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Abstract. Let g be a reductive Lie algebra and t ⊂ g a Cartan subalgebra. The t-stable
decomposition g = t⊕m yields a bi-grading of the symmetric algebra S(g). The subalgebra
Z(g,t) generated by the bi-homogenous components of the symmetric invariants F ∈ S(g)g

is known to be Poisson commutative. Furthermore the algebra Z̃ = alg〈Z(g,t), t〉 is also
Poisson commutative. We investigate relations between Z̃ and Mishchenko–Fomenko sub-
algebras. In type A, we construct a quantisation of Z̃ making use of quantum Mishchenko–
Fomenko algebras.

Introduction

Let g be a finite-dimensional reductive Lie algebra over an algebraically closed
field k of characteristic zero. The symmetric algebra S(g) ∼= k[g∗] of g is equipped
with the standard Poisson structure, i.e., the Lie–Poisson bracket { , }. A subalgebra
A ⊂ S(g) is Poisson commutative if {A, A} = 0. Poisson commutative subalgebras
attract a great deal of attention, because of their relationship to integrable systems
and geometric representation theory. If {A, A} = 0, then tr.deg A � b(g), where
b(g) := 1

2 (dim g + rk g) is the dimension of a Borel subalgebra of g.
The celebrated “argument shift method”, which goes back to Mishchenko–

Fomenko [7], produces interesting Poisson commutative subalgebras. Namely, to
any γ ∈ g∗, one associates the subalgebra (MF)γ ⊂ S(g). Following Vinberg
[19], we say that (MF)γ is the Mishchenko–Fomenko subalgebra associated with
γ . This algebra can be described as follows. Let S(g)g be the Poisson centre of
(S(g), { , }), i.e.,

S(g)g = {H ∈ S(g) | {H, x} = 0 ∀x ∈ g}.
For F ∈ S(g), let ∂γ F be the directional derivative of F with respect to γ ∈ g∗,
i.e.,

∂γ F(x) = d
dt

F(x + tγ )

∣
∣
∣
t=0

.
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By definition, the algebra (MF)γ is generated by all ∂k
γ F with k � 0 and

F ∈ S(g)g. Clearly, (MF)γ is a graded subalgebra of S(g). The importance of
these subalgebras and their quantumcounterparts is demonstrated e.g. in [3,4,8,19].
Suppose that γ is regular. Then (MF)γ is a maximal Poisson commutative subal-
gebra of S(g) [11]. For regular semisimple elements, this has been earlier proved
by Tarasov [17]. Furthermore, (MF)γ is freely generated by b(g) homogeneous
elements, see e.g. [11].

Let f be a subalgebra of g. Suppose that there is an f-stable decomposition
g = f⊕m, i.e., [f,m] ⊂ m. This yields a bi-homogeneous decomposition of S(g):

S(g) =
⊕

i, j�0

Si (f) ⊗ S j (m)

and for any F ∈ S(g) we get the decomposition F = ∑

i, j Fi, j , where Fi, j ∈
Si (f) ⊗ S j (m).

Let Z(g,f) be the subalgebra of S(g) generated by the bi-homogeneous com-
ponents Hi, j of all H ∈ S(g)g. Since H is g-invariant, each Hi, j is f-invariant,
hence Z(g,f) ⊂ S(g)f. The subalgebras Z(g,f) are not necessarily Poisson commu-
tative [13, Example2.3]. However, it is proved in loc. cit. that Z(g,f) is Poisson
commutative whenever [f, f] = 0. In particular, if f = t is a Cartan subalgebra of g,
then Z(g,t) is Poisson commutative. Since Z(g,t) ⊂ S(g)t and t is commutative, the
subalgebra generated by Z(g,t) and t is still Poisson commutative. We denote it by
Z̃ = alg〈Z(g,t), t〉. By [13, Theorem 3.2], Z̃ is a polynomial algebra, it is a maximal
Poisson commutative subalgebra and tr.deg Z̃ = b(g). Results of Section 3 in [13]
demonstrate that Z̃ is closely related to Mishchenko–Fomenko subalgebras. One
of the goals of this paper is to further elaborate on these relations.

Letm ⊂ g be the t-stable complement of t in g. Then t∗ (resp.m∗) is identified
with the annihilator Ann(m) ⊂ g∗ (resp. Ann(t) ⊂ g∗). Our first result is that, for
any γ ∈ t∗, the restrictions of Z̃ and (MF)γ to γ +m∗ coincide, see Theorem 2.1.

There is a Poisson bracket { , }(γ ) on k[γ +m∗]t ∼= S(m)t, inherited from S(g).
The rank of this bracket is equal to dim g−3rk g and if B is a Poisson commutative
subalgebra of (S(m)t, { , }(γ )), then tr.degB � 1

2 (dim g − rk g), see Sect. 2.1.

We show that if γ is a regular point of g∗, then Z̃|γ+m∗ is a maximal Poisson
commutative subalgebra of (S(m)t, { , }(γ )) of transcendence degree 1

2 (dim g −
rk g).

If μ ∈ t∗ is regular in g∗, then (MF)μ ⊂ S(g)t and the component of grade
2 in (MF)μ equals S2(t) ⊕V(μ), where V(μ) is a certain subspace of dimension
rk[g, g]. There is a natural choice for such aV(μ), which is explicitly described by
Vinberg [19]. We recall it in Sect. 2. In [14], Rybnikov proved that if μ is generic
enough, then (MF)μ is equal to the Poisson centraliser ofV(μ) in S(g)t. His proof
goes through for all simple types, but does not apply to all regular points. We prove
that in typeA, the centraliser description holds for all regularμ, see Proposition 2.8.

