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Abstract. We shall study minimal complex surfaces with c2 = 9 and χ = 5 whose canon-
ical classes are divisible by 3 in the integral cohomology groups, where c21 and χ denote the
first Chern number of an algebraic surface and the Euler characteristic of the structure sheaf,
respectively. The main results are a structure theorem for such surfaces, the unirationality of
the moduli space, and a description of the behavior of the canonical map. As a byproduct,
we shall also rule out a certain case mentioned in a paper by Ciliberto–Francia–Mendes
Lopes. Since the irregularity q vanishes for our surfaces, our surfaces have geometric genus
pg = 4.

1. Introduction

When one wants to study the behavior of canonical maps of algebraic surfaces,
surfaces of general type with pg = 4 are in a sense the most primitive objects,
since their canonical images are in most cases hypersurfaces of the 3-dimensional
projective space P

3. Partly for such reasons, these surfaces have attracted many
algebraic geometers, even from the time of classical Italian school.

After Noether and Enriques studied the case c21 = 4, surfaces with pg = 4 have
been studied from various view points (e.g, [6,9,15]). As for the classification,
Horikawa and Bauer completed that for the surfaces of cases 4 ≤ c21 ≤ 7 ([1,12–
14]). Complete classification of the surfaces of case c21 = 8 seems not completely
out of reach, but for the moment, only partial classifications and several examples
are known (e.g.,[3,9,10]). We also notice that even though the surfaces have been
classified for the case c21 = 6, the number of the irreducible components of the
moduli space remains unknown even after [2].

Among such works, the results most connected to the present paper are those on
even surfaces for the case c21 = 8. Recall that an algebraic surface is said to be even
if its canonical class is divisible by 2. In [19], Oliverio studied regular even surfaces
of case c21 = 8, and showed that if S is a surface of this class with base point free

The author acknowledges the support by JSPS Grant-in-Aid Scientific Research(C)
15K04825
M. Murakami (B): Department of Mathematics and Computer Science, Kagoshima Uni-
versity, Korimoto 1-21-35, Kagoshima 890-0065, Japan
e-mail: murakami@sci.kagoshima-u.ac.jp

Mathematics Subject Classification: Primary 14J29; Secondary 13J10 · 32G05

https://doi.org/10.1007/s00229-022-01442-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s00229-022-01442-7&domain=pdf
http://orcid.org/0000-0001-8565-4609


426 M. Murakami

canonical system, then its canonical model is a (6, 6)-complete intersection in the
weighted projective space P(1, 1, 2, 3, 3). He also showed that these surfaces fill
up an open dense subset of a 35-dimensional irreducible component MF of the
moduli space Mev

8,4,0 of even regular surfaces of case c21 = 8. Though this paper
[19] studied these surfaces only under the condition that the canonical systems are
base point free, Catanese, Liu, and Pignatelli later in [7] classified all even regular
surfaces with c21 = 8 and pg = 4 and showed that Mev

8,4,0 consists exactly of two
irreducible componentsMF andME , both of dimension 35 and intersecting each
other in codimension one locus.

In this paper, we go one step up, and study regular surfaces of case c21 = 9 with
canonical classes divisible by 3. We shall prove three theorems. Our first theorem
asserts that any surface of this class has the canonicalmodel isomorphic to a (6, 10)-
complete intersection of the weighted projective spaceP(1, 2, 2, 3, 5) (Theorem 1).
Our second theorem asserts that the moduli space of our surfaces is unirational of
dimension 34, hence also the uniqueness of the diffeomorphic type of our surfaces
(Theorem 2). Our third theorem asserts that the canonical map Φ|K | of a surface
of this class is either birational onto a singular sextic or generically two-to-one
onto a cubic surface (Theorem 3). The surfaces with birational Φ|K | and those with
generically two-to-oneΦ|K | form an open dense subset and a 33-dimensional locus,
respectively, inM.

Possibility of the existence of surfaces with c21 = 9 and pg = 4 and with
canonical classes divisible by 3 has already been mentioned in [10, (ii), Proposition
1.7], though for the case of canonical map composite with a pencil. In fact, the
construction of examples of Case (ii) above was one of the motivations for our
work. In the course of the proof of our Theorem 1, however, we shall show that
this Case (ii) never occurs, even for the case of positive irregularity (Proposition
2). This sharpens their Proposition 1.7 slightly.

Let L be a divisor linearly equivalent to the canonical divisor of our surface.
Our strategy of the first part is to study the mapΦ|2L| to compute the dimensions of
some cohomology groups, where Φ|2L| is the map associated to the linear system
|2L|. Although the main tools for this part are classical ones, e.g., the double cover
technique, a result by the author given in [18] on the torsion groups of surfaces
with c21 = 2χ −1 is also used to rule out some cases. Then we divide our argument
into two cases depending on whether Φ|2L| is composite with a pencil or not, and
study each case. For the case where Φ|2L| is composite with a pencil, it turns out
that we are in Case (ii) of [10, Proposition 1.7]. Using results in [10] and applying
to Φ|2L| the structure theorem for genus 3 fibrations given in [8], we shall rule out
this case. For the case where Φ|2L| is not composite with a pencil, we shall study
the semicanonical ring R = ⊕∞

n=0 H
0(O(nL)). Using arguments similar to those

in [5], we shall find generators of the ring R and relations among them, which gives
us the structure theorem. As for the results on the moduli space and the canonical
maps, we shall prove them using this structure theorem. In addition to the theorems
stated above, we shall also give a double cover description of our surfaces with
degΦ|K | = 2 (Proposition 7).

After all the main results of the present paper were obtained, Kazuhiro Konno
pointed out the normality of the canonical images of our surfaces of case degΦ|K | =
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1 (Proposition 6). As informed to the author by him, our surfaces therefore give one
of the missing examples of the list given in Konno’s work [16] on normal canonical
surfaces with pg = 4.

Notation and Terminology

All varieties in this article are defined over the complex number field C. Let
V be a smooth variety. We denote by KV , ωV , Ω1

V , and ΘV , a canonical divisor,
the dualizing sheaf, the cotangent sheaf, and the tangent sheaf, respectively, of
V . For a divisor D, we denote by O(D) the coherent sheaf associated to D. For a
coherent sheafF onV , we denote by Hi (F), hi (F), andχ(F), the i-th cohomology
group ofF , its dimension dimC Hi (F), and the Euler characteristic

∑
(−1)i hi (F),

respectively. We denote by Sn(F) and
∧n F the n-th symmetric product and the

n-th exterior product, respectively, of F . Let f : V → W be a morphism to a
smooth varietyW , and D, a divisor onW . We denote by f ∗(D) the total transform
of D.

The symbols∼ and∼num mean the linear equivalence and the numerical equiv-
alence, respectively, of two divisors. If D and D′ are two divisors on V and D− D′
is a non-negative divisor, we write D � D′.

For a smooth algebraic surface S, we denote by c1(S), pg(S), and q(S), the
first Chern class, the geometric genus, and the irregularity of S, respectively.

2. Some numerical restrictions

Let S be a minimal algebraic surface with c21 = 9 and χ = 5 whose canonical
class is divisible by 3 in the cohomology group H2(S, Z). We take a divisor L
such that K = KS ∼ 3L . In this section, as a preliminary, we shall find some
restrictions to numerical invariants associated to the divisor L . Note that by the
unbranched covering trick we have q = 0, hence pg = 4. In what follows, we
use the standard fact that if D and D′ are two effective divisors the inequality
h0(O(D + D′)) ≥ h0(O(D)) + h0(O(D′)) − 1 holds.

Let us begin with the dimension h0(OS(2L)).

Lemma 2.1. 3 ≤ h0(OS(2L)) ≤ 5.

Proof. By the Riemann–Roch theorem, we see that

h0(OS(L)) + h0(OS(2L)) ≥ 4. (1)

By this together with h0(OS(L)) ≤ h0(OS(2L)), we obtain 2 ≤ h0(OS(2L)). But
if h0(OS(2L)) = 2, then by (1) we must have 2 ≤ h0(OS(L)), which contradicts
h0(OS(2L)) ≥ 2h0(OS(L)) − 1. Thus we obtain 3 ≤ h0(OS(2L)). To obtain the
remaining inequality, use h0(OS(6L)) = χ(OS) + K 2 = 14 and h0(OS(6L)) ≥
3h0(OS(2L)) − 2. 
�

Let Φ|2L| : S − − → P
l2 be the rational map associated to the linear system

|2L|, where l2 = h0(OS(2L)) − 1. We have two cases: the case where Φ|2L| is
composite with a pencil and the case where Φ|2L| is not composite with a pencil.
First, we study the former case.
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Lemma 2.2. Assume that the rational mapΦ|2L| is composite with a pencilP . Then
h0(OS(L)) = 2 and h0(OS(2L)) = 3 hold. Moreover |L| has no fixed component,
and the pencil P is given by Φ|L| : S − − → P

1.

Proof. Assume thatΦ|2L| is composite with a pencilP . Since S is regular and |2L|
is complete, there exists an effective divisor D2 of S such that h0(OS(D2)) ≥ 2 and
|2L| = |l2D2| + F2, where F2 is the fixed part of |2L|, and l2 is as in the definition
of Φ|2L|. Naturally, we have

2 = 2L2 = l2D2L + F2L . (2)

Assume that we have D2L = 0. Then we have F2L = 2, which together
with 2LD2 = l2D2

2 + D2F2 and 2LF2 = l2D2F2 + F2
2 implies F2

2 = 4 and
D2
2 = D2F2 = 0. Then by Hodge’s Index Theorem, we obtain D2 = 0, which

contradicts the definition of the divisor D2.
Thus D2L > 0 holds. Since we have l2 ≥ 2 by Lemma 2.1, we see from this

together with (2) that l2 = 2, D2L = 1, and F2L = 0. In particular, we obtain 2 =
2LD2 = l2D2

2 + D2F2. But D2
2 is odd, since D2K = 3. Thus this implies D2

2 = 1
and D2F2 = F2

2 = 0, hence F2 = 0. Thus we obtain 2L ∼ l2D2+F2 ∼ 2D2. This
however implies L ∼ D2, since by [18, Theorem 4] the surface S has no torsion.
Since l2 = h0(OS(2L))− 1, the assertion follows from this linear equivalence and
h0(OS(2L)) ≥ 2h0(OS(L)) − 1. 
�

Next, we study the latter case. In what follows, we denote by |M2| and F2 the
variable part and the fixed part, respectively, of the linear system |2L|. We also
denote by p2 : S̃2 → S the shortest composite of quadric transformations such that
the variable part of p∗

2 |M2| is free from base points.

