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Abstract. Let C be a smooth irreducible complex projective curve of genus g ≥ 2 and M
the moduli space of stable vector bundles on C of rank n and degree d with gcd(n, d) = 1.
A generalised Picard sheaf is the direct image on M of the tensor product of a universal
bundle on M × C by the pullback of a vector bundle E0 on C . In this paper, we investigate
the stability of generalised Picard sheaves and, in the case where these are locally free, their
deformations. When g ≥ 3, n ≥ 2 (with some additional restrictions for g = 3, 4) and the
rank and degree of E0 are coprime, this leads to the construction of a fine moduli space for
deformations of Picard bundles.

1. Introduction

Let C be a smooth irreducible complex projective curve of genus g ≥ 2 and
Mn,d the moduli space of stable bundles of rank n and degree d on C , where
gcd(n, d) = 1. Denote by U a universal (or Poincaré) bundle over Mn,d × C ,
which will remain fixed unless otherwise stated (in general, U is determined up to
tensoring by a line bundle lifted from Mn,d ). For any vector bundle E0 on C , the
torsion-free sheaf

Wn,d(E0) := p1∗(p∗
2(E0) ⊗ U)

onMn,d is called a generalised Picard sheaf (for convenience, we shall say simply
Picard sheaf ). A similar definition can bemade whenMn,d is replaced by the fixed
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determinant moduli spaceMn,ξ for any line bundle ξ of degree d and U is replaced
by a universal bundle Uξ on Mn,ξ × C (we take the restriction of our chosen
universal bundle U on Mn,d × C). This gives rise to a Picard sheaf

Wn,ξ (E0) := p1∗(p∗
2(E0) ⊗ Uξ )

on Mn,ξ .
Picard sheaves are closely related to Fourier-Mukai transforms. If H1(C, E0 ⊗

E) = 0 for all E ∈ Mn,d (respectively, all E ∈ Mn,ξ ), then Wn,d(E0) (respec-
tively,Wn,ξ (E0)) is locally free and coincides with the Fourier-Mukai transform. In
this case, the Picard sheaves may be referred to as Picard bundles. This happens in
particular when E0 is stable of rank n0 and degree d0 and nd0+n0d > n0n(2g−2).
Our aims in this paper are to obtain new results on the slope-stability of Picard
sheaves and on the deformations of Picard bundles.

When n = 1 and d ≥ 2g − 1, the bundles W1,d(OC ) coincide with classical
Picard bundles,whichwere introduced in projectivised form in [30] in a very general
setting. The Picard sheavesW1,d(OC ) were studied in [38]. Picard bundles appear
also in the work of Gunning [21,22] as analytic bundles associated with factors of
automorphy. There is an extensive literature on the stability of Picard bundles when
E0 = OC (see, for example, [7,9,15,20,27,29]); the results of these papers extend
easily to the case where E0 is an arbitrary line bundle (i.e., n0 = 1 (see Theorem
1.2)). For n0 ≥ 2 and n = 1, see [12,24]. When gcd(n, d) �= 1, it is possible to
define a projective Picard bundle PWn,ξ (E0) on the Zariski open subset

M′
E0,n,ξ = {E ∈ Mn,ξ | h1(E0 ⊗ E) = 0} ⊂ Mn,ξ (1.1)

(see [9]); this subset is empty for nd0 + n0d < n0n(g − 1) by Riemann-Roch. If
E0 is semistable and nd0 + n0d > n0n(2g − 2), then M′

E0,n,ξ = Mn,ξ . It is of
course possible to make similar definitions forMn,d . Projective Picard bundles on
moduli spaces of symplectic and orthogonal bundles have been studied in [10,11].
Picard bundles on Prym varieties are discussed in [15]. A study of Picard bundles
on nodal curves has been initiated in [6]; very recently, some of the results of [9]
have been generalised to nodal curves [3].

Deformations ofW1,d(OC )were studied by Kempf [26] andMukai [31].When
gcd(n, d) = 1, this was extended toWn,ξ (E0) with E0 semistable in [8]. The main
object of [8] was to show that all deformations arise in a natural way from those of
E0.

Our first aim is to present a treatment of stability properties of Picard bundles
and sheaves on Mn,d and Mn,ξ with E0 any stable bundle, including all known
results and significant new ones. When gcd(n, d) = 1, we also study deformations
of the Picard bundles Wn,d(E0), thus generalising the results of [8] and showing
that these deformations again arise in a natural way from those of E0. For n ≥ 2, this
leads to the construction of a smooth irreducible moduli space for Picard bundles
and an identification of this moduli space with an open subset in a moduli space
M0(Mn,d) of certain bundles on Mn,d . When, in addition, gcd(n0, d0) = 1, this
open subset is in fact an irreducible component of M0(Mn,d). Results are also
obtained for n = 1; these require an extension of the arguments of [26,31].



Stability and deformations of generalised Picard sheaves 639

Our most important new results on the stability of Picard sheaves are as follows
(full statements of most of these results may be found in Sect. 2). Let θn,d and θn,ξ

be theta divisors onMn,d andMn,ξ respectively. Before stating our first theorem,
we define, for any E ∈ Mn,d+n , L ∈ Picd

′+1(C), morphisms

φE : C −→ Mn,d : p 
−→ E(−p),

αL ,E : Picd ′
(C) −→ Mn,d : L1 
−→ E ⊗ L−1 ⊗ L1.

These are analogous to the classical Abel-Jacobi map embedding C inM1,d . Note
that

φE = αL ,E ◦ φL . (1.2)

Theorem 1.1. Let E0 be a stable bundle of rank n0 and degree d0. If gcd(n, d) = 1
and nd0 + n0d > n0n(2g − 1) (respectively, ≥), then, for any E ∈ Mn,d+n for
which E0 ⊗ E is stable, and any L ∈ Picd

′+1(C),

(i) φ∗
EWn,d(E0) is stable (respectively, semistable);

(ii) α∗
L ,EWn,d(E0) is θ1,d ′ -stable (respectively, semistable).

This holds in particular for n0 = 1 and for n0 ≥ 2 with E ∈ Mn,d+n general.

This theorem is proved in Sect. 3 as Theorem 3.2(b).
Our next theorem concerns Picard sheaves onMn,d when n = 1 (see Theorem

2.1(i)).

Theorem 1.2. Let L0 be a line bundle of degree d0 on C. If d0 + d ≥ g and C is
general, then W1,d(L0) is θ1,d -stable.

The case d0+d ≥ 2g−1 is classical (note thatM1,d = Picd(C)), even without
the assumption that C is general; the corresponding result for bundles E0 of higher
rank is also known (see Theorem 2.1(ii)).

For Mn,ξ , a strong result is already known when E0 is a line bundle (see
Theorem 2.2(i) for details). To generalise this for n0 ≥ 2, we need to extend the
concept of (�,m)-stability introduced in [35,36] to torsion-free sheaves on Mn,ξ

when gcd(n, d) = 1 (see Sect. 5 for details).

Theorem 1.3. (Theorem 2.2(ii)) Let n ≥ 2, gcd(n, d) = 1 and let E0 be a stable
bundle of rank n0 ≥ 2 and degree d0 on C. If either nd0+n0d > n0n(2g−2) or E0
is general and nd0 +n0d > n0ng−n0, thenWn,ξ (E0) is (0,−n0 +1)-θn,ξ -stable.

Our final result on stability is Theorem 2.3(ii).

Theorem 1.4. Let n ≥ 2, gcd(n, d) = 1 and let E0 be a stable bundle of rank
n0 ≥ 2 and degree d0 on C. If nd0 + n0d > n0n(n + 1)(g − 1) + n0 (respectively,
≥), then Wn,d(E0) is θn,d-stable (respectively, semistable).
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When E0 is a line bundle, a stronger form of this theorem is known, which we
extend further in Theorem 2.3(i).

We turn now to the consideration of deformations of Picard bundles. Suppose
that gcd(n, d) = 1 and nd0 + n0d > n0n(2g − 2). Denote by ch0 the Chern
character of the Picard bundles Wn,d(E0) (respectively, Wn,ξ (E0)). With a few
possible exceptions for low genus and rank, the Picard bundle Wn,d(E0) (respec-
tively,Wn,ξ (E0)) is simple for all E0 ∈ Mn0,d0 (see Lemma 7.3 and Corollary 8.5,
respectively [8, Corollary 21]). The formula (L , E0) 
→ L ⊗ Wn,d(E0) (respec-
tively, E0 
→ Wn,ξ (E0)) therefore defines a morphism

β : Pic0(Mn,d) × Mn0,d0 −→ M0(Mn,d) (respectively,

βξ : Mn0,d0 −→ M0(Mn,ξ )),

where Pic0(Mn,d) denotes the space of topologically trivial line bundles onMn,d

and M0(Mn,d) (respectively, M0(Mn,ξ )) is the moduli space of simple bundles
on Mn,d (respectively, Mn,ξ ) with Chern character ch0. Note that Pic0(Mn,d) ∼=
Pic0(C). In order to obtain good properties of these morphisms, it is necessary to
study the deformations of Picard bundles. As already stated, this study was initiated
by Kempf [26] and Mukai [31] in the case where n = n0 = 1. Deformations of
Picard bundles on Mn,ξ were studied in [8]. The first author and Ravindra, using
Mukai’s techniques, showed that, when n = 1 and ξ0 is any line bundle of degree
d0 on C , β|{OMn,d } × Mn0,ξ0 is an injective morphism [12, Corollary 2.3]. Here
we consider Picard bundles onMn,d and prove in particular the following theorem
(see Theorem 7.10).

Theorem 1.5. Suppose that

g ≥ 3, n ≥ 2, gcd(n, d) = gcd(n0, d0) = 1, nd0 + n0d > n0n(2g − 2)

and suppose further that, if g = 3, then n ≥ 4 and, if g = 4, then n ≥ 3.
Then β maps Pic0(Mn,d)×Mn0,d0 isomorphically onto an irreducible component
M0

0(Mn,d) of M0(Mn,d) of dimension g + n20(g − 1) + 1; hence M0
0(Mn,d)

is isomorphic to Pic0(C) × Mn0,d0 and is a fine moduli space for deformations
of Picard bundles on Mn,d with Chern character ch0. If nd0 + n0d > n0n(n +
1)(g− 1)+ n0, thenM0

0(Mn,d) is a component of the moduli space of θn,d-stable
bundles onMn,d with Chern character ch0.

This theorem needs modifying when n = 1. Let N denote the bundle defined
by the evaluation sequence

0 −→ N∗ −→ H0(C, KC ) ⊗ OC
ev−→ KC −→ 0.

The following theorem is a summary of Theorem 8.9.

