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Abstract. We determine the combinatorial types of all the 3-dimensional simple convex
polytopes in R

3 that can be realized as mean curvature convex (or totally geodesic) Rieman-
nian polyhedra with non-obtuse dihedral angles in Riemannian 3-manifolds with positive
scalar curvature. This result can be considered as an analogue of Andreev’s theorem on 3-
dimensional hyperbolic polyhedrawith non-obtuse dihedral angles. In addition, we construct
many examples of such kind of simple convex polytopes in higher dimensions.

1. Introduction

A Riemannian polyhedron of dimension n is a polyhedral domain W with faces
in an n-dimensional Riemannian manifold (M, g) with the induced Riemannian
metric g(W ) = g|W (see Gromov [12, 1]). Moreover, each codimension-one face
(or facet) Fi of W is contained in a smooth hypersurface �i of M such that

• Whenever two facets Fi and Fj of W are adjacent, the corresponding hyper-
surfaces �i and � j intersect transversely in M .

• The boundary ∂Fi of each facet Fi consists of Fi ∩ Fj where Fj ranges over
all the facets adjacent to Fi , and the decomposition ∂Fi = ⋃

j Fi ∩ Fj gives
an (n − 1)-dimensional Riemannian polyhedron structure to Fi .

Note that the ambient manifold M here is not necessarily compact or closed.
Typical examples of Riemannian polyhedra are the intersections of finitely many
domains with smooth mutually transversal boundaries in a Riemannian manifold
(e.g. convex polytopes in the Euclidean space R

n).

Definition 1.1. Let Wi be a Riemannian polyhedron in (Mi , gi ), i = 1, 2. We call
W1 and W2 combinatorially equivalent if there is a bijection between their faces
that preserves the inclusion relation. We call W1 and W2 pseudo-diffeomorphic
if there exists a homeomorphism ϕ : W1 → W2 which is the restriction of a

Thiswork is partially supported byNational Natural Science Foundation of China (Grant
No. 11871266) and the PAPD (priority academic program development) of Jiangsu higher
education institutions.
L. Yu: Department ofMathematics, Nanjing University, Nanjing 210093, People’s Republic
of China. e-mail: yuli@nju.edu.cn

Mathematics Subject Classification: 51M20 · 51F15 · 52B10 · 53C23 · 57M50 · 57S12

https://doi.org/10.1007/s00229-023-01501-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s00229-023-01501-7&domain=pdf
http://orcid.org/0000-0003-4009-9837


270 L. Yu

diffeomorphism from an open neighborhood ofW1 in M1 to an open neighborhood
ofW2 in M2, and we call ϕ a pseudo-diffeomorphism fromW1 toW2. If, moreover,
ϕ is face-preserving (i.e. ϕ maps every face of W1 homeomorphically onto a face
of W2), we call ϕ a diffeomorphism from W1 to W2. In this case, we also say that
W2 is a realization of W1 in (M2, g2). It is clear that a diffeomorphism from W1 to
W2 induces a combinatorial equivalence.

ByWiemeler [24, Corollary 5.3] (also see Davis [8, Corollary 1.3]), two simple
convex polytopes in R

n are diffeomorphic (as Riemannian polyhedra) if and only
if they are combinatorially equivalent. Recall that a convex polytope P in R

n is
called simple if every codimension-k face of P is contained in exactly k different
facets of P . The reader is referred to [27] for the basic notions of convex polytopes.

Definition 1.2. Let W be a Riemannian polyhedron.

• We say that W has acute or non-obtuse dihedral angles if the dihedral angle
function on every codimension-two face of W ranges in (0, π/2) or (0, π/2].
Especially, we call W right-angled if the dihedral angle function on every
codimension-two face of W is constantly π/2.

• We call W mean curvature convex if every facet of W has non-negative mean
curvature in the ambient Riemannian manifold. Especially, we call W totally
geodesic if every facet of W is a totally geodesic submanifold.

Convention In this paper, the mean curvature of a boundary point of a domain in a
Riemannian manifold is always taken with respect to the inward unit normal vector.

The main purpose of this paper is to study the combinatorial types of all the 3-
dimensional simple convex polytopes in R

3 that can be realized as mean curvature
convex (or totally geodesic) Riemannian polyhedrawith non-obtuse dihedral angles
in Riemannian 3-manifolds with positive scalar curvature.

For n ≥ 1, let �n and [0, 1]n denote the standard n-simplex and n-cube in R
n ,

respectively. The following is the main theorem of this paper.

Theorem 1.3. Suppose P is a 3-dimensional simple convex polytope in R
3. Then

P can be realized as a mean curvature convex Riemannian polyhedron with non-
obtuse dihedral angles in a Riemannian 3-manifold with positive scalar curvature
if and only if P is combinatorially equivalent to a convex polytope that can be
obtained from �3 by a sequence of vertex-cuts.

Definition 1.4. (Vertex-Cut) Let P be an n-dimensional simple convex polytope
in R

n and v a vertex of P . Choose a plane H in R
n such that H separates v from

the other vertices of P . Let H≥ and H≤ be the two half spaces determined by H
and assume that v belongs to H≥. Then P ∩ H≥ is an (n−1)-simplex, and P ∩ H≤
is a simple convex polytope which we refer to as a vertex-cut of P . For example, a
vertex-cut of�3 is combinatorially equivalent to�2×[0, 1] (the triangular prism).