Lemma 2.3. Assume that the rational map Φ|2L| is not composite with a pencil.
Then h0(OS(2L)) = 3, h0(OS(L)) = 1, and h1(OS(L)) = 0 hold. Moreover, the
inequality 2 ≤ M̃2

2 ≤ 4 holds, where |M̃2| is the variable part of the linear system
p∗
2 |M2|.

Proof. By Lemma 2.1 we have 2 ≤ l2 ≤ 4, where l2 = h0(OS(2L)) − 1. Since
we have assumed that Φ|2L| is not composite with a pencil, a general member M̃2

of |M̃2| is a smooth irreducible curve on S̃2. In what follows, we assume that M̃2 is
general, hence smooth, and define the divisors E2 and ε2 by p∗

2 |M2| = |M̃2| + E2

and K̃ = KS̃2
∼ p∗

2(3L) + ε2, respectively.

First, let us show that l2 ≤ 3. By the Serre duality, we have h2(OS̃2
(M̃2)) =

h0(OS̃2
(K̃ − M̃2)) < pg(S) = 4. From this together with the standard exact

sequence

0 → OS̃2
→ OS̃2

(M̃2) → OM̃2
(M̃2) → 0,

we see easily that h1(OM̃2
(M̃2)) ≥ 1. Thus applying Clifford’s theorem for M̃2|M̃2

,
we obtain
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2(l2 − 1) ≤ M̃2
2 ≤ M̃2

2 + M̃2E2 + M2F2 + 2LF2 = (2L)2 = 4, (3)

hence in particular l2 ≤ 3.
Assume that we have l2 = h0(OS(2L)) − 1 = 2. Then by the Riemann–Roch

theorem, we have h0(OS(L)) = h1(OS(L)) − h0(OS(2L)) + 4 ≥ 1. And also,
we have 3 = h0(OS(2L)) ≥ 2h0(OS(L)) − 1, hence 2 ≥ h0(OS(L)). The case
h0(OS(L)) = 2 however is impossible, since we have assumed that Φ|2L| is not
composite with a pencil. Thus we obtain h0(OS(L)) = 1 and h1(OS(L)) = 0.
Moreover, the inequality 2 ≤ M̃2

2 ≤ 4 follows from (3), hence as in the assertion.
Therefore, we only need to rule out the case l2 = 3.

So assume that we have l2 = 3. In this case we obtain by (3) that M̃2E2 =
M2F2 = 2LF2 = 0,which implies the base point freeness of the linear system |2L|.
Since S is of general type, we infer easily from this that degΦ|2L| = degΦ|2L|(S) =
2. Thus we have two cases:

Case A: the image Φ|2L|(S) ⊂ P
3 is a smooth quadric;

Case B: the image Φ|2L|(S) ⊂ P
3 is a quadric cone.

In what follows, we put g = Φ|2L|. We shall rule out the two cases separately.
Case A. Assume that Φ|2L|(S) is a smooth quadric. Then the image Φ|2L|(S)

is the Hirzebruch surface Σ0 of degree 0 embedded by |Δ0 + Γ |, where Δ0 and Γ

denote the minimal section and a fiber of the Hirzebruch surface Σ0, respectively.
Let R and B = g∗(R) denote the ramification divisor and the branch divisor
of the generically two-to-one morphism g : S → Σ0, respectively. Then since
2L ∼ g∗(Δ0 + Γ ), we see easily that R ∼ 7L , hence BΔ0 = BΓ = 7. This
however is impossible, because B needs to be linearly equivalent to twice a divisor
on Σ0. Thus Case A does not occur.

Case B.Assume thatΦ|2L|(S) is a quadric cone. Then the imageΦ|2L|(S) is the
image of the morphism Φ|Δ0+2Γ | : Σ2 → P

3, where Σ2 is a Hirzebruch surface
of degree 2, and Δ0 and Γ are its minimal section and a fiber, respectively. Let
p′
2 : S′

2 → S be the shortest composite of the quadric transformations such that
g ◦ p′

2 lifts to a morphism g′ : S′
2 → Σ2. We denote by K ′ = KS′

2
a canonical

divisor of S′
2, and define the divisor ε′

2 by K ′ ∼ p′
2
∗
(3L) + ε′

2. We also denote by
R and B = g′∗(R) the ramification divisor and the branch divisor of the generically
two-to-one morphism g′ : S′

2 → Σ2.
Since ε′

2 is contracted by g ◦ p′
2, there exists a natural number ν such that

g′∗(ε′
2) = νΔ0. Then from p′

2
∗
(3L) + ε′

2 ∼ g′∗(−2Δ0 − 4Γ ) + R and p′
2(2L) ∼

g′∗(Δ0 + 2Γ ) we infer that BΔ0 = −2ν and BΓ = 7 + ν. Since B is linearly
equivalent to twice a divisor on Σ2, this implies ν ≥ 1, hence BΔ0 < 0. Thus
Δ0 is a component of the branch divisor B. In particular, we have ν = 1, from
which we see that the multiplicity in ε′

2 of the (−1)-curve appearing at the last
quadric transformation in p′

2 is equal to 1. Thus p′
2 : S′

2 → S is a blowing up at
one point, and ε′

2 is a (−1)-curve. Then by p′
2
∗
(2L) ∼ g′∗(Δ0 + 2Γ ) we obtain

2(p′
2
∗L−ε′

2−g′∗Γ )) ∼ 0. This implies the linear equivalence p′
2
∗L ∼ ε′

2+g′∗Γ ,
since by [18, Theorem4] our surface S has no torsion. Thuswe obtain h0(OS(L)) ≥
h0(OΣ2(Γ )) = 2. This however is impossible, since we have h0(OS(2L)) = 4 and
4 = h0(OS(3L)) ≥ h0(OS(2L)) + h0(OS(L)) − 1. Thus Case B does not occur.
This concludes the proof of Lemma 2.3. 
�
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3. Study of the map Φ|2L|

In this section, we shall study the map Φ|2L|, and rule out the case where Φ|2L| is
composite with a pencil. Assume that the rational map Φ|2L| is composite with a
pencil P . Then by Lemma 2.2, we have h0(OS(2L)) = 3 and h0(OS(L)) = 2.
The linear system |L| has a unique base point, which is simple. Moreover, since
h0(OL) = 1 holds, P is a pencil of curves of genus 3, whose members correspond
to fibers ofΦ|L| : S−− → P

1. Let p : S̃ → S be the blow up of S at the base point
of |L|, and E , its exceptional curve. We denote by f = Φ|p∗L−E | : S̃ → B = P

1

the morphism associated to the linear system |p∗L − E |.
Since the multiplication map S3(H0(OS(L))) → H0(OS(3L)) is surjective,

the canonical map Φ|K | : S − − → P
3 is also composite with the pencil P . Thus

we are in Case (ii) of [10, Proposition 1.7]. In particular, any general member of |L|
is non-hyperelliptic, and all the fibers of f : S̃ → B are 2-connected. Therefore,
we can utilize the structure theorem given in [8] for 2-connected non-hyperelliptic
fibrations of genus 3.

In what follows, we put L̃ = p∗L − E and K̃ = KS̃ = p∗(3L) + E , and
denote by ωS|B = OS(K̃ − f ∗KB) the relative canonical sheaf of the fibration
f : S̃ → B. Moreover we denote by Vn = f∗(ω⊗n

S̃|B) the direct image by f of the

sheaf ω⊗n
S̃|B . Recall that for any integer n ≥ 2 we have

rk Vn = 4n − 2, deg Vn = 7 + 12n(n − 1).

The latter equality on deg Vn is valid also for n = 1, but for the former equality on
rk Vn , we have instead rk V1 = 3 for n = 1.

Lemma 3.1. The following hold:
1) V1 � OB(1)⊕2 ⊕ OB(5),

2) V2 �
(⊕4

k=2 OB(k)
)

⊕ OB(6)⊕2 ⊕ OB(10),

3) V4 �
(⊕14

k=4OB(k)
)

⊕ OB(16)⊕2 ⊕ OB(20).

Proof. Recall that we have rk V1 = 3 and deg V1 = 7. Thus we can put V1 �⊕2
i=0 OB(ai ), where a0 ≤ a1 ≤ a2 and

∑2
i=0 ai = 7. Moreover we have ωS̃|B �

OS̃(K̃ − f ∗KB) � OS̃(5L̃ + 4E). Thus we obtain

h0(V1 ⊗ OB(−k)) = h0(OS̃((5 − k)L̃ + 4E)) = h0(OS((5 − k)L))

for any k ≥ 1, from which we infer h0(V1 ⊗OB(−1)))− h0(V1 ⊗OB(−2))) = 3.
This implies ai ≥ 1 for all 0 ≤ i ≤ 2. Since h0(V1 ⊗ OB(−k))) − h0(V1 ⊗
OB(−(k + 1))) is equal to the numbers of i’s satisfying ai ≥ k, using Lemma 2.2,
we obtain the assertion 1). (See also the proof of [21, Lemma 3.7.].)

The assertions 2) and 3) can be proved exactly in the same way. For these two,
use ω⊗2

S̃|B � OS̃(10L̃ + 8E) and ω⊗4
S̃|B � OS̃(20L̃ + 16E). 
�
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Inwhat follows,wedenote by X0, X1, and X2 local bases of the direct summands
OB(1), OB(1), and OB(5), respectively, of the sheaf V1. We also denote by S0,
S1, S2, T0, T1, and U0 local bases of the direct summands OB(2), OB(3), OB(4),
OB(6),OB(6), andOB(10), respectively, of the sheaf V2. By Lemma 3.1 we have

S2(V1) � OB(2)⊕3 ⊕ OB(6)⊕2 ⊕ OB(10),

where the local bases of the direct summands are given by X2
0, X0X1, X2

1, X0X2,
X1X2, and X2

2, respectively. With these local bases, the multiplication morphism
σ2 : S2(V1) → V2 is expressed by a 6 × 6 matrix A in the following form:

A =
(
A′ O3
∗ I3

)

, where A′ =
⎛

⎝
a0 a1 a2
α0 α1 α2
β0 β1 β2

⎞

⎠ . (4)

Here O3 and I3 denote the 3× 3 zero matrix and the 3× 3 identity matrix, respec-
tively, and ai ∈ H0(OB), α j ∈ H0(OB(1)), and βk ∈ H0(OB(2)) are global
sections for each 0 ≤ i, j, k ≤ 2.