An interesting task is to produce a quantisation of Z̃, i.e., a commutative sub-
algebraZ of the enveloping algebra U(g) such that gr(Z ) ⊂ S(g) coincides with
Z̃. In case of (MF)μ, the quantisation problem was raised in [19]. A solution,
the quantum Mishchenko–Fomenko subalgebra Fμ ⊂ U(g), is obtained in [15]
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and [4]. These subalgebras are studied in [3,4,8,16,18]. For g = gln , we quantise
Z̃ in Sect. 3, see Theorem 3.2. For any g, we can lift quadratic in m elements of
Z̃ to commuting elements of U(g). In the context of Sect. 3, we have found many
similarities with quantum counterparts ofMishchenko–Fomenko subalgebras. This
may be an indication that the algebra Z̃ always has a quantisation.

1. Preliminaries on the coadjoint action and Poisson-commutativity

Let q be a Lie algebra over k. Let qξ denote the stabiliser in q of ξ ∈ q∗. The index
of q, ind q, is defined by ind q = minξ∈q∗ dim qξ . The set of regular elements of
q∗ is

q∗
reg = {η ∈ q∗ | dim qη = ind q}. (1.1)

Then q∗
sing = q∗ \ q∗

reg. Set further b(q) = (dim q+ ind q)/2. If q = g is reductive,
then ind g = rk g and b(g) is the dimension of a Borel subalgebra of g.

For any γ ∈ q∗, one defines the Poisson bracket { , }γ on q∗ by {ξ, η}γ =
γ ([ξ, η]) for ξ, η ∈ q. This new bracket is compatible with the standard Lie–
Poisson bracket { , } on S(q), i.e., any linear combination of { , } and { , }γ is again
a Poisson brackets. For more details, see [2, Sect. 1.8.3]. There is a well-known
method, the Lenard–Magri scheme, for constructing “large” Poisson commutative
subalgebras of S(q), which is related to compatible brackets, see e.g. [5]. In this
way, one obtains (MF)γ from the pair ({ , }, { , }γ ).

In [13], starting form an f-stable decomposition q = f ⊕ m with [f, f] = 0, a
Poisson commutative subalgebra Z(q,f) ⊂ S(q) was constructed. From now on, we
consider a particularly interesting case, where q = g = LieG is a reductive Lie
algebra and f = t is a Cartan subalgebra. Set l = rk g.

The algebra S(g)g is a polynomial ring. Let {H1, . . . , Hl} be a set of homo-
geneous algebraically independent generators of S(g)g with deg Hj = d j . We
have

∑l
j=1 d j = b(g). Let g = u ⊕ t ⊕ u− be a fixed triangular decomposi-

tion. Set m = u ⊕ u−. The vector space decomposition g = t ⊕ m provides the
bi-homogeneous decomposition of each Hj :

Hj =
d j
∑

i=0

(Hj )(i,d j −i),

where (Hj )(i,d j −i) ∈ Si (t) ⊗ Sd j −i (m) ⊂ Sd j (g). Then we say that d j − i is the
m-degree of (Hj )(i,d j −i). Now, Z := Z(g,t) is the algebra generated by

{(Hj )(i,d j −i) | j = 1, . . . , l; i = 0, 1, . . . , d j − 3, d j − 2, d j },

see [13]. The total number of functions in this family equals
∑l

j=1(d j + 1) −
l = b(g) and they are algebraically independent [13]. Replacing the elements
(Hj )(d j ,0) ∈ Sd j (t) with a basis of t, we obtain a larger subalgebra, denoted Z̃,
which is still polynomial and Poisson commutative.
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1.1. Notation and conventions

For a subalgebra A ⊂ S(g) and γ ∈ g∗, we set dγ A = {dγ F | F ∈ A}.
Given a Poisson algebra A and a ∈ A, let ZaA = {F ∈ A | {a, F} = 0}

denote the Poisson centraliser of a in A.
Let l ⊂ g be a Lie subalgebra. Then S(g)l = {F ∈ S(g) | {ξ, F} = 0 ∀ξ ∈ l}

and U(g)l stands for the centraliser {X ∈ U(g) | [ξ, X ] = 0 ∀ξ ∈ l} of l in U(g).
For an irreducible affine variety Y over k, we let k[Y ] stand for the ring of

regular functions on Y and k(Y ) = Quot k[Y ] for the field of rational functions on
Y . A statement that a certain assertion holds for generic points of Y (or for generic
orbits on Y ) means that this assertion holds for all points of a nonempty open subset
U ⊂ Y (for all orbits intersecting U ).

If g = f ⊕ m and ξ ∈ g, then ξ = ξf + ξm, where ξf ∈ f and ξm ∈ m.
Let � be the set of roots of (g, t) and �+ ⊂ � the subset of positive roots

corresponding to u. For α ∈ �, let eα ∈ gα be a nonzero root vector. We let
hα ∈ [gα, g−α] ⊂ t be such that α(hα) = 2.

We say that g is of type A, if g = sll+1. In that case, we fix t as the sub-
space of diagonal matrices and use the standard linear functions εi ∈ t∗ such that
εi (diag(a1, . . . , al+1)) = ai . We fix the standard triangular decomposition with
�+ = {εi − ε j | i < j}. For 1 � i, j � n, let Ei j ∈ gln be a matrix unit
(elementary matrix).

If g is semisimple, then g is identified with g∗ via the Killing form κ .