The simplicial polytope dual to a convex polytope that is obtained from �3

by a sequence of vertex-cuts is known as a stacked 3-polytope. By definition, a
stacked n-polytope is a polytope obtained from �n by repeatedly gluing another n-
simplex onto one of its facets (see [18]). One reason for the significance of stacked
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polytopes is that, among all simplicial n-polytopes with a given number of vertices,
the stacked polytopes have the fewest possible higher-dimensional faces.

A well known special case of Theorem 1.3 is: if a 3-dimensional simple con-
vex polytope P can be realized as a totally geodesic polyhedron with non-obtuse
dihedral angles in the standard unit 3-sphere S3, then combinatorially P must be a
3-simplex (see [7, Sec. 6.3]).

Corollary 1.5. Suppose P is a 3-dimensional simple convex polytope in R
3. Then

P can be realized as a right-angled totally geodesic Riemannian polyhedron in a
Riemannian 3-manifold with positive scalar curvature if and only if P is combina-
torially equivalent to a convex polytope that can be obtained from�3 by a sequence
of vertex-cuts.

Note that Theorem 1.3 and Corollary 1.5 still hold if we assume the scalar cur-
vature of the ambient Riemannian 3-manifold to be positive constant (see Corol-
lary 3.2).

Theorem 1.3 can be thought of as an analogue of Andreev’s theorem (see [1,2])
on totally geodesic polyhedra with non-obtuse dihedral angles in the 3-dimensional
hyperbolic space H

3 (see [20] for a new proof). Andreev’s theorem is essential for
proving Thurston’s Hyperbolization theorem for Haken 3-manifolds. Especially,
Andreev’s theorem tells us that a simple convex 3-polytope P can be realized as
a right-angled totally geodesic hyperbolic polyhedron in H

3 if and only if P has
no prismatic 3-circuits or prismatic 4-circuits (this result was also obtained by
A. V. Pogorelov in an earlier paper [19]).

In addition, the following question proposed by Gromov in [12] is related to
our study.

Question (Gromov [12, 1.7]): What are the possible combinatorial types of
mean curvature convex Riemannian polyhedra W with acute dihedral angles in a
Riemannian manifold with non-negative scalar curvature?

If W in the above question is the realization of 3-dimensional simple convex
polytope in a Riemannian 3-manifold with positive scalar curvature, then the com-
binatorial type of W must belong to the cases described in Theorem 1.3. But con-
versely, it is not clearwhetherwe can construct aRiemannian polyhedronwith acute
dihedral angles for every combinatorial type described in Theorem 1.3. Indeed, the
Riemannian polyhedra constructed in the proof of Theorem 1.3 are all right-angled.

The paper is organized as follows. In Sect. 2, we review the definition of real
moment-angle manifold associated to a simple convex polytope. Besides, we quote
a result fromWu andYu [25] onwhen a 3-dimensional real moment-anglemanifold
can admit a Riemannian metric with positive scalar curvature. In Sect. 3, we give
a proof of Theorem 1.3 using the idea of “doubling-smoothing” of Riemannian
manifolds described in [12, 2.1] along with the result from [25]. In Sect. 4, we
construct some examples of totally geodesic non-obtuse Riemannian polyhedra
with positive scalar curvature in higher dimensions and propose a question.‘
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2. Real moment-angle manifolds

Suppose P is an n-dimensional simple convex polytope in Euclidean space R
n .

Let F(P) = {F1, . . . , Fm} be the set of all facets of P . Let Z2 = Z/2Z and let
e1, . . . , em be a basis of (Z2)

m . Define a function λ0 : F(P) → (Z2)
m by

λ0(Fi ) = ei , 1 ≤ i ≤ m. (1)

For any proper face f of P , let G f denote the subgroup of (Z2)
m generated

by the set {λ0(Fi ) | f ⊂ Fi }. For any point p ∈ P , let f (p) denote the unique
face of P that contains p in its relative interior. In [6, Construction 4.1], the real
moment-angle manifold RZP of P is a closed orientable n-manifold defined by
the following quotient construction

RZP := P × (Z2)
m/ ∼ (2)

where (p, g) ∼ (p′, g′) if and only if p = p′ and g−1g′ ∈ G f (p). So at every
vertex of P , 2n copies of P are glued together so that locally they look like the 2n

cones of R
n bounded by the n coordinate hyperplanes meeting at the origin. Let

η : P × (Z2)
m → RZP (3)

be the quotient map. There is a canonical action of (Z2)
m on RZP defined by

g′ · [(p, g)] = [(p, g′ + g)], ∀ p ∈ P, ∀ g, g′ ∈ (Z2)
m,

whose orbit space can be identified with P . Let

	P : RZP → P

be the orbit map. Note that each facet F of P is also a simple convex polytope and,
	−1

P (F) is a disjoint union of several copies ofRZF embedded inRZP with trivial
normal bundles.

The study of real moment-angle manifolds is an important subject in toric
topology. The reader is referred to Davis and Januszkiewicz [6], Buchstaber and
Panov [5], Kuroki et al. [15] and Wu and Yu [25] for more information of the topo-
logical and geometric properties of real moment-angle manifolds. The construction
of RZP in (2) also makes sense for any smooth nice manifold with corners. The
topology of such generalized spaces are studied in a recent paper Yu [26].