Theorem 1.6. Suppose that g ≥ 2, n0 ≥ 2 and d0 + n0d > n0(2g − 2). Then
the morphism β : Pic(M1,d) × Mn0,d0 → M0(M1,d) is injective. Moreover, if
C is non-hyperelliptic and h0(C, N ⊗ ad(E0)) = 0 for some E0 ∈ Mn0,d0 , β

is an injective birational morphism from Pic0(M1,d) × Mn0,d0 to an irreducible
component M0

0(M1,d) of M0(M1,d). If, in addition, gcd(n0, d0) = 1, β is a
bijective morphism onto M0

0(M1,d).
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It is of interest to note that,whenC is non-hyperelliptic, the condition h0(C, N⊗
ad(E0)) = 0 is equivalent to the vanishing of the Koszul cohomology group

K0,2(C; ad(E0), KC )

(see Proposition 8.8). This expresses the surjectivity of the multiplication map

μE0 : H0(C, KC ) ⊗ H0(C, KC ⊗ E0 ⊗ E∗
0 ) −→ H0(C, K 2

C ⊗ E0 ⊗ E∗
0 ).

We show also that, at least for some values of n0, d0, β does not map
Pic0(M1,d) × Mn0,d0 isomorphically to M0

0(Mn,d) (Proposition 8.10). On the
other hand, for general C and general E0, Montserrat Teixidor i Bigas has proved
that μE0 is surjective [39]; this leads to Corollary 8.12.

The main results on stability, together with comments on the tools used, are
stated in Sect. 2. In Sect. 3, we relate our problem to a conjecture of D. C. Butler;
this result (Proposition 3.1) seems to be of interest in its own right and leads to an
important result on the stability of φ∗

E (Wn,d(E0)) and α∗
L ,E (Wn,d(E0)) (Theorem

3.2). Sections4, 5 and 6 are devoted to the Picard sheaves on the various moduli
spaces. In Sect. 7, we consider deformations of Picard bundles onMn,d for n ≥ 2
and prove a more precise version of Theorem 1.5 (Theorem 7.10) covering also the
case gcd(n0, d0) �= 1. In Sect. 8, we study deformations of Picard bundles onM1,d .
We start with a statement of the main results of Kempf [26] and Mukai [31] for the
case n0 = 1 (Theorem 8.1) and finish with a more detailed version of Theorem 1.6
(Theorem 8.9) and proofs of Proposition 8.10 and Corollary 8.12.

We assume throughout that C is a smooth irreducible projective curve over
C of genus g ≥ 2. The canonical line bundle on C is denoted by KC . For any
coherent sheaf F on C , we write Hi (F) for Hi (C, F) and hi (F) for the dimension
of Hi (C, F). For any sheaf F on a scheme X and any p ∈ X , we write Fp for
the fibre of F at p. We also write ch0 for the Chern character of Wn,d(E0) (or
Wn,ξ (E0)); ch0 depends only on n0, d0, n, d and U (or Uξ ) and these values will
be clear from the context.

Our thanks are due to the referee of this paper and to the referee of a previous
version for some useful comments. We thank also Montserrat Teixidor i Bigas for
discussions on the surjectivity of μE0 .

2. Statement of results on stability of Picard sheaves

In this section, we state the main theorems on stability of Picard sheaves and
comment on the tools used to prove them. We include all the results of which we
have knowledge and state in detail which are already known and which are new.
Proofs will be given in Sects. 4, 5 and 6.

Theorem 2.1. Let E0 be a vector bundle of rank n0 and degree d0 on C.

(i) If n0 = 1 and either d0 + d ≥ 2g − 1 or d0 + d ≥ g and C is general, then
W1,d(E0) is θ1,d -stable.

(ii) If n0 ≥ 2, E0 is stable and d0 + n0d > n0(2g − 1) (respectively, ≥), then
W1,d(E0) is θ1,d -stable (respectively, semistable).
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When E0 = OC , Theorem 2.1(i) is known for d ≥ 2g − 1 [20,27]. Alternative
proofs of (ii) are available [12,24].

In the next theorem, we need the concept of stability for projective bundles.
In fact, a projective bundle is θ -stable if and only if the associated principal PGL-
bundle is θ -stable. For further discussion of this, in our context, see [9].

Theorem 2.2. Let n ≥ 2 and let E0 be a vector bundle of rank n0 and degree d0
on C.

(i) If n0 = 1, nd0+d > n(g−1) and either g ≥ 3 or g = 2 and d is not a multiple
of n, then PWn,ξ (E0) is θn,ξ -stable. Moreover, if in addition gcd(n, d) = 1,
then Wn,ξ (E0) is θn,ξ -stable.

(ii) If n0 ≥ 2, gcd(n, d) = 1, E0 is stable and either nd0 + n0d > n0n(2g − 2)
or E0 is general and nd0 + n0d > n0ng − n0, thenWn,ξ (E0) is (0,−n0 + 1)-
θn,ξ -stable.

If n0 = 1 and nd0+d ≤ n(g−1), thenPWn,ξ (E0) = ∅ and, when, in addition,
gcd(n, d) = 1,we haveWn,ξ (E0) = 0. SoTheorem2.2(i) is best possible for g ≥ 3
(in which case it is known [9]) and almost best possible for g = 2. If gcd(n, d) = 1,
Theorem 2.2(i) was also proved in [7] when nd0 + d > 2n(g− 1). The new results
are (i) for g = 2 and (ii); note that (ii) does not imply thatWn,ξ (E0) is θn,ξ -stable.

Theorem 2.3. Let n ≥ 2, gcd(n, d) = 1 and let E0 be a vector bundle of rank n0
and degree d0 on C.

(i) If n0 = 1 and nd0 + d ≥ n(2g − 1), then Wn,d(E0) is θn,d-stable.
(ii) If n0 ≥ 2, E0 is stable and nd0 + n0d > n0n(n + 1)(g − 1) + n0 (respectively,

≥), thenWn,d(E0) is θn,d-stable (respectively, semistable).

Theorem 2.3(i) is known for nd0 + d > 2ng [29]; (ii) is new.
The main tools for the proofs of the above results are the generalisation, and

adaptation to our cases, of Lemmas 1.1 and 1.2 in [20] and [29, Lemma 2.8(2)],
and the use of Hecke correspondences as in [7,9]. The first tool will be developed
in Sect. 3, where we relate our problem to a conjecture of D. C. Butler; no further
tools are needed in Sect. 4. Hecke correspondences are used in Sect. 5 and spectral
curves in Sect. 6.

3. Picard sheaves and Butler’s Conjecture

In this section, we relate Picard sheaves on Mn,d to a conjecture of D. C. Butler
[17,Conjecture 2]. Butler’s conjecture is concernedwith the following construction.
Given a generated vector bundle E of rank n ≥ 1 and degree d on C , we define a
vector bundle ME by the exact sequence

0 −→ ME −→ H0(E) ⊗ O −→ E −→ 0. (3.1)

In [16, Theorem 1.2], Butler proved that, if E is stable of degree d > 2ng, then
ME is stable. His conjecture (see [17, Conjecture 2]) is a generalisation of this. The
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form of this conjecture that is relevant for us asserts that, on a general curve, the
bundleME is stable for general stable E of any degree. The following proposition is
a generalisation of part of [20, Lemma 1.1] and of a result proved but not formally
stated in [29, p. 536] and links Butler’s Conjecture to our problem. The proof
follows the same lines as that of [29, Theorem 2.5].

Proposition 3.1. Suppose that gcd(n, d) = 1. Let E ∈ Mn,d+n and let E0 be a
vector bundle on C such that E0⊗ E is stable and generated with h1(E0⊗ E) = 0.
Then

φ∗
E (Wn,d(E0)) ∼= ME0⊗E ⊗ L ′

for some line bundle L ′ on C.

Proof. Let� be the diagonal ofC×C . The vector bundles (φE×1C )∗(p∗
2(E0)⊗U)

and p∗
2(E0 ⊗ E)(−�) coincide as families of stable bundles on C with respect to

p1. It follows that there exists a line bundle L ′ on C such that

p∗
2(E0 ⊗ E)(−�) ⊗ p∗

1(L
′) ∼= (φE × 1C )∗(p∗

2(E0) ⊗ U). (3.2)

Tensoring the exact sequence

0 −→ OC×C (−�) −→ OC×C −→ O� −→ 0

by p∗
2(E0 ⊗ E) and taking direct images by p1, we obtain an exact sequence

0 −→ p1∗(p∗
2(E0 ⊗ E)(−�)) −→ H0(E0 ⊗ E) ⊗ OC −→ E0 ⊗ E . (3.3)

Since E0 ⊗ E is generated, the right-hand map in (3.3) is surjective, so ME0⊗E ∼=
p1∗(p∗

2(E0 ⊗ E)(−�)). Hence, by (3.2),

ME0⊗E ⊗ L ′ ∼= p1∗(φE × 1C )∗(p∗
2(E0) ⊗ U). (3.4)

Since E0 ⊗ E is generated and h1(E0 ⊗ E) = 0, we have h1(E0 ⊗ E)(−p) = 0
for all p ∈ C . Hence, by [33, p.53, Corollary 3],

p1∗(φE × 1C )∗(p∗
2(E0) ⊗ U) ∼= φ∗

E (p1∗(p∗
2(E0) ⊗ U)) = φ∗

E (Wn,d(E0)).

The result now follows from (3.4). ��
This leads in particular to the main theorem of this section.

Theorem 3.2. Suppose that gcd(n, d) = 1, E ∈ Mn,d+n, L ∈ Picd
′+1 and E0 ∈

Mn0,d0 .
(a) If E0 ⊗ E is stable and generated with h1(E0 ⊗ E) = 0 and ME0⊗E is stable
(respectively, semistable), then

(i) φ∗
E (Wn,d(E0)) is stable (respectively, semistable);

(ii) α∗
L ,E (Wn,d(E0)) is θ1,d ′ -stable (respectively, semistable).

(b) If nd0 + n0d > n0n(2g − 1) (respectively, ≥), then (i) and (ii) hold for any
E ∈ Mn,d+n forwhich E0⊗E is stable, and in particular for general E ∈ Mn,d+n.
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To prove this theorem, we need some lemmas. The first is [29, Lemma 2.7].

Lemma 3.3. Let A be an abelian variety, B and C subvarieties of A satisfying
dim B + dimC < dim A. Then the set U := {t ∈ A|(B + t) ∩ C = ∅} is a
non-empty open subset of A.

We use this lemma to generalise [20, Lemma 1.2] and [29, Lemma 2.8(2)] to
torsion-free sheaves.

Lemma 3.4. Let E be a torsion-free sheaf on Picd
′
(C). If φ∗

L(E) is stable (respec-

tively, semistable) for some L ∈ Picd
′+1(C), then E is θ1,d ′ -stable (respectively,

semistable).

