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Abstract. We shall study minimal complex surfaces with ¢ =9and X = 5 whose canon-
ical classes are divisible by 3 in the integral cohomology groups, where c% and x denote the
first Chern number of an algebraic surface and the Euler characteristic of the structure sheaf,
respectively. The main results are a structure theorem for such surfaces, the unirationality of
the moduli space, and a description of the behavior of the canonical map. As a byproduct,
we shall also rule out a certain case mentioned in a paper by Ciliberto—Francia—Mendes
Lopes. Since the irregularity g vanishes for our surfaces, our surfaces have geometric genus

pg:4.

1. Introduction

When one wants to study the behavior of canonical maps of algebraic surfaces,
surfaces of general type with p, = 4 are in a sense the most primitive objects,
since their canonical images are in most cases hypersurfaces of the 3-dimensional
projective space P3. Partly for such reasons, these surfaces have attracted many
algebraic geometers, even from the time of classical Italian school.

After Noether and Enriques studied the case c% = 4, surfaces with p, = 4 have
been studied from various view points (e.g, [6,9,15]). As for the classification,
Horikawa and Bauer completed that for the surfaces of cases 4 < C% <7(1,12-
14]). Complete classification of the surfaces of case c% = 8 seems not completely
out of reach, but for the moment, only partial classifications and several examples
are known (e.g.,[3,9,10]). We also notice that even though the surfaces have been
classified for the case c% = 6, the number of the irreducible components of the
moduli space remains unknown even after [2].

Among such works, the results most connected to the present paper are those on
even surfaces for the case c% = 8. Recall that an algebraic surface is said to be even
if its canonical class is divisible by 2. In [19], Oliverio studied regular even surfaces
of case c% = 8, and showed that if S is a surface of this class with base point free
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canonical system, then its canonical model is a (6, 6)-complete intersection in the
weighted projective space P(1, 1, 2, 3, 3). He also showed that these surfaces fill
up an open dense subset of a 35-dimensional irreducible component Mz of the
moduli space Mg', , of even regular surfaces of case c1 = 8. Though this paper
[19] studied these surfaces only under the condition that the canonical systems are
base point free, Catanese Liu, and Pignatelli later in [7] classified all even regular
surfaces with c1 = 8 and p; = 4 and showed that Mg', 4,0 consists exactly of two
irreducible components M £ and Mg, both of d1mens10n 35 and intersecting each
other in codimension one locus.

In this paper, we go one step up, and study regular surfaces of case c% = 9 with
canonical classes divisible by 3. We shall prove three theorems. Our first theorem
asserts that any surface of this class has the canonical model isomorphic toa (6, 10)-
complete intersection of the weighted projective space P(1, 2, 2, 3, 5) (Theorem 1).
Our second theorem asserts that the moduli space of our surfaces is unirational of
dimension 34, hence also the uniqueness of the diffeomorphic type of our surfaces
(Theorem 2). Our third theorem asserts that the canonical map @k of a surface
of this class is either birational onto a singular sextic or generically two-to-one
onto a cubic surface (Theorem 3). The surfaces with birational @| | and those with
generically two-to-one @ | form an open dense subset and a 33-dimensional locus,
respectively, in M.

Possibility of the existence of surfaces with ¢ = 9 and p, = 4 and with
canonical classes divisible by 3 has already been mentioned in [10, (ii), Proposition
1.7], though for the case of canonical map composite with a pencil. In fact, the
construction of examples of Case (ii) above was one of the motivations for our
work. In the course of the proof of our Theorem 1, however, we shall show that
this Case (ii) never occurs, even for the case of positive irregularity (Proposition
2). This sharpens their Proposition 1.7 slightly.

Let L be a divisor linearly equivalent to the canonical divisor of our surface.
Our strategy of the first part is to study the map @5, to compute the dimensions of
some cohomology groups, where @), is the map associated to the linear system
|2L|. Although the main tools for this part are classical ones, e.g., the double cover
technique, a result by the author given in [18] on the torsion groups of surfaces
with c% = 2x — 1 is also used to rule out some cases. Then we divide our argument
into two cases depending on whether @3, is composite with a pencil or not, and
study each case. For the case where @5, is composite with a pencil, it turns out
that we are in Case (ii) of [10, Proposition 1.7]. Using results in [10] and applying
to @51 the structure theorem for genus 3 fibrations given in [8], we shall rule out
this case. For the case where @|p;| is not composite with a pencil, we shall study
the semicanonical ring R = 6920:0 HY(OnL)). Using arguments similar to those
in [5], we shall find generators of the ring R and relations among them, which gives
us the structure theorem. As for the results on the moduli space and the canonical
maps, we shall prove them using this structure theorem. In addition to the theorems
stated above, we shall also give a double cover description of our surfaces with
deg @k | = 2 (Proposition 7).

After all the main results of the present paper were obtained, Kazuhiro Konno
pointed out the normality of the canonical images of our surfaces of case deg @ x| =
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1 (Proposition 6). As informed to the author by him, our surfaces therefore give one
of the missing examples of the list given in Konno’s work [16] on normal canonical
surfaces with p, = 4.

NOTATION AND TERMINOLOGY

All varieties in this article are defined over the complex number field C. Let
V be a smooth variety. We denote by Ky, wy, .Q‘l,, and @y, a canonical divisor,
the dualizing sheaf, the cotangent sheaf, and the tangent sheaf, respectively, of
V. For a divisor D, we denote by O(D) the coherent sheaf associated to D. For a
coherent sheaf F on V, we denote by H' (F), h' (F), and x (F), the i-th cohomology
group of F, its dimension dim¢c H' (), and the Euler characteristic Y (—1)'A! (),
respectively. We denote by " (F) and /\" F the n-th symmetric product and the
n-th exterior product, respectively, of F. Let f : V — W be a morphism to a
smooth variety W, and D, a divisor on W. We denote by f*(D) the total transform
of D.

The symbols ~ and ~y,;; mean the linear equivalence and the numerical equiv-
alence, respectively, of two divisors. If D and D’ are two divisors on V and D — D’
is a non-negative divisor, we write D > D’.

For a smooth algebraic surface S, we denote by c1(S), pg(S), and ¢(S), the
first Chern class, the geometric genus, and the irregularity of S, respectively.

2. Some numerical restrictions

Let S be a minimal algebraic surface with c% = 9 and x = 5 whose canonical
class is divisible by 3 in the cohomology group H?(S,Z). We take a divisor L
such that K = Kg ~ 3L. In this section, as a preliminary, we shall find some
restrictions to numerical invariants associated to the divisor L. Note that by the
unbranched covering trick we have ¢ = 0, hence p, = 4. In what follows, we
use the standard fact that if D and D’ are two effective divisors the inequality
h(O(D + D)) > h°(O(D)) + h°(O(D’)) — 1 holds.
Let us begin with the dimension h%(Os(2L)).

Lemma 2.1. 3 < h°(Os(2L)) < 5.
Proof. By the Riemann—Roch theorem, we see that
h’(Os(L)) + h°(Os(2L)) = 4. (1)

By this together with #1°(Os(L)) < h°(Os(2L)), we obtain 2 < h%(Og(2L)). But
if h%(Og(2L)) = 2, then by (1) we must have 2 < h%(Og(L)), which contradicts
h0(Og(2L)) > 2h°(Os(L)) — 1. Thus we obtain 3 < h%(Og(2L)). To obtain the
remaining inequality, use h°(Og(6L)) = x(Os) + K* = 14 and h®(O5(6L)) >
3h%(O5(2L)) — 2. O

Let @ppp) : S —— — P2 be the rational map associated to the linear system
|2L|, where I, = h%(Os(2L)) — 1. We have two cases: the case where PP is
composite with a pencil and the case where @|>;| is not composite with a pencil.
First, we study the former case.
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Lemma 2.2. Assume that the rational map @31 | is composite with a pencil P. Then
h0(Os(L)) =2 and h°(Og(2L)) = 3 hold. Moreover |L| has no fixed component,
and the pencil P is given by @) : § — — — P!

Proof. Assume that @), is composite with a pencil P. Since S is regular and 2L |
is complete, there exists an effective divisor D; of S such that A%(Og(D,)) > 2 and
|2L| = |l D2| + F», where F> is the fixed part of |2L|, and [, is as in the definition
of @51 . Naturally, we have

2=2L>=0D)L+ F,L. )

Assume that we have DoL = 0. Then we have F,L = 2, which together
with 2LD; = [LD3 + DyF, and 2LF, = ,D,F, + F; implies Fj = 4 and
D% = Dy F, = 0. Then by Hodge’s Index Theorem, we obtain D, = 0, which
contradicts the definition of the divisor D;.

Thus D>L > 0 holds. Since we have [ > 2 by Lemma 2.1, we see from this
together with (2) thatl, =2, DoL = 1, and F, L = 0. In particular, we obtain 2 =
2LDy = 12D§ + Dy F>. But D% is odd, since D> K = 3. Thus this implies D% =1
and D> Fp, = F22 = 0,hence F, = 0. Thus we obtain 2L ~ [y Dy + F» ~ 2D5. This
however implies L ~ D», since by [18, Theorem 4] the surface S has no torsion.
Since I, = h%(Og(2L)) — 1, the assertion follows from this linear equivalence and
h%(Os(2L)) = 2h°(Os(L)) — 1. O

Next, we study the latter case. In what follows, we denote by |M>| and F> the
variable part and the fixed part, respectively, of the linear system |2L|. We also
denote by ps : S — S the shortest composite of quadric transformations such that
the variable part of p3|M>| is free from base points.