In addition, we can realize RZP as a non-degenerate intersection of m − n real
quadrics (quadric hypersurfaces) in R

m , which induces a (Z2)
m-invariant smooth

structure on RZP (see [5, 6]). Consider a presentation of P as follows:

P = P(A, b) = {x ∈ R
n | 〈ai , x〉 + bi ≥ 0, i = 1, . . . ,m} (4)

where A = (a1, . . . , am) is an n ×m real matrix. Since P has a vertex, the rank of
A is equal to n. Define a map

i A,b : R
n → R

m, i A,b(x) = At x + b (5)
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where b = (b1, . . . , bm)t ∈ R
m . So the map i A,b embeds P into the positive cone

R
m≥0 = {(x1, . . . , xm) ∈ R

m | xi ≥ 0, i = 1, . . . ,m}. We can define a space RZA,b

by the following commutative diagram

RZA,b

��

iZ �� Rm

μ

��
P

iA,b �� Rm≥0

where μ(x1, . . . , xm) = (x21 , . . . , x
2
m). Clearly (Z2)

m acts on RZA,b with quotient
space P and iZ is a (Z2)

m-equivariant embedding. It is easy to see that RZA,b is
homeomorphic to RZP . In addition, the image of R

n under i A,b is an affine plane
of dimension n in R

m , which we can specify by m − n linear equations:

i A,b(R
n) = {y ∈ R

m | y = At x + b, x ∈ R
n}

= {y ∈ R
m | 
y = 
b}

where 
 = (γ jk) is an (m − n) × m matrix of rank m − n so that 
At = 0. In
other words, the rows of
 form a basis of all the linear relations among a1, . . . , am .
Then we can write the image of RZA,b under iZ explicitly as the common zeros
of m − n real quadratic equations in R

m :

iZ (RZA,b) =
{

(y1, . . . , ym)t ∈ R
m |

m∑

k=1

γ jk y
2
k =

m∑

k=1

γ jkbk, 1 ≤ j ≤ m − n

}

.

(6)

The above intersection of real quadrics is non-degenerate (i.e. the gradients
of these quadrics are linearly independent everywhere in their intersection). This
implies that RZA,b is embedded as an n-dimensional smooth submanifold in R

m

where (Z2)
m acts smoothly. So P is embedded as a Riemannian polyhedron in

iZ (RZA,b) with the induced metric from R
m .

Example 2.1. The standard simplex �n ⊂ R
n is defined by

�n = {(x1, . . . , xn) ∈ R
n | x1 + · · · + xn ≤ 1, xi ≥ 0, i = 1, . . . , n.}

By the notation in (4), we have �n = P(A, b) where

An×(n+1) =

⎛

⎜
⎜
⎜
⎝

1 0 · · · 0 − 1
0 1 · · · 0 − 1
...

...
...

...

0 0 · · · 1 − 1

⎞

⎟
⎟
⎟
⎠

, b = (0, 0, . . . , 0, 1)t ∈ R
n+1.

So the image of the embedding i A,b : �n ↪→ R
n+1 [see (5)] is given by

{(x1, . . . , xn+1) ∈ R
n+1 | x1 + · · · + xn+1 = 1, xi ≥ 0, i = 1, . . . , n + 1}.
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Then by (6), iZ (RZA,b) ⊂ R
n+1 is given by the following equation

y21 + · · · + y2n+1 = 1, (y1, . . . , yn+1)
t ∈ R

n+1

which is exactly the standard unit sphere Sn in R
n+1. Moreover, the canonical

(Z2)
n+1-action on RZ�n is equivalent to the action of (Z2)

n+1 on Sn by the
reflections about the coordinate hyperplanes of R

n+1. More precisely, for each
1 ≤ i ≤ n + 1, the i th generator of (Z2)

n+1 acts on Sn by

(y1, . . . , yi−1, yi , yi+1, . . . , yn+1) −→ (y1, . . . , yi−1,−yi , yi+1, . . . , yn+1).

In the following, we think of RZ�n as Sn equipped with the above (Z2)
n+1-action.

The theorem below tells us what kind of 3-dimensional real moment-angle
manifolds can admit a Riemannian metric with positive scalar curvature.

Theorem 2.2. (Proposition 4.8 and Corollary 4.10 in Wu-Yu [25]) Let P be a
3-dimensional simple convex polytope in R

3 with m facets. Then RZP admits a
Riemannianmetric with positive scalar curvature if and only if P is combinatorially
equivalent to a convex polytope that can be obtained from �3 by a sequence of
vertex-cuts. Moreover, we can choose the Riemannian metric with positive scalar
curvature on RZP to be invariant with respect to the canonical (Z2)

m-action on
RZP .

3. Proof of Theorem 1.3

Our proof of Theorem 1.3 is inspired by Gromov’s proof of the dihedral rigidity
of the n-cube in [12]. Gromov’s proof is based on the idea of doubling the cube n
times and uses the well-known fact that the n-dimensional torus admits no metric
with positive scalar curvature. Here we observe that for a simple convex polytope
P with m facets, doubling P m times gives the real moment-angle manifold RZP .
Then starting from a Riemannian metric with positive scalar curvature on P that
satisfies certain conditions on the boundary of P as stated in Theorem 1.3, we can
construct an invariant Riemannian metric on RZP with positive scalar curvature
by the procedure of “doubling-smoothing” of metrics described in [12]. So the
combinatorial type of P is restricted by Theorem 2.2. But the description of the
“doubling-smoothing” of Riemannian metrics in [12] is very sketchy, we will give
more detailed exposition in our proof of Theorem 1.3 below. Our proof slightly
generalizes the argument in Gromov and Lawson [10, Theorem 5.7].