2. Partial localisations and reductions by the action of t

Results of [13] show that Z̃ = alg〈Z(g,t), t〉 is closely related to Mishchenko–
Fomenko subalgebras. Our goal now is to elaborate on this relation.

Recall that m = u ⊕ u−. Consider A = S(g)t ⊗S(t) k(t∗) ⊂ k(g∗)t as a
ring of S(m)t-valued rational functions on t∗; here F M ⊗ F̃ = M ⊗ F F̃ for
M ∈ S(m)t, F ∈ S(t) ∼= k[t∗], F̃ ∈ k(t∗) and (F M ⊗ F̃)(μ) = F(μ)F̃(μ)M ,
if μ ∈ t∗. Since {S(g)t, S(g)t} ⊂ S(g)t and {S(g)t, t} = 0, the ring A inherits a
Poisson structure from S(g) and this Poisson structure is k(t∗)-linear. For μ ∈ t∗,
set

Aμ = {A ∈ A | A(μ) is well-defined }.
Let ψμ : Aμ → S(m)t be the evaluation homomorphism. Then S(g)t ⊂ Aμ

for each μ and on S(g)t ∼= k[g∗]t, the map ψμ coincides with the restriction
homomorphism

k[g∗]t → k[μ + m∗]t ∼= S(m)t.

We define a bi-linear map { , }(μ) : m × m → m ⊕ k by

{x, y}(μ) := ψμ([x, y]) = [x, y]m + μ([x, y]t) for x, y ∈ m
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and then extend it to a bi-linear operation on S(m)t using the Leibniz rule. For X, Y
in S(m)t ⊂ A, we have

ψμ({X, Y }) = {X, Y }(μ) = {ψμ(X), ψμ(Y )}(μ).

Using the k(t∗)-linearity of the Poisson bracket on A, we conclude that { , }(μ) is
a Poisson structure on S(m)t and ψμ is a Poisson homomorphism with respect to
{ , }(μ).

The ringA = ⊕

N�0 AN is graded by the degree inm withAN = SN (m)t ⊗k

k(t∗) andψμ(Aμ∩AN ) = SN (m)t. Since the Poisson bracket onA is k(t∗)-linear,
for any A ∈ S(g)t and any N � 0, the subset ZA(A�N ) = ZAA∩ (

⊕N
i=0 Ai ) is a

vector space over k(t∗). It is a subspace of a finite-dimensional k(t∗)-space A�N .
Evaluating the defining equations of the centraliserZA(A�N ) at μ ∈ t∗, we obtain

dimk(t∗) ZA(A�N ) = dim
(

Zψμ(A)(S(m)t, { , }(μ)) ∩ S�N (m)
)

, (2.1)

whenever μ is generic enough.
Recall that we identify t∗ with Ann(m) ⊂ g∗.

Theorem 2.1. If μ ∈ t∗, then ψμ(Z̃) = ψμ((MF)μ).

Proof. Suppose first that μ 
= 0. We fix h ∈ t such that μ(h) = 1 and write g =
kh ⊕ kerμ, where m ⊂ kerμ. Let H ∈ S(g)g be homogeneous with deg H = d.
We decompose H as a sum

H = H0hd + H1hd−1 + · · · + Hkhk + · · · + Hd ,

where Hk ∈ Sk(kerμ). By the choice of h, we have

∂k
μH =

d
∑

r=k

r(r − 1) . . . (r − k + 1)hr−k Hd−r

and

ψμ(∂k
μH) =

d
∑

r=k

r(r − 1) . . . (r − k + 1)ψμ(Hd−r ).

Therefore ψμ((MF)μ) = alg〈ψμ(Hd−r ) | d � 1, H ∈ Sd(g)g, 0 � r < d〉.
Let Md−i ∈ Sd−i (m) be such that the bi-homogeneous component Hi,d−i ∈

Si (t) ⊗ Sd−i (m) of H lies in hi Md−i + (kerμ ∩ t)S(g). Then

ψμ(Hi,d−i ) = Md−i = ψμ(hi Hd−i ) = ψμ(Hd−i )

for all i . Since Z̃ is generated by t and Hi,d−i with H ∈ Sd(g)g, we are done for
μ 
= 0.

If μ = 0, then (MF)0 = S(g)g and ψ0(H) = ψ0(H0,d). For other generators
of Z̃, we have ψ0(t) = 0 and ψ0(Hi,d−i ) = 0, whenever i > 0. ��
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AMishchenko–Fomenko subalgebra is Poisson commutative and ψμ is a Pois-
son homomorphism; hence

0=ψμ({(MF)μ, (MF)μ})={ψμ((MF)μ), ψμ((MF)μ)}(μ)

= {ψμ(Z̃), ψμ(Z̃)}(μ) =ψμ({Z̃, Z̃})
for each μ ∈ t∗. Since for any A ∈ A \ {0}, the image ψμ(A) is well-defined
and nonzero for almost all μ, Theorem 2.1 provides a new proof for the fact that
{Z̃, Z̃} = 0.

Assume that μ ∈ t∗ ∩ g∗
reg. Then the polynomials ∂k

μ Hj with 1 � j � l and

0 � k < d j are algebraically independent, cf. [11]. In particular, {∂d j −1
μ Hj | 1 �

j � l} is a basis of t and t ⊂ (MF)μ. This fact follows also from the Kostant
regularity criterion for g [6, Theorem 9],

〈dξ Hj | 1 � j � l〉k = gξ if and only if ξ ∈ g∗
reg, (2.2)

since dμ Hj = 1
(d j −1)!∂

d j −1
μ Hj .

