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Abstract. In this paper, we prove a global existence and blow-up of the positive solutions
to the initial-boundary value problem of the nonlinear porous medium equation and the
nonlinear pseudo-parabolic equation on the stratified Lie groups. Our proof is based on the
concavity argument and the Poincaré inequality, established in Ruzhansky and Suragan (J
Differ Eq 262:1799–1821, 2017) for stratified groups.

1. Introduction

The main purpose of this paper is to study the global existence and blow-up of the
positive solutions to the initial-boundary problem of the nonlinear porous medium
equation

⎧
⎨

⎩

ut (x, t) − Lp(um(x, t)) = f (u(x, t)), x ∈ D, t > 0,
u(x, t) = 0, x ∈ ∂D, t > 0,
u(x, 0) = u0(x) ≥ 0, x ∈ D,

(1.1)

and the nonlinear pseudo-parabolic equation
⎧
⎨

⎩

ut (x, t) − ∇H · (|∇Hu(x, t)|p−2∇Hut (x, t) − Lpu(x, t) = f (u(x, t)), x ∈ D, t > 0,
u(x, t) = 0, x ∈ ∂D, t > 0,
u(x, 0) = u0(x) ≥ 0, x ∈ D,

(1.2)
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where m ≥ 1 and p ≥ 2, f is locally Lipschitz continuous on R, f (0) = 0, and
such that f (u) > 0 for u > 0. Furthermore, we suppose that u0 is a non-negative
and non-trivial function in C1(D) with u0(x) = 0 on the boundary ∂D for p = 2
and in L∞(D) ∩ S̊1,p(D) for p > 2, respectively.

Definition 1.1. Let G be a stratified group. We say that an open set D ⊂ G is an
admissible domain if it is bounded and if its boundary ∂D is piecewise smooth and
simple, that is, it has no self-intersections.

Let G be a stratified group. Let D ⊂ G be an open set, then we define the
functional spaces

S1,p(D) = {u : D → R; u, |∇Hu| ∈ L p(D)}. (1.3)

We consider the following functional

Jp(u) :=
(∫

D
|∇Hu(x)|pdx

) 1
p

.

Thus, the functional class S̊1,p(D) can be defined as the completion of C1
0(D) in

the norm generated by Jp, see e.g. [2].
A Lie group G = (Rn, ◦) is called a stratified (Lie) group if it satisfies the

following conditions:

(a) For some integer numbers N1 + N2 + ... + Nr = n, the decomposition R
n =

R
N1 × . . . × R

Nr is valid, and for any λ > 0 the dilation

δλ(x) := (λx ′, λ2x (2), . . . , λr x (r))

is an automorphism of G. Here x ′ ≡ x (1) ∈ R
N1 and x (k) ∈ R

Nk for k =
2, . . . , r.

(b) Let N1 be as in (a) and let X1, . . . , XN1 be the left-invariant vector fields on
G such that Xk(0) = ∂

∂xk
|0 for k = 1, . . . , N1. Then the Hörmander rank

condition must be satisfied, that is,

rank
(
Lie{X1, . . . , XN1}

) = n,

for every x ∈ R
n .

Then, we say that the triple G = (Rn, ◦, δλ) is a stratified (Lie) group.
Recall that the standard Lebesgue measure dx on R

n is the Haar measure for
G (see e.g. [3], [4]). The left-invariant vector field X j has an explicit form:

Xk = ∂

∂x ′
k

+
r∑

l=2

Nl∑

m=1

a(l)
k,m

(
x ′, ..., x (l−1)

) ∂

∂x (l)
m

, (1.4)

see e.g. [4]. The following notations are used throughout this paper:

∇H := (X1, . . . , XN1)
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for the horizontal gradient, and

Lp f := ∇H ·
(
|∇H f |p−2∇H f

)
, 1 < p < ∞, (1.5)

for the p-sub-Laplacian.When p = 2, that is, the second order differential operator

L =
N1∑

k=1

X2
k , (1.6)

is called the sub-Laplacian on G. The sub-Laplacian L is a left-invariant homoge-
neous hypoelliptic differential operator and it is known that L is elliptic if and only
if the step of G is equal to 1.