Lemma 2.3. Assume that the rational map ®p1| is not composite with a pencil.
Then h°(Os(2L)) = 3, h°(Os(L)) = 1, and h' (Os(L)) = 0 hold. Moreover; the
inequality 2 < M22 < 4 holds, where |M3| is the variable part of the linear system
p>|Mal.

Proof. By Lemma 2.1 we have 2 < [, < 4, where [ = hO(OS(ZL)) — 1. Since
we have assumed that @37 is not composite with a pencil, a general member ]l712
of |M»| is a smooth irreducible curve on S,. In what follows, we assume that M» is
general, hence smooth, and define the divisors E; and ¢; by p§|M2| = |M2| + E»
and K = K 5~ p5(3L) + &2, respectively.

First, let us show that [, < 3. By the Serre duality, we have (O 5 (M>)) =

hO(ng(IE — Mz)) < pg(S) = 4. From this together with the standard exact
sequence

0— (952 — OSZ(Mz) — OMZ(Mz) — 0,

we see easily that /! (OA;,2 (M>)) > 1. Thus applying Clifford’s theorem for A;I2|M2,
we obtain
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2l — 1) < M5 < M3 + MyEr + MyFy +2LF, = QL) =4,  (3)

hence in particular /, < 3.

Assume that we have I, = h°(Og(2L)) — 1 = 2. Then by the Riemann—Roch
theorem, we have h%(Og(L)) = h' (Os(L)) — h°(Os(2L)) + 4 > 1. And also,
we have 3 = h%(Os(2L)) > 2h°(Os(L)) — 1, hence 2 > h°(Og(L)). The case
h%(Os(L)) = 2 however is impossible, since we have assumed that Pp1| is not
composite with a pencil. Thus we obtain 1°(Og(L)) = 1 and ! (Og(L)) = 0.
Moreover, the inequality 2 < Mzz < 4 follows from (3), hence as in the assertion.
Therefore, we only need to rule out the case /, = 3.

So assume that we have [, = 3. In this case we obtain by (3) that MzEz =
My F, = 2LF, = 0, whichimplies the base point freeness of the linear system |2L|.
Since S is of general type, we infer easily from this that deg @|p1| = deg @|21,(S) =
2. Thus we have two cases:

Case A: the image ®p1((S) C IP3 is a smooth quadric;

Case B: the image @21(S) C Pisa quadric cone.

In what follows, we put g = @>7. We shall rule out the two cases separately.

Case A. Assume that @o7|(S) is a smooth quadric. Then the image @27(S)
is the Hirzebruch surface Xy of degree 0 embedded by |Ag + I'|, where Ag and I”
denote the minimal section and a fiber of the Hirzebruch surface X, respectively.
Let R and B = g.(R) denote the ramification divisor and the branch divisor
of the generically two-to-one morphism g : S — X, respectively. Then since
2L ~ g*(Ag + I'), we see easily that R ~ 7L, hence BAy = BI" = 7. This
however is impossible, because B needs to be linearly equivalent to twice a divisor
on Y. Thus Case A does not occur.

Case B. Assume that @57 (S) is a quadric cone. Then the image @|21((S) is the
image of the morphism @42 © 22 — P3, where X, is a Hirzebruch surface
of degree 2, and A and I" are its minimal section and a fiber, respectively. Let
p5 © S5 — S be the shortest composite of the quadric transformations such that
g o p} lifts to a morphism g’ : S5 — X». We denote by K’ = K s, a canonical
divisor of S5, and define the divisor &5 by K’ ~ p4*(3L) + &,. We also denote by
R and B = g/ (R) the ramification divisor and the branch divisor of the generically
two-to-one morphism g" : S5 — 3.

Since & is contracted by g o p}, there exists a natural number v such that
gL(g5) = vAq. Then from p5*(3L) + &5 ~ g'*(=2A¢ — 4I') + R and p)(2L) ~
g"" (Ao + 2I') we infer that BAg = —2v and BI' = 7 + v. Since B is linearly
equivalent to twice a divisor on X, this implies v > 1, hence BAg < 0. Thus
Ao is a component of the branch divisor B. In particular, we have v = 1, from
which we see that the multiplicity in €} of the (—1)-curve appearing at the last
quadric transformation in p) is equal to 1. Thus pj : S5 — S is a blowing up at
one point, and &} is a (—1)-curve. Then by p,*(2L) ~ g'*(A¢ + 2I") we obtain
2(py"L—¢&,—g"*I")) ~ 0. This implies the linear equivalence p,*L ~ &, +g'* I,
since by [18, Theorem 4] our surface S has no torsion. Thus we obtain ho(Os(L)) >
ho((’)g2 (I")) = 2. This however is impossible, since we have h°(Og(2L)) = 4 and
4 = h%OsB3L)) = h°(Os(2L)) + h°(Og(L)) — 1. Thus Case B does not occur.
This concludes the proof of Lemma 2.3. O
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3. Study of the map @21,

In this section, we shall study the map @5, |, and rule out the case where @y is
composite with a pencil. Assume that the rational map @27 is composite with a
pencil P. Then by Lemma 2.2, we have h°(Og(2L)) = 3 and h°(Og(L)) = 2.
The linear system |L| has a unique base point, which is simple. Moreover, since
h°(Or) = 1 holds, P is a pencil of curves of genus 3, whose members correspond
to fibers of @ : S—— — Pl.Let p : § — S be the blow up of S at the base point
of |L|, and E, its exceptional curve. We denote by f = @, _E| : S— B="P!
the morphism associated to the linear system |p*L — E|.

Since the multiplication map S3(H%(Os(L))) — H%(Og(3L)) is surjective,
the canonical map @ : S — — — IP3 is also composite with the pencil 7. Thus
we are in Case (ii) of [10, Proposition 1.7]. In particular, any general member of | L |
is non-hyperelliptic, and all the fibers of f : § — B are 2-connected. Therefore,
we can utilize the structure theorem given in [8] for 2-connected non-hyperelliptic
fibrations of genus 3.

In what follows, we put L = p*L — E and K = Ks = p*(3L) + E, and
denote by ws|p = (’)S(Ig — f*Kp) the relative canonical sheaf of the fibration
f S — B. Moreover we denote by V, = f (a)?"; ) the direct image by f of the

sheaf a)?"; . Recall that for any integer n > 2 we have
tk 'V, =4n — 2, degV, =7+ 12n(n — 1).

The latter equality on deg V,, is valid also for n = 1, but for the former equality on
rk V,,, we have instead tk V| = 3 forn = 1.

Lemma 3.1. The following hold:
D Vi = 0p(1)® ® O5(5),

2) V2 = (B, 05(0)) © 0562 © O5(10),
3) Ve = (DL 05K)) © 05(16)%2 @ 05 20).

Proof. Recall that we have rk Vi = 3 and deg Vi = 7. Thus we can put V; =~
@1-2:0 Og(a;), where ag < a; < ap and Ziz:O a; = 7. Moreover we have wgp =

O:(K — f*Kp) ~ Oz(5L + 4E). Thus we obtain
"o (Vi ® Op(—k)) = h%(O3((5 — k)L +4E)) = h°(Os((5 — k)L))

for any k > 1, from which we infer h%(V; ® Op(—1))) — h°(Vi @ Op(=2))) = 3.
This implies @; > 1 forall 0 < i < 2. Since h°(V; ® Op(—k))) — h°(Vi ®
Op(—(k + 1))) is equal to the numbers of i’s satisfying a; > k, using Lemma 2.2,
we obtain the assertion 1). (See also the proof of [21, Lemma 3.7.].)

The assertions 2) and 3) can be proved exactly in the same way. For these two,
use wﬁi ~ Oz(10L + 8E) and wg‘; ~ Oz(20L + 16E). O
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In what follows, we denote by X, X1, and X» local bases of the direct summands
Op(1), Op(1), and Opg(5), respectively, of the sheaf Vi. We also denote by S,
S1, S2, Ty, T1, and Uy local bases of the direct summands Og(2), O (3), Op(4),
Op(6), Op(6), and Op(10), respectively, of the sheaf V,. By Lemma 3.1 we have

S2(V1) = 0p(2)% @ 0(6)%* ® 05(10),

where the local bases of the direct summands are given by X%, XoX1, X % Xo0X>,
X1X5, and X%, respectively. With these local bases, the multiplication morphism
o : S2(V)) > Vais expressed by a 6 x 6 matrix A in the following form:

/ ap ay a
A= <Ii ?3) , where A'=|ay a1 o2 ]. 4)
’ Bo Bi B

Here O3 and I3 denote the 3 x 3 zero matrix and the 3 x 3 identity matrix, respec-
tively, and a; € H°(Op), a; € HY(Op(1)), and px € H(Op(2)) are global
sections foreach 0 < i, j, k < 2.

Let us describe the 5-tuple for our genus 3 fibration f : S — B. For the notion
of the 5-tuple, see [8]. Let 7 be the effective divisor of degree degt = 3 on B
determined by the short exact sequence

0— S2(V) > Vo > O — 0. (5)

Let C : S2(A? Vi) — S2(S%(V})) be the morphism given by (a A b)(c A d) >
(ac)(bd) — (ad)(bc). Then the morphism S2(02) o C : S2(/\* Vi) — S%(V») hasa
locally free cokernel of rank 15, which we shall denote by \74 = Cok (5%(02) 0 C).
We denote by Eﬁt and L4 the kernel of the natural surjection \74 — V4 and that
of the natural morphism $*(V;) — Vj, respectively. Then we obtain the natural
inclusion morphism

L~ (det V) @ Op(t) ~ Op(10) — Vy. (6)

With the notation above, B, V1, 7, (5), and (6) form the admissible 5-tuple associated
to our fibration f : § — B.