Proof. Let F be a proper torsion-free subsheaf of E such that E/F is also torsion-
free. The set of points of Picd

′
(C) at which at least one of E , F and E/F fails to be

locally free is a closed subset of codimension at least 2. It follows from Lemma 3.3
that there is an open setU ⊂ Picd

′+1(C) such that, for all L ∈ U , φ∗
L(E) is a vector

bundle and φ∗
L(F) is a proper subbundle. Since stability is an open condition, the

hypotheses of the lemma allow us to assume that φ∗
L(E) is also stable. Hence

c1(φ
∗
L(F))/ rk(φ∗

L(F)) < c1(φ
∗
L(E))/ rk(φ∗

L(E)),

or, equivalently,

φL(C) · c1(F)/ rk(F) < φL(C) · c1(E)/ rk(E).

SinceφL(C) is cohomologically equivalent to c1(θ1,d ′)g−1/(g−1)! by the Poincaré
formula, this is just the θ1,d ′ -stability condition for E .

For the semistable version, we simply replace < by ≤. ��
Proof of Theorem 3.2. (a) (i) is immediate from Proposition 3.1. (ii) then follows
from (1.2) and Lemma 3.4. (b) By [18, Theorem 3.10] (attributed to S. Ramanan),
the bundle E0 ⊗ E is stable for general E . Moreover, if nd0 + n0d ≥ n0n(2g− 1),
then E0 ⊗ E is generated and h1(E0 ⊗ E) = 0. It follows from [16, Theorem 1.2]
that ME0⊗E is semistable and is stable if nd0 + n0d > n0n(2g− 1). So (b) follows
from (a). ��

In order to apply Theorem 3.2 to our problem, we need to relate the stability of
Wn,d(E0) to that of φ∗

E (Wn,d(E0)) and α∗
L ,E (Wn,d(E0)). It will turn out that this

is easy when n = 1 but more difficult for n ≥ 2.

4. Picard sheaves on M1,d

In this section, the following propositions will prove Theorem 2.1. Note that, when
n = 1, we can take E = L ∈ Picd+1(C). It follows that αL ,E = 1M1,d .

Proposition 4.1. Suppose that E0 ∈ Mn0,d0 . If d0 + n0d > n0(2g − 1) (respec-
tively, ≥), then W1,d(E0) is θ1,d -stable (respectively, semistable).
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Proof. In this case, E0 ⊗ L is certainly stable. The result follows at once from
Theorem 3.2(b) and the fact that αL ,L = 1M1,d . ��
Remark 4.2. If d0 + d = 2g − 1, it is in fact true thatW1,d(L0) is θ1,d -stable. This
follows from [27], where the result is proved for L0 = OC .

Proposition 4.3. Let C be a general curve of genus g ≥ 2 and L0 a line bundle on
C of degree d0 with d0 + d ≥ g. Then W1,d(L0) is θ1,d -stable.

Proof. For general L ∈ Picd+1(C), we have h1(L0 ⊗ L) = 0 and L0 ⊗ L is
generated. Moreover, for g ≥ 3, ML0⊗L is stable by [17, Theorem 2] (see also [14,
Proposition 4.1]) and the result follows from Theorem 3.2(a)(ii). For g = 2, by
Remark 4.2, the only outstanding case is d0 + d = 2 and then W1,d(L0) has rank
1. ��

Propositions 4.1 and 4.3 and Remark 4.2 complete the proof of Theorem 2.1.

Remark 4.4. For other proofs of Theorem 2.1(ii), see [12, Lemma 2.1] or [24,
Theorem A]; a result on semistability when n0(g − 1) < d0 ≤ n0g may be found
in [24, Theorem B].

5. Picard sheaves on Mn,ξ

In this section, we are concerned with results for Picard sheaves on Mn,ξ and, in
particular, with establishing Theorem 2.2. For Theorem 2.2(i), we are not assuming
that gcd(n, d) = 1, so we need to show that θn,ξ -stability is well defined onMn,ξ

and on the open subset M′
L0,n,ξ ⊂ Mn,ξ (see (1.1)). Recall first that Mn,ξ has

a natural compactification Mn,ξ , which is locally factorial with Pic(Mn,ξ ) ∼= Z

[19]. Unless g = n = 2 and d is even, the complement ofMn,ξ inMn,ξ coincides
with the singular set ofMn,ξ [34, Theorem 1] and therefore has codimension ≥ 2.
Except in this case, we therefore have Pic(Mn,ξ ) ∼= Z and we can take θn,ξ to be
the positive generator.

In order to prove Theorem 2.2(i), we need some lemmas.

Lemma 5.1. If L0 is a line bundle of degree d0 and nd0+d > n(g−1), then, unless
g = n = 2 and d is even, the complement of M′

L0,n,ξ in Mn,ξ has codimension
≥ 2.

Proof. Since we know that, under the hypotheses of the lemma, the complement
ofMn,ξ inMn,ξ has codimension ≥ 2, it remains to prove that the complement of
M′

L0,n,ξ inMn,ξ has codimension≥ 2. For g ≥ 3, this is proved in [9, Lemma 4.1].
In fact, the proof of that lemma shows that the codimension≥ 1+nd0+d−n(g−1)
whenever g ≥ 2, which gives the required result. ��

Under the hypotheses of Lemma 5.1, we now see that Pic(M′
L0,n,ξ )

∼= Z

and that the restriction of the positive generator θn,ξ of Pic(Mn,ξ ) to M′
L0,n,ξ

generates Pic(M′
L0,n,ξ ); we continue to denote this generator by θn,ξ . We can
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therefore extend the concept of θn,ξ -stability to torsion-free sheaves and projective
bundles onM′

L0,n,ξ .
Recall that a vector bundle F on C is (�,m)-stable if

deg F ′ + �

rk F ′ <
deg F + � − m

rk F

for every proper subbundle F ′ of F (see [35,36]).

Lemma 5.2. Let ξ be a line bundle of degree d on C, L0 a line bundle of degree
d0 and p ∈ C. Then there exist (0, 1)-stable bundles of rank n and determinant
Ln
0 ⊗ ξ(p) if and only if either g ≥ 3 or g = 2 and d is not a multiple of n.

Proof. When gcd(n, d) = 1, the existence of (0, 1)-stable bundles in MLn
0⊗ξ(p)

follows from [7, Lemma 2]. In fact, the proof of that lemma shows that (0, 1)-
stable bundles exist unless g = 2 and there exists an integer e such that ne =
(n − 1)(nd0 + d), in other words, d is a multiple of n. It remains to show that,
if g = 2 and F ∈ MLn

0⊗ξ(p) with d a multiple of n, then F is not (0, 1)-stable.
In fact, by [32], any vector bundle F of rank n and degree nd0 + d + 1 admits a
subbundle of rank n − 1 and degree d ′ with

(n − 1)(nd0 + d + 1) − nd ′ ≤ (n − 1)g = 2(n − 1).

This condition simplifies to nd ′ ≥ (n − 1)(nd0 + d − 1). Since d is a multiple of
n, this is equivalent to

d ′

n − 1
≥ nd0 + d

n
,

which contradicts the (0, 1)-stability of F . ��
Proof of Theorem 2.2(i). Let L0 be a line bundle of degree d0 with nd0 + d >

n(g − 1) and let f : Mn,ξ −→ Mn,Ln
0⊗ξ be defined by f (E) = L0 ⊗ E . Then

f ∗(PWn,Ln
0⊗ξ (OC )) ∼= PWn,ξ (L0).

If g ≥ 3, Theorem 2.2(i) now follows directly from [9, Theorem 4.4 and Corollary
4.5]. When g = 2, we use Lemma 5.1 in place of [9, Lemma 4.1] and Lemma 5.2
in place of [9, Lemma 3.4]. The proofs of [9, Theorem 4.4 and Corollary 4.5] now
remain valid. ��

We turn to the case n0 ≥ 2 and assume that gcd(n, d) = 1. Now Mn,ξ is
a smooth projective variety with Pic(Mn,ξ ) ∼= Z and the Picard sheaf is defined
on the whole of Mn,ξ . We shall need a generalisation of the concept of (�,m)-
stability to torsion-free sheaves on Mn,ξ . For any such sheaf E , we can write
c1(E) = λEc1(θn,ξ ) for some integerλE . The sheafE is now θn,ξ -stable (semistable)
if and only if, for every proper subsheaf F of E ,

λF
rkF < (≤)

λE
rk E .
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Definition 5.3. Suppose that g ≥ 2 and gcd(n, d) = 1. A torsion-free sheaf E on
Mn,ξ is (�,m)-θn,ξ -stable (semistable) if, for every proper subsheaf F of E ,

λF + �

rkF < (≤)
λE + � − m

rk E . (5.1)

This definition makes sense on any quasi-projective variety whose Picard group
is isomorphic to Z.

We now recall more details from [7]. For any vector bundle F of rank n and
determinant ξ(p) with p ∈ C , the non-trivial exact sequences

0 −→ E −→ F −→ Cp −→ 0 (5.2)

form a family parametrised by the projective space P(F∗
p ). If F is (0, 1)-stable,

then E is stable, so we obtain a morphism

ψF,p : P(F∗
p ) −→ Mn,ξ .

Lemma 5.4. Suppose that gcd(n, d) = 1 and let F be a (0, 1)-stable bundle of
rank n and determinant ξ(p) for some line bundle ξ of degree d and some p ∈ C.
Then ψF,p is an isomorphism onto its image and

ψ∗
F,p(θn,ξ ) ∼= OP(F∗

p )(1). (5.3)

Proof. For the first statement, see [36, Lemma 5.9] (or [7, Lemma 3]). After ten-
soring by a line bundle on C , we can suppose that d > 2n(g − 1). It follows from
[7, Diagram (6)] that, for the integer j defined in [7, Formula (3)], there is an exact
sequence

0 −→ ψ∗
F,p(Wn,ξ (OC )(− j)) −→ H0(F) ⊗ OP(F∗

p ) −→ OP(F∗
p )(1) −→ 0.

Hence ψ∗
F,p(Wn,ξ (OC )(− j)) has degree −1. Since θn,ξ is the positive generator

of Pic(Mn,ξ ), the formula (5.3) follows. ��

In view of Lemma 5.4, we can identify P(F∗
p ) with its image in Mn,ξ .

Lemma 5.5. Suppose that gcd(n, d) = 1, E0 ∈ Mn0,d0 and F ∈ Mn,ξ(p). Sup-
pose further that one of the following holds:

(i) nd0 + n0d > n0n(2g − 2) and F is (0, 1)-stable;
(ii) nd0 + n0d > n0ng − n0 and E0 and F are general.