One of the important examples of the nonlinear parabolic equations is the porous
mediumequation,which describeswidely processes involvingfluid flow, heat trans-
fer or diffusion, and its other applications in different fields such as mathematical
biology, lubrication, boundary layer theory, and etc. Existence and nonexistence of
solutions to problem (1.1) for the reaction termum in the casem = 1 andm > 1have
been actively investigated by many authors, for example, [5–19], Grillo, Muratori
and Punzo considered fractional porous medium equation [20,21], and it was also
considered in the setting of Cartan-Hadamard manifolds [22]. By using the concav-
ity method, Schaefer [23] established a condition on the initial data of a Dirichlet
type initial-boundary value problem for the porous medium equation with a power
function reaction term when blow-up of the solution in finite time occurs and a
global existence of the solution holds. We refer for more details to Vazquez’s book
[24] which provides a systematic presentation of the mathematical theory of the
porous medium equation.

The energy for the isotropic material can be modeled by a pseudo-parabolic
equation [25]. Some wave processes [26], filtration of the two-phase flow in porous
media with the dynamic capillary pressure [27] are also modeled by pseudo-
parabolic equations. The global existence and finite-time blow-up for the solu-
tions to pseudo-parabolic equations in bounded and unbounded domains have been
studied by many researchers, for example, see [28–35] and the references therein.

In [36], Veron and Pohozaev have obtained blow-up results for the following
semi-linear diffusion equation on the Heisenberg groups

∂u(x, t)

∂t
− Lu(x, t) = |u(x, t)|p, (x, t) ∈ H × (0,+∞).

Also, blow-up of the solutions to the semi-linear diffusion and pseudo-parabolic
equations on the Heisenberg groups was derived in [37–41]. In addition, in [42] the
authors found the Fujita exponent on general unimodular Lie groups.

In some of our considerations a crucial role is played by

• The condition

αF(u) ≤ um f (u) + βu pm + αγ, u > 0, (1.7)
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where

F(u) = pm

m + 1

∫ u

0
sm−1 f (s)ds, m ≥ 1,

introduced by Chung-Choi [43] for a parabolic equation. We will deal with
several variants of such condition.

• The Poincaré inequality established by the first author and Suragan in [1] for
stratified groups:

Lemma 1.2. Let D ⊂ G be an admissible domain with N1 being the dimension
of the first stratum. Let 1 < p < ∞ with p 
= N1. For every function u ∈
C∞
0 (D\{x ′ = 0}) we have

∫

D
|∇Hu|pdx ≥ |N1 − p|p

(pR)p

∫

D
|u|pdx, (1.8)

where R = supx∈D |x ′|.
Note that condition on nonlinearity (2.1) includes the following cases:

1. Philippin and Proytcheva [44] used the condition

(2 + ε)F(u) ≤ u f (u), u > 0, (1.9)

where ε > 0. It is a special case of an abstract condition by Levine and Payne
[45].

2. Bandle and Brunner [6] relaxed this condition as follows

(2 + ε)F(u) ≤ u f (u) + γ, u > 0, (1.10)

where ε > 0 and γ > 0.

These cases were established on the bounded domains of the Euclidean space, and
it is a new result on the stratified groups.

Also, the condition (1.7) depends on a domain D, due to the term βu p where
β is related to constant |N1−p|p

(pR)p
, which can be interpreted as a measure of the size

of the domain D. Then β in (1.7) is dependent on the size of the domain D. If we
choose β as arbitrary small in (2.1), then it gets closer to condition (1.10). For small
β and γ = 0, condition (2.1) gets closer to (1.9) in the case p = 2 and m = 1.
Since the case m > 1 is equivalent to m = 1 we refer to Sect. 4 in [43] for more
detailed discussion to condition (2.1).

Our paper is organised so that we discuss the existence and nonexistence of
positive solutions to the nonlinear porous medium equation in Sect. 2 and the
nonlinear pseudo-parabolic equation in Sect. 3.

2. Nonlinear porous medium equation

In this section, we prove the global solutions and blow-up phenomena of the initial-
boundary value problem (1.1).
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2.1. Blow-up solutions of the nonlinear porous medium equation

We start with the blow-up properly.

Theorem 2.1. Let G be a stratified group with N1 being the dimension of the first
stratum. Let D ⊂ G be an admissible domain. Let 2 ≤ p < ∞ with p 
= N1.