By Lemma3.1 wehave \? V) ~ O3(2)@O03(6)®2and S2(A* V)) ~ Op(4)@
Op(8)®2® 05 (12)®3. We decompose each of the five sheaves S2(A% V1), S2(V)),
S2(S2(Vy)), Va, and S2(V,) into the lower degree part (L) and the higher degree
part (H) as follows:

2
SAAVD = 1054 @ [058)% @ 05 (1)%]

= 52(/2\ v e 52(/2\ v,
2 = [0s@% | @050 ® 0510 |
=2 v e 7 v,
S2s2v) = [S2s2 ™) e [ (s2n® @ s2v)®) @ s2s2 V) ™)
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=822V @ s2(s2(vi)®,

4
vy = [@ O (k)] ® 056 ® 05(10)]
k=2

—vPev®,

s =[] e [(vY e i) @ ™)
=52 (v @ s2 ()™,
where in each expression the first [ ] term corresponds to the lower degree part
(L), and the second [ ] term corresponds to the higher degree part (H).

Let y : S2A* VDD ~ 0p@) — S2(V2)® be the composition of the
morphism C|Sz(/\z O 52(/\2 VB - 52(52(Vi)® and the morphism

S2(AN = S2S2vi)® = S22V - S2(va)® = $2(V), where A’
is the 3 x 3 matrix given in (4).

Lemma 3.2. Homp, (L, Cok y) # {0}.

Proof. Note that by (4) we have (52(a2) o C)(S2(A? V)™ c S2(V5)® . Thus
(82(02) 0 C) : S2(/\2 Vi) = S%(V,) induces a morphism of O g-modules

SN 2(/\ Yooy S20)

2 (L)
SEAPVE sz =)

Our morphism y coincides with this y’, when we view y’ as a morphism from
S2( /\2 Vi)™ to S2(V,)M). Thus by the commutative diagram

2 (H)
0 S2(/\2 Vl)(H) _ Sz(vz)(H) Szi/igz‘)/l)(}{) 0

l l l

2 2 52(0'2)06 2 ~
0—— S A" V) —— S (Vo) —— Vs — 0
(7
and 3 x 3 Lemma, we obtain the following two short exact sequences:
RO NR% S2(V-
(/2\ D - 5 (V2) — Coky’' ~ Coky — 0,
S2AZvH®E o §2(V)ED)

52 (V) . :
—————— —> V4 > Coky ~Coky — 0. ®)
2N\ Vvp®

Now, assume that we have Homp, (L), Coky) = {0}. Then by the

short exact sequence (8) above, we obtain the surjectivity of the morphism

2 ~
Homp, (L), %) — Homp, (L}, V4). This implies that the morphism
1

2 (H) ~ . . .
% — V4 in (7) factors through the inclusion morphism (6). On the other

hand, however, since o7 | SH(VH® Sz(Vl)(H) — VZ(H) is an isomorphism by (4), we
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have also the surjectivity of the morphism V> ®S>(V))® — §2(v,)® = v,. VZ(H) )
Then with the help of the commutative diagram (7), we find immediately a contra-
diction to the definition of an admissible 5-tuple. (See [8, Condition (iv), Definition
7.10].) Thus Homp,, (£}, Cok y) = {0} is impossible. |

Note that by Lemma 3.1 we have
(V) ~ 0p4) @ Op(5) & O(6)%* @ O(7) ® Op(8).

Local bases of the direct summands are given by Sg, SoS1, Slz, 5052, 815>, and S%,
respectively. In what follows, we shall compute the sheaf Cok y, and rule out the
case where @7 is composite with a pencil. For this we divide our argument into
several cases, normalizing the matrix A’.

First, by replacing the bases X and X of the sheaf V|, we may assume a; = 1.
Then by replacing the bases S, S1, and S> of the sheaf V5, we may assume o1 = 0
and B; = 0. Then we obtain

a 1 ar
A=lay 0 a
Po 0 B

‘We have two cases:
Case 1: apay # 1;
Case 2: apgar = 1.

Lemma 3.3. Case 1 does not occur.

Proof. The composite of the morphism y and the natural projection S?(V5)™ —
O (4) coincides with (apaz — 1)x : S2(A* V)® ~ Op(4) — Op(4). Thus if
we are in Case 1, then the image Im y is a direct summand of S2(V5)M) . Thus we
obtain

Cok y >~ Op(5) ® Op(6)®* ® Op(7) ® O (®),
which contradicts Lemma 3.2. O

Let us study Case 2. In this case, the composite of the morphism y and the
natural projection $2(V>)™ — g (4) is a zero morphism. Thus y is a composite
of a morphism

2
vo: 7\ VD ~ Op4) — Fo = 05(5) & 0p(6)* & O5(7) & Op(8)

and the natural inclusion Fy — S%(V»)®, and we find Cok y >~ Op(4) & Cok yy.
By replacing the bases X and X by their multiples by non-zero constants, we
may assume aop = ap = 1. Then by the short exact sequence

2
0— 8*(/\ vp)™ — Fo — Cok yp — 0, 9)
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we obtain

h%(Cok yp ® Op(—6)) = 8
h2(Cok yo ® Op(=7)) = 3 + dim Ker ((org + a2) x), (10)

where (g + o) x : H'(Op(=3)) — H'(Op(—2)) is the morphism induced by
the multiplication morphism by o + a2 of sheaves.

Case 2 splits into two cases:

Case 2-1: ag +ar # 0 € HO(Op(1));

Case 2-2: ag +ar =0 € HO(Op(1)).

Case 2-1. Let us study Case 2—1. In this case the morphism («g + @2) X :
H'(Op(-3)) — H'(Op(-2)) is surjective. Therefore by (9) and (10) we obtain

hO(Cok yo ® Op(—T)) = 4
h(Cok yo ® Op(—8)) = 1 +dim Ker (*(ap + @2, @02, fo + B2)x), (1)

where ' (o+a2, aoaz, fo+p2)x : H (Op(—4)) = H'(Op(=3)@0p(-2)%?)
is the morphism induced by the multiplication morphism by ’(cg + a2, apon, Bo+
B2) of sheaves.

Case 2—1 splits into two cases:

Case 2—-1-1: ap + a2, aparp, and By + B2 have no common zero;

Case 2—-1-2: ap + a2, aperp, and By + B2 have a common zero.

Lemma 3.4. Case 2—-1-1 does not occur.

Proof. Assume that we are in Case 2—1-1. Let us denote by yél) . 5%( /\2 v ~
Op4) - Op(5)®O(6)®? the multiplication morphism by * (ag+aa, oz, Bo+
B2). Then both Cok yy and Cok yél) are locally free, and we have rk Cok yp = 4
and rk Cok y" = 2. Put Cok o =~ @}_, Op(b;) where by < by < by. Then by
the short exact sequence

2
0— S2A\VD® — 055) & 0(6)* — Cok y5" — 0.

we obtain h°(Cok yél) ® Op(—6)) = 3 and h°(Cok yo(l) ® Op(=7)) = 1. From
these together with deg Cok " = 13, we infer Cok " ~ Op(6) ® Op(7),
which in tern together with (11) implies £°(Cok yo ® Op(—8))) = 1. This together
with (10) and (11) implies bg = 6 and b; > 7 for all 1 < i < 3. Then since
deg Cok yp = 28, we obtain

Cok y ~ Op(4) ® Cok yo =~ Op(4) ® O5(6) ® O (1) ® O5(8),
which contradicts Lemma 3.2. O

Lemma 3.5. Case 2—-1-2 does not occur.
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Proof. Assume that we are in Case 2—1-2. Without loss of generality we may
assume g % 0 € H(Op(1)). Since the three sections g + a2, agar2, and Bo+ B2
have a common zero, there exist a number ¢ € C and a section . € H(Og(1))
such that g +oy = (14a)ag and Bop+ B2 = A hold. Note that we have 1+a # 0,
since we are in Case 2—1. Since Byf2 = Bo(Aag — Po), if the two sections o + o2
and o B2 have a common zero P, then at this point P, the rank of oo ® k(P) drops
at least by 2, which is impossible. (See [8].) Thus Cok yy is locally free.

Put Cok yp =~ @?:0 Op(b;), where by < by < by < b3. Let us denote by
D SHATVO® = 0p@d) - Op(5) ® Op(6)®? the multiplication mor-
phism by “(agp + a2, agaz, Bo + B2) = "((1 + a)ap, aa(%, Aag). Then denot-
ing by )/0(2) O35 — 05(5) ® 0(6)%? the multiplication morphism by
"1+ a), aag, ), we have yél) = yo(z) o (aox), where agx : S2(A* VP —
Op(5) is the multiplication morphism by «g. From this we see easily that the
morphism y" ® Op(—8) : S2A* V) ® Op(—8) — Op(~3) ® Op(—2)®?
induces a morphism H' (S2(A? V)W @ Op(—8)) — H' (Op(—3)dOp(—2)%2)
of rank 4. Thus we obtain A%(Cok yy ® O(—8)) = 2, which together with (10)
and (11) implies by = by = 6. Then since deg Cok yy = 28, we obtain

Cok y ~ Op(4) & Cok yp >~ Op(4) ® Op(6)* ® Op(b) ® Op(b3),
where (by, b3) = (8, 8) or (7,9), which contradicts Lemma 3.2. O

Case 2-2. Let us study Case 2-2. In this case we have ap = —ag # 0 €
H%(Op(1)). Moreover, yy is a composite of a morphism

2
yi: 2N\ VDY = 0p4) - Fi = 05(6)* @ Op(7) ® Op(8)

and the natural inclusion F; — Fg, and we find Cok yp >~ Op(5) & Cok y;.
Case 2-2 splits into two cases:

Case 2-2-1: apgay = —a§ and By + B2 have no common zero;
Case 2-2-2: apaz = —ag and By + B2 have a common zero.