Let A be a subspace of a topological space X . The double of X along A is the
quotient space of the disjoint union of two copies of X by identifying each point
of A in one copy of X to the same point in the other copy.

Suppose F and F ′ are two facets of aRiemannian polyhedronW which intersect
transversely at a codimension-two face F ∩ F ′.

• Let ∠(F, F ′)x denote the dihedral angle of W at a point x ∈ F ∩ F ′.
• Let ∠(F, F ′) denote the dihedral angle of W at an arbitrary point of F ∩ F ′.
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Proof of Theorem 1.3. Let P be a simple convex 3-polytope inR
3 whose facets are

F1, . . . , Fm . Let	P : RZP → P be the orbitmap of the canonical (Z2)
m-action on

RZP . So each	−1
P (Fi ), 1 ≤ i ≤ m, consists of some closed connected 2-manifolds

that intersect transversely in RZP . Since we are working in dimension 3, we do
not need to worry about the existence or uniqueness of the smooth structures in our
manifolds.

We first prove the “if” part. Suppose P is combinatorially equivalent to a con-
vex polytope that can be obtained from �3 by a sequence of vertex-cuts. Then by
Theorem 2.2, there exists a (Z2)

m-invariant Riemannian metric g0 with positive
scalar curvature on RZP . Note that P is realized as the fundamental domain of the
canonical (Z2)

m-action on RZP which is bounded by the submanifolds 	−1
P (Fi ),

1 ≤ i ≤ m. Moreover, by definition each	−1
P (Fi ) is the fixed point set of the gener-

ator ei ∈ (Z2)
m under the canonical (Z2)

m-action [see (1)]. It is a standard fact that
every connected component of the fixed point set (with the induced Riemannian
metric) of an isometry on a Riemannian manifold is a totally geodesic submanifold
(see [14, Theorem 1.10.15]). So each	−1

P (Fi ) consists of totally geodesic subman-
ifolds of (RZP , g0). In addition, the dihedral angles between any components of
	−1

P (Fi ) and 	−1
P (Fj ) (whenever they intersect) are always equal to π/2 since the

(Z2)
m-action on (RZP , g0) is isometric. Therefore, P is realized as a right-angled

totally geodesic Riemannian polyhedron in (RZP , g0). The “if” part is proved.
Next, we prove the “only if” part. We can obtain RZP by iterated doubling of

P as follows. By the notation in the definition of RZP [see (1) and (3)], define

Hj := the subgroup ofZn
2generated bye1, . . . , e j , 1 ≤ j ≤ m, and H0 := {0};

Then let

Y ( j) := η(P × Hj ), F ( j)
i := η(Fi × Hj ), 1 ≤ i, j ≤ m.

So Y ( j) is the gluing of 2 j copies of P under η whose boundary is

∂Y ( j) =
⋃

i> j

F ( j)
i .

In addition, for any facet Fi of P and any element g ∈ Z
m
2 , let

Fi,g := η(Fi × {g}), 1 ≤ i ≤ m.

Then we have

F ( j)
i =

⋃

g∈Hj

Fi,g, 1 ≤ i, j ≤ m.

SoY ( j) is aRiemannianpolyhedron inRZP whose facets are {Fi,g | i > j, g ∈ Hj }.
By identifying P with Y (0), we have a filtration (see Fig. 1 for example)

P = Y (0) ⊂ Y (1) ⊂ · · · ⊂ Y (m) = RZP .

Clearly, Y ( j+1) is the double of Y ( j) along F ( j)
j+1 for each 0 ≤ j ≤ m − 1. Note

that F ( j)
j+1 may not be connected.

In the following, we do induction on j and assume that:
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Fig. 1. The filtration of RZ�2 = S2

Fig. 2. Two types of edges on the boundary of W1

(a) There exists a pseudo-diffeomorphism ϕ j : Y ( j) → Wj where Wj is a mean
curvature convexRiemannian polyhedron in aRiemannian 3-manifold (Mj , g j )

with positive scalar curvature, and ϕ j maps every F ( j)
i on ∂Y ( j) to be a union

of facets of Wj .

Note that here we cannot require ϕ j to be face-preserving when j ≥ 1 since Wj

may have more facets than Y ( j) (see Fig. 2 for example).
We say that a facet E of Wj comes from the facet Fi of P if

	P (ϕ−1
j (E)) ⊂ Fi or equivalently E ⊂ ϕ j (F

( j)
i ) where j < i ≤ m.

There are two types of edges (codimension-two faces) on ∂Wj (see Fig. 2):
Type-I The intersection of two facets that come from different facets of P .
Type-II The intersection of two facets that come from the same facet of P .
Moreover, we assume Wj to satisfy the following two conditions in our induc-

tion hypothesis.

(b) The dihedral angles of Wj are non-obtuse at every Type-I edge on ∂Wj .
(c) The dihedral angles of Wj range in (0, π ] at every Type-II edge on ∂Wj .

From the above assumptions, we will construct a pseudo-diffeomorphism ϕ j+1
from Y ( j+1) to a mean curvature convex Riemannian polyhedron in a Riemannian
3-manifold with positive scalar curvature that satisfies (a),(b) and (c). First of all,
let

Vj := {x ∈ Mj ; dist(x,Wj ) ≤ δ}, δ 
 1;
By [9, Theorem 1.1], we can multiply a smooth function f : R → R to some

components of the metric g j |Wj and obtain a new metric g′
j with positive scalar

curvature on Wj so that the mean curvature of g′
j at every facet of Wj is positive.