Let us describe the 5-tuple for our genus 3 fibration f : S̃ → B. For the notion
of the 5-tuple, see [8]. Let τ be the effective divisor of degree deg τ = 3 on B
determined by the short exact sequence

0 → S2(V1) → V2 → Oτ → 0. (5)

Let C : S2(∧2 V1) → S2(S2(V1)) be the morphism given by (a ∧ b)(c ∧ d) �→
(ac)(bd)− (ad)(bc). Then the morphism S2(σ2)◦C : S2(∧2 V1) → S2(V2) has a
locally free cokernel of rank 15, which we shall denote by Ṽ4 = Cok (S2(σ2) ◦ C).
We denote by L′

4 and L4 the kernel of the natural surjection Ṽ4 → V4 and that
of the natural morphism S4(V1) → V4, respectively. Then we obtain the natural
inclusion morphism

L′
4 � (det V1) ⊗ OB(τ ) � OB(10) → Ṽ4. (6)

With the notation above, B,V1, τ , (5), and (6) form the admissible 5-tuple associated
to our fibration f : S̃ → B.

ByLemma3.1wehave
∧2 V1 � OB(2)⊕OB(6)⊕2 and S2(

∧2 V1) � OB(4)⊕
OB(8)⊕2⊕OB(12)⊕3.We decompose each of the five sheaves S2(

∧2 V1), S2(V1),
S2(S2(V1)), V2, and S2(V2) into the lower degree part (L) and the higher degree
part (H) as follows:

S2(
2∧
V1) = [OB(4)] ⊕

[
OB(8)⊕2 ⊕ OB(12)⊕3

]

= S2(
2∧
V1)

(L) ⊕ S2(
2∧

V1)
(H),

S2(V1) =
[
OB(2)⊕3

]
⊕

[
OB(6)⊕2 ⊕ OB(10)

]

= S2(V1)
(L) ⊕ S2(V1)

(H),

S2(S2(V1)) =
[
S2(S2(V1)

(L))
]

⊕
[(

S2(V1)
(L) ⊗ S2(V1)

(H)
)

⊕ S2(S2(V1)
(H))

]
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= S2(S2(V1))
(L) ⊕ S2(S2(V1))

(H),

V2 =
[

4⊕

k=2

OB(k)

]

⊕
[
OB(6)⊕2 ⊕ OB(10)

]

= V (L)
2 ⊕ V (H)

2 ,

S2(V2) =
[
S2(V (L)

2 )
]

⊕
[(

V (L)
2 ⊗ V (H)

2

)
⊕ S2(V (H)

2 )
]

= S2(V2)
(L) ⊕ S2(V2)

(H),

where in each expression the first [ ] term corresponds to the lower degree part
(L), and the second [ ] term corresponds to the higher degree part (H).

Let γ : S2(
∧2 V1)(L) � OB(4) → S2(V2)(L) be the composition of the

morphism C|S2(∧2 V1)(L) : S2(
∧2 V1)(L) → S2(S2(V1))(L) and the morphism

S2(A′) : S2(S2(V1))(L) = S2(S2(V1)(L)) → S2(V2)(L) = S2(V (L)
2 ), where A′

is the 3 × 3 matrix given in (4).

Lemma 3.2. HomOB (L′
4,Cok γ ) �= {0}.

Proof. Note that by (4) we have (S2(σ2) ◦ C)(S2(
∧2 V1)(H)) ⊂ S2(V2)(H). Thus

(S2(σ2) ◦ C) : S2(∧2 V1) → S2(V2) induces a morphism of OB-modules

γ ′ : S2(
∧2 V1)

S2(
∧2 V1)(H)

� S2(
2∧
V1)

(L) → S2(V2)

S2(V2)(H)
� S2(V2)

(L).

Our morphism γ coincides with this γ ′, when we view γ ′ as a morphism from
S2(

∧2 V1)(L) to S2(V2)(L). Thus by the commutative diagram

0 −−−−→ S2(
∧2 V1)(H) −−−−→ S2(V2)(H) −−−−→ S2(V2)(H)

S2(
∧2 V1)(H)

−−−−→ 0
⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 −−−−→ S2(
∧2 V1)

S2(σ2) ◦ C−−−−−−→ S2(V2) −−−−→ Ṽ4 −−−−→ 0
(7)

and 3 × 3 Lemma, we obtain the following two short exact sequences:

0 → S2(
∧2 V1)

S2(
∧2 V1)(H)

→ S2(V2)

S2(V2)(H)
→ Cok γ ′ � Cok γ → 0,

0 → S2(V2)(H)

S2(
∧2 V1)(H)

→ Ṽ4 → Cok γ ′ � Cok γ → 0. (8)

Now, assume that we have HomOB (L′
4,Cok γ ) = {0}. Then by the

short exact sequence (8) above, we obtain the surjectivity of the morphism

HomOB (L′
4,

S2(V2)(H)

S2(
∧2 V1)(H)

) → HomOB (L′
4, Ṽ4). This implies that the morphism

S2(V2)(H)

S2(
∧2 V1)(H)

→ Ṽ4 in (7) factors through the inclusion morphism (6). On the other

hand, however, since σ2|S2(V1)(H) : S2(V1)(H) → V (H)
2 is an isomorphism by (4), we
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have also the surjectivity of themorphismV2⊗S2(V1)(H) → S2(V2)(H) = V2·V (H)
2 .

Then with the help of the commutative diagram (7), we find immediately a contra-
diction to the definition of an admissible 5-tuple. (See [8, Condition (iv), Definition
7.10].) Thus HomOB (L′

4,Cok γ ) = {0} is impossible. 
�
Note that by Lemma 3.1 we have

S2(V2)
(L) � OB(4) ⊕ OB(5) ⊕ OB(6)⊕2 ⊕ OB(7) ⊕ OB(8).

Local bases of the direct summands are given by S20 , S0S1, S
2
1 , S0S2, S1S2, and S22 ,

respectively. In what follows, we shall compute the sheaf Cok γ , and rule out the
case where Φ|2L| is composite with a pencil. For this we divide our argument into
several cases, normalizing the matrix A′.

First, by replacing the bases X0 and X1 of the sheaf V1, we may assume a1 = 1.
Then by replacing the bases S0, S1, and S2 of the sheaf V2, we may assume α1 = 0
and β1 = 0. Then we obtain

A′ =
⎛

⎝
a0 1 a2
α0 0 α2
β0 0 β2

⎞

⎠ .

We have two cases:
Case 1: a0a2 �= 1;
Case 2: a0a2 = 1.

Lemma 3.3. Case 1 does not occur.

Proof. The composite of the morphism γ and the natural projection S2(V2)(L) →
OB(4) coincides with (a0a2 − 1)× : S2(∧2 V1)(L) � OB(4) → OB(4). Thus if
we are in Case 1, then the image Im γ is a direct summand of S2(V2)(L). Thus we
obtain

Cok γ � OB(5) ⊕ OB(6)⊕2 ⊕ OB(7) ⊕ OB(8),

which contradicts Lemma 3.2. 
�
Let us study Case 2. In this case, the composite of the morphism γ and the

natural projection S2(V2)(L) → OB(4) is a zero morphism. Thus γ is a composite
of a morphism

γ0 : S2(
2∧
V1)

(L) � OB(4) → F0 = OB(5) ⊕ OB(6)⊕2 ⊕ OB(7) ⊕ OB(8)

and the natural inclusion F0 → S2(V2)(L), and we find Cok γ � OB(4)⊕Cok γ0.
By replacing the bases X0 and X1 by their multiples by non-zero constants, we
may assume a0 = a2 = 1. Then by the short exact sequence

0 → S2(
2∧
V1)

(L) → F0 → Cok γ0 → 0, (9)
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we obtain

h0(Cok γ0 ⊗ OB(−6)) = 8

h0(Cok γ0 ⊗ OB(−7)) = 3 + dimKer ((α0 + α2)×), (10)

where (α0 + α2)× : H1(OB(−3)) → H1(OB(−2)) is the morphism induced by
the multiplication morphism by α0 + α2 of sheaves.

Case 2 splits into two cases:
Case 2–1: α0 + α2 �= 0 ∈ H0(OB(1));
Case 2–2: α0 + α2 = 0 ∈ H0(OB(1)).
Case 2–1. Let us study Case 2–1. In this case the morphism (α0 + α2)× :

H1(OB(−3)) → H1(OB(−2)) is surjective. Therefore by (9) and (10) we obtain

h0(Cok γ0 ⊗ OB(−7)) = 4

h0(Cok γ0 ⊗ OB(−8)) = 1 + dimKer ( t (α0 + α2, α0α2, β0 + β2)×), (11)

where t (α0+α2, α0α2, β0+β2)× : H1(OB(−4)) → H1(OB(−3)⊕OB(−2)⊕2)

is the morphism induced by the multiplication morphism by t (α0+α2, α0α2, β0+
β2) of sheaves.

Case 2–1 splits into two cases:
Case 2–1–1: α0 + α2, α0α2, and β0 + β2 have no common zero;
Case 2–1–2: α0 + α2, α0α2, and β0 + β2 have a common zero.

Lemma 3.4. Case 2–1–1 does not occur.

Proof. Assume that we are in Case 2–1–1. Let us denote by γ
(1)
0 : S2(∧2 V1)(L) �

OB(4) → OB(5)⊕OB(6)⊕2 themultiplicationmorphismby t (α0+α2, α0α2, β0+
β2). Then both Cok γ0 and Cok γ

(1)
0 are locally free, and we have rk Cok γ0 = 4

and rk Cok γ
(1)
0 = 2. Put Cok γ0 � ⊕3

i=0 OB(bi ) where b0 ≤ b1 ≤ b2. Then by
the short exact sequence

0 → S2(
2∧
V1)

(L) → OB(5) ⊕ OB(6)⊕2 → Cok γ
(1)
0 → 0,

we obtain h0(Cok γ
(1)
0 ⊗ OB(−6)) = 3 and h0(Cok γ

(1)
0 ⊗ OB(−7)) = 1. From

these together with degCok γ
(1)
0 = 13, we infer Cok γ

(1)
0 � OB(6) ⊕ OB(7),

which in tern together with (11) implies h0(Cok γ0⊗OB(−8))) = 1. This together
with (10) and (11) implies b0 = 6 and bi ≥ 7 for all 1 ≤ i ≤ 3. Then since
degCok γ0 = 28, we obtain

Cok γ � OB(4) ⊕ Cok γ0 � OB(4) ⊕ OB(6) ⊕ OB(7)⊕2 ⊕ OB(8),

which contradicts Lemma 3.2. 
�
Lemma 3.5. Case 2–1–2 does not occur.