Then there exists an exact sequence

0 −→ H0(E0 ⊗ F(−p)) ⊗ OP(F∗
p ) −→ ψ∗

F,p(Wn,ξ (E0))(− j) −→ �P(F∗
p )(1) ⊗ (E0)p

−→ H1(E0 ⊗ F(−p)) ⊗ OP(F∗
p ) −→ 0. (5.4)
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Proof. The bundle E0 ⊗ E is semistable for every E ∈ Mn,ξ . Hence, if (i) holds,
H1(E0 ⊗ E) = 0 for all such E . Tensoring by E0 in [7, Diagram (4)] and by
p∗
2(E0) in [7, Diagram (5)] (note that our p1, p2 correspond respectively to p2, p1

in [7]), we obtain from [7, Diagram (6)] the required exact sequence (5.4).
Now suppose that (ii) holds. The bundle E0 ⊗ F(−p) is semistable. If L is a

general element of Pic0(C), then F(−p) ⊗ L is a general element of Mn,d+1−n ;
moreover, for any L , E0 ⊗ L−1 is a general element of Mn0,d0 . It follows from
[25, Theorem 4.6] that

E0 ⊗ L−1 ⊗ F(−p) ⊗ L = E0 ⊗ F(−p)

is non-special. Since nd0 +n0(d+1−n) > n0n(g−1), this implies that H1(E0 ⊗
F(−p)) = 0. It follows that H1(E0 ⊗ E) = 0 for all E ∈ P(F∗

p ). The argument is
completed as in case (i). ��
Remark 5.6. If the hypotheses of Lemma 5.5 hold, then (5.4) implies that
ψ∗
F,p(Wn,ξ (E0)) is locally free. Moreover, since �P(F∗

p )(1) has degree −1 and
E0 has rank n0, the bundle �P(F∗

p )(1) ⊗ (E0)p has degree −n0. It follows at once
from (5.4) that ψ∗

F,p(Wn,ξ (E0))(− j) also has degree −n0; so ψ∗
F,p(Wn,ξ (E0)) is

not semistable.

Lemma 5.7. Suppose that the hypotheses of Lemma 5.5 hold. Then, for any proper
subsheaf G of rank r of ψ∗

F,p(Wn,ξ (E0))(− j) whose image in �P(F∗
p )(1) ⊗ (E0)p

is non-zero,

degG
r

<
degψ∗

F,p(Wn,ξ (E0))(− j) + n0 − 1

rkWn,ξ (E0)
. (5.5)

.

Proof. Since �P(F∗
p )(1) ⊗ (E0)p is semistable of negative degree, it follows from

the hypothesis and (5.4) that degG ≤ −1. So

degG
r

≤ −1

r
<

−1

rkWn,ξ (E0)
= degψ∗

F,p(Wn,ξ (E0))(− j) + n0 − 1

rkWn,ξ (E0)
,

since degψ∗
F,p(Wn,ξ (E0))(− j) = −n0 (see Remark 5.6). ��

Lemma 5.8. Let p1, . . . , pm ∈ C and let F be a subsheaf of Wn,ξ (E0). There
exists a non-empty open subset U ofMn,ξ such that, if E ∈ U, then

(i) F is locally free at E;
(ii) the homomorphism of fibres FE −→ Wn,ξ (E0)E is injective;
(iii) for all pi and for the generic extension (5.2) with p = pi , the vector bundle

F is (0, 1)-stable and F is locally free at every point of ψF,pi (P(F∗
pi )) outside

some subvariety of codimension at least 2.

Proof. The proof is identical with that of [7, Lemma 4]. ��
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Lemma 5.9. Suppose that gcd(n, d) = 1, E0 ∈ Mn0,d0 and that either nd0 +
n0d > n0n(2g − 2) or E0 is general and nd0 + n0d > n0ng − n0. Let F be a
proper subsheaf ofWn,ξ (E0). Then there exist p ∈ C and F ∈ Mn,ξ such that the
image of ψ∗

F,pF(− j) in �P(F∗
p )(1) ⊗ (E0)p is non-zero.

Proof. We follow the proof on p.567 of [7]. Choose points p1, . . . , pm ∈ C with
m > nd0+n0d

n0n
and choose E and F as in Lemma 5.8. In particular, F is (0, 1)-

stable, so Lemma 5.4 applies and (5.4) holds. Since E0⊗E is semistable, H0(E0⊗
E(−p1 − . . . − pm)) = 0. Let v be a non-zero element of FE . By Lemma 5.8, the
image s of v inWn,ξ (E0)E is non-zero. Since H0(E0 ⊗ E(−p1 − . . .− pm)) = 0,
there exists p := pi such that s(p) �= 0. By further restricting F , we can suppose
that s /∈ H0(E0 ⊗ F(−p)). The result now follows from (5.4). ��
Proof of Theorem 2.2(ii). Let F be a proper subsheaf of Wn,ξ (E0) of rank r .
Choose p and F as in Lemma 5.9 and let F1 be the image of ψ∗

F,pF(− j) in
ψ∗
F,p(Wn,ξ (E0))(− j). In view of Lemma 5.9, we can take G = F1 in Lemma 5.7.

By Lemma 5.8(ii), the homomorphism ψ∗
F,pF(− j) → F1 is an isomorphism in

the neighbourhood of E . By Lemma 5.8(iii), the kernel of this homomorphism is
supported on a subvariety of codimension at least 2. It follows that the homomor-
phism is an isomorphism away from this subvariety. It follows from Lemma 5.7
that

degψ∗
F,pF(− j)

r
<

degψ∗
F,p(Wn,ξ (E0))(− j) + n0 − 1

rkWn,ξ (E0)
.

By (5.3), we have

λF
r

= degψ∗
F,pF
r

<
degψ∗

F,p(Wn,ξ (E0)) + n0 − 1

rkWn,ξ (E0)
= λWn,ξ (E0) + (n0 − 1)

rkWn,ξ (E0)
.

This completes the proof. ��

6. Picard sheaves on Mn,d

In this section, we prove Theorem 2.3.

Lemma 6.1. Suppose that gcd(n, d) = 1 and let L0 be a line bundle of degree d0.
If nd0 + d ≥ n(2g − 1), then Wn,d(L0) is θn,d-stable.

Proof. Suppose first that nd0+d > 2ng. Let f ′ : Mn,d
∼=−→ Mn,nd0+d be defined

by f ′(E) = L0 ⊗ E . Then

f ′∗(Wn,nd0+d(OC )) ∼= Wn,d(L0).

The result now follows from [29, Theorem 1].
Under the weaker assumption nd0 + d ≥ n(2g − 1), consider the morphism

f ′′ : Pic0(C) × Mn,ξ −→ Mn,d : (L1, E) 
−→ L1 ⊗ E .
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This is a finite map, so Wn,d(L0) is θn,d -stable if f ′′∗(Wn,d(L0)) is f ′′∗(θn,d)-
stable.

Now consider the restriction of f ′′∗(Wn,d(L0)) to a fibre Pic0(C)×{E1}. From
the definition, it follows that, if L ∈ Pic1(C),

f ′′∗(Wn,d(L0))|Pic0(C)×{E1} ∼= α∗
L ,E1⊗L(Wn,d(L0)).

Since L0 is a line bundle, it follows from Theorem 3.2(b) that f ′′∗
(Wn,d(L0))|Pic0(C)×{E1} is θ1,0-semistable. On the other hand, for L1 ∈ Pic0(C)

f ′′∗(Wn,d(L0))|{L1}×Mn,ξ
∼= Wn,ξ (L1 ⊗ L0)

and this is θn,ξ -stable by Theorem 2.2(i). It follows from [29, Proposition 4.8] and
[4, Lemma 2.2] that Wn,d(L0) is θn,d - stable. ��
Remark 6.2. (i) Note that we require only one of the restrictions to be stable to

apply [4, Lemma 2.2]; the other needs only to be semistable.
(ii) For nd0 + n0d ≥ n0n(2g− 1), the same argument will prove that, ifWn,ξ (E0)

is θn,ξ -stable, then Wn,d(E0) is θn,d -stable.

When n0 ≥ 2, the methods above do not currently work. Instead, we need to
use an argument based on the use of spectral curves. Recall from [5, Theorem 1
and Remarks 3.1 and 3.2] (see also [29, section 3.4]) that, for any n, d, there exist
a smooth irreducible n-sheeted covering π : C ′ −→ C and an open set

T δ := {L ∈ Picδ(C ′)|π∗(L) is stable}
such that the morphism h : T δ −→ Mn,d defined by h(L) = π∗(L) is dominant.
Here

δ = d + n(n − 1)(g − 1), g(C ′) = n2(g − 1) + 1 (6.1)

and

π∗(OC ′) ∼= OC ⊕ K−1
C ⊕ · · · ⊕ K 1−n

C . (6.2)

Lemma 6.3. Except when g = n = 2 and d is even, the complement of T δ in
Picδ(C ′) has codimension ≥ 2.

Proof. For n ≥ 3, it is proved in [5, Remark 5.2] that codim((T δ)c) ≥ 2g − 2. For
n = 2, we can proceed as in this remark to obtain

codim((T δ)c) ≥ g − 1,

with strict inequality if δ is odd. This completes the proof. ��
Let θ1,δ denote a θ -bundle on Picδ(C ′). In [29, Theorem 4.3], Li related the

theta-bundle θn,d to θ1,δ .
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Lemma 6.4. Suppose that gcd(n, d) = 1 and let E be a vector bundle onMn,d . If
h∗(E) extends to a θ1,δ-stable (respectively, semistable) bundle on Picδ(C ′), then E
is θn,d-stable (respectively, semistable). Moreover, if φ∗

L(h∗(E)) is stable for some
L ∈ Picδ(C ′), then E is θn,d-stable.

Proof. By [29, Theorem 4.3], we have

h∗(θn,d) ∼= θn1,δ|T δ .

Since dim T δ = n2(g−1)+1 = dimMn,d , the first part of the result now follows
from [4, Lemma 2.1]. The second part follows from Lemma 3.4. ��
Lemma 6.5. Let E be a stable (respectively, semistable) bundle on C. Then π∗(E)

is stable (respectively, semistable) on C ′.

Proof. For E semistable, this is [13, Theorem 2.4].
Now assume that E is stable. We know that π∗(E) is polystable on C ′ [13,

Proposition 2.3]. Moreover,

H0(End(π∗(E))) = H0(π∗(End(π∗(E)))) = H0(End(E) ⊗ π∗(OC ′)) = C,

where the last equality comes from (6.2) and the fact that E is simple and End(E)

is semistable of degree 0. So π∗(E) is simple and therefore stable. ��
Lemma 6.6. Suppose that gcd(n, d) = 1, nd0 + n0d > n0n(2g − 2) and E0 ∈
Mn0,d0 . Then

(W1,δ(π
∗(E0)))|T δ

∼= h∗(Wn,d(E0)).

Proof. Let U δ be a universal bundle on Picδ(C ′) × C ′. Possibly after tensoring by
a line bundle lifted from T δ , it follows from the definitions that

(1T δ × π)∗(U δ|T δ×C ′) ∼= (h × 1C )∗(U).

Now, tensoring both sides by p∗
2(E0) and taking direct images by pT , we obtain

pT∗(p∗
2(π

∗(E0)) ⊗ U δ|T δ×C ′) ∼= pT∗(h × 1C )∗(U ⊗ p∗
2(E0))

on T δ . Using base change on the right hand side, this gives the result. ��
Proof of Theorem 2.3. (i) is Lemma 6.1.