Lemma 3.6. Case 2-2-1 does not occur.

Proof. Assume that we are in Case 2-2—1. Then the sheaf Cok y; is locally free
of rank 3. Put Cok y; =~ @?:1 Opg(b;), where by < by < bs. Then since the
multiplication morphism (agaz, Bo + Bo)x : SZA* VD — 0p(6)®2 by
"(apaa, Bo+ Bo) has a cokernel isomorphic to O (8), we obtain by the short exact
sequence

2
0— Sz(/\ Vl)(L) — F1 — Coky; — 0

that 29(Cok y; ® Op(=7)) = 5 and h°(Cok y; ® Op(—8)) = 2, which imply
b; > 7 forall 1 <i < 3. Since deg Cok y; = 23, we obtain

Coky ~ Op4) ® Op(5) ® Op(b1) ® Op(b2) ® Op(b3),
where (b1, by, b3) = (7,7,9) or (7, 8, 8), which contradicts Lemma 3.2. O
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Let us study Case 2-2-2. In this case there exists a section 1 € H°(Op(1))
such that Byp + B2 = Aag. Then since BoB2 = Po(Aag — Po) holds, if the two
sections —a(z) and BB, have a common zero P, then at this point P, the rank of
02 ® k(P) drops at least by 2, which is impossible. Thus Cok y; is locally free of
rank 3. Put Cok y; >~ @?:1 Op(b;), where by < by < b3. Then by the same short
exact sequence as in the proof of Lemma 3.6, we obtain

h2(Coky1 ® O(—6)) =8,  h°(Cok yy ® Op(=7)) = 5. (12)

Case 2—2-2 splits into two cases:
Case 2-2-2—1: a¢ and A have no common zero;
Case 2-2-2-2: o and A have a common zero.

Lemma 3.7. Case 2-2-2—1 does not occur.

Proof. Assume that we are in Case 2-2-2-1. Then since the multiplication mor-
phism “(apaz, Bo + B2) X : S2(/\2 VL = O0p(6)%? is the composite of the
two morphisms ogx : S2(/\2 Vv)® = Op(5) and ‘(—ag, 1)x : Op(5) —
Op(6)%2, we see by the same short exact sequence as in the proof of Lemma 3.6
that h9(Cok y1 ® Op(—8)) = 2, which together with (12) implies b; > 7 for all
1 <i < 3. Since deg Cok y; = 23, we obtain

Coky =~ Op(4) @ Op(5) ® Op(b1) ® Op(b2) ® Op(b3),
where (b1, b, b3) = (7,7,9) or (7, 8, 8), which contradicts Lemma 3.2. O
Lemma 3.8. Case 2-2-2-2 does not occur.

Proof. Assume that we are in Case 2-2-2-2. Then there exists a number ¢ € C
such that A = cag. If we have ¢ = 0, then we obtain 8o = —pf. This
however is impossible since 02 ® k(P) needs to have rank 6 at a general
point P of B. Thus we obtain ¢ 7# 0. Note that the multiplication morphism
"(—ad, Bo+ P2)x : S2(A2 VDM — 0p(6)®2 is the composite of the two mor-
phisms a2 x : S2(A\* V)T — Op(6) and ‘(—1, ¢)x : Op(6) — Op(6)®2.
Since we have Cok (7(—1, ¢)x) =~ Op(6), we see by the same short exact sequence
as in the proof of Lemma 3.6 that

h'(Cok y ® Op(—8)) = 3. (13)

Since apBr + a2 By = ap (cot% — 2pBo), if the two sections o and ca(z) — 280
have a common zero P, then at this point P, the rank of oo ® k(P) drops at least
by 2, which is impossible. Thus Cok yl(l) is locally free of rank 2, where we denote
by

D 0BG5) > 0 @ Op(7) (14)

the multiplication morphism by ’(—ayg, cayg, caé — 2pBp). Since the multiplica-
tion morphism ’(—ag, cag)x : Op(5) — Op(6)®? is the composite of the two
morphisms agx : Op(5) — Op(6) and (=1, ¢)x : Op(6) — Op(6)®?, we
obtain by (14) that h%(Cok y{" ® O5(—6)) = 4, h°(Cok y" ® Op(-7)) = 2,
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and hO(Cok yl(l) ® Op(—8)) = 1. From these together with deg Cok yl(l) = 14,
we infer Cok )/1(1) ~ Op(6) ® Op(8). Thus by the same short exact sequence as in
the proof of Lemma 3.6, we see that hO(Cok 1 ® Op(—9)) = 1, which together
with (12) and (13) implies that by = 6 and b; > 8 for all 2 < i < 3. Since
deg Cok y; = 23, we obtain

Coky >~ Op(4) @ Op(5) ® Op(6) ® Op(8) ® Up(9),
which contradicts Lemma 3.2. O
By Lemmas 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8, we obtain the following:
Proposition 1. The map @|»1| is not composite with a pencil.

Digression. As we have already cited the result in our proof, Ciliberto—Francia—
Mendes Lopes [10, Proposition 1.7] shows that if a minimal surface S of general
type with 4 < p, and K 2 < 9 has canonical map composite with a pencil P,
then either (i) P is a pencil of curves of genus 2, or (ii) P is a rational pencil of
non-hyperelliptic curves of genus 3. Their proposition moreover shows that in the
latter case K2 = 9, pg =4, and K ~ 3C hold, where C is a general member of
the pencil P. As a byproduct of our computation, we prove the following:

Proposition 2. Case (ii) in [10, Proposition 1.7] never occurs. Thus if a minimal
surface S with4 < p, and K 2 < 9 has canonical map composite with a pencil P,
then ‘P is a pencil of curves of genus 2.

Proof. Assume that the surface S has numerical invariants as in the assertion, and
the canonical map @ k| is composite with a pencil P of curves of genus 3. Then
we have K2 =9, pg =4,and K ~ 3C, where C is a general member of the pencil
‘P, which is non-hyperelliptic. If S has irregularity ¢ = 0, then it contradicts our
Proposition 1. Thus it suffices to rule out the case ¢ > 0, where ¢ is the irregularity
of our surface S. In what follows we assume g > 0.

Note that we have ¢ < 2. Indeed, since the restriction map H 005(C)) —
H%(O¢(C)) has rank at least 1, the map H*(O5(4C)) — H(O¢(4C)) also has
rank at least 1. This together with the short exact sequence

0— Os3C) =05(K) = O5(4C) — Oc(4C) =wc — 0

implies the inequality. Thus we obtain x = x (Og) > 3. Then by so-called Severi
inequality proved by Pardini [20], we see that S is not of Albanese general type.
We denote by o : S — B the Albanese fibration of our surface S. Naturally we
have g(B) = g, where g(B) is the genus of the base curve B.

First, let us rule out the case ¢ = 2. Assume that we have ¢ = 2. Then B
is a non-singular curve of genus g(B) = 2. Since P has a unique base point x,
the restriction «|c : C — B is surjective for any general C € P. Moreover, by
Hurwitz formula, we see that «|c is an étale double cover. This implies g(F) = 4
for a general Albanese fiber F, since we have FC = dega|c = 2. Let Fy denote
the fiber of « passing through the base point x. Then since (Fp - C)x = 1, we see
that x is a smooth point of F{y and that for any y € Fy \ {x} there exists a unique
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member C\ € P passing through y. This however contradicts the rationality of our
pencil P; the map y — C, is birational since C Fy = 2, while Fj is a non-singular
curve of genus 4.

Next, let us rule out the case ¢ = 1. We use the method used in the proof of
[10, Proposition 2.4]. For the reader’s convenience, we include the outline of our
proof. Assume that we have ¢ = 1. Then B is an elliptic curve. We take a point
0 € B, and use this point for the zero of the additive structure of the elliptic curve
B. For any closed point b € B, we put &, = Op(b — 0).

We first claim A%(Oc(C) @ a*&,) = 1 for any b # o € B. Indeed,
assume otherwise. Then by the same method as in [10, Proposition 2.4] and the
upper-semicontinuity, we see that h°(Og(C) ® a*£,) = 0 holds for any gen-
eral ' € B. Then again by the same method as in [10, Proposition 2.4], we
obtain h%(Oc(2C) ® a*g,7) = 3 for any general b’ # o € C. We however have
g(C) =3 and degOc(2C) ® a*sgf = 2. Thus this is impossible, since the curve
‘pIOc(ZC)@a*SbV,I(C) needs to be non-degenerate.

Now put U = B \ {0}, and denote by 7 : C x U — U the second projection.
Let & be an invertible sheaf on C x U such that &|cxpy =~ Oc(C) @ a*&;, holds
for all b € U. Then by what we have shown in the preceding paragraph, we see
that the direct image . & is an invertible sheaf on U and that the natural morphism
m*n.E — & is non-trivial. Thus replacing U by smaller one if necessary, we
obtain an effective divisor Z on C x U such that Z N (C x {b}) = divsp holds
forall b € U, where s, # 0 € H(Oc(C) ® a*&p) is the unique non-zero global
section to O¢ (C) ® a*&,. Then the restriction 7|z : Z — U is birational, since
deg Oc(C) ® a*&, = 1. By [10, Proposition 1.6], however, the first projection
Z — C is dominant. Thus this contradicts the inequality g(C) = 3 > g(B) = 1.
O

4. Structure theorem

Let us go back to the study of our surface S with c% =9,x =5,and K ~ 3L.
By Proposition 1 and Lemma 2.3, we have h%(Os(L)) = 1, h°%(Os(2L)) = 3,
and 2 < deg @ | < 4, where deg @y is the degree of the rational map @y :
S — — — P2, In this section, we shall give a structure theorem for our surface S,
by studying the structure of the graded ring P, H 0(Os(nL)).

