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Abstract. We prove that on an essentially non-branching MCP(K , N ) space, if a geodesic
ball has a volume lower bound and satisfies some additional geometric conditions, then in
a smaller geodesic ball (in a quantified sense) we have an estimate on the isoperimetric
constants.

1. Introduction

The isoperimetric problem is one of the most classical and beautiful problems in
mathematics. It addresses the following natural problem: given a space X , what is
the minimal amount of area needed to enclose a fixed volume v?

If X is RN , then it is well known that, for every finite perimeter subset E ⊂ X ,
it holds

|∂E | ≥ Nω
1
N
N |E | N−1

N ,

(where |∂E | and |E | denote the N − 1 and N dimensional volume respectively)
and the only optimal shapes are the round balls. If X is a manifold with many
symmetries such as SN and HN , or is a perturbation of them, there are also plenty
of works concerning the isoperimetric problem and describing the ‘optimal shapes’
on it. The readers can refer to Appendix H in [20] for a list of references.

If X is a general manifold, one can only hope some comparison results for the
isoperimetric problem (under some curvature assumptions on X ). In this direction,
the famous Lévy–Gromov isoperimetric inequality (see Appendix C in [22]) says
if X is an N -dimensional manifold with Ricci curvature bounded from below by
K > 0, and suppose E ⊂ X is a finite perimeter subset, then we have

|∂E |
|X | ≥ |∂B|

|S| ,

where S is the N -dimensional round sphere with Ricci curvature K , and B ⊂ S
is a spherical cap such that |E |/|X | = |B|/|S|. Some extensions of Lévy–Gromov
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inequality can be found in [7,19] etc. In [31], E.Milman obtained sharp isoperimet-
ric inequalities which extends the Lévy–Gromov inequality to smooth manifolds
with densities which have generalized Ricci curvature at least K ∈ R, generalized
dimension at most N ≥ 1 and diameter at most D < +∞.

We note that, given any point on a Riemannian manifold, there is sufficiently
small neighborhood around it which is sufficiently close to a ball in Euclidean
space, thus in such a neighborhood, the local isoperimetric constant is close to the
Euclidean one. Under some geometric conditions, wemay even obtain some quanti-
fied estimate in the form that, on a geodesic ball of definite radius, the isoperimetric
constant is close to the one in Euclidean ball in a quantified sense. See Remark 10.5
in [35] and Theorem 1.1 in [17]. Such an almost-Euclidean isoperimetric inequal-
ity is useful in some other problems. For example, in Perelman’s Pseudo-Locality
Theorem (see [35]), almost-Euclidean isoperimetric inequality is used to obtain
curvature estimates for the Ricci flow.

One can also consider the isoperimetric problem when X is not a Riemannian
manifold. In fact, some of the above mentioned isoperimetric problem has been
considered on non-Riemannian manifolds or even metric measure spaces.

Recently, people are more and more interested in the study of non-smooth
objects, and there are lots of researches on the notion of Ricci curvature lower
bounds on metric measure spaces. Using the theory of optimal transformation,
the so-called CD(K , N )-condition, which is a notion to describe ‘Ricci curvature
bounded from below by K ∈ R and dimension bounded above by N ∈ [1,∞]’
for general metric measure spaces, was introduced independently by Lott and
Villani [29] and by Sturm [36,37]. The CD(K , N )-condition is compatible with
the classical curvature-dimension notions on Riemannian manifolds. Later on,
some variant versions of curvature-dimension condition were introduced by some
authors, among them, the Measure Contraction Property MCP(K , N ) was intro-
duced independently byOhta [33] and Sturm [37] as aweaker variant of CD(K , N ).
There are many metric measure spaces verifying MCP condition but not any CD
condition: e.g. the Heisenberg groups, generalized H -type groups, the Grushin
plane and Sasakian structures (under some curvature bounds) etc., for more details,
see [5,6,26,30] etc. Thus, researches on general MCP(K , N ) spaces may give
information which are new even on the above mentioned examples.