(ii) Let E0 ∈ Mn0,d0 . ByLemma6.5, the bundleπ∗E0 onC ′ is stable.Hence, by
Theorem 2.1(ii),W1,δ(π

∗(E0)) is θ1,δ-stable (respectively, semistable) on Picδ(C ′)
provided that nd0 + n0δ > n0(2g(C ′) − 1) (respectively, ≥). Using (6.1), we see
that this condition is equivalent to

nd0 + n0d > n0n(n + 1)(g − 1) + n0 (respectively ≥ ).

The result now follows from Lemmas 6.4 and 6.6. ��
Remark 6.7. Suppose nd0 + n0δ > n0(g(C ′) − 1). If W1,δ(π

∗(E0)) were θ1,δ-
stable and Lemma 6.6 still held, then we would have Wn,d(E0) θn,d -stable for
nd0 + n0d > n0n(g − 1). This is a plausible conjecture.
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7. Deformations of Picard bundles: n ≥ 2

In this section, we consider deformations of Picard bundles with a view to con-
structing and describing morphisms frommoduli spaces of bundles on C to moduli
spaces of bundles on Mn,d , thus obtaining fine moduli spaces for Picard bundles.
We suppose throughout that

n ≥ 2, gcd(n, d) = 1, nd0 + n0d > n0n(2g − 2), (7.1)

thus ensuring that our Picard sheaves are well defined and locally free. For technical
reasons related to the use of Hecke correspondences in [8], we need to assume
further that

g ≥ 3; if g = 3, n ≥ 4; if g = 4, n ≥ 3. (7.2)

The following theorem summarises some relevant results from [8]. Recall that the
simple vector bundles over a scheme X with fixed Chern character ch0 possess
a coarse moduli space M0(X) (see [28, Corollary 6.5] for a proof of this fact in
the analytic context - this space is possibly non-separated; by previous work of M.
Artin,M0(X) is an algebraic space). We define an equivalence relation on families
of bundles {Es |s ∈ S} parametrised by a scheme S as follows: for two families E ,
E ′, we write

E ∼ E ′ ⇐⇒ E ∼= E ′ ⊗ p∗
S(L) for some line bundle L on S. (7.3)

As in [8, Section 7], when gcd(n0, d0) = 1, let ̂Uξ be the bundle on Mn0,d0 ×
Mn,ξ × C defined by

̂Uξ := p∗
13(U0) ⊗ p∗

23(Uξ ),

where U0 is a universal bundle onMn0,d0 × C , and let

̂Wξ := p12∗(̂Uξ ).

Theorem 7.1. Suppose that (7.1) and (7.2) hold and let ch0 denote the Chern
character of the Picard bundles Wn,ξ (E0). Then

(i) for any vector bundle E0 of rank n0 and degree d0 which is both semistable and
simple, the Picard bundle Wn,ξ (E0) is simple;

(ii) the formula E0 
→ Wn,ξ (E0) defines a morphism

βξ : Mn0,d0 −→ M0(Mn,ξ );
(iii) βξ is an open immersion and, if gcd(n0, d0) = 1, it is an isomorphism onto a

smooth connected component of M0(Mn,ξ );
(iv) if gcd(n0, d0) = 1, Mn0,d0 is a fine moduli space for deformations of Picard

bundles on Mn,ξ with Chern character ch0 with respect to the equivalence
relation ∼ defined in (7.3) with universal object ̂Wξ .



Stability and deformations of generalised Picard sheaves 653

Proof. (i) is [8, Corollary 21].
(ii) follows from [8, Theorem 24] and (i). Note that the assumption that

gcd(n0, d0) = 1 is not needed [8, Remark 25].
(iii) is not formally stated in [8] except when Wn,ξ (E0) is θn,ξ -stable for all

E0 ∈ Mn0,d0 [8, Theorem 26], but follows from [8, Theorem 24] and the fact that,
if gcd(n0, d0) = 1, the moduli space Mn0,d0 is complete.

(iv) Let {Ws} be a family of Picard bundles of the formWn,ξ (E0) parametrised
by a scheme S. Then, by (iii), there exists a morphism φ : S → Mn0,d0 defined
by φ(s) = β−1

ξ (Ws). Now let W ′ := (φ × idMn,ξ
)∗(̂Wξ ). Then W ′

s
∼= Ws for

all s ∈ S. Since these bundles are simple, it follows that L := pS∗(Hom(W ′,W))

is locally free of rank 1 (see [23, Ch III Corollary 12.9]). It follows easily that the
natural homomorphism p∗

S(L) ⊗ W ′ → W is an isomorphism. So W ′ ∼ W and
Mn0,d0 is a fine moduli space as required with universal object ̂Wξ . ��
Remark 7.2. The restriction of̂Wξ to {E0}×Mn,ξ isWn,ξ (E0), while its restriction
toMn0,d0×{E} isWn0.d0(E). IfWn,ξ (E0) is θn,ξ -stable for some E0 andWn0.d0(E)

is θn0,d0 -semistable for some E , then ̂Wξ is θ -stable for θ = aθn,ξ + bθn0,d0 with
a, b > 0 by [4, Lemma 2.2]. This holds, by Theorem 2.2(i) and Theorem 2.1(ii), if
n0 = 1 and nd0 + d ≥ n(2g − 1).

Our main object in this section is to obtain a similar result to Theorem 7.1
for Mn,d . We begin with a lemma. Recall that Pic0(Mn,d) denotes the group of
topologically trivial line bundles onMn,d .

Lemma 7.3. Suppose that (7.1) and (7.2) hold and let E0, E ′
0 ∈ Mn0,d0 , L , L ′ ∈

Pic0(Mn,d). If L ⊗ Wn,d(E0) ∼= L ′ ⊗ Wn,d(E ′
0), then E0 ∼= E ′

0 and L ∼= L ′.
Moreover Wn,d(E0) is simple for all E0 ∈ Mn0,d0 .

Proof. Suppose that L ⊗Wn,d(E0) ∼= L ′ ⊗Wn,d(E ′
0) and consider the morphism

det : Mn,d → M1,d . Since PicMn,ξ
∼= Z,

L ∼= det∗(L0), L
′ ∼= det∗(L ′

0) with L0, L
′
0 ∈ Pic0(M1,d).

So

0 �= H0(Mn,d , L ⊗ Wn,d(E0) ⊗ (L ′ ⊗ Wn,d(E
′
0))

∗) (7.4)

= H0(M1,d , det∗(Wn,d(E0) ⊗ Wn,d(E
′
0)

∗) ⊗ L0 ⊗ L ′∗
0 ).

So det∗(Wn,d(E0) ⊗ Wn,d(E ′
0)

∗) �= 0 and hence

H0(Mn,ξ ,Wn,ξ (E0) ⊗ Wn,ξ (E
′
0)

∗) �= 0

for all ξ ∈ M1,d . It follows from [8, Theorem 20] that H0(E0 ⊗ E ′∗
0 ) �= 0. Since

E0, E ′
0 are stable of the same slope, this implies that E0 ∼= E ′

0.
Note now thatWn,d(E0)⊗Wn,d(E0)

∗ contains a subbundleOWn,d generated by
the identity endomorphism ofWn,d(E0). By [8, Corollary 21],Wn,ξ (E0) is simple,
so the inclusion of H0(OWn,d ) in H0(Mn,d ,Wn,d(E0) ⊗ Wn,d(E0)

∗) restricts to
an isomorphism C → H0(Mn,ξ ,Wn,ξ (E0) ⊗ Wn,ξ (E0)

∗) for all ξ ∈ M1,d . So

det∗(Wn,d(E0) ⊗ Wn,d(E0)
∗) ∼= OM1,d (7.5)
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and, by (7.4),

H0(M1,d , L0 ⊗ L ′∗
0 ) �= 0.

Since L0 and L ′
0 are both topologically trivial, it follows that L0 ∼= L ′

0 and hence
L ∼= L ′.

Finally, it follows from (7.5) that H0(Mn,d ,End(Wn,d(E0))) ∼= C, so
Wn,d(E0) is simple. ��
Remark 7.4. Note that, for any L ∈ Pic(Mn,d), p1∗(p∗

2(E0) ⊗ p∗
1(L) ⊗ U) =

L ⊗ Wn,d(E0). Since U ′ := p∗
1(L) ⊗ U is a universal bundle on Mn,d × C , it

follows that L ⊗ Wn,d(E0) is itself a Picard bundle.

Remark 7.5. If we write f for the fundamental class of the curve C , then the Chern
character of E0 is n0 + d0 f and the Todd class of C is 1− (g − 1) f , so the Chern
character of Wn,d(E0) is given by

ch0 := ch(Wn,d(E0)) = ch(U)(n0 + d0 f )(1 − (g − 1) f )[C] (7.6)

by Grothendieck–Riemann–Roch. Moreover, if L ∈ Pic0(Mn,d), then L ⊗
Wn,d(E0) also has Chern character ch0. Since the integral cohomology of Mn,d

is torsion-free (see [2]), if L ∈ Pic(Mn,d) is not topologically trivial, the Chern
character of L ⊗ Wn,d(E0) is different from ch0. Hence the Picard bundles with
Chern character ch0 are precisely the bundles of the form L ⊗ Wn,d(E0) with
E0 ∈ Mn0,d0 and L ∈ Pic0(Mn,d). Note also that n0, d0 can be recovered from
ch0.

Now suppose that gcd(n0, d0) = 1. Consider the bundle p∗
13(U0) ⊗ p∗

23(U) on
Mn0,d0 × Mn,d × C and define

̂Wn,d,n0,d0 := p12∗(p∗
13(U0) ⊗ p∗

23(U)).