So without loss of generality, we can just assume that the mean curvature of g j at
every facet of Wj is positive at the beginning. Then for a sufficiently small δ, it is
not hard to show that Vj is a mean curvature convex domain in (Mj , g j ).
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Fig. 3. A domain Uj containing Wj

Let e be an edge on boundary of ϕ j (F
( j)
j+1). We can write e = Ge ∩ ϕ j (F

( j)
j+1)

where Ge is a facet of Wj . Let Fe be the union of the geodesic segments in Vj

emanating from the points of e that are orthogonal to Ge (see Fig. 3). Then the
dihedral angles between Fe and the facets in ϕ j (F

( j)
j+1) and ∂Vj are all less than π .

If we cut off an open subset from Vj along ϕ j (F
( j)
j+1) and these Fe’s, we obtain

a compact polyhedral domain Uj containing Wj where ∂Uj ∩ ∂Wj = ϕ j (F
( j)
j+1)

(see Fig. 3). Clearly, Uj is also mean curvature convex. Moreover, define

Û j := {x ∈ Mj ; dist(x,Uj ) ≤ δ}, δ 
 1;
Ŵ j := Wj ∪ {

geodesic segments in Û j emanating orthogonally

from faces in ϕ j (F
( j)
j+1)

}
.

So Û j\Uj is a thin collar of ∂Û j . Then consider

D(Uj ) := {
p ∈ Û j × [−1, 1] ; dist(p,Uj × {0}) = ε

}
, 0 < ε < δ/2, (7)

D(Wj ) := {
p ∈ Ŵ j × [−1, 1] ; dist(p,Wj × {0}) = ε

}
, 0 < ε < δ/2. (8)

It is easy to see that D(Uj ) is homeomorphic to the double ofUj along ∂Uj , and

D(Wj ) is homeomorphic to the double of Wj along ϕ j (F
( j)
j+1) (see Fig. 4). Hence

D(Wj ) is homeomorphic to Y ( j+1). More precisely, there exists a homeomorphism

ϕ j+1 : Y ( j+1) → D(Wj )

which maps a normal neighborhood N (F ( j+1)
j+1 ) of F ( j+1)

j+1 in Y ( j+1) onto the bend-

ing region of D(Wj ) and maps the two components of Y ( j+1)\N (F ( j+1)
j+1 ) onto

the two copies of Wj in D(Wj ) that are parallel to Wj × {0}. Moreover, by our
assumption that ϕ j : Y ( j) → Wj is a pseudo-diffeomorphism, we can extend ϕ j+1
to a diffeomorphism from an open neighborhood of Y ( j+1) in RZP to an open
neighborhood of D(Wj ) in D(Uj ). So ϕ j+1 is also a pseudo-diffeomorphism.

We remark that here if the dihedral angles ofWj were greater than π at an edge

in ϕ j (F
( j)
j+1), then D(Uj ) and D(Wj )would have some holes in the bending region.

This is the reason why we need to assume Wj to satisfy the condition (c).
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Fig. 4. D(Uj ) and D(Wj )

Fig. 5. Local configurations of facets of Wj in dimension 3

Geometrically, D(Uj ) and D(Wj ) will have some codimension-one creases
where the induced metric from Û j × [0, 1] is not smooth. In addition, the facets

in ϕ j (F
( j)
j+1) ⊂ ∂Wj may have different types of local configurations which will

cause different shapes of D(Wj ) in the bending region (see Fig. 4). In particular
in dimension 3, there are possibly three types of local configurations of facets in
ϕ j (F

( j)
j+1) and ∂Uj (see Fig. 5).

Next, we use the (slightly generalized) argument in [10, Theorem 5.7] to obtain
a Riemannian metric on D(Uj ) with positive scalar curvature. Let

• Mj+1 = D(Uj ) with the creases smoothed out;
• g j+1 = the metric on Mj+1 induced from the product metric g j × g[−1,1]

on Uj × [−1, 1].
Using [9, Theorem 1.1] again, we can assume that the mean curvature of g j at

every facet of Uj is positive. Then similarly to the proof of [10, Theorem 5.7], we
can compute the scalar curvature of g j+1 by estimating the principal curvatures of
D(Uj ) in Uj × [−1, 1] as follows.

On the region parallel to Uj × {0} in Û j × [−1, 1], the scalar curvature of
g j+1 on D(Uj ) is clearly positive. So the difficulty comes from the bending region
of D(Uj ). The following argument is parallel to the argument in the proof of
Gromov-Lawson [10, Theorem 5.7]. Let x be an arbitrary point on ∂Uj . We have
the following three cases according to where x lies.

(i) If x is the relative interior of a facet E on ∂Uj , then there is a unique normal
direction of ∂Uj at x . Let σx be the geodesic segment in Û j emanating orthog-
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onally from ∂Uj at x . Then σx × [−1, 1] is totally geodesic in Û j × [−1, 1].
The intersection of σx ×[−1, 1] with D(Uj ) is of the form shown in Fig. 6. Let
μ1, μ2 be the principal curvatures of ∂Uj at x . Then at a point p corresponding
to the angle θ ∈ (−π/2, π/2), the principal curvatures of D(Uj ) will be of the
form

λ0 = 1

ε
cos θ + O(ε), λ1 = (

μ1 + O(ε)
)
cos θ + O(ε2),

λ2 = (
μ2 + O(ε)

)
cos θ + O(ε2).