Surfaces with c21 = 9 and χ = 5 435

Proof. Assume that we are in Case 2–1–2. Without loss of generality we may
assume α0 �= 0 ∈ H0(OB(1)). Since the three sections α0 +α2, α0α2, and β0 +β2
have a common zero, there exist a number a ∈ C and a section λ ∈ H0(OB(1))
such thatα0+α2 = (1+a)α0 andβ0+β2 = λα0 hold. Note that we have 1+a �= 0,
since we are in Case 2–1. Since β0β2 = β0(λα0 − β0), if the two sections α0 + α2
and β0β2 have a common zero P , then at this point P , the rank of σ2 ⊗ k(P) drops
at least by 2, which is impossible. (See [8].) Thus Cok γ0 is locally free.

Put Cok γ0 � ⊕3
i=0 OB(bi ), where b0 ≤ b1 ≤ b2 ≤ b3. Let us denote by

γ
(1)
0 : S2(

∧2 V1)(L) � OB(4) → OB(5) ⊕ OB(6)⊕2 the multiplication mor-
phism by t (α0 + α2, α0α2, β0 + β2) = t ((1 + a)α0, aα2

0, λα0). Then denot-

ing by γ
(2)
0 : OB(5) → OB(5) ⊕ OB(6)⊕2 the multiplication morphism by

t ((1 + a), aα0, λ), we have γ
(1)
0 = γ

(2)
0 ◦ (α0×), where α0× : S2(∧2 V1)(L) →

OB(5) is the multiplication morphism by α0. From this we see easily that the
morphism γ

(1)
0 ⊗ OB(−8) : S2(∧2 V1)(L) ⊗ OB(−8) → OB(−3) ⊕ OB(−2)⊕2

induces a morphism H1(S2(
∧2 V1)(L)⊗OB(−8)) → H1(OB(−3)⊕OB(−2)⊕2)

of rank 4. Thus we obtain h0(Cok γ0 ⊗ OB(−8)) = 2, which together with (10)
and (11) implies b0 = b1 = 6. Then since degCok γ0 = 28, we obtain

Cok γ � OB(4) ⊕ Cok γ0 � OB(4) ⊕ OB(6)2 ⊕ OB(b2) ⊕ OB(b3),

where (b2, b3) = (8, 8) or (7, 9), which contradicts Lemma 3.2. 
�
Case 2–2. Let us study Case 2–2. In this case we have α2 = −α0 �= 0 ∈

H0(OB(1)). Moreover, γ0 is a composite of a morphism

γ1 : S2(
2∧
V1)

(L) � OB(4) → F1 = OB(6)⊕2 ⊕ OB(7) ⊕ OB(8)

and the natural inclusion F1 → F0, and we find Cok γ0 � OB(5) ⊕ Cok γ1.
Case 2–2 splits into two cases:
Case 2–2–1: α0α2 = −α2

0 and β0 + β2 have no common zero;
Case 2–2–2: α0α2 = −α2

0 and β0 + β2 have a common zero.

Lemma 3.6. Case 2–2–1 does not occur.

Proof. Assume that we are in Case 2–2–1. Then the sheaf Cok γ1 is locally free
of rank 3. Put Cok γ1 � ⊕3

i=1OB(bi ), where b1 ≤ b2 ≤ b3. Then since the
multiplication morphism t (α0α2, β0 + β0)× : S2(

∧2 V1)(L) → OB(6)⊕2 by
t (α0α2, β0 +β0) has a cokernel isomorphic toOB(8), we obtain by the short exact
sequence

0 → S2(
2∧
V1)

(L) → F1 → Cok γ1 → 0

that h0(Cok γ1 ⊗ OB(−7)) = 5 and h0(Cok γ1 ⊗ OB(−8)) = 2, which imply
bi ≥ 7 for all 1 ≤ i ≤ 3. Since degCok γ1 = 23, we obtain

Cok γ � OB(4) ⊕ OB(5) ⊕ OB(b1) ⊕ OB(b2) ⊕ OB(b3),

where (b1, b2, b3) = (7, 7, 9) or (7, 8, 8), which contradicts Lemma 3.2. 
�
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Let us study Case 2–2–2. In this case there exists a section λ ∈ H0(OB(1))
such that β0 + β2 = λα0. Then since β0β2 = β0(λα0 − β0) holds, if the two
sections −α2

0 and β0β2 have a common zero P , then at this point P , the rank of
σ2 ⊗ k(P) drops at least by 2, which is impossible. Thus Cok γ1 is locally free of
rank 3. Put Cok γ1 � ⊕3

i=1OB(bi ), where b1 ≤ b2 ≤ b3. Then by the same short
exact sequence as in the proof of Lemma 3.6, we obtain

h0(Cok γ1 ⊗ OB(−6)) = 8, h0(Cok γ1 ⊗ OB(−7)) = 5. (12)

Case 2–2–2 splits into two cases:
Case 2–2–2–1: α0 and λ have no common zero;
Case 2–2–2–2: α0 and λ have a common zero.

Lemma 3.7. Case 2–2–2–1 does not occur.

Proof. Assume that we are in Case 2–2–2–1. Then since the multiplication mor-
phism t (α0α2, β0 + β2)× : S2(

∧2 V1)(L) → OB(6)⊕2 is the composite of the
two morphisms α0× : S2(

∧2 V1)(L) → OB(5) and t (−α0, λ)× : OB(5) →
OB(6)⊕2, we see by the same short exact sequence as in the proof of Lemma 3.6
that h0(Cok γ1 ⊗ OB(−8)) = 2, which together with (12) implies bi ≥ 7 for all
1 ≤ i ≤ 3. Since degCok γ1 = 23, we obtain

Cok γ � OB(4) ⊕ OB(5) ⊕ OB(b1) ⊕ OB(b2) ⊕ OB(b3),

where (b1, b2, b3) = (7, 7, 9) or (7, 8, 8), which contradicts Lemma 3.2. 
�
Lemma 3.8. Case 2–2–2–2 does not occur.

Proof. Assume that we are in Case 2–2–2–2. Then there exists a number c ∈ C

such that λ = cα0. If we have c = 0, then we obtain β2 = −β0. This
however is impossible since σ2 ⊗ k(P) needs to have rank 6 at a general
point P of B. Thus we obtain c �= 0. Note that the multiplication morphism
t (−α2

0, β0 + β2)× : S2(∧2 V1)(L) → OB(6)⊕2 is the composite of the two mor-
phisms α2

0× : S2(
∧2 V1)(L) → OB(6) and t (−1, c)× : OB(6) → OB(6)⊕2.

Sincewe haveCok ( t (−1, c)×) � OB(6), we see by the same short exact sequence
as in the proof of Lemma 3.6 that

h0(Cok γ1 ⊗ OB(−8)) = 3. (13)

Since α0β2 + α2β0 = α0(cα2
0 − 2β0), if the two sections α0 and cα2

0 − 2β0
have a common zero P , then at this point P , the rank of σ2 ⊗ k(P) drops at least
by 2, which is impossible. Thus Cok γ

(1)
1 is locally free of rank 2, where we denote

by
γ

(1)
1 : OB(5) → OB(6)⊕2 ⊕ OB(7) (14)

the multiplication morphism by t (−α0, cα0, cα2
0 − 2β0). Since the multiplica-

tion morphism t (−α0, cα0)× : OB(5) → OB(6)⊕2 is the composite of the two
morphisms α0× : OB(5) → OB(6) and t (−1, c)× : OB(6) → OB(6)⊕2, we
obtain by (14) that h0(Cok γ

(1)
1 ⊗ OB(−6)) = 4, h0(Cok γ

(1)
1 ⊗ OB(−7)) = 2,
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and h0(Cok γ
(1)
1 ⊗ OB(−8)) = 1. From these together with degCok γ

(1)
1 = 14,

we infer Cok γ
(1)
1 � OB(6)⊕OB(8). Thus by the same short exact sequence as in

the proof of Lemma 3.6, we see that h0(Cok γ1 ⊗ OB(−9)) = 1, which together
with (12) and (13) implies that b1 = 6 and bi ≥ 8 for all 2 ≤ i ≤ 3. Since
degCok γ1 = 23, we obtain

Cok γ � OB(4) ⊕ OB(5) ⊕ OB(6) ⊕ OB(8) ⊕ OB(9),

which contradicts Lemma 3.2. 
�
By Lemmas 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8, we obtain the following:

Proposition 1. The map Φ|2L| is not composite with a pencil.

Digression. As we have already cited the result in our proof, Ciliberto–Francia–
Mendes Lopes [10, Proposition 1.7] shows that if a minimal surface S of general
type with 4 ≤ pg and K 2 ≤ 9 has canonical map composite with a pencil P ,
then either (i) P is a pencil of curves of genus 2, or (ii) P is a rational pencil of
non-hyperelliptic curves of genus 3. Their proposition moreover shows that in the
latter case K 2 = 9, pg = 4, and K ∼ 3C hold, where C is a general member of
the pencil P . As a byproduct of our computation, we prove the following:

Proposition 2. Case (ii) in [10, Proposition 1.7] never occurs. Thus if a minimal
surface S with 4 ≤ pg and K 2 ≤ 9 has canonical map composite with a pencil P ,
then P is a pencil of curves of genus 2.

Proof. Assume that the surface S has numerical invariants as in the assertion, and
the canonical map Φ|K | is composite with a pencil P of curves of genus 3. Then
we have K 2 = 9, pg = 4, and K ∼ 3C , where C is a general member of the pencil
P , which is non-hyperelliptic. If S has irregularity q = 0, then it contradicts our
Proposition 1. Thus it suffices to rule out the case q > 0, where q is the irregularity
of our surface S. In what follows we assume q > 0.

Note that we have q ≤ 2. Indeed, since the restriction map H0(OS(C)) →
H0(OC (C)) has rank at least 1, the map H0(OS(4C)) → H0(OC (4C)) also has
rank at least 1. This together with the short exact sequence

0 → OS(3C) = OS(K ) → OS(4C) → OC (4C) = ωC → 0

implies the inequality. Thus we obtain χ = χ(OS) ≥ 3. Then by so-called Severi
inequality proved by Pardini [20], we see that S is not of Albanese general type.
We denote by α : S → B the Albanese fibration of our surface S. Naturally we
have g(B) = q, where g(B) is the genus of the base curve B.