Lemma 4.1. Let |K| = |3L| = |M3| 4+ F3 be the decomposition of the canonical
system | K | into the variable part |M3| and the fixed part F3. Then K F3 = 0 holds.
In particular F3 is at most a sum of fundamental cycles of rational double points.

Proof. Let M3 and F3 be divisors as above. Let p3 : 5’3 — § be the shortest
composite of quadric transformations such that the variable part |M3| of p3IMs|is
free from base points. Then we have M32 > M32 >4and K% = M32 + M3 F3+ K F3,
where M3 F3 > 0 and K F3 > 0 hold. Since we have M32 + M3F3 = KM3 =0
mod 3, this implies M3 + M3F3 = 6 or 9.

Assume that M32 + M3F3 = 6. Then by M32 > 4, we have 0 < M3F3 < 2.
From this together with Hodge’s Index Theorem M3 F{ = M3(K F3 — M3F3) <
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(M3F3)?, we see that M3F3 = 2, M2 = 4, and F} = 1, hence M3 ~yum 2F3
and K ~pym 3L ~npum 3F3. Then by [18, Theorem 4], we obtain L ~ F3 and
M3 ~ 2L, which contradicts h°(Og(2L)) = 3 in Lemma 2.3, since we have
ho(Os(M3)) = Pg(S) = 4. Thus we obtain M32 + M3 F3 = 9, hence the assertion.
O

Take a base x( of the space of global sections H 0(Os(L)). The following lemma
is trivial.

Lemma 4.2. (1) There exist two elements yo, y; € H*(Os(2L)) such that xo, Y0
and y form a base of H*(Og(2L)).

(2) There exists an element 7 € HO(OS (BL)) such that xg, X0Y0, XoY1, and zg
form a base of H*(Og(3L)).

Take three elements xq, y1, and y; as in the lemma above. In what follows. we
denote by C the unique member of the linear system |L|, and by Cy, its unique
irreducible component such that LCy = 1. For the proof of the following lemma,
see [5, Lemma 1.2]:

Lemma 4.3. If a member D € |2L]| satisfies D = Cy, then D = 2C.
Let us study higher homogeneous parts of the ring @Zio H%(Og(nL)).

Lemma 4.4. The space HO(OS(4L)) has the decomposition H*(Os(4L)) =
x0HY(Os(3L)) ® B Cyjyi "

Proof. By the Riemann—Roch theorem, we have h%(Os(4L)) = 7. Thus it suf-
fices to prove that seven elements xg, x(%yo, xgyl, X020, yé, Yyoy1, and y% are
linearly independent over C. Assume that these seven elements has a nontriv-
ial linear relation. Then there exist («g, 1) and (Bo, B1) € C? \ {0} such that
(coyo+a1y1)(Boyo+P1y1) € xoH®(Os(3L)). This contradicts Lemma 4.3, since
x(z), yo, and y are linearly independent. O

Lemma 4.5. There exists an element uo € HO((’)S(SL)) such that the equality
HY%Og(5L)) = xg HY(O5(4L)) @ @ —-C yoyl "20 ® Cug holds.

Proof. By the Riemann—Roch theorem, we have h°(Og(5L)) = 10. Thus it suf-
fices to prove that a base of xo H 0(Og(4L)) together with ypzg and y;zp forms
a set of linearly independent nine elements of H 0(Og(5L)). Assume that these
nine elements are not linearly independent over C. Then there exists an element
(o, o) € C?\ {0} such that (agyo + a1y1)z0 € xoH*(Os(4L)). The same argu-
ment as in the proof of Lemma 4.4 however shows that div (agyo + o1y1) 7% Co.
Thus we obtain div zg > Cg, which contradicts Lemma 4.1. m]

Take an element u( as in the lemma above. In what follows, we denote by
C[Xo, Yo, Y1, Zo, Up] the weighted polynomial ring with deg Xo = 1, deg ¥y =
degY) =2,deg Zg = 3, and deg Uy = 5.
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Lemma 4.6. There exists a homogeneous element fg € C[Xq, Yo, Y1, Zo, Up] of
degree 6, unique up to multiplication by a non-zero constant, such that the equal-
ity fs(x0, ¥, 1, 20, uo) = 0 € HY(Og(6L)) holds. The coefficient of Z(z) in fs
is non-vanishing. Therefore the space of global sections to 6L decomposes as
HY(Os(6L)) = xoH*(Os(5L)) ® @?:0 C y(")yff". Moreover, by a proper choice
of zo, the polynomial fg can be set in such a way that it includes no term linear
with respect to Zy.

Proof. The space HY(Os(6L)) contains 15 monomlals of X0, Y0, Y1, 20, and uo,
ten belonging to xoH(Os(5L)), four of the form yoy "(0 <i < 3),and Zo
Meanwhile we have hO(OS(6L)) = 14. Thus there exists at least one non-trivial
linear relation f6(x0 Y0, Y1, 20, #9) = 0 among these 15 monomials. Assume that
the coefficient of Z in fe vanishes. Then by Lemma 4.5, there exist three elements
(@0, @1), (Bo, B1), (Vo, 1) € C2\{0} such that (et yo+e1y1) (Boyo+B1y1) (Yoyo+
yivi) € xoH®(Os(5L)), from which we infer a contradiction by the same argument
as in Lemma 4.5. Thus we obtain the non-vanishing of the coefficient of Z%, hence
also the uniqueness of fs. The irreducibility of fg follows from Lemmas 4.2, 4.4,
and 4.5. O

In what follows, in view of the lemma above, we assume that fg includes no
term linear with respect to Z.

Lemma 4.7. The linear system |2L| has no base point. Thus the map @y : S —
P2 associated to |2L| is a morphism of degree 4.

Proof. Assume that the linear system |2L| has a base point b € S. Then this point b
is a common zero of xg, g, and y;. This together with Lemma 4.6 however implies
that b is a base point of [6L| = |2K |, which contradicts the base point freeness of
the bicanonical system. (See [4, Theorem 2].) O

Now let ps : § — P(1,2,2,3,5) = Proj C[Xy, Yo, Y1, Zo, Up] denote the
morphism induced by Xog — xo, ¥; — y; (i =0, 1), Zg — zo, and Up +— up.

Lemma 4.8. The morphism ¢s : S — P(1, 2,2, 3, 5) is birational onto its image.

Proof. Since the morphism @ factors through the bicanonical map @ > g, it suffices
to prove the birationality of @2 : S — P'*. Assume that |,/ is non-birational.
Then by [10, Theorem 1.8, Theorem 2.1], the surface S has a pencil P of curves of
genus 2. Moreover, by their proof, we see that P can be chosen in such a way that
a general member D € P satisfies D?> = 0 and DK = 2. This however contradicts
the equivalence K ~ 3L. O

Lemma 4.9. The space HO((’)S (7L)) has the decomposmon HYO4(1L)) =
xoH%(O5(6L)) & B_o C yhy! 1o ® Bi—o Cyhyi

Proof. Assume otherwise. Then, since h°(Og(7L)) = 19 and h°(Og(6L))= 14,
there exists a non-zero homogeneous element g7 € C[Xy, Yo, Y1, Zo, Ug] of
degree 7 satisfying g7(xo, Yo, y1, 2o, o) = 0 € H%(Og(7L)) in which at least one
of the five monomials YUy, YUy, Yozzo, YoY1Zp, and Yon has non-vanishing
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coefficient. By subtracting a multiple of fg, we may assume that the coefficient of
XOZ(% in g7 vanishes. Moreover, YoUy or Y1 Uy has non-vanishing coefficient in g7.
Indeed, if both YUy and Y| Uy have vanishing coefficient, then the same argument
as in Lemma 4.5 shows that div zg > Cy, which contradicts Lemma 4.1.

Now let Q7 C P(1,2,2,3,5) be the subvariety defined by fo = g7 = 0,
and mg, : @7 — — — P(1,2,2), the restriction to Q7 of the natural domi-
nant map P(1,2,2,3,5) — — — PP(1,2,2). Since g7 is not a multiple of fg in
C[Xo, Yo, Y1, Zo, Up], and since fs is irreducible, we have dim Q7 = 2. More-
over, since Z appears quadratically and Uy appears at most linearly in fg, and since
Uy appears linearly and Z appears at most linearly in g7, we see that deg g, < 2.
Meanwhile, since g, o s : S — (1, 2, 2) coincides with @|p| via the natu-
ral isomorphism P(1, 2,2) ~ P?> = P(H%(Os(2L))), we see by Lemma 4.7 that
deg mg, o s = 4. Thus we obtain deg g5 > 2, which contradicts Lemma 4.8. O

By the same method, we can prove the following two lemmas:

Lemma 4.10. The space HO(C’)S(SL)) has the decomposition H°(Os(8L)) =
x0H%(Os(7L)) ® C zouo ® Pi_o C vyt~

Lemma 4.11. The space HO(OS(9L)) has the decomposmon HY(Os(9L)) =
x0H(Os5(8L)) ® B7—o C gy 1o ® i Cygyi 0.

Indeed, we just need to consider Q; = {fs = gx = 0} C P(1,2,2,3,5) and
wg, 1 Qk —— — P(1,2,2) for k = 8, 9: we obtain easily degmrg, < 3 fork =38,
9, which leads us to a contradiction to Lemma 4.8.

Corollary 4.1. The linear system |SL| has no base point.