Quadratic elements of (MF)μ are of particular importance. If not stated oth-
erwise, assume that g is semisimple. Set f j := f j (μ) := ψμ((Hj )(d j −2,2)). Then

∂
d j −2
μ Hj ∈ (d j − 2)! f j + S2(t). (2.3)

Since t ⊂ (MF)μ, we have f j ∈ (MF)μ for all j . Furthermore, the component
of grade 2 in (MF)μ is equal to S2(t) ⊕V(μ), where V(μ) = 〈 f j | 1 � j � l〉k.
If μ is generic enough, then (MF)μ is equal to the Poisson centraliser

ZV(μ) := {F ∈ S(g)t | {F, f j } = 0 ∀ j}
by [14, Theorem 1].

Remark 2.2. An explicit description of the elements f j is crucial for the consider-
ations in [14,19] and many others. We present a quick elementary argument that
produces such a description. Set h j = dμ Hj . Similar to the proof of Theorem 2.1,
write g = kh ⊕ kerμ, where μ(h) = 1. Then

Hj = chd j + hd j −1h′ + hd j −2H ′ +
∑

α∈�+
Cαhd j −2eαe−α +

d j
∑

k=3

hd j −k Hj,k,

where c, Cα are scalars, h′, H ′, Hj,k ∈ S(kerμ), and h′ ∈ t, H ′ ∈ S2(t). In this
notation, h j = cd j h + h′. Since Hj ∈ S(g)g, we have {eα, Hj } = 0 for each
α ∈ �+. Note that {eα, e−α} = μ(hα)h + h′′, where h′′ ∈ (kerμ∩ t). Considering
the terms of {eα, Hj } that lie in khd j −1m, and then necessarily in khd j −1eα , we
obtain

−α(cd j h + h′) + Cαμ(hα) = 0

for each positive root α. Since μ ∈ t∗ ∩g∗
reg, we have μ(hα) 
= 0 for each α ∈ �+.

Hence Cα = α(h j )

μ(hα)
. Here f j = ∑

α∈�+ Cαeαe−α .
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The discussion in Remark 2.2 confirms the description obtained by Vinberg in
[19] :

V(μ) =
⎧

⎨

⎩

∑

α∈�+

α(h)

μ(hα)
eαe−α | h ∈ t

⎫

⎬

⎭
, (2.4)

whenever μ ∈ t∗ ∩ g∗
reg.

2.1. Bi-linear operations { , }(γ ) and { , }m
For any γ ∈ t∗, we have defined a Poisson bracket { , }(γ ) = { , }m + { , }γ on
S(m)t as a sum of two bi-linear operations. The second summand is the restriction
to S(m)t of the Poisson bracket “with frozen argument” { , }γ , which is defined on
S(g). Note that the operation { , }m is not a Poisson bracket on S(m), because it does
not satisfy the Jacobi identity. However, in case γ = 0, we obtain { , }m = { , }(0),
which is a Poisson bracket on S(m)t.

Let x̂ be a skew-symmetric form on g associated with x ∈ g∗, i.e., x̂(ξ, η) =
x([ξ, η]) if ξ, η ∈ g. For a Poisson structure, one defines its Poisson tensor (bivec-
tor) π by the property that {F, H} = π(dF ∧ dH) for functions F and H . In this
terms, x̂ = π(x), if π is the Poisson tensor of { , }. In general, one says that the
rank of the Poisson structure is equal to the rank rk π of its Poisson tensor. Then
rk π is the maximal dimension of a symplectic leave of π , see e.g. [2, Chapter 1].

Proposition 2.3. Let B be a Poisson commutative subalgebra of (S(m)t, { , }(γ )).
Then for any γ , we have tr.degB � dim u.

Proof. We identify S(m) with k[γ + m∗]. Then
{F, H}(γ )(x) = x([dx F, dx H ]) = x̂(dx F, dx H) for all x ∈ γ + m∗, F, H ∈ S(m)t.

Since {B,B}(γ ) = 0, the subspace dxB is isotropic w.r.t. x̂ for any x ∈ γ + m∗.
Furthermore x̂(dxS(g)t, t) = 0.

Let T ⊂ G be the torus with Lie T = t. Generic T -orbits on γ +m∗ are closed,
hence they are separated by the regular T -invariants k[γ + m∗]T ∼= S(m)t. Thus
dxS(m)t ⊂ T ∗

x (γ + m∗) is the annihilator of the tangent space Tx (T x) = ad∗(t)x
of the orbit T x for a generic x ∈ γ + m∗. The orthogonal complement t⊥x̂ of t in
g w.r.t. x̂ is the subset

{ξ ∈ g | x([ξ, t]) = 0} = {ξ ∈ g | ad∗(t)x annihilates ξ}.
Here we have t⊥x̂ = t ⊕ dxS(m)t = dxS(g)t. Note that rk x̂ = dim g − l.

Keeping the assumption that x is generic, we have t∩ker x̂ = 0. Since x̂(t, t) =
0, the rank of x̂ |t⊥x̂ is equal to rk x̂ − 2 dim t. Thus

rk(̂x |dxS(m)t) = rk(̂x |dxS(g)t) = dim g − 3l = 2(dim u − l). (2.5)

Since dim dxS(m)t = dim g − 2l, we obtain dim dxB � (dim u − l) + (dim g −
2 l − (dim g − 3 l)) = dim u. Thus, tr.degB � dim u. ��
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The equality (2.5) shows that the rank of the Poisson bracket { , }(γ ) on S(m)t

is equal to 2(dim u − l) = dimm − 2 l.