First, let us rule out the case q = 2. Assume that we have q = 2. Then B
is a non-singular curve of genus g(B) = 2. Since P has a unique base point x ,
the restriction α|C : C → B is surjective for any general C ∈ P . Moreover, by
Hurwitz formula, we see that α|C is an étale double cover. This implies g(F) = 4
for a general Albanese fiber F , since we have FC = degα|C = 2. Let F0 denote
the fiber of α passing through the base point x . Then since (F0 · C)x = 1, we see
that x is a smooth point of F0 and that for any y ∈ F0 \ {x} there exists a unique
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member Cy ∈ P passing through y. This however contradicts the rationality of our
pencil P; the map y �→ Cy is birational since CF0 = 2, while F0 is a non-singular
curve of genus 4.

Next, let us rule out the case q = 1. We use the method used in the proof of
[10, Proposition 2.4]. For the reader’s convenience, we include the outline of our
proof. Assume that we have q = 1. Then B is an elliptic curve. We take a point
o ∈ B, and use this point for the zero of the additive structure of the elliptic curve
B. For any closed point b ∈ B, we put ξb = OB(b − o).

We first claim h0(OC (C) ⊗ α∗ξb) = 1 for any b �= o ∈ B. Indeed,
assume otherwise. Then by the same method as in [10, Proposition 2.4] and the
upper-semicontinuity, we see that h0(OS(C) ⊗ α∗ξb′) = 0 holds for any gen-
eral b′ ∈ B. Then again by the same method as in [10, Proposition 2.4], we
obtain h0(OC (2C) ⊗ α∗ξ∨

b′ ) ≥ 3 for any general b′ �= o ∈ C . We however have
g(C) = 3 and degOC (2C) ⊗ α∗ξ∨

b′ = 2. Thus this is impossible, since the curve
Φ|OC (2C)⊗α∗ξ∨

b′ |(C) needs to be non-degenerate.
Now put U = B \ {o}, and denote by π : C × U → U the second projection.

Let Ξ be an invertible sheaf on C ×U such that Ξ |C×{b} � OC (C) ⊗ α∗ξb holds
for all b ∈ U . Then by what we have shown in the preceding paragraph, we see
that the direct image π∗Ξ is an invertible sheaf onU and that the natural morphism
π∗π∗Ξ → Ξ is non-trivial. Thus replacing U by smaller one if necessary, we
obtain an effective divisor Z on C × U such that Z ∩ (C × {b}) = div sb holds
for all b ∈ U , where sb �= 0 ∈ H0(OC (C) ⊗ α∗ξb) is the unique non-zero global
section to OC (C) ⊗ α∗ξb. Then the restriction π |Z : Z → U is birational, since
degOC (C) ⊗ α∗ξb = 1. By [10, Proposition 1.6], however, the first projection
Z → C is dominant. Thus this contradicts the inequality g(C) = 3 > g(B) = 1.

�

4. Structure theorem

Let us go back to the study of our surface S with c21 = 9, χ = 5, and K ∼ 3L .
By Proposition 1 and Lemma 2.3, we have h0(OS(L)) = 1, h0(OS(2L)) = 3,
and 2 ≤ degΦ|2L| ≤ 4, where degΦ|2L| is the degree of the rational map Φ|2L| :
S − − → P

2. In this section, we shall give a structure theorem for our surface S,
by studying the structure of the graded ring

⊕∞
i=0 H

0(OS(nL)).

Lemma 4.1. Let |K | = |3L| = |M3| + F3 be the decomposition of the canonical
system |K | into the variable part |M3| and the fixed part F3. Then K F3 = 0 holds.
In particular F3 is at most a sum of fundamental cycles of rational double points.

Proof. Let M3 and F3 be divisors as above. Let p3 : S̃3 → S be the shortest
composite of quadric transformations such that the variable part |M̃3| of p∗

3 |M3| is
free from base points. Then we have M2

3 ≥ M̃2
3 ≥ 4 and K 2 = M2

3 +M3F3+K F3,
where M3F3 ≥ 0 and K F3 ≥ 0 hold. Since we have M2

3 + M3F3 = KM3 ≡ 0
mod 3, this implies M2

3 + M3F3 = 6 or 9.
Assume that M2

3 + M3F3 = 6. Then by M2
3 ≥ 4, we have 0 ≤ M3F3 ≤ 2.

From this together with Hodge’s Index Theorem M2
3 F

2
3 = M2

3 (K F3 − M3F3) ≤
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(M3F3)2, we see that M3F3 = 2, M2
3 = 4, and F2

3 = 1, hence M3 ∼num 2F3
and K ∼num 3L ∼num 3F3. Then by [18, Theorem 4], we obtain L ∼ F3 and
M3 ∼ 2L , which contradicts h0(OS(2L)) = 3 in Lemma 2.3, since we have
h0(OS(M3)) = pg(S) = 4. Thus we obtain M2

3 + M3F3 = 9, hence the assertion.

�

Take a base x0 of the space of global sections H0(OS(L)). The following lemma
is trivial.

Lemma 4.2. (1) There exist two elements y0, y1 ∈ H0(OS(2L)) such that x20 , y0,
and y1 form a base of H0(OS(2L)).

(2) There exists an element z0 ∈ H0(OS(3L)) such that x30 , x0y0, x0y1, and z0
form a base of H0(OS(3L)).

Take three elements x0, y1, and y2 as in the lemma above. In what follows. we
denote by C the unique member of the linear system |L|, and by C0, its unique
irreducible component such that LC0 = 1. For the proof of the following lemma,
see [5, Lemma 1.2]:

Lemma 4.3. If a member D ∈ |2L| satisfies D � C0, then D = 2C.

Let us study higher homogeneous parts of the ring
⊕∞

n=0 H
0(OS(nL)).

Lemma 4.4. The space H0(OS(4L)) has the decomposition H0(OS(4L)) =
x0H0(OS(3L)) ⊕ ⊕2

i=0 C yi0y
2−i
1 .

Proof. By the Riemann–Roch theorem, we have h0(OS(4L)) = 7. Thus it suf-
fices to prove that seven elements x40 , x

2
0 y0, x

2
0 y1, x0z0, y

2
0 , y0y1, and y21 are

linearly independent over C. Assume that these seven elements has a nontriv-
ial linear relation. Then there exist (α0, α1) and (β0, β1) ∈ C

2 \ {0} such that
(α0y0+α1y1)(β0y0+β1y1) ∈ x0H0(OS(3L)). This contradicts Lemma 4.3, since
x20 , y0, and y1 are linearly independent. 
�
Lemma 4.5. There exists an element u0 ∈ H0(OS(5L)) such that the equality
H0(OS(5L)) = x0H0(OS(4L)) ⊕ ⊕1

i=0 C yi0y
1−i
1 z0 ⊕ C u0 holds.

Proof. By the Riemann–Roch theorem, we have h0(OS(5L)) = 10. Thus it suf-
fices to prove that a base of x0H0(OS(4L)) together with y0z0 and y1z0 forms
a set of linearly independent nine elements of H0(OS(5L)). Assume that these
nine elements are not linearly independent over C. Then there exists an element
(α0, α1) ∈ C

2 \ {0} such that (α0y0 + α1y1)z0 ∈ x0H0(OS(4L)). The same argu-
ment as in the proof of Lemma 4.4 however shows that div (α0y0 + α1y1) � C0.
Thus we obtain div z0 � C0, which contradicts Lemma 4.1. 
�

Take an element u0 as in the lemma above. In what follows, we denote by
C [X0,Y0,Y1, Z0,U0] the weighted polynomial ring with deg X0 = 1, deg Y0 =
deg Y1 = 2, deg Z0 = 3, and degU0 = 5.
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Lemma 4.6. There exists a homogeneous element f6 ∈ C [X0,Y0,Y1, Z0,U0] of
degree 6, unique up to multiplication by a non-zero constant, such that the equal-
ity f6(x0, y0, y1, z0, u0) = 0 ∈ H0(OS(6L)) holds. The coefficient of Z2

0 in f6
is non-vanishing. Therefore the space of global sections to 6L decomposes as
H0(OS(6L)) = x0H0(OS(5L)) ⊕ ⊕3

i=0 C yi0y
3−i
1 . Moreover, by a proper choice

of z0, the polynomial f6 can be set in such a way that it includes no term linear
with respect to Z0.

Proof. The space H0(OS(6L)) contains 15 monomials of x0, y0, y1, z0, and u0;
ten belonging to x0H0(OS(5L)), four of the form yi0y

3−i
1 (0 ≤ i ≤ 3), and z20.

Meanwhile we have h0(OS(6L)) = 14. Thus there exists at least one non-trivial
linear relation f6(x0, y0, y1, z0, u0) = 0 among these 15 monomials. Assume that
the coefficient of Z2

0 in f6 vanishes. Then by Lemma 4.5, there exist three elements
(α0, α1), (β0, β1), (γ0, γ1) ∈ C

2\{0} such that (α0y0+α1y1)(β0y0+β1y1)(γ0y0+
γ1y1) ∈ x0H0(OS(5L)), fromwhichwe infer a contradiction by the same argument
as in Lemma 4.5. Thus we obtain the non-vanishing of the coefficient of Z2

0, hence
also the uniqueness of f6. The irreducibility of f6 follows from Lemmas 4.2, 4.4,
and 4.5. 
�

In what follows, in view of the lemma above, we assume that f6 includes no
term linear with respect to Z0.

Lemma 4.7. The linear system |2L| has no base point. Thus the map Φ|2L| : S →
P
2 associated to |2L| is a morphism of degree 4.

Proof. Assume that the linear system |2L| has a base point b ∈ S. Then this point b
is a common zero of x0, y0, and y1. This together with Lemma 4.6 however implies
that b is a base point of |6L| = |2K |, which contradicts the base point freeness of
the bicanonical system. (See [4, Theorem 2].) 
�

Now let ϕS : S → P(1, 2, 2, 3, 5) = ProjC [X0,Y0,Y1, Z0,U0] denote the
morphism induced by X0 �→ x0, Yi �→ yi (i = 0, 1), Z0 �→ z0, and U0 �→ u0.

Lemma 4.8. The morphism ϕS : S → P(1, 2, 2, 3, 5) is birational onto its image.

Proof. Since themorphismϕS factors through the bicanonicalmapΦ|2K |, it suffices
to prove the birationality of Φ|2K | : S → P

13. Assume that Φ|2K | is non-birational.
Then by [10, Theorem 1.8, Theorem 2.1], the surface S has a pencil P of curves of
genus 2. Moreover, by their proof, we see that P can be chosen in such a way that
a general member D ∈ P satisfies D2 = 0 and DK = 2. This however contradicts
the equivalence K ∼ 3L . 
�
Lemma 4.9. The space H0(OS(7L)) has the decomposition H0(OS(7L)) =
x0H0(OS(6L)) ⊕ ⊕1

i=0 C yi0y
1−i
1 u0 ⊕ ⊕2

i=0 C yi0y
2−i
1 z0.