Proof. Note that by Lemma4.7 the three sections xg, y0, v1 € H%(Og(2L)) have no
common zero. Since we have xg, xézg, Y020, Y120, 4o € H(Og(5L)), this implies
that the base locus of |SL| is contained in the subset {xg = z9 = ugp = 0} C S.
Thus, by Lemma 4.11, if the linear system |5L| has a base point b € S, then this
point b is also a base point of |9L| = |3K |, which contradicts the base point freeness

of the tricanonical system. (See [4, Theorem 2].) O

Lemma 4.12. There exists a homogeneous element g1 € C[Xo, Yo, Y1, Zo, Ug]
of degree 10 not multiple of fe such that g10(xo, Yo, Y1, 20, 4o) = 0 holds in
HY%Os(10L)). The coefficient of U0 in g10 is non-vanishing. The polynomlal £10
can be chosen in such a way that it includes no monomial divisible by ZO, and
with this last condition imposed, the polynomial g1 is unique up to multiplica-
tion by a non-zero constant. Moreover the space H O((’)5(10L)) decomposes as
H(Os(10L)) = xoH(Os(9L)) & By C yjyi 2010 & = Cyhy; "

Proof. The space H 9(O5(10L)) includes 41 monomials not divisible by Z() of x,
Y0, Y1, 20, and ug. Since hO(OS(IOL)) = 40, this implies that there exists at least
one homogeneous element g19 € C[Xo, Yo, Y1, Zo, Uolio as in the first assertion.
Since g1 includes no monomial divisible by Z2, it is not a multiple of fs. Assume
that the coefficient of Ug in g10 vanishes. Then by the same argument as in the
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proof of Lemma 4.5, we see that ether the coefficient of Yy ZyUj or that of Y1 ZoUy
is non-vanishing. This however together with the same argument as in the proof of
Lemma 4.9 leads us to a contradiction to Lemma 4.8. Thus the coefficient of Ug is
non-vanishing, from which the last assertion and the uniqueness of gjo follow. O

Let Q denote the subvariety of P(1, 2, 2, 3, 5) defined by the ideal (fs, g10)-
We define the subvarieties 2y, Z1, and 2, of P(1, 2,2, 3,5) by

20 ={Xo = Zo = Uy =0},
Z1={Xo=Yy =Y = Uy =0},
Zy={Xo=Yy=Y1 =2y =0}

Note that outside U?:o Z; the weighted projective space P(1, 2, 2, 3, 5) has no
singularity. The restriction of O(1) to P(1, 2, 2, 3,5) \ Uizzo Z; 1s invertible.

Proposition 3. (1) The morphism ¢s : S — P(1, 2,2, 3, 5) surjects to Q.

(2) The variety Q does not intersect the locus Ui2=0 Z;.

(3) The inclusion map gozi : C[Xo, Yo, Y1, Zo, Uol /(f6, g10) = R(S, L) is an
isomorphism of graded C-algebra, where R(S, L) := @ZC’:O H%Og(nL)). The
variety Q has at most rational double points as its singularities.

Proof. Since deg Q = 1 = L?, the assertion 1) follows from Lemma 4.8. Then the
assertion 2) follows from the non-vanishing of the coefficient of Z(z) in fg, that of
the the coefficient of Ug in g19, Lemma 4.5, and Corollary 4.1. It only remains to
prove the assertion 3). By the assertion 2), we see that Q is Gorenstein. Moreover
we have wg ~ Og(3), hence ws >~ ¢iwg. Thus Q has at most rational double
points as its singularities. Since ¢g : § — Q gives the minimal desingularization
of Q, we obtain the assertion 3). O

Naturally, R(S, L)® = EB;.,O:() HO((’)S(3nL)) is the canonical ring of the sur-
face S. Thus, we obtain the following:

Theorem 1. If a minimal surface S has c% = 9and x =5, and its canonical class
is divisible by 3 in its integral cohomology group, then its canonical model is a
(6, 10)-complete intersection of the weighted projective space P(1,2,2,3,5) that
does not intersect the locus U?:o Z;. Conversely, if a (6, 10)-complete intersection
Q c P(1,2,2,3,5) satisfying QHU?ZO Z; = () has at most rational double points
as its singularities, then its minimal desingularization S is a minimal surface with
612 = 9 and x = 5 whose canonical class is divisible by 3.

Note that for general fg and g19 € C[Xo, Yo, Y1, Zo, Up] of degree 6 and 10,
respectively, the subvariety Q = {fs = g10 = 0} C P(1, 2, 2, 3, 5) is non-singular.
This can be verified with X§, Y, Y7, Z3 € C[Xo, Yo. Y1, Zo, Uole, X{°, Y5, Y7,
Ug e C[Xo, Yo, Y1, Zo, Upl10, and Bertini’s Theorem.

Remark 1. Let S and S’ be two minimal algebraic surfaces with invariants as in
Theorem 1. Then as one can see from the proof of Theorem 1, the surfaces S and S’
are isomorphic to each other, if and only if the varieties Q and Q' are projectively
equivalent in the weighted projective space P(1, 2, 2, 3, 5), where Q and Q' are the
(6, 10)-complete intersections corresponding to S and §’, respectively.
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Remark 2. Let fg and g10 € C[Xo, Yo, Y1, Zo, Up] be homogeneous polynomi-
als of weighted degree 6 and 10, respectively. Assume that the coefficient of Zg
in fe and that of Ug in gjo are non-vanishing. Let @ C P(1, 2,2, 3, 5) denote
the subvariety defined by the polynomials fs and gi9. Then Q N Ui2:0 Zi =1
holds, if and only if the two sections f5(0, Yo, Y1,0,0) € HO(OPI(S)) and
21000, Yo, Y1,0,0) € HO(OPI (5)) have no common zero on the projective line
P! = Proj C [Yp, Y1].

5. Moduli space and the canonical maps

In this section, we study the moduli space. We also study the behavior of the
canonical map of our surface S. Let us begin with the normal form of the defining
polynomials fg and g1o.

Proposition 4. Let S be a minimal surface as in Theorem 1. Then the defining
polynomials fg and g10 inP(1, 2, 2, 3, 5) of its canonical model Q can be taken in
the form

fo = Z§ + aoXoUo + a3(X3, Yo, Y1),
g0 = Ug + ,33(X(2), Yo, Y1) X0Zo + ﬂs(X%, Yo, Y1),

where agy € C is a constant, a3, a homogeneous polynomial of degree 3, and B;, a
homogeneous polynomial of degree i fori = 3, 5.

Proof. By completing the square with respect to Zg, we can take fg and g1 in the
form

fo = Z2 + aoXoUo + a3(X3, Yo, Y1),
g10 = Ug + B1(X3, Yo, Y1) ZoUo + B3(X3. Yo, Y1) X0Zo + Bs(X3, Yo, Y1).

Putting X¢ = X(/), Yo =Y,Y = Yl/’ Zy = 26 + Ot(),le(/)/4, and Uy = U(/) —
B1Zy/2 —aoﬂfX(’)/4, and employing X, Yy, Y{, Z,, U}, as new Xo, Yo, Y1, Zo, Uop,
respectively, we easily obtain new fg and g1¢ in which the term 81 ZoUy vanishes.
]

Using this proposition, we prove the following theorem:

Theorem 2. The coarse moduli space M of surfaces as in Theorem 1 is a unira-
tional variety of dimension 34. In particular, any two surfaces S’s as in Theorem 1
are deformation equivalent to each other.

Proof. In what follows, for two weighted homogeneous polynomials fg and g19 as
in Proposition 4, we denote by Sz ¢,,) the minimal desingularization of the variety
Q(fs, 5100 = 1fo = g0 = 0} C P(1, 2,2, 3, 5). Note that the pair (fs, g10) in the
normal form as in Proposition 4 has 42 linear parameters. Denote by V the Zariski
open subset of A*? consisting of all (fs, g10)’s such that 1) Q(,. ¢,0) has at most

rational double points as its singularities, and 2) Qs ¢10) N Ui2=0 Z; = { holds.
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Then by the existence of the natural family of the canonical models Q(f ¢,4)’s Over
the space of parameters V, we obtain the irreducibility of the moduli space M.

Let us compute the dimension of the moduli space M. Note that for two points
(fe. g10) and (f¢, gj) of V, the corresponding surfaces Sy, ,,) and Scr. gl
are isomorphic to each other if and only if the ideals (fs, g10) and (f¢, g},) are
equivalent under the action by the group of homogeneous transformations on the
graded algebra C [ Xy, Yo, Y1, Zo, Up]. Since no monomial divisible by Z(% appears
in g10 and g}, and since 10 — deg Uy < deg Z(z) holds, this is equivalent to the
condition that the points (fe, g10) and ( fé, g’lo) of V are equivalent under the
action by the group of homogeneous transformations of C[Xy, Yo, Y1, Zo, Upl-
Moreover, we see easily that if a point v € V corresponding to a surface S is
sufficiently general, then there exists a point (fg, g10) € V that gives the same
isomorphism class of S and such that fg and gjo are in the form

fo = Z3 + XoUo + Y3 + Y} + apX3YoY1 + X{(a1Yo + ax Y1) + X§,
g10 = U3 + B3(X3, Yo, Y1) X0Zo + Bs(X3, Yo, Y1).

We denote by V'’ the 34-dimensional subvariety of V consisting of all (fg, g10)’s
in this form. Then the restriction V' — M of the natural morphism V — M is
dominant.

Let us study fibers of the morphism V' — M. Let G be the group of homo-
geneous transformations of C [Xo, Yo, Y1, Zo, Up] that preserve the subvariety
V'’ C V. We denote by w the third root of unity, and define the two transformations
0,7 € Gby

o Uo = U(), Zo (ad Z() Y() = a)Yo, Y] = a)2Y1 X() (ad X()
t: Uy~ Uy, Zo—Zo Yo Y1, YI—= Y Xo — Xop.