Assume that function f satisfies

αF(u) ≤ um f (u) + βu pm + αγ, u > 0, (2.1)

where

F(u) = pm

m + 1

∫ u

0
sm−1 f (s)ds, m ≥ 1,

for some

γ > 0, 0 < β ≤ |N1 − p|p
(pR)p

(α − m − 1)

m + 1
and α > m + 1,

where R = supx∈D |x ′| and x = (x ′, x ′′) with x ′ being in the first stratum. Let
u0 ∈ L∞(D) ∩ S̊1,p(D) satisfy the inequality

J (0) := − 1

m + 1

∫

D
|∇Hu

m
0 (x)|pdx +

∫

D
(F(u0(x)) − γ ) dx > 0. (2.2)

Then any positive solution u of (1.1) blows up in finite time T ∗, i.e., there exists

0 < T ∗ ≤ M

σ
∫

D um+1
0 (x)dx

, (2.3)

such that

lim
t→T ∗

∫ t

0

∫

D
um+1(x, τ )dxdτ = +∞, (2.4)

where M > 0 and σ =
√
pmα

m+1 − 1 > 0. In fact, in (2.3), we can take

M =
(1 + σ)(1 + 1/σ)

(∫

D
um+1
0 (x)dx

)2

α(m + 1)J0
.

Proof of Theorem 2.1. Assume that u(x, t) is a positive solution of (1.1). We use
the concavity method for showing the blow-up phenomena introduced by Levine
[46]. We introduce the functional

J (t) := − 1

m + 1

∫

D
|∇Hu

m(x, t)|pdx +
∫

D
(F(u(x, t)) − γ ) dx, (2.5)

and by (2.2) we have

J (0) = − 1

m + 1

∫

D
|∇Hu

m
0 (x)|pdx +

∫

D
(F(u0(x)) − γ )dx > 0. (2.6)
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Moreover, J (t) can be written in the following form

J (t) = J (0) +
∫ t

0

d J (τ )

dτ
dτ, (2.7)

where
∫ t

0

d J (τ )

dτ
dτ = − 1

m + 1

∫ t

0

∫

D

d

dτ
|∇Hu

m(x, τ )|pdxdτ

+
∫ t

0

∫

D

d

dτ
(F(u(x, τ )) − γ )dxdτ

= − p

m + 1

∫ t

0

∫

D
|∇Hu

m(x, τ )|p−2∇Hu
m · ∇H (um(x, τ ))τdxdτ

+
∫ t

0

∫

D
Fu (u(x, τ )) uτ (x, τ )dxdτ

= p

m + 1

∫ t

0

∫

D

[Lp(u
m) + f (u)

]
(um(x, τ ))τdxdτ

= pm

m + 1

∫ t

0

∫

D
um−1(x, τ )u2τ (x, τ )dxdτ.

Define

E(t) =
∫ t

0

∫

D
um+1(x, τ )dxdτ + M, t ≥ 0,

with M > 0 to be chosen later. Then the first derivative with respect t of E(t) gives

E ′(t) =
∫

D
um+1(x, t)dx = (m + 1)

∫

D

∫ t

0
um(x, τ )uτ (x, τ )dτdx

+
∫

D
um+1
0 (x)dx .

By applying (2.1), Lemma 1.2 and 0 < β ≤ |N1−p|p
(pR)p

(α−m−1)
m+1 , we estimate the

second derivative of E(t) as follows

E ′′(t) = (m + 1)
∫

D
um(x, t)ut (x, t)dx

= −(m + 1)
∫

D
|∇Hu

m(x, t)|pdx + (m + 1)
∫

D
um(x, t) f (u(x, t))dx

≥ −(m + 1)
∫

D
|∇Hu

m(x, t)|pdx

+ (m + 1)
∫

D

[
αF(u(x, t)) − βu pm(x, t) − αγ

]
dx

= α(m + 1)

[

− 1

m + 1

∫

D
|∇Hu

m(x, t)|pdx +
∫

D
(F(u(x, t)) − γ )dx

]

+ (α − m − 1)
∫

D
|∇Hu

m(x, t)|pdx − β(m + 1)
∫

D
u pm(x, t)dx
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≥ α(m + 1)

[

− 1

m + 1

∫

D
|∇Hu

m(x, t)|pdx +
∫

D
(F(u(x, t)) − γ )dx

]

+
[ |N1 − p|p

(pR)p
(α − m − 1) − β(m + 1)

] ∫

D
u pm(x, t)dx

≥ α(m + 1)

[

− 1

m + 1

∫

D
|∇Hu

m(x, t)|pdx +
∫

D
(F(u(x, t)) − γ )dx

]

= α(m + 1)J (t)

= α(m + 1)J (0) + pαm
∫ t

0

∫

D
um−1(x, τ )u2τ (x, τ )dxdτ.