Proof. Assume otherwise. Then, since h0(OS(7L)) = 19 and h0(OS(6L))= 14,
there exists a non-zero homogeneous element g7 ∈ C [X0,Y0,Y1, Z0,U0] of
degree 7 satisfying g7(x0, y0, y1, z0, u0) = 0 ∈ H0(OS(7L)) in which at least one
of the five monomials Y0U0, Y1U0, Y 2

0 Z0, Y0Y1Z0, and Y 2
1 Z0 has non-vanishing



Surfaces with c21 = 9 and χ = 5 441

coefficient. By subtracting a multiple of f6, we may assume that the coefficient of
X0Z2

0 in g7 vanishes. Moreover, Y0U0 or Y1U0 has non-vanishing coefficient in g7.
Indeed, if both Y0U0 and Y1U0 have vanishing coefficient, then the same argument
as in Lemma 4.5 shows that div z0 � C0, which contradicts Lemma 4.1.

Now let Q7 ⊂ P(1, 2, 2, 3, 5) be the subvariety defined by f6 = g7 = 0,
and πQ7 : Q7 − − → P(1, 2, 2), the restriction to Q7 of the natural domi-
nant map P(1, 2, 2, 3, 5) − − → P(1, 2, 2). Since g7 is not a multiple of f6 in
C [X0,Y0,Y1, Z0,U0], and since f6 is irreducible, we have dimQ7 = 2. More-
over, since Z0 appears quadratically andU0 appears at most linearly in f6, and since
U0 appears linearly and Z0 appears at most linearly in g7, we see that degπQ7 ≤ 2.
Meanwhile, since πQ7 ◦ ϕS : S → P(1, 2, 2) coincides with Φ|2L| via the natu-
ral isomorphism P(1, 2, 2) � P

2 = P(H0(OS(2L))), we see by Lemma 4.7 that
degπQ7 ◦ ϕS = 4. Thus we obtain degϕS ≥ 2, which contradicts Lemma 4.8. 
�

By the same method, we can prove the following two lemmas:

Lemma 4.10. The space H0(OS(8L)) has the decomposition H0(OS(8L)) =
x0H0(OS(7L)) ⊕ C z0u0 ⊕ ⊕4

i=0 C yi0y
4−i
1 .

Lemma 4.11. The space H0(OS(9L)) has the decomposition H0(OS(9L)) =
x0H0(OS(8L)) ⊕ ⊕2

i=0 C yi0y
2−i
1 u0 ⊕ ⊕3

i=0 C yi0y
3−i
1 z0.

Indeed, we just need to consider Qk = { f6 = gk = 0} ⊂ P(1, 2, 2, 3, 5) and
πQk : Qk − − → P(1, 2, 2) for k = 8, 9: we obtain easily degπQk ≤ 3 for k = 8,
9, which leads us to a contradiction to Lemma 4.8.

Corollary 4.1. The linear system |5L| has no base point.

Proof. Note that byLemma4.7 the three sections x20 , y0, y1 ∈ H0(OS(2L)) have no
common zero. Since we have x50 , x

2
0 z0, y0z0, y1z0, u0 ∈ H0(OS(5L)), this implies

that the base locus of |5L| is contained in the subset {x0 = z0 = u0 = 0} ⊂ S.
Thus, by Lemma 4.11, if the linear system |5L| has a base point b ∈ S, then this
point b is also a base point of |9L| = |3K |, which contradicts the base point freeness
of the tricanonical system. (See [4, Theorem 2].) 
�
Lemma 4.12. There exists a homogeneous element g10 ∈ C [X0,Y0,Y1, Z0,U0]
of degree 10 not multiple of f6 such that g10(x0, y0, y1, z0, u0) = 0 holds in
H0(OS(10L)). The coefficient of U 2

0 in g10 is non-vanishing. The polynomial g10
can be chosen in such a way that it includes no monomial divisible by Z2

0 , and
with this last condition imposed, the polynomial g10 is unique up to multiplica-
tion by a non-zero constant. Moreover the space H0(OS(10L)) decomposes as
H0(OS(10L)) = x0H0(OS(9L)) ⊕ ⊕1

i=0 C yi0y
1−i
1 z0u0 ⊕ ⊕5

i=0 C yi0y
5−i
1 .

Proof. The space H0(OS(10L)) includes 41 monomials not divisible by z20 of x0,
y0, y1, z0, and u0. Since h0(OS(10L)) = 40, this implies that there exists at least
one homogeneous element g10 ∈ C [X0,Y0,Y1, Z0,U0]10 as in the first assertion.
Since g10 includes no monomial divisible by Z2

0, it is not a multiple of f6. Assume
that the coefficient of U 2

0 in g10 vanishes. Then by the same argument as in the
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proof of Lemma 4.5, we see that ether the coefficient of Y0Z0U0 or that of Y1Z0U0
is non-vanishing. This however together with the same argument as in the proof of
Lemma 4.9 leads us to a contradiction to Lemma 4.8. Thus the coefficient ofU 2

0 is
non-vanishing, from which the last assertion and the uniqueness of g10 follow. 
�

Let Q denote the subvariety of P(1, 2, 2, 3, 5) defined by the ideal ( f6, g10).
We define the subvarieties Z0, Z1, and Z2 of P(1, 2, 2, 3, 5) by

Z0 = {X0 = Z0 = U0 = 0},
Z1 = {X0 = Y0 = Y1 = U0 = 0},
Z2 = {X0 = Y0 = Y1 = Z0 = 0}.

Note that outside
⋃2

i=0 Zi the weighted projective space P(1, 2, 2, 3, 5) has no
singularity. The restriction of O(1) to P(1, 2, 2, 3, 5) \ ⋃2

i=0 Zi is invertible.

Proposition 3. (1) The morphism ϕS : S → P(1, 2, 2, 3, 5) surjects to Q.
(2) The variety Q does not intersect the locus

⋃2
i=0 Zi .

(3) The inclusion map ϕ∗
S : C [X0,Y0,Y1, Z0,U0] /( f6, g10) → R(S, L) is an

isomorphism of graded C-algebra, where R(S, L) := ⊕∞
n=0 H

0(OS(nL)). The
variety Q has at most rational double points as its singularities.

Proof. Since degQ = 1 = L2, the assertion 1) follows from Lemma 4.8. Then the
assertion 2) follows from the non-vanishing of the coefficient of Z2

0 in f6, that of
the the coefficient of U 2

0 in g10, Lemma 4.5, and Corollary 4.1. It only remains to
prove the assertion 3). By the assertion 2), we see that Q is Gorenstein. Moreover
we have ωQ � OQ(3), hence ωS � ϕ∗

SωQ. Thus Q has at most rational double
points as its singularities. Since ϕS : S → Q gives the minimal desingularization
of Q, we obtain the assertion 3). 
�

Naturally, R(S, L)(3) = ⊕∞
n=0 H

0(OS(3nL)) is the canonical ring of the sur-
face S. Thus, we obtain the following:

Theorem 1. If a minimal surface S has c21 = 9 and χ = 5, and its canonical class
is divisible by 3 in its integral cohomology group, then its canonical model is a
(6, 10)-complete intersection of the weighted projective space P(1, 2, 2, 3, 5) that
does not intersect the locus

⋃2
i=0 Zi . Conversely, if a (6, 10)-complete intersection

Q ⊂ P(1, 2, 2, 3, 5) satisfyingQ∩⋃2
i=0 Zi = ∅ has at most rational double points

as its singularities, then its minimal desingularization S is a minimal surface with
c21 = 9 and χ = 5 whose canonical class is divisible by 3.

Note that for general f6 and g10 ∈ C [X0,Y0,Y1, Z0,U0] of degree 6 and 10,
respectively, the subvarietyQ = { f6 = g10 = 0} ⊂ P(1, 2, 2, 3, 5) is non-singular.
This can be verified with X6

0, Y
3
0 , Y

3
1 , Z

2
0 ∈ C [X0,Y0,Y1, Z0,U0]6, X

10
0 , Y 5

0 , Y
5
1 ,

U 2
0 ∈ C [X0,Y0,Y1, Z0,U0]10, and Bertini’s Theorem.

Remark 1. Let S and S′ be two minimal algebraic surfaces with invariants as in
Theorem 1. Then as one can see from the proof of Theorem 1, the surfaces S and S′
are isomorphic to each other, if and only if the varieties Q and Q′ are projectively
equivalent in the weighted projective space P(1, 2, 2, 3, 5), whereQ andQ′ are the
(6, 10)-complete intersections corresponding to S and S′, respectively.
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Remark 2. Let f6 and g10 ∈ C [X0,Y0,Y1, Z0,U0] be homogeneous polynomi-
als of weighted degree 6 and 10, respectively. Assume that the coefficient of Z2

0
in f6 and that of U 2

0 in g10 are non-vanishing. Let Q ⊂ P(1, 2, 2, 3, 5) denote
the subvariety defined by the polynomials f6 and g10. Then Q ∩ ⋃2

i=0 Zi = ∅
holds, if and only if the two sections f6(0,Y0,Y1, 0, 0) ∈ H0(OP1(3)) and
g10(0,Y0,Y1, 0, 0) ∈ H0(OP1(5)) have no common zero on the projective line
P
1 = ProjC [Y0,Y1].

5. Moduli space and the canonical maps

In this section, we study the moduli space. We also study the behavior of the
canonical map of our surface S. Let us begin with the normal form of the defining
polynomials f6 and g10.

Proposition 4. Let S be a minimal surface as in Theorem 1. Then the defining
polynomials f6 and g10 in P(1, 2, 2, 3, 5) of its canonical modelQ can be taken in
the form

f6 = Z2
0 + α0X0U0 + α3(X

2
0,Y0,Y1),

g10 = U 2
0 + β3(X

2
0,Y0,Y1)X0Z0 + β5(X

2
0,Y0,Y1),

where α0 ∈ C is a constant, α3, a homogeneous polynomial of degree 3, and βi , a
homogeneous polynomial of degree i for i = 3, 5.

Proof. By completing the square with respect to Z0, we can take f6 and g10 in the
form

f6 = Z2
0 + α0X0U0 + α3(X

2
0,Y0,Y1),

g10 = U 2
0 + β1(X

2
0,Y0,Y1)Z0U0 + β3(X

2
0,Y0,Y1)X0Z0 + β5(X

2
0,Y0,Y1).

