). We show that X satisfies weak approximation.

We begin by showing X (Qp) �= ∅ for all primes p. First, observe that for
p �= 3, 17 we have X∞(Qp) �= ∅ because X∞ is the conic y2 − 17z2 = 51w2,
which has Qp points for p �= 3, 17. Next, we observe that the fiber X1 is the conic
y2 − 17z2 = 468w2 which has Q3 and Q17-points since 468 is a square in Q3 and
Q17.

We show that the map evC : X (Qp) → BrQp is constant at all primes p.
Since the evaluation map is constant at all primes of good reduction [5, Lemma
2.2], it remains to check evC

(

X (Qp)
)

for the primes p = 2, 3, 7, 17 and 43. Let
(x0, y0, z0) ∈ X (Qp) and P(x) = 3(x2 − 7)(17x2 − 43).

(p = 2) Note that inv2(evC (X (Q2))) = 0 because 17 ∈ Q
×2
2 .

(p = 17) Assume v17(x0) < 0 so then v17 (P(x0)) = 4v17(x0) + 1. Further-
more, we can see that

17−(4v17(x0)+1) P(x0) ≡ 3 (mod 17)

which is not a square in Q17. We can now conclude that in this case, P(x)

is never a norm from the ramified extension Q17(
√
17). Hence we must have

v17(x0) ≥ 0. For these values of x0, 3(17x20 − 43) ≡ 7 (mod 17) is not a square
so inv17(evC(X (Q17))) = 1/2.

(p = 7) Since 3(17x2 − 43) is irreducible over Q7, v7(3(17x20 − 43)) must be
even. Hence inv7(evC (X (Q7))) = 0.

(p = 43) Since x2 − 7 is irreducible over Q43, we have v43(x20 − 7) must be
even. Hence inv43(evC (X (Q43))) = 0.

(p = 3) Since 17x2 − 43 is irreducible over Q3, v3(17x20 − 43) must be even.
Hence v3(3(17x20 − 43)) is odd and so inv3(evC(X (Q3))) = 1/2.

Combining the above calculations,we obtain that the sumof invariants is always
0, which means weak approximation holds.

After a minor adjustments to the surface of Example 5.3, we obtain another
Châtelet surface which fails weak approximation.

Example 5.4. Let X/Q be the Châtelet surface given by

y2 − 17z2 = 3(x2 − 7)(17x2 − 7 · 43).
We first show that X (AQ) �= ∅. In a similar fashion to Example 5.3 we have
X (Qp) �= ∅ for all p �= 3, 17 hence only non-emptiness of X (Q3) and X (Q17)
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must be checked directly. One can compute the fibers X1 and X3 and see that the
conic X1 has Q3-points and the conic X3 has Q17-points.

We claim that X fails weak approximation and to prove this, it suffices to
verify that the map evC : X (Q7) → BrQ7[2] is surjective. To see this, first note
that X∞(Q7) �= ∅ and evC is trivial over such a point. On the other hand, as
P(0) = 3·72·43has evenvaluation, there exists Q ∈ X0(Q7) lyingover 0 ∈ P

1(Q7)

where

evC(Q) = (17,−7) �= 0.

This proves our claim.
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