Let κ̂ be the scalar curvature function of Û j (and Û j × [−1, 1]). The by the
Gauss equation, the scalar curvature κ of g j+1 at p is of the form

κ = κ̂ +
(2

ε
H + O(1)

)
cos2 θ + O(ε)

where H = μ1 + μ2 is the mean curvature of ∂Uj at x . By our assumption of
g j , we have κ̂ > 0 and H > 0. So we have κ > 0 when ε is sufficiently small.

(ii) If x is the relative interior of an edge E ∩ E ′ where E and E ′ are two facets
on ∂Uj , the normal direction of ∂Uj at x in Û j is not unique. Let σx and
σ ′
x be the geodesic segments orthogonal to E and E ′ at x , respectively. Let

�
(E,E ′)
x be the union of the geodesic segments in Û j orthogonal to E ∩ E ′

at x which is bounded σx and σ ′
x . So �

(E,E ′)
x looks like a fan with fan angle

π − ∠(E, E ′)x . Note that ∠(E, E ′)x ∈ (0, π ] by the condition (b) and (c) of
Wj .Moreover, x determines an oval-shaped patch (see Fig. 7) in the intersection

of �
(E,E ′)
x × [−1, 1] and D(Uj ). Let μ1, μ2 be the principal curvatures of

E at x . At a point p corresponding to the angles φ ∈ [0, π − ∠(E, E ′)x ]
and θ ∈ (−aφ, aφ) where 0 < aφ ≤ π/2 is determined by φ, the principal
curvatures of D(Uj ) will be of the form (see Fig. 7):

λ0 = 1

ε
cosφ cos θ + O(ε), λ1 = (

μ1 + O(ε)
)
cosφ cos θ + O(ε2),

λ2 = (
μ2 + O(ε)

)
cosφ cos θ + O(ε2).

So we have

κ = κ̂ +
(2

ε
H + O(1)

)
cos2 φ cos2 θ + O(ε).

By our assumption of κ̂ and H , we have κ > 0 when ε is sufficiently small.
(iii) If x = E ∩ E ′ ∩ E ′′ ∩ E ′′′ is a vertex where E , E ′, E ′′ and E ′′′ are four facets on

∂Uj , the geodesic segments in Û j emanating from x determine a coneCx which

is bounded by the fans �
(E,E ′)
x , �

(E ′,E ′′)
x , �

(E ′′,E ′′′)
x and �

(E ′′′,E)
x (see Fig. 8).

Moreover, x determines a football-shaped region in the intersection of Cx ×
[−1, 1] and D(Uj ) which is parametrized by three angles φ1, φ2 and θ , where
φ1 ∈ [0, π − ∠(E, E ′)x ], φ2 ∈ [0, π − ∠(E, E ′′)x ] and θ ∈ (−aφ1,φ2 , aφ1,φ2),
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Fig. 6. The bending region of D(Uj ) parametrized by one angle

Fig. 7. The bending region of D(Uj ) parametrized by two angles

Fig. 8. The bending region of D(Uj ) parametrized by three angles

where 0 < aφ1,φ2 ≤ π/2 is determined by φ1 and φ2. Similarly to the previous
cases, for a point corresponding to φ1, φ2 and θ , we obtain

κ = κ̂ +
(2

ε
H + O(1)

)
cos2 φ1 cos

2 φ2 cos
2 θ + O(ε).

By our assumption of κ̂ and H , we have κ > 0 when ε is sufficiently small.

So in all cases, we have κ > 0. By the above discussion, the bending region
of D(Uj ) can be written as A1 ∪ A2 ∪ A3 where A1, A2 and A3 consist of the
points parametrized by one, two and three angles, respectively. Besides, let A0 be
the region of D(Uj ) that is parallel to Uj × {0}. There are some obvious creases
at the intersections of A0, A1, A2 and A3 where the metric g j+1 does not have
continuous second derivatives. But by some small perturbations of D(Uj ), we can
smooth out these creases so that the condition κ > 0 still holds. The local model of
the smoothing is given by the Cartesian product of an open subset of the quadrant
R
2≥0 with the curve γ shown in Fig. 9 where γ is smooth except at t = 0. For every

point x ∈ R
2≥0, we deform {x}×γ to be {x}× γ̃ , where γ̃ is an everywhere smooth

curve that differs from γ only in a small interval 0 < t < δ for some δ 
 1 (see
Fig. 9). After smoothing the creases, D(Wj ) becomes a Riemannian polyhedron in
(Mj+1, g j+1) that we desire.
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Fig. 9. Smoothing a curve γ near t = 0

Fig. 10. Facets of D(Wj ) in the bending region

Next, let us verify that D(Wj ) satisfies the conditions (b) and (c). By the def-
inition of Ŵ j and D(Wj ), any facet G of D(Wj ) in the bending region is of the
following form:

G = (
IE∩F × [−1, 1]) ∩ D(Wj )

where E, F are two facets of Wj with E ⊆ ϕ j (F
( j)
j+1) and F � ϕ j (F

( j)
j+1), and

IE∩F is union of the geodesic segments in Û j orthogonal to E that emanate from
points in E ∩ F (see Fig. 10). This implies:

• G is a totally geodesic facet of D(Wj ).
• ∠(Ẽ±ε,G) = π/2 where Ẽ±ε is the parallel copy of E in Wj × {±ε}.