Putting X0 = X ′
0, Y0 = Y ′

0, Y1 = Y ′
1, Z0 = Z ′

0 + α0β1X ′
0/4, and U0 = U ′

0 −
β1Z ′

0/2−α0β
2
1 X

′
0/4, and employing X ′

0, Y
′
0, Y

′
1, Z

′
0,U

′
0 as new X0, Y0, Y1, Z0,U0,

respectively, we easily obtain new f6 and g10 in which the term β1Z0U0 vanishes.

�

Using this proposition, we prove the following theorem:

Theorem 2. The coarse moduli space M of surfaces as in Theorem 1 is a unira-
tional variety of dimension 34. In particular, any two surfaces S’s as in Theorem 1
are deformation equivalent to each other.

Proof. In what follows, for two weighted homogeneous polynomials f6 and g10 as
in Proposition 4, we denote by S( f6, g10) theminimal desingularization of the variety
Q( f6, g10) = { f6 = g10 = 0} ⊂ P(1, 2, 2, 3, 5). Note that the pair ( f6, g10) in the
normal form as in Proposition 4 has 42 linear parameters. Denote by V the Zariski
open subset of A

42 consisting of all ( f6, g10)’s such that 1) Q( f6, g10) has at most
rational double points as its singularities, and 2) Q( f6, g10) ∩ ⋃2

i=0 Zi = ∅ holds.
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Then by the existence of the natural family of the canonical modelsQ( f6, g10)’s over
the space of parameters V , we obtain the irreducibility of the moduli space M.

Let us compute the dimension of the moduli spaceM. Note that for two points
( f6, g10) and ( f ′

6, g
′
10) of V , the corresponding surfaces S( f6, g10) and S( f ′

6, g
′
10)

are isomorphic to each other if and only if the ideals ( f6, g10) and ( f ′
6, g

′
10) are

equivalent under the action by the group of homogeneous transformations on the
graded algebra C [X0,Y0,Y1, Z0,U0]. Since no monomial divisible by Z2

0 appears
in g10 and g′

10, and since 10 − degU0 < deg Z2
0 holds, this is equivalent to the

condition that the points ( f6, g10) and ( f ′
6, g

′
10) of V are equivalent under the

action by the group of homogeneous transformations of C [X0,Y0,Y1, Z0,U0].
Moreover, we see easily that if a point v ∈ V corresponding to a surface S is
sufficiently general, then there exists a point ( f6, g10) ∈ V that gives the same
isomorphism class of S and such that f6 and g10 are in the form

f6 = Z2
0 + X0U0 + Y 3

0 + Y 3
1 + a0X

2
0Y0Y1 + X4

0(a1Y0 + a2Y1) + X6
0,

g10 = U 2
0 + β3(X

2
0,Y0,Y1)X0Z0 + β5(X

2
0,Y0,Y1).

We denote by V ′ the 34-dimensional subvariety of V consisting of all ( f6, g10)’s
in this form. Then the restriction V ′ → M of the natural morphism V → M is
dominant.

Let us study fibers of the morphism V ′ → M. Let G be the group of homo-
geneous transformations of C [X0,Y0,Y1, Z0,U0] that preserve the subvariety
V ′ ⊂ V . We denote by ω the third root of unity, and define the two transformations
σ , τ ∈ G by

σ : U0 �→ U0, Z0 �→ Z0 Y0 �→ ωY0, Y1 �→ ω2Y1 X0 �→ X0

τ : U0 �→ U0, Z0 �→ Z0 Y0 �→ Y1, Y1 �→ Y0 X0 �→ X0.

Then σ and τ generate a subgroup 〈σ, τ 〉 � S3 ⊂ G, where S3 is the symmetric
group of degree 3. Since each element of G induces a permutation of three prime
divisors of Y 3

0 + Y 3
1 , we have a natural group homomorphism G → S3, whose

restriction 〈σ, τ 〉 → S3 to 〈σ, τ 〉 ⊂ G is an isomorphism. Thus if we define
Ψ(λ0,λ1,μ0,a) ∈ G by U0 �→ a5U0, Z0 �→ (−1)μ0a3Z0, Y1 �→ ωλ1a2Y1, Y0 �→
ωλ0a2Y0, and X0 �→ aX0 for each (λ0, λ1, μ0, a) ∈ (Z/3)⊕2 ⊕ Z/2 ⊕ C

×, then
each element of G can be written as ρ ◦ Ψ(λ0,λ1,μ0,a) for an element ρ ∈ 〈σ, τ 〉 and
an element (λ0, λ1, μ0, a) ∈ (Z/3)⊕2 ⊕ Z/2⊕ C

×. This implies that for a general
point of M the fiber of V ′ → M over this point consists of at most 108 points.
Now since V ′ is a Zariski open subset of the affine space A

34, we see that M is
unirational of dimension 34. 
�

For the verification of the computations above, let us compute the dimensions
of the cohomology groups of the tangent sheaf of our surface S.

Proposition 5. Let S be a surface as in Theorem 1, and ΘS, its tangent sheaf.
Suppose that the canonical model of S is smooth. Then h1(ΘS) = 34 and h2(ΘS) =
2 hold. The Kuranishi space of S is non-singular of dimension h1(ΘS) = 34.
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Proof. In what follows, we put P = P(1, 2, 2, 3, 5)\⋃2
i=0 Zi , whereZi ’s are as in

Theorem 1. Since we have assumed that the canonical modelQ of our surface S is
smooth, we may assume that S is a subvariety of P and that the natural morphism
ϕS : S → P is the inclusion map. By [17, Remark 2.4.], we have a natural exact
sequence

0 → OS →
5⊕

i=1

OS(ei L) → ϕ∗
SΘP → 0, (15)

where e1 = 1, e2 = e3 = 2, e4 = 3, and e5 = 5. From the long exact
sequence associated to the above, wee infer easily the equalities h0(ϕ∗

SΘP) = 20
and h1(ϕ∗

SΘP) = 0, provided that h2(ϕ∗
SΘP) = 2. Note that these two equalities

together with the standard exact sequence

0 → ΘS → ϕ∗
SΘP → OS(6L) ⊕ OS(10L) → 0

imply the first assertion. Thus, to obtain the first assertion, we only need to show
that h2(ϕ∗

SΘP) = 2. To show this last equality, let us consider the exact sequence

0 → OS(3L) ⊗ ϕ∗
SΩ

1
P

→
5⊕

i=1

OS((3 − ei )L) → OS(3L) → 0,

the short exact sequence obtained by operating OS(3L) ⊗ · to the dual of (15).
Since the morphismOS → ⊕5

i=1OS(ei L) in (15) is given by the transpose of the
matrix (x0, 2y0, 2y1, 3z0, 5u0), we see fromLemma 4.2 that the inducedmorphism
H0(

⊕5
i=1OS((3− ei )L)) → H0(OS(3L)) has rank 4. Thus, by the Serre duality,

we obtain h2(ϕ∗
SΘP) = h0(OS(3L)⊗ϕ∗

SΩ
1
P
) = 2, hence the first assertion. Now let

us prove the second assertion. By the computations above, we have the surjectivity
of H1(ΘS) → H1(ϕ∗

SΘP) and the injectivity of H2(ΘS) → H2(ϕ∗
SΘP). Thus

by [11, Theorem 4.4.], their exists a family (S, Φ,�, M) of deformations of the
holomorphic mapΦo = ϕS : �−1(o) = S → P = P×{o}, such that the parameter
space M is non-singular at o and such that the characteristic map To(M) → DS/P

is bijective, where To(M) is the tangent space ofM at o. (For the definition of DS/P,
see [11].) Moreover, by [11, Lemma 4.2.] and h1(ϕ∗

SΘP) = 0 shown above, we
obtain the surjectivity of the natural morphism DS/P → H1(ΘS), hence that of the
Kodaira-Spencer map To(M) → H1(ΘS) at o of the analytic family (S,�, M).
Thus we can take a non-singular analytic subspace N ⊂ M passing through o such
that To(N ) → H1(ΘS) is bijective, hence the second assertion. 
�

Finally, we study the behavior of the canonical map of our surface S. Let
Q � ProjC [X0,Y0,Y1, Z0,U0] /( f6, g10) be the canonical model of our surface
S, where f6 and g10 are in the normal form as in Proposition 4. Since the birational
morphism ϕS : S → Q factors through the canonical map Φ|K | : S−− → P

3, the
study of the behavior of Φ|K | is reduced to that of the behavior of the rational map
Φ|OQ(3)| : Q − − → P

3. Let ξ0, η0, η1, and ζ0 be the homogeneous coordinates
of P

3 corresponding to the base X3
0, X0Y0, X0Y1, Z0 of H0(OQ(3)). Note that

for an integer d ≥ 1, an equation of Φ|K |(S) in P
3 of degree d corresponds to a

relation among X3
0, X0Y0, X0Y1, and Z0 in the homogeneous part of degree 3d of

C [X0,Y0,Y1, Z0,U0] /( f6, g10).
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Theorem 3. Let S be a minimal surface as in Theorem 1, and f6 and g10, the
defining polynomials in P(1, 2, 2, 3, 5) of its canonical model Q. Assume that f6
and g10 are in the normal form as in Proposition 4.

1) If α0 �= 0, then the canonical map Φ|K | of S is birational onto its image, and
the canonical image Φ|K |(S) is a sextic surface in P

3 defined by

[
ξ0ζ

2
0 + α3(ξ0, η0, η1)

]2 + α2
0

[
β3(ξ0, η0, η1)ξ

2
0 ζ0 + β5(ξ0, η0, η1)ξ0

]
= 0.

Surfaces S’s with birational Φ|K | form an open dense subset ofM.
2) If α0 = 0, then the canonical map Φ|K | of S is generically two-to-one onto

its image, and the canonical image Φ|K |(S) is a cubic surface in P
3 defined by

ξ0ζ
2
0 + α3(ξ0, η0, η1) = 0.

Surfaces S’s with non-birational Φ|K | form a 33-dimensional locus in M.