In [13], Cavalletti and Mondino extended the Lévy–Gromov–Milman isoperi-
metric inequality to the class of essentially non-branching (see Sect. 2 for the
definition) metric measure spaces verifying CD(K , N ) with m(X) = 1. The key
tool in [13] is the localization technique, which is mainly based on the work devel-
oped by Payne and Weinberger [34], Gromov and Milman [23], Kannan et al. [27]
and Klartag [28]. In a word, in [13], using the theory of L1-Optimal Transport, the
authors transform the isoperimetric problem on a CD(K , N ) space to the isoperi-
metric problem on one-dimensional CD(K , N ) spaces.

Using the localization technique again, Cavalletti andMondino studied the local
isoperimetric inequality in essentially non-branching CD(K , N ) spaces in [17] and
obtain the following theorem:
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Theorem 1.1. (Theorem 1.4 in [17]) For every K ∈ R, N ∈ [2,∞) there exist
ε̄K ,N , η̄K ,N , δ̄K ,N , CK ,N > 0 such that the next statement is satisfied. Let (X, d,m)

be a geodesic metric space endowed with a non-negative Borel measure. For a fixed
x̄ ∈ X, assume that B4r̄K ,N (x̄) is relatively compact and that B4r̄K ,N (x̄) ⊂ supp(m),
m(B4r̄K ,N (x̄)) < ∞. Assume moreover that for some ε ∈ [0, ε̄K ,N ], η ∈ [0, η̄K ,N ]
it holds:

(1) m(Br̄K ,N (x̄)) ≥ 1 − η;

(2) lim supr↓0
m(Br (x̄))

ωNr N
≤ 1 + η;

(3) (X, d,m) is essentially non-branching and verifies CDloc(K − ε, N ) inside
B4r̄K ,N (x̄).

Then for every δ ∈ (0, δ̄K ,N ] and every finite perimeter subset E ⊂ Bδ(x̄) the
following almost Euclidean isoperimetric inequality holds:

P(E) ≥ Nω
1
N
N (1 − CK ,N (δ + ε + η))m(E)

N−1
N . (1.1)

For N ∈ (1, 2), as is pointed out in Remark 1.5 of [17], a conclusion similar to
(1.1) holds with a bit difference: the power on δ in the error term is 2(N−1)

N in this
case.

Note that Theorem 1.1 recovers a theorem claimed by Perelman [35], see The-
orem 1.1 in [17].

In the following, we explain some notation appeared in the statement of Theo-
rem 1.1, some similar notations also appear in the rest part of the paper.

We say (X, d,m) verifies CDloc(K − ε, N ) inside B4r̄K ,N (x̄) if for every x ∈
B4r̄K ,N (x̄), there exists a neighbourhood U such that CD(K − ε, N ) is verified
inside U (see [4]).

For any N ∈ (1,∞), we define the function r �→ VolK ,N (r) to be:

VolK ,N (r) :=

⎧
⎪⎪⎨

⎪⎪⎩

NωN
∫ r
0 sin(t

√
K

N−1 )
N−1dt, if K > 0;

ωNr N , if K = 0;

NωN
∫ r
0 sinh(t

√
K

N−1 )
N−1dt, if K < 0.

(1.2)

where

ωN := π
N
2

�( N2 + 1)
,

with � denoting the Euler’s Gamma function. If N ∈ N then VolK ,N (r) is nothing
but the volume of the metric ball of radius r in M

N
K/(N−1), the simply connected

manifold of constant sectional curvature equal to K
N−1 .

Then the positive constant r̄K ,N is defined so that VolK ,N (r̄K ,N ) = 1.
For a subset E ⊂ X , the perimeter of E is defined to be

P(E) = inf
{
lim inf
h→∞

∫

X
lip( fh)dm | fh ∈ Lip(X), lim

h→0

∫

X
| fh − χA|dm = 0

}
,
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where lip( fh) is the local Lipschitz constant for a Lipschitz function fh .