Let F̃±ε be the parallel copy of F in Wj × {±ε}. By the condition (b) of Wj ,
the dihedral angles ∠(Ẽε, F̃ε) and ∠(Ẽ−ε, F̃−ε) are both non-obtuse. So

∠(G, F̃±ε) ∈ (0, π ]. (9)

If an edge L of D(Wj ) is not contained in the two parallel copies of ϕ j (F
( j)
j+1)

inWj ×{±1}, the dihedral angles of D(Wj ) at L will agree with the dihedral angles
of the counterpart of L in Wj × {0}. These include all the Type-I edges of D(Wj ).
Then since Wj satisfies the condition (b), so does D(Wj ).

All the Type-II edges of D(Wj ) that lie in the two parallel copies of ϕ j (F
( j)
j+1)

in Wj × {±ε} are:
{
G ∩ F̃±ε; F � ϕ j (F

( j)
j+1), G is a facet of D(Wj ) in the bending region

}
.

It follows from (9) that D(Wj ) satisfies the condition (c) at these edges. At other
Type-II edges, D(Wj ) also satisfies the condition (c) by our assumption of Wj .



282 L. Yu

Moreover, the conditions (b) and (c) still hold for D(Wj ) after we smooth the
creases of D(Uj ) since the smoothing does not change the tangent spaces of the
facets of D(Uj ) incident to the creases.

In addition, D(Wj ) is mean curvature convex in (Mj+1, g j+1) since its facets
in the bending region are all totally geodesic while its facets outside the bending
region have the same mean curvatures as their counterparts in Wj × {0}.

So from the above arguments, we obtain a pseudo-diffeomorphism ϕ j+1 from
Y ( j+1) to Wj+1 := D(Wj ) where Wj+1 is a mean curvature convex Riemannian
polyhedron in (Mj+1, g j+1) with positive scalar curvature and Wj+1 satisfies the
conditions (b) and (c). This finishes the induction.

Observe that when j = m − 1, ∂Um−1 = ∂Wm−1 = ϕm−1(F
(m−1)
m ).

This implies Wm−1 = Um−1. So by our doubling construction (8), the pseudo-
diffeomorphism ϕm : Y (m) = RZP → Wm = D(Wm−1) is actually a diffeo-
morphism, where Wm is a compact Riemannian 3-manifold with positive scalar
curvature. Then by Theorem 2.2, P must be combinatorially equivalent to a convex
polytope that can be obtained from �3 by a sequence of vertex cuts. So we finish
the proof of the “only if” part and hence the whole theorem. ��
Remark 3.1. In the proof of the “only if” part of Theorem 1.3, there is a canonical
action of Hj ∼= (Z2)

j on both Y ( j) and Wj , 1 ≤ j ≤ m. Indeed, we can define the
action of Hj onWj inductively through the doubling construction D(Wj−1). From
our definition of the pseudo-diffeomorphism ϕ j : Y ( j) → Wj , it is easy to see that
ϕ j is equivariant with respect to the canonical Hj -actions for all 1 ≤ j ≤ m.

Proof of Corollary 1.5. If P is combinatorially equivalent to a convex polytope
obtained from�3 by a sequence of vertex-cuts, it follows from the proof of the “if”
part of Theorem 1.3 that P is realized as a right-angled totally geodesic Riemannian
polyhedron in (RZP , g0). The reverse direction also follows from Theorem 1.3
immediately. ��
Corollary 3.2. The statements of Theorem 1.3 and Corollary 1.5 still hold if we
assume that the ambient Riemannian 3-manifold in these two theorems has positive
constant scalar curvature.

Proof. By the solution of the equivariant Yamabe problem in Hebey and Vau-
gon [13], if RZP has a (Z2)

m-invariant Riemannian metric g0 with positive scalar
curvature, then there exists a (Z2)

m-invariant Riemannian metric g0 conformal to
g0 on RZP which has positive constant scalar curvature. So we can prove this
corollary by applying the same proof of the “if” part of Theorem 1.3 to (RZP , g0).

��

4. Examples in higher dimensions

The argument of “doubling-smoothing” of Riemannian polyhedra in the proof of
Theorem 1.3 can be generalized to any dimension n ≥ 2 (also see [12, 2.1]). Indeed,
the only new ingredient in the proof of the higher dimensions is: there aremore types
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of local configurations of facets on the boundary of the polyhedra in our iterated
doubling construction. So if an n-dimensional simple convex polytope P in R

n can
be realized as a mean curvature convex Riemannian polyhedron with non-obtuse
dihedral angles in a Riemannian n-manifold with positive scalar curvature, then we
can construct a Riemannianmetric onRZP with positive scalar curvature. Note that
the iterated doubling construction induces a smooth structure onRZP from P which
is equivariant with respect to the canonical (Z2)

m-action. Then since the equivariant
smooth structure onRZP is known to be unique up to equivariant diffeomorphisms
(see [15, Proposition 3.8]), this smooth structure on RZP should agree with the
smooth structure on RZP determined by the embedding iZ : RZP → R

m (see
Sect. 2). But unfortunately, we do not have the analogue of Theorem 2.2 for RZP

in higher dimensions. So we cannot determine all possible combinatorial types of
P in dimension greater than 3.