By employing the Hölder and Cauchy-Schwarz inequalities, we obtain the estimate
for [E ′(t)]2 as follows

[E ′(t)]2 ≤ (1 + δ)

(∫

D

∫ t

0
(um+1(x, τ ))τdτdx

)2

+
(

1 + 1

δ

) (∫

D
um+1
0 (x)dx

)2

= (m + 1)2(1 + δ)

(∫

D

∫ t

0
um(x, τ )uτ (x, τ )dxdτ

)2

+
(

1 + 1

δ

) (∫

D
um+1
0 (x)dx

)2

= (m + 1)2(1 + δ)

(∫

D

∫ t

0
u(m+1)/2+(m−1)/2(x, τ )uτ (x, τ )dxdτ

)2

+
(

1 + 1

δ

) (∫

D
um+1
0 (x)dx

)2

≤ (m + 1)2(1 + δ)

(∫

D

(∫ t

0
um+1dτ

)1/2 (∫ t

0
um−1u2τ (x, τ )dτ

)1/2

dx

)2

+
(

1 + 1

δ

) (∫

D
um+1
0 (x)dx

)2

≤ (m + 1)2(1 + δ)

(∫ t

0

∫

D
um+1dxdτ

) (∫ t

0

∫

D
um−1u2τ (x, τ )dxdτ

)

+
(

1 + 1

δ

) (∫

D
um+1
0 (x)dx

)2

,

for arbitrary δ > 0. So we have

[E ′(t)]2 ≤ (m + 1)2(1 + δ)

(∫ t

0

∫

D
um+1dxdτ

) (∫ t

0

∫

D
um−1u2τdxdτ

)

+
(

1 + 1

δ

) (∫

D
um+1
0 dx

)2

. (2.8)

The previous estimates together with σ = δ =
√
pmα

m+1 − 1 > 0 where positivity
comes from α > m + 1, imply

E ′′(t)E(t) − (1 + σ)[E ′(t)]2
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≥ αM(m + 1)

[

− 1

m + 1

∫

D
|∇Hu

m
0 |pdx +

∫

D
(F(u0) − γ )dx

]

+ pmα

(∫ t

0

∫

D
um+1(x, τ )dxdτ

) (∫ t

0

∫

D
u2τ (x, τ )um−1(x, τ )dxdτ

)

− (m + 1)2(1 + σ)(1 + δ)

(∫ t

0

∫

D
um+1dxdτ

) (∫ t

0

∫

D
um−1u2τ (x, τ )dxdτ

)

− (1 + σ)

(

1 + 1

δ

) (∫

D
um+1
0 (x)dx

)2

≥ αM(m + 1)J (0) − (1 + σ)

(

1 + 1

δ

) (∫

D
um+1
0 (x)dx

)2

.

By assumption J (0) > 0, thus if we select

M =
(1 + σ)

(
1 + 1

δ

)
(∫

D
um+1
0 (x)dx

)2

α(m + 1)J (0)
,

that gives

E ′′(t)E(t) − (1 + σ)(E ′(t))2 ≥ 0. (2.9)

We can see that the above expression for t ≥ 0 implies

d

dt

[
E ′(t)

Eσ+1(t)

]

≥ 0 ⇒
{
E ′(t) ≥

[
E ′(0)

Eσ+1(0)

]
E1+σ (t),

E(0) = M.

Then for σ =
√
pmα

m+1 − 1 > 0, we arrive at

− 1

σ

[
E−σ (t) − E−σ (0)

] ≥ E ′(0)
Eσ+1(0)

t,

and some rearrangements with E(0) = M give

E(t) ≥

⎛

⎜
⎜
⎝

1

Mσ
−

σ

∫

D
um+1
0 (x)dx

Mσ+1 t

⎞

⎟
⎟
⎠

− 1
σ

.

Then the blow-up time T ∗ satisfies

0 < T ∗ ≤ M

σ

∫

D
um+1
0 dx

.

That completes the proof. ��
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2.2. Global existence for the nonlinear porous medium equation

We now show that under some assumptions, if a positive solution to (1.1) exists,
its norm is globally controlled.