In [18], Cavalletti and Santarcangelo considered isoperimetric inequalities on
MCP(K , N ) spaces, and they have obtained sharpLévy–Gromov type isoperimetric
inequalities on essentially non-branching MCP(K , N ) spaces with diameter upper
bound D. In fact, the localization technique still applies to essentially non-branching
MCP(K , N ) spaces, see e.g. [9,12,15] etc. Using localization, the isoperimetric
problem on a MCP(K , N ) space is transformed to the corresponding statement
on one-dimensional MCP(K , N ) spaces. In [18], the authors obtain the explicit
description of the optimal one-dimensional MCP(K , N )-density and study some
fundamental properties of these densities.

Recently, there are many other researches on MCP(K , N ) spaces basing on
localization technique, see [24,25] etc.

Motivated by [17], in this paper, we consider the local isoperimetric constant
for essentially non-branching MCP(K , N ) spaces.

Fromnowon, (X, d,m)will be an essentially non-branchingMCP(K , N ) space
with supp(m) = X , where N > 1. Given any fixed D > 0 and x ∈ X , we define a
function

f Xx,D(r) = 1

m(BD(x))
m(Br (x)).

We use the notation 
(u1, . . . , uk | . . .) to denote a nonnegative function
depending on the numbers u1, . . . , uk and some additional parameters, such that
when these additional parameters are fixed, we have

lim
u1,...,uk→0


(u1, . . . , uk | . . .) = 0.

The following two theorems are main results of this paper:

Theorem 1.2. Given N > 1, and let K = 0 or −(N − 1). Fix D > 0 and a
function f̄ : (0, D) → R

+ with limr↓0 f̄ (r) = 0. There exists δ̄ > 0 depending on
N , D, f̄ such that the next statement is satisfied. Suppose (X, d,m) is an essentially
non-branching MCP(K , N ) space, x̄ ∈ X. Assume in addition:

(1) m(BD(x̄)) ≥ VolK ,N (D);
(2) there exists r0 > 0 such that f Xx̄,D(r) ≤ f̄ (r) for every r ∈ (0, r0).

Then for every δ ∈ (0, δ̄] ∩ (0, r0] and every finite perimeter subset E ⊂ Bδ(x̄),
the following isoperimetric inequality holds:

P(E) ≥ (1 − 
(δ | N , D, f̄ ))N
1
N ω

1
N
N m(E)

N−1
N . (1.3)

Theorem 1.3. Given N > 1, and let K = N − 1. Fix D ∈ (0, π). There exist
η̄, δ̄ > 0 depending on N , D such that the next statement is satisfied. Suppose
(X, d,m) is an essentially non-branching MCP(K , N ) space, x̄ ∈ X. Assume
moreover that for some η ∈ [0, η̄] it holds:
(1) m(BD(x̄)) ≥ VolK ,N (D);
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(2) lim supr↓0
m(Br (x̄))

ωNr N
≤ 1 + η.

Then for every δ ∈ (0, δ̄] and every finite perimeter subset E ⊂ Bδ(x̄), the following
isoperimetric inequality holds:

P(E) ≥ (1 − 
(δ, η | N , D))N
1
N ω

1
N
N m(E)

N−1
N . (1.4)

Remark 1.4. (1) In the statement of Theorem 1.1, K is a variable quantity and r̄K ,N

is chosen so that VolK ,N (r̄K ,N ) = 1; while in the statement of Theorems 1.2
and 1.3, K is normalized but D is variable. The two statements are equivalent
as we can consider the rescaling (X, λ1d, λ2m) for suitable λ1 and λ2.

(2) There is a bit difference in assumption (1) of Theorems 1.2 and 1.3 and assump-
tion (1) ofTheorem1.1, but the two statements are equivalent. In fact, if assump-
tion (1) of Theorems 1.2 or 1.3 is replaced bym(BD(x̄)) ≥ (1−η)VolK ,N (D),
then we can consider (X, d, m̃) = (X, d, 1

1−η
m). It is easy to see, in the case

K = −(N − 1) or 0, (X, d, m̃) satisfies all the assumptions in Theorem 1.2,
hence