This is a bundle onMn0,d0 ×Mn,d and can be regarded as a family of bundles on
Mn,d parametrised by Mn0,d0 ; the members of this family are the Picard bundles
Wn,d(E0) for E0 ∈ Mn0,d0 (compare the bundle ̂Wξ on Mn0,d0 × Mn,ξ used in
the proof of Theorem 7.1). The definition is symmetrical; ̂Wn,d,n0,d0 can also be
regarded as a family of bundles on Mn0,d0 parametrised by Mn,d with members
Wn0,d0(E) for E ∈ Mn,d . Now let M0(Mn,d) be the moduli space of simple
bundles on Mn,d with Chern character ch0. Using ̂Wn,d,n0,d0 and Lemma 7.3, we
see that

β : Pic0(Mn,d) × Mn0,d0 −→ M0(Mn,d) : β(L , E0) = L ⊗ Wn,d(E0)

is a morphism. Note that β is defined even if gcd(n0, d0) �= 1. To see this, recall
that there exists an étale covering X of Mn0,d0 such that a universal bundle exists
on X × C [35, Proposition 2.4]. This implies the existence of a morphism from
Pic0(Mn,d) × X toM0(Mn,d), which descends to β.
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Lemma 7.6. Suppose that (7.1) and (7.2) hold. Then the differential of β defines
an isomorphism of Zariski tangent spaces

T (Pic0(Mn,d) × Mn0,d0)(L ,E0) −→ TM0(Mn,d)β(L ,E0) (7.7)

for all E0 ∈ Mn0,d0 , L ∈ Pic0(Mn,d). In particular,

dim TM0(Mn,d)β(L ,E0) = g + n20(g − 1) + 1. (7.8)

Proof. Recall that the tangent space to Pic0(Mn,d) × Mn0,d0 at (L , E0) is

H1(Mn,d ,OMn,d ) ⊕ H1(End(E0)),

while that toM0(Mn,d) at β(L , E0) is H1(Mn,d ,End(Wn,d(E0))). By (7.5), we
have det∗(End(Wn,d(E0))) = OM1,d . So the Leray spectral sequence of det yields
an exact sequence

0 −→ H1(M1,d ,OM1,d )
γ−→ H1(Mn,d ,End(Wn,d(E0)))

δ−→ (7.9)

δ−→ H0(M1,d , R1
det(End(Wn,d(E0)))).

Since H1(Mn,ξ ,OMn,ξ
) = 0 for all ξ , we can identify H1(M1,d ,OM1,d )

with H1(Mn,d ,OMn,d ). Under this identification, γ is just the differential of
(β|Pic0(Mn,d )×{E0})L . Moreover, for any L ∈ Pic0(Mn,d), the differential of
(β|{L}×Mn0,d0

)E0 gives a linear map

H1(End(E0)) −→ H1(Mn,d ,End(Wn,d(E0))),

which can be composed with δ to give a linear map

H1(End(E0)) −→ H0(M1,d , R
1
det(End(Wn,d(E0)))). (7.10)

This in turn yields a homomorphism of bundles

H1(End(E0)) ⊗ OM1,d −→ H0(M1,d , R1
det(End(Wn,d(E0)))) ⊗ OM1,d

ev−→ R1
det(End(Wn,d(E0))). (7.11)

On the fibre of det over ξ ∈ M1,d , (7.11) gives a linear map

H1(End(E0)) −→ H1(Mn,ξ ,End(Wn,ξ (E0))). (7.12)

By construction, (7.12) is the infinitesimal deformation map for Wn,ξ (E0), which
is an isomorphism for all ξ by [8, Theorem 24], implying that (7.11) is an isomor-
phism. Hence (7.10) is also an isomorphism and the sequence (7.9) splits. It follows
that (7.7) is an isomorphism. Since

h1(Mn,d ,OMn,d ) = h1(M1,d ,OM1,d ) = h1(OC ) = g

and h1(End(E0)) = n20(g − 1) + 1, (7.8) now follows. ��
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Remark 7.7. Since themap δ in (7.9) is surjective, it follows from the Leray spectral
sequence that there is an injective map

H2(M1,d ,OM1,d ) −→ H2(Mn,d ,End(Wn,d(E0))).

In particular H2(Mn,d ,End(Wn,d(E0))) �= 0, so in principle the infinitesimal
deformations ofWn,d(E0) could be obstructed. Lemma 7.6 shows that in fact they
are not obstructed. Note also that, by (7.5),

R0
det(End(Wn,d(E0))) = det∗(Wn,d(E0) ⊗ Wn,d(E0)

∗) ∼= OM1,d

and, by (7.11),

R1
det(End(Wn,d(E0))) ∼= H1(End(E0)) ⊗ OM1,d .

Moreover, it follows from [8, Proposition 14 and (11)] that Ri
det(End(Wn,d(E0))) =

0 for all E0 ∈ Mn0,d0 if

2 ≤ i ≤ min{r(n − r)(g − 1) + (ne − r(d + 1))} − 3,

the minimum being taken over all values of r , e satisfying 0 < r < n, rd ≤ ne.

Corollary 7.8. Suppose that (7.1) and (7.2) hold. Then β is an open immersion
and M0(Mn,d) is smooth of dimension g + n20(g − 1) + 1 at β(L , E0).

Proof. Since Pic0(Mn,ξ ) = {OMn,ξ
}, we have a natural isomorphism

Pic0(Mn,d) = Pic0(M1,d) ∼= Pic0(C). (7.13)

Hence, byLemma7.3, the dimension of Im β at (L , E0) is equal to g+n20(g−1)+1.
The result now follows from Lemma 7.6. ��
Remark 7.9. In [8], we obtained an inversion formula for βξ . We can use this to
obtain a similar formula for β. In the first place, for any L ∈ Pic0(Mn,d), we
have L ∼= det∗(L ′) with L ′ ∈ Pic0(M1,d). It follows that L ⊗ Wn,d(E0)|Mn,ξ

∼=
Wn,ξ (E0) for any ξ ∈ M1,d . We can therefore use [8, Theorem 19] to recover E0.
Now, it follows from (7.5) that

det∗(L ⊗ Wn,d(E0) ⊗ Wn,d(E0)
∗) ∼= L ′,

which recovers L . To make this formula precise, let B := Im β; this is an open
subset of M0(Mn,d) and β maps Pic0(Mn,d) × Mn0,d0 isomorphically to B by
Corollary 7.8. Now fix ξ ∈ M1,d . Then, for any F ∈ B, we have

β−1(F) = (det∗(det∗(F ⊗ Wn,d(R
1
p2(p

∗
1(F |Mn,ξ

) ⊗ U∗
ξ ⊗ p∗

2(KC )))∗)),
R1
p2(p

∗
1(F |Mn,ξ

) ⊗ U∗
ξ ⊗ p∗

2(KC ))), (7.14)

where p1, p2 are the projections of Mn,ξ × C onto its factors.
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We can now prove the main theorem of this section, which is a refined version
of Theorem 1.5. Before stating the theorem, we make a definition. Suppose that
(7.1) and (7.2) hold and gcd(n0, d0) = 1. If we let L denote a universal bundle on
Pic0(Mn,d) × Mn,d , we can consider the bundle p∗

13(L) ⊗ p∗
24(U0) ⊗ p∗

34(U) on
Pic0(Mn,d) × Mn0,d0 × Mn,d × C and define

˜Wn,d,n0,d0 := p123∗(p∗
13(L) ⊗ p∗

24(U0) ⊗ p∗
34(U)). (7.15)

This is a bundle on Pic0(Mn,d) ×Mn0,d0 ×Mn,d ∼= Pic0(C) ×Mn0,d0 ×Mn,d .

Theorem 7.10. Suppose that (7.1) and (7.2) hold.

(i) Let M0
0(Mn,d) denote the irreducible component of M0(Mn,d) which con-

tains Im β. Then

β : Pic0(Mn,d) × Mn0,d0 −→ M0
0(Mn,d) (7.16)

is an injective birational morphism.
(ii) If, in addition,gcd(n0, d0) = 1, thenM0

0(Mn,d) is isomorphic toPic0(Mn,d)×
Mn0,d0 and is smooth of dimension g+n20(g−1)+1. Moreover Pic0(Mn,d)×
Mn0,d0 is a fine moduli space for deformations of Picard bundles onMn,d with
respect to the equivalence relation ∼ defined in (7.3). The bundle ˜Wn,d,n0,d0 is
a universal object for this moduli space.

(iii) If gcd(n0, d0) = 1 and nd0 + n0d > n0n(n+ 1)(g− 1)+ n0, thenM0
0(Mn,d)

is an irreducible component of the moduli space of θn,d-stable bundles onMn,d

with Chern character ch0. Moreover, if

nd0+n0d> max{n0n(n + 1)(g − 1) + n0, n0n(n0 + 1)(g − 1) + n},
(7.17)

then the universal bundle ˜Wn,d,n0,d0 is θ -stable for θ = aθ0 + bθn,d + cθn0,d0
with a, b, c > 0, where θ0 is any ample divisor on Pic0(Mn,d).

Proof. (i) follows at once from Corollary 7.8.
(ii)When gcd(n0, d0) = 1, Pic0(Mn,d)×Mn0,d0 is a smooth projective variety,

so (7.16) is surjective and is therefore an isomorphismbyLemma7.6.We nowargue
exactly as in the proof of Theorem 7.1(iv) using ˜Wn,d,n0,d0 in place of ̂Wξ , noting
that the restriction of ˜Wn,d,n0,d0 to any factor {L}×{E0}×Mn,d is L⊗Wn,d(E0).

(iii) The first statement follows from Theorem 2.3(ii). Now suppose that (7.17)
holds. The restriction of ˜Wn,d,n0,d0 to Pic

0(Mn,d) × {E0} × {E} is isomorphic to

L|Pic0(Mn,d )×{E} ⊗ H0(E0 ⊗ E),

which is θ0-semistable for any ample divisor θ0 on Pic0(Mn,d). Moreover, the
restriction to {L} × Mn0,d0 × {E} is just Wn0,d0(E) and the restriction to {L} ×
{E0} ×Mn,d is L ⊗Wn,d(E0). IfWn,d(E0) is θn,d -stable for some E0 ∈ Mn0,d0
andWn0,d0(E) is θn0,d0 -stable for some E ∈ Mn,d , then ˜Wn,d,n0,d0 is θ -stable for
θ := aθ0 + bθn,d + cθn0,d0 with a, b, c > 0 by [4, Lemma 2.2]. This applies in
particular if (7.17) holds by Theorem 2.3(ii). ��
Remark 7.11. When n0 = 1, we can use Theorem 2.3(i) to replace the inequality
in the first part of (iii) by nd0 + d ≥ n(2g − 1). Moreover, using also Theorem
2.1(ii), we can replace (7.17) by the same inequality nd0 + d ≥ n(2g − 1).
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8. Deformation of Picard bundles: n = 1

The proofs in Sect. 7 depend heavily on results for Picard bundles onMn,ξ and do
not work for n = 1. In this case, we need to return to the work of Kempf [26] and
Mukai [31] for the case n0 = 1. The following theorem summarises their principal
results with relevance to our problem.

Theorem 8.1. Suppose that g ≥ 2 and d0 + d > 2g − 2. Then

(i) for any line bundle L0 of degree d0, the Picard bundle W1,d(L0) is simple;
(ii) the morphism

β : Pic0(M1,d) × M1,d0 −→ M0(M1,d),

defined by β(L , L0) = L ⊗ W1,d(L0), is injective;
(iii) the differential of β at (L , L0) is injective;
(iv) if either g = 2 or g ≥ 3 and C is not hyperelliptic, then Pic0(M1,d) × M1,d0

is a fine moduli space for the deformations of Picard bundles W1,d(L0) with
universal bundle ˜W1,d,1,d0 as in (7.15). Moreover, ˜W1,d,1,d0 is θ -stable for
θ := aθ0 + bθ1,d + cθn0,d0 with a, b, c > 0, where θ0 is any ample divisor on
Pic0(M1,d).