Theorem 2.2. Let G be a stratified group with N1 being the dimension of the first
stratum. Let D ⊂ G be an admissible domain. Let 2 ≤ p < ∞ with p 
= N1.

Assume that

αF(u) ≥ um f (u) + βu pm + αγ, u > 0, (2.10)

where

F(u) = pm

m + 1

∫ u

0
sm−1 f (s)ds, m ≥ 1,

for some

γ ≥ 0, α ≤ 0 and β ≥ |N1 − p|p
(pR)p

(α − m − 1)

m + 1
,

where R = supx∈D |x ′| and x = (x ′, x ′′) with x ′ being in the first stratum.
Assume also that u0 ∈ L∞(D) ∩ S̊1,p(D) satisfies inequality

J (0) :=
∫

D
(F(u0(x)) − γ )dx − 1

m + 1

∫

D
|∇Hu

m
0 (x)|pdx > 0. (2.11)

If u is a positive local solution of problem (1.1), then it is global and satisfies the
following estimate:

∫

D
um+1(x, t)dx ≤

∫

D
um+1
0 (x)dx .

Proof of Theorem 2.2. Recall from the proof of Theorem 2.1, the functional

J (t) := − 1

m + 1

∫

D
|∇Hu

m(x, t)|pdx +
∫

D
(F(u(x, t)) − γ )dx

= J0 + pm

m + 1

∫ t

0

∫

D
um−1(x, τ )u2τ (x, τ )dxdτ.

Let us define

E(t) =
∫

D
um+1(x, t)dx .

By applying (2.10), Lemma 1.2 and β ≥ |N1−p|p
(pR)p

(α−m−1)
m+1 , respectively, one finds

E ′(t) = (m + 1)
∫

D
um(x, t)ut (x, t)dx

= (m + 1)

[∫

D
um(x, t)∇H · (|∇Hu

m(x, t)|p−2∇Hu
m(x, t)

)
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+
∫

D
um(x, t) f (u(x, t))dx

]

= (m + 1)

[

−
∫

D
|∇Hu

m(x, t)|pdx +
∫

D
um(x, t) f (u(x, t))dx

]

≤ (m + 1)

[

−
∫

D
|∇Hu

m(x, t)|pdx +
∫

D

[
αF(u(x, t)) − βu pm(x, t) − αγ

]
dx

]

= α(m + 1)

[

− 1

m + 1

∫

D
|∇Hu

m(x, t)|pdx +
∫

D
(F(u(x, t)) − γ )dx

]

− (m + 1 − α)

∫

D
|∇Hu

m(x, t)|pdx − β(m + 1)
∫

D
u pm(x, t)dx

≤ α(m + 1)

[

− 1

m + 1

∫

D
|∇Hu

m(x, t)|pdx +
∫

D
(F(u(x, t)) − γ )dx

]

−
[ |N1 − p|p

(pR)p
(m + 1 − α) + β(m + 1)

] ∫

D
u pm(x, t)dx

≤ α(m + 1)

[

− 1

m + 1

∫

D
|∇Hu

m(x, t)|2dx +
∫

D
(F(u(x, t)) − γ )dx

]

= α(m + 1)J (t).

We can rewrite E ′(t) by using (2.7) and α ≤ 0 as follows

E ′(t) ≤ α(m + 1)J (0) + pαm
∫ t

0

∫

D
um−1(x, τ )u2τ (x, τ )dxdτ ≤ 0. (2.12)

That gives

E(t) ≤ E(0).

This completes the proof of Theorem 2.2. ��

3. Nonlinear pseudo-parabolic equation

In this section, we prove the global solutions and blow-up phenomena of the initial-
boundary value problem (1.2).

3.1. Blow-up phenomena for the pseudo-parabolic equation

We start with conditions ensuring the blow-up of solutions in finite time.

Theorem 3.1. Let G be a stratified group with N1 being the dimension of the first
stratum. Let D ⊂ G be an admissible domain. Let 2 ≤ p < ∞ with p 
= N1.