P(E) = (1 − η)P̃(E) ≥ (1 − η)(1 − 
(δ | N , D, f̄ ))N
1
N ω

1
N
N m̃(E)

N−1
N

= (1 − η)
1
N (1 − 
(δ | N , D, f̄ ))N

1
N ω

1
N
N m(E)

N−1
N , (1.5)

where P̃(E) is the perimeter of E in (X, d, m̃). In the case K = N − 1,
(X, d, m̃) satisfies lim supr↓0

m̃(Br (x̄))
ωNr N

≤ 1+η
1−η

≤ 1 + 3η provided η is suffi-

ciently small, then we apply Theorem 1.3 to (X, d, m̃) and obtain

P(E) ≥ (1 − 
(δ, η | N , D))N
1
N ω

1
N
N m(E)

N−1
N

similar to (1.5). On the other hand, if we have proved theorems with assump-
tion (1) replaced by m(BD(x̄)) ≥ (1 − η)VolK ,N (D), then it is easy to see
Theorems 1.2 and 1.3 also hold.

(3) In (1.3), the principal coefficient N
1
N ω

1
N
N is smaller than the one in manifolds

(or in CD(K , N ) spaces as in Theorem 1.1). But this constant is sharp in the
class of MCP(K , N ) spaces (for the K ≤ 0 cases), as it is almost attained by a
class of 1-dimensional MCP(K , N ) spaces, see Remark 5.2. In Theorem 1.3,
we assume (2) because of technical reasons, but (2) is not satisfied by the 1-
dimensional MCP(K , N ) spaces in Remark 5.2. It may be interesting to drop
assumption (2) in Theorem 1.3 or to improve the principal coefficient in (1.4)
under assumption (2).

In the proofs of Theorems 1.2 and 1.3, we will only handle the isoperimetric
inequalities for the outer Minkowski content. Here we recall that, for a subset
E ⊂ X , its outer Minkowski content is defined to be

m+(E) = lim inf
ε→0

m(Eε) − m(E)

ε
,

where Eε := {x ∈ X |d(x, E) < ε}. In fact, it is proved in [2] that, on general
metric measure spaces, the perimeter is the relaxation of the outer Minkowski
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content with respect to convergence in measure, hence isoperimetric inequalities
written in terms of the outerMinkowski content are equivalent to the corresponding
statements written in terms of the perimeter. See also [16] for related results under
curvature assumptions.

Our proofs of Theorems 1.2 and 1.3 are based on the localization technique on
essentially non-branchingMCP(K , N ) spaces. Similar to Cavalletti andMondino’s
paper [17], there are some necessary modifications when applying the localization
technique. By the localization technique, the local isoperimetric problem is reduced
to some analytic problems on 1-dimensional MCP(K , N ) spaces. Note that in [18],
the optimal shapes for the isoperimetric problem for 1-dimensional MCP(K , N )

spaces are studied. In order to handle the local isoperimetric problem, we need to
obtain some new properties on the 1-dimensional spaces, see Sect. 3.

Remark 1.5. After this paper is finished on April, 2021, we are aware of some new
results concerning local isoperimetric inequalities onmetric measure spaces. Based
on the Brunn–Minkowski inequality, F. Nobili and I. Violo give a direct proof on
the almost Euclidean isoperimetric inequality on CD spaces, see Theorem 3.9 in
[32]. We note that the essentially non-branching assumption is not required in their
theorem. On the other hand, in Antonelli, Pasqualetto and Pozzetta’s recent work
[3], the local almost Euclidean isoperimetric inequality plays an important role on
the study of the topological regularity of isoperimetric sets on RCD spaces. I would
like to thank Antonelli and Pozzetta for bring these two references to my attention.

2. Preliminaries

Throughout this paper, we will always assume the metric measure space (X, d,m)

we consider satisfies the following: (X, d) is a complete separable locally compact
geodesic space, and m is a nonnegative Radon measure with respect to d and finite
on bounded sets, supp(m) = X .

A curve γ : [0, T ] → X is called a geodesic provided d(γs, γt ) = L(γ |[s,t])
for every [s, t] ⊂ [0, T ], where L(γ ) means the length of the curve γ . (X, d) is
called a geodesic space if every two points x, y ∈ X are connected by a geodesic γ .
Geo(X) denotes the set of all geodesics with domain [0, 1]. For t ∈ [0, 1], define
the evaluation map et : Geo(X) → X by et (γ ) = γt .