Proof. (i) For L0 = OC , this is [26, Corollary 6.5]. In general, note that, if T0 :
M1,d

∼=→ M1,d0+d is defined by T0(L) = L ⊗ L0, then T ∗
0 (Wd0+d(OC )) =

W1,d(L0). Alternatively, this follows directly from Theorem 2.1(i). See also [22,
Corollary 2 to Theorem 13].

(ii) This is easily deducible from [26, Proposition 9.1]. Since we shall be pre-
senting a proof for general n0 later (Lemma 8.6), we omit the details.

(iii) is the first part of [26, Theorem 8.4].
(iv) If g ≥ 3 and C is not hyperelliptic, the second part of [26, Theorem 8.4]

states that the differential of β at (L , L0) is an isomorphism for all (L , L0). The
case g = 2 is covered at the end of [26]. Thus, in these cases, β is an isomorphism
onto Im β, which is an irreducible component ofM0(M1,d). The identification of
the universal bundle is proved as in Theorem 7.1(iv) and Theorem 7.10(ii). For the
proof of stability of ˜W1,d,1,d0 , see Remark 7.2. ��
Remark 8.2. Kempf defines Picard bundles also in negative degree; with our nota-
tion, this is equivalent to taking d0 + d < 0 and defining the Picard bundle as
R1
p1(p

∗
2(L0)⊗U). In [31],Mukai adopts a similar approach and follows Schwarzen-

berger [38] in choosing a point c ∈ C and defining Picard sheaves Fe over Pic0(C)

by

Fe := R1
p1(p

∗
2(OC (ec)) ⊗ U).

He then studies deformations of Fe for e ≤ g−1. In our notation, this is equivalent
to considering R1

p1(p
∗
2(L0) ⊗ U) for d0 + d ≤ g − 1. For d0 + d < 0, this sheaf is

locally free; moreover, if φ : M1,d → M1,2 g−2−d is given by φ(L) = L−1⊗KC ,
then it is dual to φ∗(W1,2 g−2−d(L

−1
0 )) (for a suitable choice of universal bundle on
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M1,2g−2−d ) by relative Serre duality. Note however that p1∗(p∗
2(L0)⊗U) = 0 for

d0 + d ≤ g − 1, so L0 satisfies the weak index theorem (WIT) in this wider range,
which is where Mukai works. Mukai also handles the hyperelliptic case, when β

still maps Pic0(M1,d) × M1,d0 surjectively to a component of M0(M1,d), but
this component is non-reduced when g ≥ 3; in fact, its Zariski tangent spaces have
dimension 3g − 2 [31, Lemma 4.9 and Remark 4.17]. The proof of Theorem 8.1
depends on a classical theoremofMaxNoether [37] asserting that themultiplication
map

μ : H0(KC ) ⊗ H0(KC ) −→ H0(K 2
C ) (8.1)

is surjective if C is not hyperelliptic. Note that Coker(μ) coincides with the Koszul
cohomology group K0,2(C, KC ) (see, for example, [1, p6] for the definition). So
the surjectivity ofμ is equivalent to the vanishing of this Koszul cohomology group.
This is in fact the first case of Green’s Conjecture (see [1, p.58]).

Our object now is to generalise Theorem 8.1 to the case n0 ≥ 2. We assume
from now on that d0 + n0d > n0(2g − 2). It follows thatW1,d(E0) is locally free
for all E0 ∈ Mn0,d0 . We shall not however assume that n0 ≥ 2 except where this
is explicitly stated. Before proceeding, we state some facts about Picard varieties.

In the first place, Pic0(C) is an abelian variety and M1,d is a principal homo-
geneous space for Pic0(C) under the action

M1,d × Pic0(C) −→ M1,d (L , M) 
→ M ⊗ L .

There exists a line bundle P on M1,d × Pic0(C) (the Poincaré bundle) which is
universal for topologically trivial line bundles on M1,d and also for topologically
trivial line bundles on Pic0(C). For M ∈ Pic0(C), we write PM for the bundle
P|M1,d×{M}. To fix P , we suppose that POC

∼= OM1,d . We fix also a point c ∈ C .
We have the following properties:

I The map Pic0(C) → Pic0(M1,d) defined by M 
→ PM is an isomorphism of
algebraic groups.

II There is a closed immersion ι : C → Pic0(C) defined by ι(x) = OC (x − c)
for which ι∗ : Pic0(Pic0(C)) → Pic0(C) is an isomorphism. We can therefore
take (1M1,d × ι)∗P as our universal bundle U onM1,d ×C . It follows that, for
all x ∈ C ,

Ux := U |M1,d×{x} ∼= Pι(x).

III For any L ∈ Pic0(M1,d), L �∼= OM1,d ,

Hi (M1,d , L) = 0

for all i .

(The properties I and III may be found in a more general context in [33, Section 8],
which also covers the existence of P , and the definition of ι is clearly stated at the
beginning of [31, Section 4].)
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Lemma 8.3. Suppose that d0 +n0d > n0(2g−2) and let E0, E ′
0 ∈ Mn0,d0 . Then

H0(E0 ⊗ E ′∗
0 ) ∼= H0(M1,d ,W1,d(E0) ⊗ W1,d(E

′
0)

∗) (8.2)

and, for all i ≥ 1, there exists a short exact sequence

0 −→ H1(∧i−1N ⊗ E0 ⊗ E ′∗
0 ) −→ Hi (M1,d ,W1,d(E0) ⊗ W1,d(E ′

0)
∗)

−→ H0(∧i N ⊗ E0 ⊗ E ′∗
0 ) −→ 0,

(8.3)

where N is the normal bundle to ι(C) in Pic0(C) and is defined by the exact
sequence

0 −→ N∗ −→ H0(KC ) ⊗ OC
ev−→ KC −→ 0. (8.4)

Proof. Following [26], we define a sheaf R on C × M1,d × C by

R := p∗
12(U) ⊗ p∗

23(U∗) ⊗ p∗
3(KC ).

For x �= y ∈ C , we have Ux �∼= Uy by II and hence Hi (M1,d ,Ux ⊗ U∗
y ) = 0 by

III. It follows that Ri
p13(R) is supported on the diagonal of C × C and therefore

can have non-zero cohomology in dimensions 0 and 1 only. Applying the Leray
spectral sequence for p13 to R ⊗ p∗

1(E0) ⊗ p∗
3(E

′
0), we therefore obtain, for all

i ≥ 1, a short exact sequence

0 −→ H1(C × C, Ri
p13(R) ⊗ p∗

1(E0) ⊗ p∗
2(E

′∗
0 ))

−→ Hi+1(C × M1,d × C,R ⊗ p∗
1(E0) ⊗ p∗

3(E
′∗
0 ))

−→ H0(C × C, Ri+1
p13 (R) ⊗ p∗

1(E0) ⊗ p∗
2(E

′∗
0 )) −→ 0. (8.5)

Since Ri
p13(R) is supported on the diagonal of C × C , we have

H j (C × C, Ri
p13(R) ⊗ p∗

1(E0) ⊗ p∗
2(E

′∗
0 )) ∼= H j (p1∗(Ri

p13(R)) ⊗ E0 ⊗ E ′∗
0 ).

Now p1∗(Ri
p13(R)) ∼= ∧i−1N by [26, Lemma 6.3] and

Hi+1(C × M1,d × C,R ⊗ p∗
1(E0) ⊗ p∗

3(E
′∗
0 )) ∼= Hi (M1,d ,W1,d (E0) ⊗ W1,d(E

′
0)

∗)

by [8, Proposition 1 and Remark 2]. Substituting in (8.5), we obtain (8.2) and (8.3).
Finally, (8.4) follows from the fact that the restriction of the tangent bundle of
Pic0(C) to ι(C) is naturally isomorphic to H1(OC ) ⊗ OC ∼= H0(KC )∗ ⊗ OC . ��
Remark 8.4. By (8.4), the bundle N is isomorphic to M∗

KC
(see (3.1)).

Corollary 8.5. Under the hypotheses of Lemma 8.3,

(i) W1,d(E0) is simple for all E0 ∈ Mn0,d0 .
(ii) if E0 �∼= E ′

0, then W1,d(E0) �∼= W1,d(E ′
0).
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Proof. (i) Take E ′
0 = E0 in Lemma8.3. Since E0 is stable,we have H0(E0⊗E∗

0 )
∼=

C. The result now follows from (8.2). (For d0+n0d > n0(2g−1), the result follows
directly from Theorem 2.1(ii), but this is not quite sufficient for us.)

(ii) Since E0 and E ′
0 are both stable of the same slope, H0(E0 ⊗ E ′∗

0 ) = 0. The
result follows at once from (8.2). ��

In view of Corollary 8.5(i), we have a morphism

β : Pic0(M1,d) × Mn0,d0 −→ M0(M1,d)

defined by β(L , E0) = L ⊗ W1,d(E0). We now extend Corollary 8.5(ii) to prove
the injectivity of β.

Lemma 8.6. Suppose that d0 + n0d > n0(2g − 2) and let E0, E ′
0 ∈ Mn0,d0 ,

L , L ′ ∈ Pic0(M1,d). If L ⊗ W1,d(E0) ∼= L ′ ⊗ W1,d(E ′
0), then E0 ∼= E ′

0 and
L ∼= L ′. Hence β is injective and

dimM0(M1,d)|β(L ,E0) ≥ g + n20(g − 1) + 1. (8.6)

Proof. We prove first that, for any L ∈ Pic0(M1,d),

Hg(M1,d , L ⊗ W1,d(E0)) �= 0

⇐⇒ L ∼= PM with M = ι(x)∗ for some x ∈ C. (8.7)

We consider the bundle U ⊗ p∗
1(L) ⊗ p∗

2(E0) on M1,d × C . By the universal
property of P , we can write L = PM for some M ∈ Pic0(C). By Serre duality, we
have

Hg(M1,d ,OM1,d )
∼= H0(M1,d ,OM1,d ) �= 0.

From this and III, we see that, for any x ∈ C ,

Hg(M1,d ,Pι(x) ⊗ PM ⊗ (E0)x ) �= 0 ⇐⇒ M ∼= ι(x)∗.

In particular, if M ∼= ι(x)∗, the sheaf Rg
p2(U ⊗ p∗

1(L) ⊗ p∗
2(E0)) is supported on

the point x . Since also Rg+1
p2 (U ⊗ p∗

1(L) ⊗ p∗
2(E0)) = 0, it follows from the base

change theorem [33, Section 5, Corollary 2] that

Hg(M1,d × C,U ⊗ p∗
1(L) ⊗ p∗

2(E0)) �= 0 ⇐⇒ M ∼= ι(x)∗.