Assume that

αF(u) ≤ u f (u) + βu p + αγ, u > 0, (3.1)

where

F(u) =
∫ u

0
f (s)ds,
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for some

α > p and 0 < β ≤ |N1 − p|p
(pR)p

(α − p)

p
,

γ > 0 and R = sup
x∈D

|x ′|. (3.2)

Assume also that u0 ∈ L∞(D) ∩ S̊1,p(D) satisfies

F0 := − 1

p

∫

D
|∇Hu0(x)|pdx +

∫

D
(F(u0(x)) − γ )dx > 0. (3.3)

Then any positive solution u of (1.2) blows up in finite time T ∗, i.e., there exists

0 < T ∗ ≤ M

σ
∫

D u20 + 2
p |∇Hu0|pdx

, (3.4)

such that

lim
t→T ∗

∫ t

0

∫

D

[

u2 + 2

p
|∇Hu|p

]

dxdτ = +∞, (3.5)

where σ =
√

α
2 − 1 > 0 and

M =
(1 + σ)

(
1 + 1

σ

)
(∫

D
u20 + 2

p
|∇Hu0|pdx

)2

2αF0
.

Proof of Theorem 3.1. The proof is based on a concavity method. The main idea
is to show that [E−σ

p (t)]′′ ≤ 0 which means that E−σ
p (t) is a concave function, for

Ep(t) defined below.
Let us introduce some notations:

F(t) := − 1

p

∫

D
|∇Hu(x, t)|pdx +

∫

D
(F(u(x, t)) − γ ) dx,

and

F(0) := − 1

p

∫

D
|∇Hu0(x)|pdx +

∫

D
(F(u0(x)) − γ )dx,

with

F(u) =
∫ u

0
f (s)ds.

We know that

F(t) = F(0) +
∫ t

0

dF(τ )

dτ
dτ, (3.6)
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where
∫ t

0

dF(τ )

dτ
dτ = − 1

p

∫ t

0

∫

D

d

dτ
|∇Hu|pdxdτ +

∫ t

0

∫

D

d

dτ
(F(u) − γ )dxdτ

= −
∫ t

0

∫

D
|∇Hu|p−2∇u · ∇Huτdxdτ +

∫ t

0

∫

D
Fu(u)uτdxdτ

=
∫ t

0

∫

D

[Lpu + f (u)
]
uτdxdτ

=
∫ t

0

∫

D
u2τ − uτ∇H ·

(
|∇Hu|p−2∇Huτ

)
dxdτ

=
∫ t

0

∫

D
u2τ + |∇Hu|p−2|∇Huτ |2dxdτ.

Let us define

Ep(t) :=
∫ t

0

∫

D

[

u2 + 2

p
|∇Hu|p

]

dxdτ + M, t ≥ 0,

with a positive constant M > 0 to be chosen later. Then

E ′
p(t) =

∫

D

[

u2 + 2

p
|∇Hu|p

]

dx =
∫ t

0

d

dτ

∫

D

[

u2 + 2

p
|∇Hu|p

]

dxdτ

+
∫

D
u20 + 2

p
|∇Hu0|pdx . (3.7)

Now we estimate E ′′
p(t) by using assumption (3.1) and integration by parts, that

gives

E ′′
p(t) = 2

∫

D
uutdx + 2

p

∫

D
(|∇Hu|p)t dx

= 2
∫

D

[
uLpu + u∇H ·

(
|∇Hu|p−2∇Hut

)
+ u f (u)

]
dx

+ 2

p

∫

D
(|∇Hu|p)t dx

= −2
∫

D

[
|∇Hu|p + |∇Hu|p−2∇Hu · ∇Hut

]
dx + 2

∫

D
u f (u)dx

+ 2

p

∫

D
(|∇Hu|p)t dx

≥ −2
∫

D
|∇Hu|pdx + 2

∫

D

[
αF(u) − βu p − αγ

]
dx

= 2α

[

− 1

p

∫

D
|∇Hu|pdx +

∫

D
(F(u) − γ )dx

]

+ 2(α − p)

p

∫

D
|∇Hu|pdx − 2β

∫

D
u pdx .
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Next we apply Lemma 1.2, which gives

≥ 2α

[

− 1

p

∫

D
|∇Hu|pdx +

∫

D
(F(u) − γ )dx

]

+ 2

[ |N1 − p|p
(pR)p

(α − p)

p
− β

] ∫

D
u pdx

≥ 2α

[

− 1

p

∫

D
|∇Hu|pdx +

∫

D
(F(u) − γ )dx

]

= 2αF(t),

with F(t) as in (3.6), then E ′′
p(t) can be rewritten in the following form

E ′′
p(t) ≥ 2αF(0) + 2α

∫ t

0

∫

D

[
u2τ + |∇Hu|p−2|∇Huτ |2

]
dxdτ. (3.8)

Also we have for arbitrary δ > 0, in view of (3.7),

[E ′
p(t)]2 ≤ (1 + δ)

(∫ t

0

d

dτ

∫

D

[

u2 + 2

p
|∇Hu|p

]

dxdτ

)2

+
(

1 + 1

δ

) (∫

D

[

u20 + 2

p
|∇Hu0|p

]

dx

)2

.