Denote by P(X) the space of Borel probability measures on X , and P2(X) ⊂
P(X) the space of Borel probability measures ξ satisfying

∫

X d2(x, y)ξ(dy) < ∞
for some (and hence all) x ∈ X .

For μ, ν ∈ P2(X), consider their Wasserstein distance W2(μ, ν) defined by

W 2
2 (μ, ν) = inf

η∈�(μ,ν)

∫

X×X
d2(x, y)dη(x, y), (2.1)

where �(μ, ν) is the set of Borel probability measures η on X × X satisfying
η(A × X) = μ(A), η(X × A) = ν(A) for every Borel set A ⊂ X . It is known that
the infimum in (2.1) is always attained for any μ, ν ∈ P2(X). See [1,38] for the
theory of optimal transport.
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Given μ0, μ1 ∈ P2(X), we denote by OptGeo(μ0, μ1) the space of all
� ∈ P(Geo(X)) for which (e0, e1)#� realizes the minimum in (2.1). If (X, d)

is geodesic, then the set OptGeo(μ0, μ1) is non-empty for any μ0, μ1 ∈ P2(X).
We say a subset G ⊂ Geo(X) is non-branching if any γ 1, γ 2 ∈ G with γ 1|I =

γ 2|I for some interval I ⊂ [0, 1] must satisfy γ 1 ≡ γ 2 on [0, 1].
Definition 2.1. (X, d,m) is called essentially non-branching if and only if for any
μ0, μ1 ∈ P2(X), with μ0, μ1 � m, any element of OptGeo(μ0, μ1) is concen-
trated on a non-branching subset of geodesics.

For κ ∈ R, we define the function sκ : [0,+∞) → R (on [0, π/
√

κ) if κ > 0)
to be

sκ(θ) :=
⎧
⎨

⎩

(1/
√

κ) sin(
√

κθ), if κ > 0;
θ, if κ = 0;
(1/

√−κ) sinh(
√−κθ), if κ < 0.

(2.2)

Given two numbers K , N ∈ R with N > 1, for (t, θ) ∈ [0, 1] × R
+, we set

σ
(t)
K ,N−1(θ) =

{+∞, if K θ2 ≥ (N − 1)π2;
sK/(N−1)(tθ)

sK/(N−1)(θ)
, otherwise.

(2.3)

and

τ
(t)
K ,N (θ) = t

1
N (σ

(t)
K ,N−1(θ))

N−1
N . (2.4)

Definition 2.2. Wesay (X, d,m) satisfies the (K , N )-measure contraction property
(MCP(K , N )) if for any x ∈ X andm-measurable set A ⊂ X withm(A) ∈ (0,∞),
there exists � ∈ OptGeo( 1

m(A)
m|A, δx ), such that for every t ∈ [0, 1],

1

m(A)
m ≥ (et )#

(
(
τ

(1−t)
K ,N (d(γ0, x))

)N
�(dγ )

)

. (2.5)

3. Analysis on 1-dimensional model

In this section, we consider the isoperimetric problem on 1-dimensional spaces
(X, d,m) = (I, | · |, hL1).

It is well known that (I, | · |, hL1) verifies MCP(K , N ) if and only if up to
modification on a null-set, the non-negative Borel function h satisfies

h(t x1 + (1 − t)x0) ≥ σ
(1−t)
K ,N−1(|x1 − x0|)N−1h(x0)

for all x0, x1 ∈ I and t ∈ [0, 1]. We will call h an MCP(K , N ) density. Without
loss of generality, we can assume h to be defined over [0, D] for D ∈ (0,+∞],
and we always assume an MCP(K , N ) density h is the continuous representative
in its a.e. class (in fact, as a consequence of (2.5) in [18], h is locally Lipschitz in
the interior of I ).
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Denote by

F̃K ,N ,D : = {μ ∈ P(R) | supp(μ) = [0, D], μ = hμL1,

hμ is an MCP(K , N ) density}.
For each v ∈ (0, 1), denote by

ĨK ,N ,D(v) := inf{μ+(A) | A ⊂ [0, D], μ(A) = v, μ ∈ F̃K ,N ,D}.
In [18], in order to characterize the optimal shapes for the isoperimetric problem

for 1-dimensional MCP(K , N ) spaces with diameter ≤ D, the authors define a
positive function as follows:

fK ,N ,D(x) :=
(∫ x

0

(
sK/(N−1)(D − y)

sK/(N−1)(D − x)