Noting that p1∗(U ⊗ p∗
1(L)⊗ p∗

2(E0)) = L ⊗W1,d(E0), while R1
p1(U ⊗ p∗

1(L)⊗
p∗
2(E0)) = 0 since d0 + n0d > n0(2g − 2), we deduce (8.7).
To prove the lemma, we can clearly assume that L ′ is trivial. In this case,

L ′ ∼= POC , so, by II and (8.7), we have Hg(M1,d ,W1,d(E ′
0)) �= 0. Using (8.7)

again,wehave L ∼= PM withM = ι(x)∗ for some x ∈ C .Now let L1 ∈ Pic0(M1,d)

and consider the isomorphism

L1 ⊗ L ⊗ W1,d(E0) ∼= L1 ⊗ W1,d(E
′
0).

Writing L1 = PM1 , the left-hand side has non-zero Hg if and only if M1⊗ ι(x)∗ ∼=
ι(y)∗ for some y ∈ C , while the right-hand side has non-zero Hg if and only
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if M1 ∼= ι(z)∗ for some z ∈ C . Hence, for any z, there exists y ∈ C such that
ι(x)∗ ⊗ ι(z)∗ ∼= ι(y)∗, or, equivalently, x + z ∼ y + c as divisors on C . Given
x , this must be true for any z, which implies x = c since g ≥ 2. This proves that
L is trivial and W1,d(E0) ∼= W1,d(E ′

0). By Corollary 8.5(ii), it follows that β is
injective and hence (8.6) holds. ��

The next step is to estimate the dimension of the space of infinitesimal defor-
mations of W1,d(E0) at β(L , E0).

Lemma 8.7. Suppose that n0 ≥ 2, d0 + n0d > n0(2g − 2) and let E0 ∈ Mn0,d0 .
Then

dim H1(M1,d ,W1,d(E0) ⊗ W1,d(E0)
∗) ≥ g + n20(g − 1) + 1, (8.8)

with equality if and only if C is non-hyperelliptic and h0(N ⊗ ad(E0)) = 0.

Proof. (8.8) follows from Lemma 8.6 and the fact that H1(M1,d ,W1,d(E0) ⊗
W1,d(E0)

∗) is the Zariski tangent space of M0(M1,d) at β(L , E0) for any L ∈
Pic0(M1,d). Taking i = 1 in (8.3), we obtain a short exact sequence

0 −→ H1(E0 ⊗ E∗
0 )

γ−→ H1(M1,d ,W1,d(E0) ⊗ W1,d(E0)
∗)

δ−→ H0(N ⊗ E0 ⊗ E∗
0 ) −→ 0. (8.9)

It follows that we have equality in (8.8) if and only if h0(N ⊗ E0 ⊗ E∗
0 ) = g.

Since E0 ⊗ E∗
0

∼= OC ⊕ ad(E0) and h0(N ) ≥ g by (8.4), this holds if and only
if h0(N ) = g and h0(N ⊗ ad(E0)) = 0. Now h0(N ) = g by Noether’s Theorem
(see Remark 8.2) if C is not hyperelliptic but this fails for C hyperelliptic of genus
g ≥ 3 (in fact, in this case N ∼= H⊕(g−1), where H is the hyperelliptic line bundle,
and h0(N ) = 2g − 2 > g). On the other hand, if g = 2, then N ∼= KC and

h0(N ⊗ ad(E0)) = h1(ad(E0)) = n20 − 1 > 0

if n0 ≥ 2. This completes the proof. ��
Before proceeding, we obtain an alternative condition for equality in (8.8) in

terms of Koszul cohomology.

Proposition 8.8. Suppose that n0 ≥ 2, d0+n0d > n0(2g−2) and let E0 ∈ Mn0,d0 .
Then

dim H1(M1,d ,W1,d(E0) ⊗ W1,d(E0)
∗)

= g + n20(g − 1) + 1 + dim(K0,2(C; E0 ⊗ E∗
0 , KC )). (8.10)

Hence, if C is non-hyperelliptic, equality holds in (8.8) if and only if

K0,2(C; ad(E0), KC ) = 0.
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Proof. Dualising the sequence (8.4) and tensoring by E0 ⊗ E∗
0 , we obtain an exact

cohomology sequence

0 −→ H0(KC )∗ ⊗ H0(E0 ⊗ E∗
0 ) −→ H0(N ⊗ E0 ⊗ E∗

0 )

−→ H1(K ∗
C ⊗ E0 ⊗ E∗

0 )
α−→ H0(KC )∗ ⊗ H1(E0 ⊗ E∗

0 ). (8.11)

Since H0(E0 ⊗ E∗
0 )

∼= C, it follows that h0(N ⊗ E0 ⊗ E∗
0 ) = g if and only if α is

injective. Now note that the dual of α is the multiplication map

μE0 : H0(KC ) ⊗ H0(KC ⊗ E0 ⊗ E∗
0 ) −→ H0(K 2

C ⊗ E0 ⊗ E∗
0 ). (8.12)

So equality holds in (8.8) if and only ifμE0 is surjective. In fact, since, by definition,

Coker(μE0) = K0,2(C; E0 ⊗ E∗
0 , KC ).

we have the general formula (8.10).
Now supposeC is non-hyperelliptic. Since E0⊗E∗

0
∼= OC ⊕ad(E0), it follows

from Noether’s Theorem (see Remark 8.2) that

Coker(μE0) = K0,2(C; ad(E0), KC ).

Hence, equality holds in (8.8) if and only if thisKoszul cohomology group vanishes.
��

We are now ready to state the main results of this section.

Theorem 8.9. Suppose that g ≥ 2, n0 ≥ 2 and d0 + n0d > n0(2g − 2). Then

(i) the morphism β : Pic0(M1,d) × Mn0,d0 → M0(M1,d) is injective;
(ii) if C is non-hyperelliptic and h0(N ⊗ ad(E0)) = 0, β is an open immersion in

the neighbourhood of (L , E0) for all L ∈ Pic0(M1,d);
(iii) if C is non-hyperelliptic and h0(N ⊗ ad(E0)) = 0 for some E0 ∈ Mn0,d0 , β is

an injective birational morphism from Pic0(M1,d) ×Mn0,d0 to an irreducible
component M0

0(M1,d) of M0(M1,d);
(iv) if C is non-hyperelliptic, h0(N ⊗ ad(E0)) = 0 for some E0 ∈ Mn0,d0 and

gcd(n0, d0) = 1, β is a bijective morphism onto M0
0(M1,d). If d0 + n0d >

n0(2 g−1), thenM0
0(M1,d) is a component of the moduli space of θ1,d -stable

bundles on M1,d with Chern character ch0.

Proof. (i) This is Lemma 8.6.
(ii)WhenC is non-hyperelliptic and h0(N⊗ad(E0)) = 0, we have, by Lemmas

8.6 and 8.7, that the dimension ofM0(M1,d) at β(L , E0) is equal to the dimension
of its Zariski tangent space. Hence M0(M1,d) is smooth at β(L , E0). The result
now follows from Zariski’s Main Theorem.

(iii) When C is non-hyperelliptic and h0(N ⊗ ad(E0)) = 0 for some E0, it
follows from (ii) and the fact that Pic0(M1,d) ×Mn0,d0 is irreducible that Im β is
contained in a unique irreducible componentM0

0(Mn,d) ofM0(Mn,d) and maps
birationally to this component.

(iv) Since gcd(n0, d0) = 1, Pic0(M1,d) ×Mn0,d0 is complete. It follows from
(iii) that β maps bijectively to M0

0(Mn,d). The last part follows from Theorem
2.1(ii). ��
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Before considering whether the hypothesis of Theorem 8.9(iii) is satisfied, we
will show that, at least in many cases, there exists E0 ∈ Mn0,d0 such that H

0(N ⊗
ad(E0)) > 0.

Proposition 8.10. Suppose that g ≥ 2, n0 ≥ 2, d0 + n0d > n0(2g − 2) and
d0 ≡ 1 mod n0 or −1 mod n0. Then there exists E0 ∈ Mn0,d0 such that h0(N ⊗
ad(E0)) > 0. Hence, at least in these cases, β does not map Pic0(M1,d)×Mn0,d0
isomorphically toM0

0(Mn,d).

Proof. Suppose first that d0 ≡ 1 mod n0 and write d0 = en0 + 1. Let
M0, . . . , Mn0−2 be mutually non-isomorphic line bundles of degree e on C . We
consider extensions

0 −→ M0 ⊕ · · · ⊕ Mn0−2 −→ E0 −→ M0(p) −→ 0 (8.13)

with p ∈ C . Note thatOC (−p) = Hom(M0(p), M0) ⊂ ad(E0). Hence N (−p) ⊂
N ⊗ ad(E0). Since N has rank g − 1 and h0(N ) ≥ g, we have h0(N (−p)) > 0,
so h0(N ⊗ ad(E0)) > 0. It remains to prove that E0 can be stable.

If F is a subbundle of E0 contradicting stability, F must map surjectively to
M0(p) and the kernel of the homomorphism F → M0(p)must contradict stability.
We therefore have an exact sequence

0 −→ Mi1 ⊕ · · · ⊕ Mis −→ F −→ M0(p) −→ 0 (8.14)

with s < n0 − 1. The extensions (8.13) are classified by (n0 − 1)-tuples
(e0, . . . , en0−2) with ei ∈ H1(Mi ⊗ M∗

0 (−p)). Since the Mi are mutually non-
isomorphic, the existence of (8.14) implies that e j = 0 for some j . This is not true
for the general extension.

For d0 ≡ −1 mod n0, one can replace E0 by E∗
0 and use the argument above.

The last statement follows from Lemma 8.7. ��
Remark 8.11. (i) Propositions 8.8 and 8.10 show that there exist stable bundles E0
such that K0,2(C; E0 ⊗ E∗

0 , KC ) �= 0. This contrasts with the situation for line
bundles, where K0,2(C, KC ) = 0 by Noether’s Theorem.

(ii)More precisely, if E0 is as inProposition 8.10, then, for any L ∈ Pic0(M1,d),
there exist infinitesimal deformations of L ⊗ W1,d(E0) which do not arise from
deformations of the pair (L , E0).

As a result of this proposition, we cannot expect to strengthen the results of
Theorem8.9(iii) and (iv).However,Montserrat Teixidor i Bigas [39] has proved that
μE0 is surjective when both C and E0 are general. Her proof involves degenerating
to a chain of elliptic curves. We therefore have the following corollary to Theorem
8.9.

Corollary 8.12. Let C be a general curve of genus g ≥ 3 and suppose that n0 ≥ 2
and d0 + n0d > n0(2g − 2). Then β is an injective birational morphism from
Pic0(M1,d) × Mn0,d0 to an irreducible component M0

0(M1,d) of M0(M1,d). If
gcd(n0, d0) = 1, β is a bijective morphism ontoM0

0(M1,d).

Proof. This follows from Theorem 8.9(i), (iii) and (iv) and [39]. ��
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