Then by taking σ = δ =
√

α
2 − 1 > 0, we arrive at

E ′′
p(t)Ep(t) − (1 + σ)[E ′

p(t)]2

≥ 2αMF(0) + 2α

(∫ t

0

∫

D

[
u2τ + |∇Hu|p−2|∇Huτ |2

]
dxdτ

)

×
(∫ t

0

∫

D

[

u2 + 2

p
|∇Hu|pdx

]

dτ

)

− (1 + σ)(1 + δ)

(∫ t

0

d

dτ

∫

D

[

u2 + 2

p
|∇Hu|p

]

dxdτ

)2

− (1 + σ)

(

1 + 1

δ

)(∫

D

[

u20 + 2

p
|∇Hu0|p

]

dx

)2

= 2αMF(0) − (1 + σ)

(

1 + 1

δ

) (∫

D

[

u20 + 2

p
|∇Hu0|p

]

dx

)2

+ 2α

[(∫ t

0

∫

D

[
u2τ + |∇Hu|p−2|∇Huτ |2

]
dxdτ

)

×
(∫ t

0

∫

D

[

u2 + 2

p
|∇Hu|pdx

]

dτ

)

−
(∫ t

0

∫

D

[
uuτ + |∇Hu|p−2∇Hu · ∇Huτ

]
dxdτ

)2
]
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≥ 2αMF(0) − (1 + σ)

(

1 + 1

δ

)(∫

D
u20 + 2

p
|∇Hu0|pdx

)2

.

Note that in the last line we have used the following inequality

(∫ t

0

∫

D

[
u2 + |∇Hu|p

]
dxdτ

) (∫ t

0

∫

D

[
u2τ + |∇Hu|p−2|∇Huτ |2

]
dxdτ

)

−
(∫ t

0

∫

D

[
uuτ + |∇Hu|p−2∇Hu · ∇Huτ

]
dxdτ

)2

≥
[(∫

D

∫ t

0
u2dτdx

) 1
2
(∫

D

∫ t

0
|∇Hu|p−2|∇Huτ |2dτdx

) 1
2

−
(∫

D

∫ t

0
|∇Hu|pdτdx

) 1
2
(∫

D

∫ t

0
u2τdτdx

) 1
2
]2

≥ 0,

where making use of the Hölder inequality and Cauchy-Schawrz inequality we
have

(∫ t

0

∫

D
[uuτ + |∇Hu|p−2∇Hu · ∇Huτ ]dxdτ

)2

≤
(∫

D

(∫ t

0
u2dτ

) 1
2
(∫ t

0
u2τdτ

) 1
2

dx

+
∫

D

(∫ t

0
|∇Hu|pdτ

) 1
2
(∫ t

0
|∇Hu|p−2|∇Huτ |2dτ

) 1
2

dx

)2

=
(∫

D

(∫ t

0
u2dτ

) 1
2
(∫ t

0
u2τdτ

) 1
2

dx

)2

+
(∫

D

(∫ t

0
|∇Hu|pdτ

) 1
2
(∫ t

0
|∇Hu|p−2|∇Huτ |2dτ

) 1
2

dx

)2

+ 2

(∫

D

(∫ t

0
u2dτ

) 1
2
(∫ t

0
u2τdτ

) 1
2

dx

)

×
(∫

D

(∫ t

0
|∇Hu|pdτ

) 1
2
(∫ t

0
|∇Hu|p−2|∇Huτ |2dτ

) 1
2

dx

)

≤
(∫

D

∫ t

0
u2dτdx

) (∫

D

∫ t

0
u2τdτdx

)

+
(∫

D

∫ t

0
|∇Hu|pdτdx

)

×
(∫

D

∫ t

0
|∇Hu|p−2|∇Huτ |2dτdx

)

+ 2

[(∫

D

∫ t

0
u2dτdx

) (∫

D

∫ t

0
u2τdτdx

)
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×
(∫

D

∫ t

0
|∇Hu|pdτdx

) (∫

D

∫ t

0
|∇Hu|p−2|∇Huτ |2dτdx

)] 1
2

.