)N−1

dy +
∫ D

x

(
sK/(N−1)(y)

sK/(N−1)(x)

)N−1

dy

)−1

(3.1)

if x ∈ (0, D) and equal 0 if x = 0, D.
Then, for each a ∈ (0, D), let

haK ,N ,D(x) := fK ,N ,D(a)

⎧
⎨

⎩

( sK/(N−1)(D−x)
sK/(N−1)(D−a)

)N−1
, if x ∈ [0, a];

( sK/(N−1)(x)
sK/(N−1)(a)

)N−1
, if x ∈ [a, D]. (3.2)

In the rest of this paper, the dependence of haK ,N ,D on K , N , D will be omitted and
we will use ha for simplicity.

One can check that, for each a ∈ (0, D), ha integrates to 1 and it is an
MCP(K , N ) density, but it does not verify CD(K , N ) condition except the case in
which K > 0 and D = π

√
(N − 1)/K . See Lemmas 3.3 and 3.4 in [18].

Following [18], consider the map

(0, D) � a �→ vK ,N ,D(a) :=
∫ a

0
ha(x)dx ∈ (0, 1).

ByLemma3.5 in [18], vK ,N ,D(a) is invertible, hence for each K , N , D it is possible
to define the inverse map of vK ,N ,D(a):

(0, 1) � v �→ aK ,N ,D(v) ∈ (0, D),

with aK ,N ,D(v) the unique element such that
∫ aK ,N ,D(v)

0
haK ,N ,D(v)(x)dx = v. (3.3)

In [18], the following theorem is proved:

Theorem 3.1. (Theorem 3.7 in [18]) For each volume v ∈ (0, 1), it holds

ĨK ,N ,D(v) = fK ,N ,D(aK ,N ,D(v)) = haK ,N ,D(v)(aK ,N ,D(v)). (3.4)

In particular, the lower bound in the definition of ĨK ,N ,D(v) is attained.

In the following, we will compute ĨK ,N ,D(v) for v sufficiently small.
We will only consider the cases K = N − 1, 0 and −(N − 1), and corre-

spondingly, κ = K
N−1 take values 1, 0,−1. The conclusions for general K can be

obtained by rescaling. We will fix L ∈ (0,+∞) and λ ∈ (0, 1]. In the K = N − 1
case, we assume L < π . Suppose D ∈ [λL , L]. Denote by
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kD =
∫ D

0
sκ(t)dt. (3.5)

We first fix some notations. Suppose g1 : (0, θ0) �→ R\{0} is a function (where
θ0 is some positive number), we use o(g1) to denote some function g2 : (0, θ0) �→ R

such that, for any ε > 0, there exists δ0 depending on ε, N , the lower and upper
bound of sκ on [λL , L] and the upper bound of higher order derivatives of sκ on
[λL , L] (hence depending on ε, N , λ and L) such that | g2(t)g1(t)

| < ε holds for every
t ∈ (0, δ0). In the following, the function o(g1) may vary in different lines, but it
always satisfies the above mentioned property.

For simplicity, we denote fK ,N ,D , vK ,N ,D and aK ,N ,D by fD , vD and aD
respectively. By the definition of fD , for x � 1, we have

( fD(x))−1 =
∫ x
0 sκ(D − y)N−1dy

sκ(D − x)N−1 +
∫ D
x sκ(y)N−1dy

sκ(x)N−1

= x(sκ(D)N−1 + o(1))

sκ(D)N−1 + o(1)
+ kD − ∫ x

0 sκ(y)N−1dy

xN−1 + o(xN−1)

=
x(1 + 1

sκ (D)N−1 o(x))

1 + 1
sκ (D)N−1 o(x)

+ kD − ∫ x
0 (yN−1 + o(yN−1))dy

xN−1 + o(xN−1)

= x(1 + o(x)) + kD − 1
N xN + o(xN )

xN−1 + o(xN−1)

= x + kD
xN−1 + o(xN−1)

− 1

N
x + o(x)

= kD
xN−1 (1 + o(1)), (3.6)

hence

fD(x) = xN−1

kD
(1 + o(1)). (3.7)

By (3.2) and the definition of vD(a), we have

vD(a) = fD(a)

sκ(D − a)N−1

∫ a

0
sκ(D − x)N−1dx .