Proof. The only non-trivial relation in the homogeneous part of degree 6 of
C [X0,Y0,Y1, Z0,U0] /( f6, g10) is givenby f6 = Z2

0+α0X0U0+α3(X2
0,Y0,Y1) =

0. Assume that f6 is a polynomial of X3
0, X0Y0, X0Y1 and Z0. Then α3(0,Y0,Y1)

must be zero in C [Y0,Y1]. In this case, however, we have f6(0,Y0,Y1, 0, 0) = 0 ∈
C [Y0,Y1], which contradicts the condition Q ∩ ⋃2

i=0 Zi = ∅. (See Remark 2.)
Thus Φ|K |(S) ⊂ P

3 satisfies no equation of degree 2.
Assume that X3

0, X0Y0, X0Y1, and Z0 have a non-trivial relation in the homoge-
neous part of degree 9 of C [X0,Y0,Y1, Z0,U0] /( f6, g10). Then this relation must
be written as γ1(X3

0, X0Y0, X0Y1, Z0) f6 = 0, where γ1 is a linear form with coef-
ficients in C. Since this left hand is a polynomial of X3

0, X0Y0, X0Y1, and Z0, we
see with the help of Remark 2 that α0 = 0 holds and that γ1(X3

0, X0Y0, X0Y1, Z0)

is a multiple of X3
0. Thus if α0 = 0, then Φ|K |(S) ⊂ P

3 is a cubic surface as in the
assertion, and if α0 �= 0, then Φ|K |(S) ⊂ P

3 satisfies no equation of degree 3.
Now that we have shown the assertion for the case α0 = 0, we assume in what

follows that α0 �= 0. By an argument similar to that in the preceding paragraph, we
can prove the absence of equations of degree d ofΦ|K |(S) ⊂ P

3 for d = 4, 5. On the
other hand, we can easily find an equation of degree 6 that is satisfied byΦ|K |(S) ⊂
P
3. Note that in C [X0,Y0,Y1, Z0,U0] we have −α0X0U0 ≡ Z2

0 +α3(X2
0,Y0,Y1)

and −U 2
0 ≡ β3(X2

0,Y0,Y1)X0Z0 + β5(X2
0,Y0,Y1) modulo the ideal ( f6, g10).

Eliminating U0 from these two and then multiplying it by X6
0, we obtain

[
X3
0Z

2
0 + α3(X

3
0, X0Y0, X0Y1)

]2

+ α0X
3
0

[
β3(X

3
0, X0Y0, X0Y1)X

3
0Z0 + β5(X

3
0, X0Y0, X0Y1)

]
≡ 0

modulo the ideal ( f6, g10). From this together with the absence of equation of lower
degree, we see that if α0 �= 0 then Φ|K |(S) ⊂ P

3 is a sextic surface defined by the
equation as in the assertion.

Now let us compute the mapping degree of the canonical map Φ|K | : S−− →
P
3. Let |K | = |3L| = |M3| + F3 be the decomposition as in Lemma 4.1, and
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p3 : S̃3 → S, the shortest composite of quadric transformations such that the
variable part |M̃3| of p∗

3 |M3| is free from base points. Then we have

degΦ|K | degΦ|K |(S) = M̃2
3 ≤ M2

3 ≤ K 2 = 9. (16)

Assume that α0 �= 0. Then since degΦ|K |(S) = 6, we infer from the inequalities
above that degΦ|K | = 1. Assume that α0 = 0. Then since degΦ|K |(S) = 3, we
infer in the same way that degΦ|K | ≤ 3. If degΦ|K | = 3 holds, however, we see
from (16) that the linear system |K | is base point free. This is impossible, because
by Lemma 4.2 the canonical system |K | needs to have a base point. Thus we obtain
degΦ|K | = 2.

It is trivial that the surfaces S’swith birationalΦ|K | form an open dense subset in
M. To show that the surfaces S’s with non-birattional Φ|K | form a 33-dimensional
locus inM, we just need to use the same method as in the computation of dimM
in Theorem 2. 
�

Let us conclude this article by giving some more details on the canonical map
and its image of our surface S. Inwhat follows, we denote byW the canonical image
Φ|K |(S). Moreover, we denote by p3 : S̃3 → S the shortest composite of quadric
transformations such that the variable part of p∗

3 |K | is free from base points, and
by ϕ : S̃3 → W , the unique morphism such that Φ|K | = ϕ ◦ p−1

3 .
First we study the case degΦ|K | = 1. In this case, the canonical image W ⊂

P
3 is a sextic surface. Recall that for a singularity (W, x) of our surface W , the

fundamental genus of (W, x) is the arithmetic genus of its fundamental cycle.
Moreover, since ϕ : S̃3 → W gives the minimal desingularization of the canonical
image W , the geometric genus of (W, x) is the dimension of the vector space
(R1ϕ∗OS̃3

)x , where R1ϕ∗OS̃3
is the first higher direct image of the structure sheaf

OS̃3
. The following proposition is a comment given to the author by Kazuhiro

Konno:

Proposition 6. Let S be a minimal algebraic surface as in Theorem 1. Suppose
that degΦ|K | = 1 and that the canonical system |K | has no fixed component.
Then the canonical image W = Φ|K |(S) ⊂ P

3 is normal. Moreover, if the surface
S is sufficiently general, then the singularity (W, x) of W is a double point with
fundamental genus 3 and geometric genus 6, where x ∈ W is a point given by
(ξ0 : η0 : η1 : ζ0) = (0 : 0 : 0 : 1).
Proof. Assume that |K | has no fixed component, as is indeed the case for our
general S by Proposition 4. Then p3 : S̃3 → S is a blowing up at three simple base
points of |K |. Thus for any hyperplane H ⊂ P

3, the arithmetic genus of W ∩ H
equals that of the pullback ϕ∗(W∩H) ∈ |p∗

3(K )−ε|, where ε is the sum of the total
transforms of the three (−1)-curves appearing by p3 : S̃3 → S. Since the variable
part |p∗

3(K ) − ε| of p∗
3 |K | is free from base points, this together with Bertini’s

Theorem implies that W has at most isolated singularities. This however implies
that W is normal, since the canonical image W ⊂ P

3 is a hypersurface. Note that
the local equation at x of W in P

3 is analytically in the form w2 − f8(u, v) = 0.
Thus the invariants of the double point (W, x) can be computed by the canonical
resolution. 
�
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Remark 3. From Proposition 4, we see easily that the point x is the only singularity
of W for a sufficiently general S. Thus one can compute the geometric genus of
(W, x) also by writing down the Leray spectral sequence of ϕ : S̃3 → W and
comparing the invariants of W and those of S̃3.

Next, we study the case degΦ|K | = 2. In this case, the canonical imageW ⊂ P
3

is a cubic surface. We shall describe the branch divisor of the canonical map Φ|K |.
For simplicity, we shall do this only for the case where S satisfies the following
three generality conditions:

i) the canonical image W = Φ|K |(S) is smooth;
ii) the unique member L ∈ |L| is irreducible;
iii) the base locus of |K | consists of three distinct points.

Proposition 7. Let S be aminimal algebraic surface as in Theorem1, andϕ : S̃3 →
W = Φ|K |(S), the morphism such thatΦ|K | = ϕ ◦ p−1

3 . Suppose that degΦ|K | = 2
and that S satisfies the three conditions above. Then the branch divisor B of ϕ splits
as B = ∑3

i=1 Γi + B ′, where Γi ’s are three coplanar lines in P
3 meeting at one

point x ∈ W, and B ′ is a member of | − 5KW | that has an ordinary 5-tuple point
at x and such that all other singularities if any are negligible ones.

Proof. By the generality conditions, the three base points of the canonical system
|K | are non-singular points of the unique member L . Thus if we denote by ε

the divisor such that |KS̃3
| = p∗

3 |K | + ε, then we have p∗
3(L) = p3−1∗ (L) + ε.

Moreover, the divisor ε is a sum of three (−1)-curves. Thus from this together with
ϕ∗(−KW ) ∼ p∗

3(3L) − ε, we see that ϕ∗ε = ∑3
i=1 Γi , where Γ1, Γ2, and Γ3 are

the three lines in P
3 corresponding to the irreducible components of the divisor ε.

Let R and B = ϕ∗(R) be the ramification divisor and the branch divisor of
ϕ : S̃3 → W , respectively. Then by

R ∼ p∗
3(3L) + ε − ϕ∗(KW ) ∼ 2ϕ∗(−KW ) + 2ε, (17)

we have BD = (−4KW + 2
∑3

i=1 Γi )D for any divisor D on W , which implies
B ∈ |−4KW +2

∑3
i=1 Γi |. Now let us denote by L̃3 the strict transform by p3 of the

divisor L . By L̃3ϕ
∗(−KW ) = 0, we see that ϕ contracts L̃3 to a single point x ∈ W ,

where we have x ∈ ⋂3
i=i Γi . Moreover, since pg(S) = h0(OW (−KW )) = 4 and

hence 3L̃3 + 2ε ∈ |p∗
3(3L) − ε| = ϕ∗| − KW |, we obtain a member Γ ∈ | − KW |

such that ϕ∗(Γ ) = 3L̃3+2ε holds. Since we have Γ = ∑3
i=1 Γi for this Γ , we see

that the three lines Γ1, Γ2, and Γ3 are coplanar, and that ε + L̃3 � R, since we have
ϕ(L̃3) = {x}. We therefore can put R = ε + L̃3 + R′, where R′ is a non-negative
divisor on S̃3. We put B ′ = ϕ∗(R′) ∈ | − 5KW |.

Now let q̂ : Ŵ → W be the blowing up at x , andΔ, its exceptional divisor. Then
by ϕ∗(Γ ) = 3L̃3 + 2ε, we obtain ϕ∗(Γi ) = 2Γ̄i + L̃3 for each integer 1 ≤ i ≤ 3,
where Γ̄i ’s are three (−1)-curves appearing by p3. This implies the liftability of
ϕ : S̃3 → W to a morphism ϕ̂ : S̃3 → Ŵ . Moreover, we obtain ϕ̂∗(Δ) = L̃3. Thus
Δ is not a component of the branch divisor of ϕ̂, from which we infer ϕ̂∗(R′) =
q̂−1∗ (B ′). Sincewe have ϕ̂∗(R′)Δ = R′ε = 5 by (17), we see from this ordx B ′ = 5.
But the standard double cover argument implies that

∑3
i=1 q̂

−1∗ (Γi ) + q̂−1∗ (B ′)
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has at most negligible singularities. Thus the point x is an ordinary 5-tuple point
of B ′, and all other singularities of B ′ are negligible ones. Finally, the equality
(
∑3

i=1 Γi · B ′)x = 15 follows from ϕ̂∗(Δ) = L̃3, since this latter implies the
absence of singularities lying on Δ of the divisor

∑3
i=1 q̂

−1∗ (Γi ) + q̂−1∗ (B ′). 
�
Remark 4. Conversely, a non-singular cubic surface W ⊂ P

3 and a member B ∈
|−6KW | having the same properties as in Proposition 7 yields a minimal algebraic
surface S as in Theorem 1with degΦ|K | = 2. Naturally, one easily finds the divisor
L , guided by the proof of the proposition above.
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