By assumption F(0) > 0, thus we can select

M =
(1 + σ)

(
1 + 1

δ

)
(∫

D
u20 + 2

p
|∇Hu0|pdx

)2

2αF(0)
,

that gives

E ′′
p(t)Ep(t) − (1 + σ)[E ′

p(t)]2 ≥ 0. (3.9)

We can see that the above expression for t ≥ 0 implies

d

dt

[
E ′
p(t)

Eσ+1
p (t)

]

≥ 0 ⇒
⎧
⎨

⎩

E ′
p(t) ≥

[
E ′
p(0)

Eσ+1
p (0)

]

E1+σ
p (t),

Ep(0) = M.

Then for σ =
√

α
2 − 1 > 0, we arrive at

Ep(t) ≥

⎛

⎜
⎜
⎝

1

Mσ
−

σ

∫

D

[

u20 + 2

p
|∇Hu0|p

]

dx

Mσ+1 t

⎞

⎟
⎟
⎠

− 1
σ

.

Then the blow-up time T ∗ satisfies

0 < T ∗ ≤ M

σ

∫

D

[

u20 + 2

p
|∇Hu0|p

]

dx
.

This completes the proof. ��

3.2. Global solution for the pseudo-parabolic equation

We now show that positive solutions, when they exist for some nonlinearities, can
be controlled.

Theorem 3.2. Let G be a stratified group with N1 being the dimension of the first
stratum. Let D ⊂ G be an admissible domain. Let 2 ≤ p < ∞.

Assume that function f satisfies

αF(u) ≥ u f (u) + βu p + αγ, u > 0, (3.10)

where

F(u) =
∫ u

0
f (s)ds,
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for some

β ≥ (p − α)

2
and α ≤ 0, γ ≥ 0. (3.11)

Let u0 ∈ L∞(D) ∩ S̊1,p(D) satisfy

F0 := − 1

p

∫

D
|∇Hu0(x)|pdx +

∫

D
(F(u0(x)) − γ ) dx > 0. (3.12)

If u is a positive local solution of problem (1.2), then it is global and satisfies the
following estimate:

∫

D

[

u2 + 2

p
|∇Hu|p

]

dx ≤ exp (−(p − α)t)
∫

D

[

u20 + 2

p
|∇Hu0|p

]

dx .

Proof of Theorem 3.2. Define

E(t) :=
∫

D

[

u2 + 2

p
|∇Hu|p

]

dx .

Now we estimate E ′(t) by using assumption (3.10), that gives

E ′(t) = 2
∫

D
uutdx + 2

p

∫

D
(|∇Hu|p)t dx

= 2
∫

D

[
uLpu + u∇H ·

(
|∇Hu|p−2∇Hut

)
+ u f (u)

]
dx

+ 2

p

∫

D
(|∇Hu|p)t dx

= −2
∫

D

[
|∇Hu|p + |∇Hu|p−2∇Hu · ∇Hut

]
dx + 2

∫

D
u f (u)dx

+ 2

p

∫

D
(|∇Hu|p)t dx

≤ 2α

[

− 1

p

∫

D
|∇Hu|pdx +

∫

D
(F(u) − γ )dx

]

− 2(p − α)

p

∫

D
|∇Hu|pdx − 2β

∫

D
u pdx

≤ 2α

[

− 1

p

∫

D
|∇Hu|pdx +

∫

D
(F(u) − γ )dx

]

− (p − α)

[

Ep(t) −
∫

D
u2dx

]

dx − 2β
∫

D
u2dx,

= 2αF(t) − (p − α)E(t) + [p − α − 2β]
∫

D
u2dx,

with

F(t) := − 1

p

∫

D
|∇Hu(x, t)|pdx +

∫

D
(F(u(x, t)) − γ )dx
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= F0 +
∫ t

0

∫

D
u2τ + |∇Hu|p−2|∇Huτ |2dxdτ.

Since β ≥ p−α
2 we arrive at

E ′(t) + (p − α)E(t) ≤ 2α

[

F0 +
∫ t

0

∫

D
u2τ + |∇Hu|p−2|∇Huτ |2dxdτ

]

≤ 0.

This implies,

E(t) ≤ exp (−(p − α)t) E(0),

finishing the proof. ��
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