Remark 2.4. Set Yγ := γ + m∗. The algebra S(m)t ∼= k[Yγ ]T is the algebra of
regular functions on the affine variety Yγ //T and the bracket { , }(γ ) on S(m)t is
obtained by the Hamiltonian reduction w.r.t. the restriction g∗ → t∗. We have
dim Yγ //T = tr.deg S(m)t = dim g − 2l. The bound for tr.degB given by Propo-
sition 2.3 is of the form dim Yγ //T − 1

2 (dimm − 2l), where dimm − 2l is the
rank of the Poisson structure in question. This is a general upper bound, exist-
ing for any Poisson algebra. The equality (2.5) can be deduced from the fact
that generic symplectic leaves of Yγ //T are of the form (Gx ∩ Yγ )//T with
dim(Gx ∩ Yγ )//T = dim g − 3 dim t.

Theorem 2.5. Suppose that μ ∈ t∗ ∩ g∗
reg. Then for any γ ∈ t∗, we have

tr.degψγ ((MF)μ) = dim u, and ψγ ((MF)μ) is a maximal Poisson commutative
subalgebra of (S(m)t, { , }(γ )).

Proof. Let {e, h, f } ⊂ g be a principal sl2-triple such that h ∈ t, e ∈ u, f ∈
u−. Set χ+ = κ(e, . ), χ− = κ( f, . ) ∈ g∗. Since e + (t ⊕ u−) and f + (t ⊕
u) consist of regular elements [6], we have (kχ+ ⊕ kχ− ⊕ kμ) ∩ g∗

sing = 0.
Therefore dim dx (MF)μ = b(g) for any nonzero x ∈ kχ+ ⊕ kχ−, see e.g. [12,
Cor. 1.6&Lemma2.1].

For any F ∈ S(g) and y ∈ m∗, we have dy F ∈ dy(ψ0(F)) + t. Hence
dim dxψ0((MF)μ) is equal to dim u. Eachψγ ((MF)μ) is a Poisson commutative
subalgebra of (S(m)t, { , }(γ )), thereby tr.degψγ ((MF)μ) � dim u by Proposi-
tion 2.3. Thus, tr.degψ0((MF)μ) = dim u.

The differentials dx (ψ0(∂
k
μ Hj )) with k < d j − 1 and 1 � j � l are linearly

independent for each x ∈ (kχ+ ⊕ kχ−)\{0}. Thus, J ∩ (kχ+ ⊕ kχ−) ⊂ {0} for
the Jacobian subset

J = {y ∈ m∗ |
∧

0�k<d j −1, 1� j�l

dy(ψ0(∂
k
μHj )) = 0}.

If F ∈ S(g) is homogeneous, then ψ0(F) is also homogeneous. This applies to
each ∂k

μ Hj and leads to the conclusion that J does not contain divisors. By [10,
Theorem 1.1], ψ0((MF)μ) is an algebraically closed subalgebra of S(m), i.e.,
if F ∈ S(m) is algebraic over the quotient field Quotψ0((MF)μ), then F ∈
ψ0((MF)μ).

Suppose ψ0((MF)μ) ⊂ B ⊂ (S(m)t, { , }(γ )), where B is a Poisson commu-
tative subalgebra. Then tr.degB � dim u by Proposition 2.3. Thereby the inclusion
ψ0((MF)μ) ⊂ B is an algebraic extension and ψ0((MF)μ) = B. The argument
shows also that ψ0((MF)μ) coincides with its Poisson centraliser in S(m)t w.r.t.
{ , }m and finishes the case γ = 0.

For any homogeneous F ∈ S(g) \ tS(g), the image ψ0(F) is the highest degree
component of any ψγ (F). In particular, the equality tr.degψ0((MF)μ) = dim u
leads to tr.degψγ ((MF)μ) � dim u, thereby tr.degψγ ((MF)μ) = dim u.
Assume that F ∈ S(m)t commutes with ψγ ((MF)μ) w.r.t. { , }(γ ) and does
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not lie in ψγ ((MF)μ). Then the highest degree component of F commutes with
ψ0((MF)μ) w.r.t. { , }m, which means that this component lies in ψ0((MF)μ).
Then we can reduce the degree of F by subtracting a suitable element of
ψγ ((MF)μ). This standard reduction argument proves thatψγ ((MF)μ) is a max-
imal Poisson commutative subalgebra of (S(m)t, { , }(γ )) for each γ ∈ t∗. ��
Corollary 2.6. Both, B1 = (MF)μ ⊗S(t) k(t∗) and B2 = Z̃ ⊗S(t) k(t∗), are
maximal Poisson commutative subalgebras of A.

Proof. By the construction, {Bi ,Bi } = 0 for both i . Assume that Bi is not max-
imal. Then there is a ∈ A \ Bi such that {a,Bi } = 0. For each γ ∈ t∗, we have
ψγ ((MF)μ) ⊂ ψγ (B1) and ψγ (Z̃) ⊂ ψγ (B2). For any γ ∈ t∗ such that a(γ ) is
well-defined, {ψγ (a), ψγ (Bi )}(γ ) is zero. If γ is regular in g∗, thenψγ ((MF)μ) =
ψγ (B1), ψγ (Z̃) = ψγ ((MF)γ ) = ψγ (B2), and ψγ (a) ∈ ψγ (Bi ) by Theo-
rems 2.5, 2.1.