Then o and t generate a subgroup (o, 7) >~ &3 C G, where G3 is the symmetric
group of degree 3. Since each element of G induces a permutation of three prime
divisors of YS +7Y 13, we have a natural group homomorphism G — &3, whose
restriction (o, 7) — 63 to (0, t) C G is an isomorphism. Thus if we define
Y001 m0,0) € G by Upg = (ZSU(), Zy — (—1)“°a3ZO, Y| — o*a®Yy, Yo —
w™a?Yy, and Xo — aXg for each (Ao, A1, jto, a) € (Z/3)®* @ Z/2 @ C*, then
each element of G can be written as p o Wy, 1,,0.a) fOr an element p € (o, 7) and
an element (Lo, A1, o, a) € (Z/3)92 @ Z/2 @ C*. This implies that for a general
point of M the fiber of V' — M over this point consists of at most 108 points.
Now since V' is a Zariski open subset of the affine space A3*, we see that M is
unirational of dimension 34. i

For the verification of the computations above, let us compute the dimensions
of the cohomology groups of the tangent sheaf of our surface S.

Proposition 5. Let S be a surface as in Theorem 1, and Oy, its tangent sheaf.
Suppose that the canonical model of S is smooth. Then h(©g) = 34 and hz(@s) =
2 hold. The Kuranishi space of S is non-singular of dimension h' (©g) = 34.
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Proof. In what follows, we put P = P(1,2,2,3,5)\ UiZ:O Z;, where Z;’s are as in
Theorem 1. Since we have assumed that the canonical model Q of our surface S is
smooth, we may assume that S is a subvariety of P and that the natural morphism
s : S — P is the inclusion map. By [17, Remark 2.4.], we have a natural exact
sequence

5
0— Os - @ Os(eiL) — ¢sOp — 0, (15)
i=1
where e; = 1, e2 = e3 = 2, e4 = 3, and e5 = 5. From the long exact
sequence associated to the above, wee infer easily the equalities ho(wﬁ@ﬂ») =20
and h! (¢5O@p) = 0, provided that hz((p§@[p>) = 2. Note that these two equalities
together with the standard exact sequence

0— Os — ¢5Op — Os(6L) & Os(10L) — 0

imply the first assertion. Thus, to obtain the first assertion, we only need to show
that hz((p§ Op) = 2. To show this last equality, let us consider the exact sequence

5
0— OsBL) ® ¢s2p — @ Os(3 — ei)L) — Os(L) — 0,
i=1
the short exact sequence obtained by operating Og(3L) ® - to the dual of (15).
Since the morphism Og — @?:] Ogs(e; L) in (15) is given by the transpose of the
matrix (xo, 2yo, 2y1, 320, Sug), we see from Lemma 4.2 that the induced morphism
HY@_, Os(3—ei)L)) — H(Os(3L)) has rank 4. Thus, by the Serre duality,
we obtain h2(<p§ Op) = h°(Os(3L) Res .QH]],) = 2, hence the first assertion. Now let
us prove the second assertion. By the computations above, we have the surjectivity
of H'(®5) — H'(¢}Op) and the injectivity of H*(@5) — H*(¢}Op). Thus
by [11, Theorem 4.4.], their exists a family (S, @, w, M) of deformations of the
holomorphic map @, = ¢g : ol o)=85 >P=Px {o}, such that the parameter
space M is non-singular at o and such that the characteristic map 7,,(M) — Dgp
is bijective, where T, (M) is the tangent space of M at o. (For the definition of Dg/p,
see [11].) Moreover, by [11, Lemma 4.2.] and ! (gogi@p) = 0 shown above, we
obtain the surjectivity of the natural morphism Dg/p — H 1(©y), hence that of the
Kodaira-Spencer map T,(M) — H L®y) at o of the analytic family (S, @, M).
Thus we can take a non-singular analytic subspace N C M passing through o such
that T,(N) — HL(Oy) is bijective, hence the second assertion. |

Finally, we study the behavior of the canonical map of our surface S. Let
Q =~ Proj C[Xo, Yo, Y1, Zo, Uol /(f6, g10) be the canonical model of our surface
S, where fg and g1¢ are in the normal form as in Proposition 4. Since the birational
morphism ¢s : § — Q factors through the canonical map @) : § — — — P3, the
study of the behavior of @ is reduced to that of the behavior of the rational map
Poga) Q- — — P3. Let &, 1o, 01, and £ be the homogeneous coordinates
of P3 corresponding to the base XS, XoYo, XoY1, Zg of HO(OQ(S)). Note that
for an integer d > 1, an equation of @k |(S) in IP3 of degree d corresponds to a
relation among X 8, X0Yo, XoY1, and Z in the homogeneous part of degree 3d of
C[Xo, Yo, Y1, Zo, Uol / (f6, &10)-



446 M. Murakami

Theorem 3. Let S be a minimal surface as in Theorem 1, and fs and gio, the
defining polynomials in P(1, 2, 2, 3, 5) of its canonical model Q. Assume that fe
and g1 are in the normal form as in Proposition 4.

1) If ag # O, then the canonical map @ || of S is birational onto its image, and
the canonical image @k |(S) is a sextic surface in IP3 defined by

2 2 2 2
(6068 + 360, n0. 10|+ [ B (6o, mo. &G0 + Bs(60, mo. m)g0 | = 0.

Surfaces S’s with birational ®|x| form an open dense subset of M.
2) If g = O, then the canonical map @k | of S is generically two-to-one onto
its image, and the canonical image @\ |(S) is a cubic surface in IP? defined by

£0¢8 + a3(£0, n0, m) = 0.

Surfaces S’s with non-birational ®@ k| form a 33-dimensional locus in M.

Proof. The only non-trivial relation in the homogeneous part of degree 6 of
C[Xo, Yo, Y1, Zo, Uol /(fs, g10) is givenby fo = Z3+aoXoUo+a3(X3, Yo, Y1) =
0. Assume that f is a polynomial of XS, XoYo, XoY1 and Zg. Then «3(0, Yo, Y1)
must be zero in C [Yy, Y1]. In this case, however, we have f5(0, Yo, ¥1,0,0) =0 €
C[Yy, Y1], which contradicts the condition Q N Ui2:0 Z; = . (See Remark 2.)
Thus @k((S) C IP3 satisfies no equation of degree 2.

Assume that X (3), X0Yo, XoY1, and Zg have a non-trivial relation in the homoge-
neous part of degree 9 of C[Xo, Yo, Y1, Zo, Uol /(f6, g10)- Then this relation must
be written as yl(Xg, X0Yo, XoY1, Zo) fo = 0, where y; is a linear form with coef-
ficients in C. Since this left hand is a polynomial of X(3), XoYo, XoY1, and Zg, we
see with the help of Remark 2 that op = 0 holds and that y, (XS, XoYo, XoY1, Zo)
is a multiple of XS. Thus if g = 0, then @k |(S) C IP3 is a cubic surface as in the
assertion, and if g # 0, then @|g|(S) C P3 satisfies no equation of degree 3.

Now that we have shown the assertion for the case og = 0, we assume in what
follows that op # 0. By an argument similar to that in the preceding paragraph, we
can prove the absence of equations of degree d of @ (S) C P3 ford = 4,5. Onthe
other hand, we can easily find an equation of degree 6 that is satisfied by @x(S) C
IP3. Note that in C [Xo, Yo, Y1, Zo, Ug] we have —aogXoUp = Z% +ot3(X8, Yo, Y1)
and —U? = B3(X3, Yo, Y1) X0Zo + Bs(X3, Yo, Y1) modulo the ideal (fs, g10)-
Eliminating Uy from these two and then multiplying it by X 8, we obtain

352 3 2
[XOZO +a3(X3, XoYo, XOYI)]
+ a0 X3 [ B3(X3, XoYo, XoY1)X3Z0 + B5(X3, Xo¥o, Xo¥1) | =0

modulo the ideal ( fg, g10). From this together with the absence of equation of lower
degree, we see that if &g # 0 then @|x|(S) C P3 is a sextic surface defined by the
equation as in the assertion.

Now let us compute the mapping degree of the canonical map @ | : § — — —
P3. Let |[K| = |3L| = |M3| + F3 be the decomposition as in Lemma 4.1, and
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p3 + 83 — S, the shortest composite of quadric transformations such that the
variable part | M3] of p3|M3] is free from base points. Then we have

deg @k deg @ |(S) = M3 < M3 < K*=09. (16)

Assume that ag # 0. Then since deg @ |(S) = 6, we infer from the inequalities
above that deg @ || = 1. Assume that ag = 0. Then since deg @k |(S) = 3, we
infer in the same way that deg @ x| < 3. If deg @|x| = 3 holds, however, we see
from (16) that the linear system | K | is base point free. This is impossible, because
by Lemma 4.2 the canonical system | K | needs to have a base point. Thus we obtain
deg @ | = 2.

Itis trivial that the surfaces S’s with birational @| x| form an open dense subset in
M. To show that the surfaces S’s with non-birattional @, form a 33-dimensional
locus in M, we just need to use the same method as in the computation of dim M
in Theorem 2. |

Let us conclude this article by giving some more details on the canonical map
and its image of our surface S. In what follows, we denote by W the canonical image
Dk (S). Moreover, we denote by p3 : S3 — S the shortest composite of quadric
transformations such that the variable part of p}|K]| is free from base points, and
by ¢ : S3 — W, the unique morphism such that @g| = ¢ o p3_1.