On the other hand, we can construct many examples of such kind of simple
convex polytopes P in arbitrarily high dimensions as follows. Let us first quote
some well known results on the existence of Riemannian metrics with positive
scalar curvature.

Theorem 4.1. (see Gromov and Lawson [11] and Schoen and Yau [21]) Let N be a
closed manifold which admits a Riemannian metric with positive scalar curvature.
If M is a manifold that is obtained from N by surgery in codimension ≥ 3, then M
also admits a Riemannian metric with positive scalar curvature.

Moreover, there is an equivariant versionofTheorem4.1 formanifolds equipped
with a compact Lie group action as follows.

Theorem 4.2. (Theorem 11.1 in [3]) Let M and N be G-manifolds where G is a
compact Lie group. Assume that N admits an G-invariant metric of positive scalar
curvature. If M is obtained from N by equivariant surgeries of codimension at least
three, then M admits a G-invariant metric of positive scalar curvature.

It is shown in Bosio and Meersseman [4, Lemma 2.3] that up to combinatorial
equivalence any n-dimensional simple convex polytope P can be obtained from the
n-simplex by a finite number of flips at some proper faces. Let f be a proper face of
P which is combinatorially equivalent to the k-simplex �k . Roughly speaking, the
flip of P at f gives us a new polytope, denoted by flip f (P), which is obtained by
cutting off a small neighborhood N ( f ) of f from P and a neighborhood N (�k) of
�k from �n , and then gluing P\N ( f ) and �n\N (�k) together along their cutting
sections andmerging the nearby facets (see [17,23] or [4] for the precise definition).
For example, Fig. 11 shows the flip of a 3-dimensional simple convex polytope at
a vertex and at an edge, respectively. Note that doing a flip on P at a vertex v is
equivalent to cutting off v from P , which will increase the number of facets by
one. But whenever dim( f ) > 0, the number of facets of flip f (P) will be equal to
that of P . In addition, a flip of P at a face corresponds to a bistellar move on ∂P∗
where P∗ is the dual simplicial polytope of P (see [4,17]).

From the viewpoint of the construction of real moment-angle manifolds, a flip
of P at a codimension-k face f corresponds to an equivariant surgery on RZP
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Fig. 11. Flip of a simple convex polytope P at a face f

at some codimension-k submanifolds. More specifically, it is a (Z2)
m-equivariant

surgery on RZP if dim( f ) > 0 or a (Z2)
m+1-equivariant surgery on RZP × Z2 if

dim( f ) = 0,wherem is the number of facets of P (see [16, 4]). Then it follows from
[4, Lemma 2.3] that we can obtain RZP from RZ�n = Sn (see Example 2.1) by
a sequence of equivariant surgeries for any n-dimensional simple convex polytope
P . Moreover, the sequence of equivariant surgeries induce an (unique) equivariant
smooth structure on RZP step by step from the standard smooth structure on Sn .

Proposition 4.3. Suppose P is an n-dimensional simple convex polytope inR
n with

n ≥ 3. If P is combinatorially equivalent to a convex polytope that can be obtained
from the n-simplex �n by a sequence of flips at faces of codimension at least three,
then P can be realized as a right-angled totally geodesic Riemannian polyhedron
in a Riemannian n-manifold with positive scalar curvature.

Proof. By our assumption of P , RZP can be obtained from RZ�n = Sn by a
sequence of equivariant surgeries at some submanifolds with codimension at least
three. Note that the induced Riemannian metric g0 on Sn from R

n+1 has positive
constant scalar (sectional) curvature, and g0 is invariantwith respect to the canonical
action of (Z2)

n+1 on Sn (see Example 2.1). Then it follows from Theorem 4.2 that
RZP has a (Z2)

m-invariant Riemannian metric g1 with positive scalar curvature
wherem is the number of facets of P . Finally, by applying the proof of the “if” part
of Theorem 1.3 to (RZP , g1), we can deduce that P is realized as a right-angled
totally geodesic Riemannian polyhedron in (RZP , g1). ��

To explore the generalization of Theorem 1.3 to higher dimensions, it is natural
for us to ask the following question.

Question: Is it true that the examples given in Proposition 4.3 are exactly all the n-
dimensional simple convex polytopes in R

n (n ≥ 3) that can be realized
as mean curvature convex (or totally geodesic) Riemannian polyhedra
with non-obtuse dihedral angles in Riemannian n-manifolds with posi-
tive scalar curvature?

To answer the above question, we need to understand for what simple convex
polytope P the manifold RZP can admit a Riemannian metric with positive scalar
curvature. It is well known that in dimension≥ 5, such kind of problems are related
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to the existence of spin structures, Â-genus and α-invariant defined by index theory
(see [22]). In dimension 4, the existence of Riemannian metrics with positive scalar
curvature implies the vanishing of Seiberg-Witten invariants. But the calculations
of these invariants for RZP are very difficult in general.

Acknowledgements The author wants to thank Jiaqiang Mei, Yalong Shi, Xuezhang Chen
and Yiyan Xu for some valuable discussions on Riemannian geometry.

Declaration

Conflict of interest The author declares that he has no conflict of interest. Data sharing is
not applicable to this article as no datasets were generated or analyzed in this paper.

References

[1] Andreev, E.M.: Convex polyhedra in Lobačevskiı̆ spaces.Mat. Sb. 81, 445–478 (1970).
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