There is N � 0 such that a ∈ A�N . Here A�N is a finite-dimensional vector
space over k(t∗) and a /∈ A�N ∩ Bi . Then for almost all γ , we have ψγ (a) /∈
ψγ (A�N ∩ Bi ). The algebra Z̃ is generated by bi-homogeneous elements. Hence
it is graded by the m-degree, Z̃ = ⊕

k�0(Ak ∩ Z̃). Recall that ψγ (Ak) = Sk(m)t.
Thus, in case i = 2,

ψγ (B2) = ψγ (Z̃) =
⊕

k�0

ψγ (Ak ∩ Z̃),

and we can conclude that ψγ (a) /∈ ψγ (B2) for generic γ , which is a contradiction.
The algebra (MF)μ is not homogeneous inm. However, the highestm-degree

components of the generators ∂k
μ Hj with k < d j −1 lie inS(m) and are algebraically

independent by Theorem 2.5. Therefore, ifψγ (a) /∈ ψγ (A�N ∩B1), thenψγ (a) /∈
ψγ (B1). ��

2.2. Poisson centraliser of the quadratic part

For any F ∈ S(g), let F• be the component of F of the highest degree in t. If
F ∈ S(g) is homogeneous and ψγ (F•) 
= 0 for γ ∈ t∗, then ψγ (F•) is the
lowest degree component of ψγ (F). Let F ∈ ZV(μ) be homogeneous. Since f j =
f j (μ) ∈ S(m) for each j , we may writeψγ ( f j ) = f j . Then { f j , ψγ (F)}(γ ) = 0
and { f j , ψγ (F•)}γ = 0. A computation of { f j , ψγ (F•)}γ is not difficult, cf. [14],
because

{eβe−β,
∏

α∈�+
(erα

α e
r−
α−α)}γ = γ (hβ)(r−

β − rβ)
∏

α∈�+
(erα

α e
r−
α−α),

if β ∈ �+. Note that the centraliser ZV(μ) is a homogeneous subalgebra of S(g).

We write ψγ (F•) in the basis {e±α | α ∈ �+}. Let M = cr̄ ,γ

∏

α∈�+(erα
α e

r−
α−α)

be a summand of ψγ (F•) with cr̄ ,γ 
= 0. Then the explicit description of V(μ),
see (2.4), implies that
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∑

α∈�+

α(h̃)

μ(hα)
(rα − r−

α )γ (hα) = 0 (2.6)

for each h̃ ∈ t. The equality holds for all points γ such that cr̄ ,γ 
= 0. These points
form a dense open subset of t∗. Thereby

∑

α∈�+

α(h̃)

μ(hα)
(rα − r−

α )hα = 0. (2.7)

If the numbers 1
μ(hα)

are linearly independent overQ, then rα = r−
α for each positive

root α [14]. In the same paper, it is shown that indeed the numbers 1
μ(hα)

are linearly
independent over Q for generic μ ∈ t∗. We keep the assumption μ ∈ g∗

reg.

Lemma 2.7. (cf. [14]) Suppose that ψγ (F•) lies in k[eαe−α | α ∈ �+] for any
F ∈ ZV(μ) and any γ ∈ t∗. Then ZV(μ) = (MF)μ.

Proof. If F• does not lie in k[t, eαe−α | α ∈ �+] for some F ∈ ZV(μ), then
there is γ ∈ t∗, such that ψγ (F•) /∈ k[eαe−α | α ∈ �+], a contradiction. Thus
F• ∈ k[t, eαe−α | α ∈ �+] for each F ∈ ZV(μ) and tr.deg k[F• | F ∈ ZV(μ)] �
|�+|+ l = b(g). The algebrasZV(μ) and k[F• | F ∈ ZV(μ)] are homogeneous and
their Poincaré series coinside. Hence they have one and the same transcendence
degree by [1, Satz4.5]. Thus tr.degZV(μ) � b(g). By the construction, (MF)μ ⊂
ZV(μ). Moreover, tr.deg (MF)μ = b(g) and the algebra (MF)μ is algebraically
closed in S(g) [11, Sect. 3]. Since (MF)μ ⊂ ZV(μ) is an algebraic extension, we
have (MF)μ = ZV(μ). ��

Proposition 2.8. Suppose that g is of type An−1. Then (MF)μ = ZV(μ) for any
μ ∈ t∗ ∩ g∗

reg.

Proof. Let M = cr̄ ,γ

∏

α∈�+(erα
α e

r−
α−α) be a summand of ψγ (F•) with cr̄ ,γ 
= 0

for some homogeneous element F ∈ ZV(μ) and some γ ∈ t∗. For h̃ =
1
n diag(n−1,−1, . . . ,−1), the equality (2.7) reads

n
∑

k=2

1

μ(E11 − Ekk)
(rε1−εk − r−

ε1−εk
)(E11 − Ekk) = 0.

Since thematrices E11−Ekk with 2 � k � n are linearly independent, we conclude
that rε1−εk = r−

ε1−εk
for each k. Then inserting 1

n−1diag(0, n−2,−1, . . . ,−1) as

h̃ brings rε2−εk = r−
ε2−εk

for all k � 3. Continuing in this way, we prove that the
assumptions of Lemma 2.7 are satisfied for F and hence also for all elements of
ZV(μ). ��
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3. Remarks on quantisation

A commutative subalgebra Q ⊂ U(g) is a quantisation of a Poisson commutative
subalgebra B ⊂ S(g), if gr(Q) = 〈gr(a) | a ∈ Q〉k coincides with B.

Keep the assumption μ ∈ t∗ ∩g∗
reg. Then t ⊂ (MF)μ. Assume thatQ ⊂ U(g)

is a quantisation of (MF)μ. Then t ⊂ Q and Q ⊂ U(g)t. We regard f j =
∑

α∈�+ Cαeαe−α as an element ofU(g)without adding new summands or changing
the order of the factors. Since gt = t, the subalgebraQmust contain all f j ∈ U(g).
In [19], it is shown that [ f j , f i ] = 0 in U(g) for all i, j . Set Ṽ(μ) = 〈 f j | 1 �
j � l〉k ⊂ U(g).