First we study the case deg @ k| = 1. In this case, the canonical image W C
P3 is a sextic surface. Recall that for a singularity (W, x) of our surface W, the
fundamental genus of (W, x) is the arithmetic genus of its fundamental cycle.
Moreover, since ¢ : S3 — W gives the minimal desingularization of the canonical
image W, the geometric genus of (W, x) is the dimension of the vector space
(ngo* O 32) x> Where R 1<p* O 5 is the first higher direct image of the structure sheaf
@ 5,- The following proposition is a comment given to the author by Kazuhiro
Konno:

Proposition 6. Let S be a minimal algebraic surface as in Theorem 1. Suppose
that deg @ x| = 1 and that the canonical system |K| has no fixed component.
Then the canonical image W = @k |(S) C P is normal. Moreover, if the surface
S is sufficiently general, then the singularity (W, x) of W is a double point with
Sfundamental genus 3 and geometric genus 6, where x € W is a point given by
Go:mo:m:80)=@0:0:0:1).

Proof. Assume that |K| has no fixed component, as is indeed the case for our
general S by Proposition 4. Then p3 : S3 — Sisa blowing up at three simple base
points of |K|. Thus for any hyperplane H C P3, the arithmetic genus of W N H
equals that of the pullback ¢*(WNH) € |p§‘ (K)—¢|, where ¢ is the sum of the total
transforms of the three (—1)-curves appearing by p3 : S3 — S. Since the variable
part |p3(K) — e| of p3|K| is free from base points, this together with Bertini’s
Theorem implies that W has at most isolated singularities. This however implies
that W is normal, since the canonical image W C P? is a hypersurface. Note that
the local equation at x of W in P3 is analytically in the form w? — fg(u, v) = 0.
Thus the invariants of the double point (W, x) can be computed by the canonical
resolution. O
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Remark 3. From Proposition 4, we see easily that the point x is the only singularity
of W for a sufficiently general S. Thus one can compute the geometric genus of
(W, x) also by writing down the Leray spectral sequence of ¢ : §3 — W and
comparing the invariants of W and those of Ss.

Next, we study the case deg @ x| = 2. In this case, the canonical image W C P3
is a cubic surface. We shall describe the branch divisor of the canonical map @ |k .
For simplicity, we shall do this only for the case where S satisfies the following
three generality conditions:

1) the canonical image W = @k (S) is smooth;

ii) the unique member L € |L] is irreducible;

iii) the base locus of | K| consists of three distinct points.

Proposition 7. Let S be a minimal algebraic surface as in Theorem 1, and ¢ = S3 —
W = @k |(S), the morphism such that D) = ¢ opgl. Suppose that deg @ || = 2
and that S satisfies the three conditions above. Then the branch divisor B of ¢ splits
as B = 21'3:1 I + B', where I';’s are three coplanar lines in P? meeting at one
point x € W, and B’ is a member of | — 5Ky | that has an ordinary 5-tuple point
at x and such that all other singularities if any are negligible ones.

Proof. By the generality conditions, the three base points of the canonical system
|K| are non-singular points of the unique member L. Thus if we denote by &
the divisor such that |Kg | = p;|K| + &, then we have p3(L) = p3; W) +e.
Moreover, the divisor ¢ is a sum of three (—1)-curves. Thus from this together with

o*(—Kw) ~ p3 (3L) g, we see that g,& = Zl 1 Ii, where I't, I, and I'; are
the three lines in P? corresponding to the irreducible components of the divisor €.

Let R and B = ¢.(R) be the ramification divisor and the branch divisor of
Q@ S3 —> W, respectively. Then by

R~ p53L) +¢& — ¢"(Kw) ~ 2¢™(—Kw) + 2, a7

we have BD = (—4Kw + 2 Z?:l I7) D for any divisor D on W, which implies
B e |—4Kw+2 Z?:l I;|. Now let us denote by L3 the strict transform by p3 of the
divisor L. By L3¢*(—Kyw) = 0, we see that ¢ contracts L3 to a single pointx € W,
where we have x € ﬂ?:i I';. Moreover, since pg(S) = ho(Ow(—Kw)) = 4 and
hence 3L3 + 2¢ € |p3(3L) —¢| = ¢*| — K|, we obtain a member I" € | — K|
such that *(I") = 3Z3 + 2¢& holds. Since we have I" = Z?:l I; for this I, we see
that the three lines I, I3, and I';3 are coplanar, and that ¢ + 1:3 < R, since we have
@(L3) = {x}. We therefore can put R = ¢ + L3 + R’, where R’ is a non-negative
divisor on Ss. We put B' = ¢4«(R") € | — 5Kw/|.

Now letq : W — W bethe blowing up at x, and A, its exceptional divisor. Then
by ¢ (F) = 3L3 + 2¢, we obtain ™ (1) = 2r + L3 for each integer 1 <i < 3,
where I}’s are three (—1)-curves appearing by p3. This 1mphes the liftability of
¢ : S3 — W toamorphism ¢ : 3 — W . Moreover, we obtain ¢ ¢*(A) = L3. Thus
A is not a component of the branch divisor of ¢, from which we infer ¢,(R") =
G- ' (B’). Since we have ¢, (R')A = R’e = 5by (17), we see from this ord, B’ = 5.
But the standard double cover argument implies that Z?:l g\ + ¢-'(B)
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has at most negligible singularities. Thus the point x is an ordinary 5-tuple point
of B’, and all other singularities of B’ are negligible ones. Finally, the equality
(Z?Zl I; - B)), = 15 follows from ¢*(A) = L3, since this latter implies the
absence of singularities lying on A of the divisor Y3, ' (I') + 4" (B)). O

Remark 4. Conversely, a non-singular cubic surface W C P3 and a member B €
| — 6Kw| having the same properties as in Proposition 7 yields a minimal algebraic
surface S as in Theorem 1 with deg @, x| = 2. Naturally, one easily finds the divisor
L, guided by the proof of the proposition above.

Acknowledgements The author expresses his gratitude to Prof. Kazuhiro Konno, who kindly
gave him the comment on the normality of the canonical image (Proposition 6).

Declarations

Data availability Data sharing not applicable to this article as no datasets were generated
or analyzed during the current study.

References

[1] Bauer, L.: Surfaces with K? = 7 and pg = 4, no. 721. Memoirs of the American
Mathematical Society, vol. 152. American Mathematical Society, Providence (2001)
[2] Bauer, I., Catanese, F., Pignatelli, R.: The moduli space of surfaces with k2 =6and
pPg = 4. Math. Ann. 336(2), 421-438 (2006)
[3] Bauer, L., Pignatelli, R.: Surfaces with K 2 = 8, pg = 4 and canonical involution.
Osaka J. Math. 46(3), 799-820 (2009)
[4] Bombieri, E.: Canonical models of surfaces of general type. Inst. Hautes Etudes Sci.
Publ. Math. 42, 171-219 (1973)
[5] Catanese, F.: The moduli and the global period mapping of surfaces with K 2= pg = 1:
A counter example to the global Torelli problem. Compos. Math. 41(3),401-414 (1980)
[6] Catanese, F.: Babbage’s conjecture, contact of surfaces, symmetric determinantal vari-
eties and applications. Invent. Math. 63(3), 433—-465 (1981)
[7] Catanese, E., Liu, W., Pignatelli, R.: The moduli space of even surfaces of general type
with K2 =8, pg =4 and g = 0. J. Math. Pures Appl. (9) 101, 925-948 (2014)
[8] Catanese, F., Pignatelli, R.: Fibrations of low genus, I. Ann. Sci. Ecole Norm. Sup. (4)
39, 1011-1049 (2006)
[9] Ciliberto, C.: Canonical surfaces with pg = p, = 4 and KZ = 5, ..., 10. Duke Math.
J. 48(1), 121-157 (1981)
[10] Ciliberto, C., Francia, P., Mendes Lopes, M.: Remarks on the bicanonical map for
surfaces of general type. Math. Z. 224, 137-166 (1997)
[11] Horikawa, E.: On deformations of holomorphic maps. II. J. Math. Soc. Japan 26, 647—
667 (1974)
[12] Horikawa, E.: On deformations of quintic surfaces. Invent. Math. 31, 43-85 (1975)
[13] Horikawa, E.: Algebraic surfaces of general type with small c%. I. Ann. Math. 104(2),
358-387 (1976)
[14] Horikawa, E.: Algebraic surfaces of general type with small c%. III. Invent. Math. 47(3),
209-248 (1978)



450

M. Murakami

[15]
[16]
(171
(18]
[19]
[20]

[21]

Kodaira, K.: On characteristic systems of families of surfaces with ordinary singulari-
ties in a projective space. Am. J. Math. 87, 227-256 (1965)

Konno, K.: Normal canonical surfaces in projective 3-space. Int. J. Math. 28, 1750076
(2017)

Mori, S.: On a generalization of complete intersections. J. Math. Kyoto Univ. 15,
619-646 (1975)

Murakami, M.: Remarks on surfaces with c% = 2x — 1 having non-trivial 2-torsion.
J. Math. Soc. Japan 65, 51-95 (2013)

Oliverio, P.: On even surfaces of general type with K% =3, pg = 4,q = 0. Rend.
Sem. Mat. Univ. Padova 113, 1-14 (2005)

Pardini, R.: The Severi inequality K 2 > 4y for surfaces with maximal Albanese
dimension. Invent. Math. 159, 669-672 (2005)

Pignatelli, R.: On surfaces with a canonical pencil. Math. Z. 270(1-2), 403-422 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this
article under a publishing agreement with the author(s) or other rightsholder(s); author self-
archiving of the accepted manuscript version of this article is solely governed by the terms
of such publishing agreement and applicable law.



	Surfaces with c12 =9 and χ=5 whose canonical classes are divisible by 3
	Abstract.
	1 Introduction
	2 Some numerical restrictions
	3 Study of the map |2L|
	4 Structure theorem
	5 Moduli space and the canonical maps
	Acknowledgements
	References