If μ is generic enough, then (MF)μ is equal to the Poisson centraliser ZV(μ)

[14]. Therefore Q is the centraliser of Ṽ(μ) in U(g)t. The quantisation of this
(MF)μ is unique. In type A, it was shown earlier in [18], that the quantisation of
(MF)μ is unique for any μ ∈ t∗ ∩ g∗

reg. Proposition 2.8 provides a new proof for
the uniqueness result in case g = sln .

The existence of Q is proven in [9] for classical g, in [17] for type A, and
in [4,15] for any g. Let Fγ ⊂ U(g) with γ ∈ g∗ be the quantum Mishchenko–
Fomenko subalgebra, which is a commutative algebra constructed in [15] and [4].
Then gr(Fγ ) = (MF)γ for any γ ∈ g∗

reg [4,15] and for any γ ∈ g∗ in case g is of
type A or C [8].

Now we lift elements Fj = (Hj )(d j −2,2) ∈ Z̃ to U(g). Write Fj =
∑

α∈�+ Fj,αeαe−α , where Fj,α ∈ Sd j −2(t), and regard this sum as an element
ofU(g). Recall that in S(g), we have f j ∈ (MF)μ and ψμ(Fj ) = ψμ( f j ) = f j .

We work with C = U(g)t ⊗S(t) k(t∗) as with a non-commutative algebra over
k(t∗) generated by the monomials

M = er1
α1

. . . erN
αN

e
r−

N−αN
. . . e

r−
1−α1

, (3.1)

where N = |�+|, some numbering of the positive roots is fixed, and
∑N

i=1(ri −
r−

i )αi = 0. These monomials form a basis of S(m)t. We say that
∑N

i=1(ri +r−
i ) =:

degm M is the degree (or them-degree) of M . The algebra structure of C is given by

the coefficients QM ′,M ′′
M ∈ k(t∗) of M ′M ′′ = ∑

M QM ′,M ′′
M M , where M, M ′, M ′′

are of the form (3.1). In these terms, one can extend the map ψμ : Aμ → S(m)t

to a rational map from C by evaluating at μ the coefficients QM ′,M ′′
M . Formally, set

Cμ = {A ∈ C | A(μ) is well-defined }. As a vector space, the image ψμ(Cμ) =:
Ũ(m)t is isomorphic to S(m)t. We let [ , ](μ) stand for the Lie algebra structure
on it. The algebra (Ũ(m)t, [ , ](μ)) should not be regarded as a subset of U(m)t in
whatever sense! Note that a similar construction exists for any k(t∗)-basis of C.

Example 3.1. We check that [Fj , Fs] = 0 in U(g) for all j and s. By definition

[Fj , Fs] =
∑

α,β∈�+
Fj,α Fs,βeαe−αeβe−β −

∑

α,β∈�+
Fj,α Fs,βeβe−βeαe−α

=
∑

α 
=β

Fj,α Fs,β(eαe−αeβe−β − eβe−βeαe−α)
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=
∑

α 
=β

Fj,α Fs,β([eα, eβ ]e−αe−β + eα[e−α, eβ ]e−β + eβ [eα, e−β ]e−α

+eβeα[e−α, e−β ]).
In this particular case, further straightening of the sums in brackets does not involve
elements of t. For each γ ∈ t∗ ∩ g∗

reg, the elements ψγ (Fj ) and ψγ (Fs) belong to
the quantum Mishchenko–Fomenko subalgebra Fγ ⊂ U(g) associated with γ . If
we replace each Fj,α Fs,β with ψγ (Fj,α), ψγ (Fs,β), then the total sum is zero for
each γ ∈ t∗ ∩ g∗

reg. This implies that the initial sum is zero in U(g).

The algebraC = ⋃

N�0 CN is filtered by the degree inm. HereC0 = C1 = k(t∗)
and the k(t∗)-space C2 has a basis {1, eαe−α | α ∈ �+}. More generally, any CN

has a monomial basis consisting of the monomials M , of the form (3.1), with
degm M � N . Since the commutator in C is k(t∗)-linear, for any A ∈ U(g)t and
any N � 0, the centraliser ZA(CN ) = ZAC∩ CN is a vector space over k(t∗). It is
a subspace of the finite-dimensional space CN . Evaluating the defining equations
of ZA(CN ) at μ ∈ t∗, we obtain

dimk(t∗) ZA(CN ) = dim
(

Zψμ(A)(Ũ(m)t, [ , ](μ)) ∩ ŨN (m)
)

, (3.2)

whenever μ is generic enough. This applies also to centralisers of finite subsets of
elements. Since ψμ(Fμ) commutes with all ψμ( f j ) = ψμ(Fj ) w.r.t. [ , ](μ), the
equality (3.2) shows that the coefficients of the Poincaré series of the centraliser

Z
Ṽ(μ)U(g)t = {� ∈ U(g)t | [�, Fj ] = 0 ∀ j}

are large, dimk(t∗) ZṼ(μ)(CN ) � DN , where

DN = dim(S�N (m)S(t) ∩ k[∂k
μHj | 1 � j � l, 0 � k < d j − 1]).

In other words, enough elements of U(g)t commute with Ṽ(μ). It is not known,
whether the centraliser Z

Ṽ(μ)U(g)t is commutative or not. In order to solve the

quantisation problem for Z̃, one may try to obtain upper bounds for dimensions
related to Z

Ṽ(μ)U(g)t or to Z
Ṽ(μ)C.

Let symm : S(g) → U(g) be the canonical symmetrisation map.

Theorem 3.2. Suppose that g is of type Al . Then there is a commutative subalgebra
Z ⊂ U(g)t such that gr(Z ) = Z̃ and Fj = ∑

α∈�+ Fj,αeαe−α ∈ Z for each
1 � j � l.

Proof. For convenience, we work with g = gln instead of sll+1. Let Hj = � j

be coefficients of the characteristic polynomial, here deg� j = j . We write � j in
the basis {Eik | i, k � n}. Let X be a monomial appearing in � j with a nonzero
coefficient. If Eii is a factor of X , then for all other factors Esk of X , we have
i /∈ {s, k}. For t = 〈Eii | 1 � i � n〉k, the t-factors of X commute with all factors
of X . Another feature of the set {� j | 1 � j � n} is that

Fξ = alg〈symm(∂k
ξ � j ) | 1 � j � n, 0 � k < j〉 for any ξ ∈ g∗,
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see [16,18] and [8, Theorem 3.1]. Set

Z = alg〈t, symm((� j )(i, j−i)) | 1 � j � n, 0 � i � j − 2〉 ⊂ U(g)t.

We have gr(Z ) = Z̃, because a basis of t and the elements (� j )(i, j−i) form
an algebraically independent set of generators of Z̃. In order to prove that Z is
commutative, we use maps ψμ : Cμ → Ũ(m)t with μ ∈ t∗, working now with the
k(t∗)-basis

{symm(M) | M ∈ S(m)t monomial in Ei j with i, j � n}
of C.

We decompose (� j )(i, j−i) = ∑

s P(s)
j,i M (s)

j, j−i , where P(s)
j,i ∈ Si (t) are pairwise

different monomials in elements Ekk and M (s)
j,u ∈ Su(m) are nonzero. Since the

factors of P(s)
j,i commute with M (s)

j, j−i , we have

symm(P(s)
j,i M (s)

j, j−i ) = P(s)
j,i symm(M (s)

j, j−i )

for each s. Furthermore, ∂k
μ(P(s)

j,i M (s)
j, j−i ) = (∂k

μ P(s)
j,i )M (s)

j, j−i and

symm(∂k
μ(P(s)

j,i M (s)
j, j−i )) = (∂k

μ P(s)
j,i )symm(M (s)

j, j−i ).

Finallyψμ◦symm(∂k
μ(P(s)

j,i M (s)
j, j−i )) = i(i−1) . . . (i−k+1)P(s)

j,i (μ)symm(M (s)
j, j−i ).

Thereforeψμ(Fμ) is generated by
∑

s P(s)
i, j (μ)symm(M (s)

j, j−i )with 1 � j � n and

0 � i � j −2. Recall thatψμ(Fμ) is a commutative subalgebra of (Ũ(m)t, [ , ](μ))

by the construction.
Next we observe thatψμ◦symm((� j )(i, j−i)) = ∑

s P(s)
j,i (μ)symm(M (s)

j, j−i ) ∈
ψμ(Fμ). Thus, ψμ(Z ) is commutative for any μ ∈ t∗. By a general principle
already used in Sect. 2, this implies [Z ,Z ] = 0. In case of

Fj = (� j )( j−2,2) =
∑

α∈�+
Fj,αeαe−α with j � 2,

the coefficients Fj,α aremonomials in Ekk andsymm(Fj ) = ∑

α∈�+ Fj,α(eαe−α−
1
2hα) ∈ Z . Therefore also

∑

α∈�+ Fj,αeαe−α ∈ Z .
In order to return from gln to sll+1 with l + 1 = n, we restrict the invariants

� j to sl∗n . This can be achieved by writing first Eii = Ẽii + z for each i with
z = 1

n diag(1, . . . , 1) and then by setting z = 0. If �̃ j = � j |sl∗n and Z̃ ⊂ U(sln) is

generated by t together with the elements symm((�̃ j )(i, j−i)), where j � 2, then
Z̃ is a required commutative subalgebra. ��

The quantisation Z ⊂ U(g)t of Z̃ described in the proof of Theorem 3.2 is
a curious subalgebra. Let Vλ be an irreducible finite-dimensional g-module with
g = sln and (Vλ)μ the subspace of Vλ corresponding to a t-weight μ. ThenZ acts
on (Vλ)μ asFμ. In particular, the action ofZ on Vλ is diagonalisable, sinceμ takes
real values on the standard real form of t, see [3]. Furthermore, if μ ∈ t∗ ∩ g∗

reg,
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then also by results of [3],Fμ, and henceZ , acts on (Vλ)μ with a simple spectrum.
However, the action ofZ on (Vλ)μ may not have a simple spectrum ifμ /∈ t∗∩g∗

reg.
For instance, Z acts via scalars on the zero weight subspace V t

λ .

Example 3.3. Suppose that g = sl3. Then Z̃ is generated by a basis of t, two
invariants H1, H2, and F2 = (H2)(1,2) = ∑

α∈�+ F2,αeαe−α . Here F2,α ∈ t for
each α. We regard F2 as an element of U(g). Then Z is generated by t, F2, and
H̃1, H̃2, where H̃1, H̃2 ∈ U(g) are independent central elements. On an irreducible
finite-dimensionalg-moduleVλ, the last twogenerators act via scalarmultiplication.
The actions of t and F2 annihilate V t

λ .
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