If a � 1, then by (3.7), we have

vD(a) =
aN−1

kD
(1 + o(1))

sκ(D)N−1 + o(1)

∫ a

0
(sκ(D)N−1 + o(1))dx

= aN−1(1 + o(1))

kDsκ(D)N−1 a(sκ(D)N−1 + o(1))

= aN (1 + o(1))

kD
. (3.8)
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Note that vD(a) → 0 if a → 0. Recall that vD(a) is an increasing function (the
proof of this fact can be found in the proof of Lemma 3.5 in [18]). Hence together
with (3.8), we can check that aD(v) → 0 if v → 0, and if v � 1,

aD(v) = k
1
N
D v

1
N (1 + o(1)). (3.9)

Combining (3.4), (3.7) and (3.9),

ĨK ,N ,D(v) = fD(aD(v)) = (k
1
N
D v

1
N )N−1

kD
(1 + o(1)) = k

− 1
N

D v
N−1
N (1 + o(1))

(3.10)

holds for v ∈ (0, v̄), where v̄ is a sufficiently small positive number depending on
N , L and λ.

Remark 3.2. We emphasize that in the above argument, we assume L < π in the
case K = N − 1. In [18], the definition of fK ,N ,D , haK ,N ,D , vK ,N ,D and aK ,N ,D

still make sense in the case D = π and K = N − 1. But in this case,

( fπ (x))−1 =
∫ x
0 (sin(π − y))N−1dy

(sin(π − x))N−1 +
∫ π

x (sin y)N−1dy

(sin x)N−1 =
∫ π

0 (sin y)N−1dy

(sin x)N−1 ,

(3.11)

and similar to the above argument, we can prove that,

ĨN−1,N ,π (v) = fπ (aπ (v)) = k
− 1

N
π N

N−1
N v

N−1
N (1 + o(1)) (3.12)

holds for v ∈ (0, v̄), where v̄ is a sufficiently small constant depending on N .

4. The localization technique on MCP spaces

The proofs of Theorems 1.2 and 1.3 are mainly based on the localization technique
on essentially non-branchingMCP(K , N ) spaces. The readers can refer to Section 3
in [15] for details, and consult [10,11,13] etc. for some related details on CD(K , N )

spaces. As we are considering the local isoperimetric problem in this paper, there
are some necessary modifications when the localization technique are applied to,
similar to what Cavalletti and Mondino have done in CD(K , N ) spaces (see [17]).
Our proof follows the ideas in [17] closely. For completeness of exposition, in this
section we describe some notations in the construction briefly. We report the main
conclusions of localization technique when modified in our setting, while most of
their proofs are omitted except necessary; the readers can refer to [15,17] for the
missing details.

In this section, (X, d,m) is an essentially non-branching MCP(K , N ) space
(K ∈ R, N > 1) with supp(m) = X , x̄ ∈ X . D > 0 is fixed, and we assume δ > 0
is sufficiently small (depending on K , N and D).

Denote by m̄ = 1
m(BD+2δ(x̄))

m |BD+2δ(x̄).
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Given any Borel subset E ⊂ Bδ(x̄) with m̄(E) > 0, considered the function
fE : X → R defined by

fE (x) := χE (x) − m̄(E)

m̄(BD(x̄))
χBD(x̄)(x). (4.1)

Obviously
∫

fE m̄ = 0. Denote by f +
E := max{ fE , 0}, f −

E := max{− fE , 0}, and

cE :=
∫

f +
E m̄ =

∫

f −
E m̄ > 0.

Set μ0 := 1
cE

f +
E m̄ ∈ P(X), μ1 := 1

cE
f −
E m̄ ∈ P(X). Obviously, μ0(E) =

μ1(BD(x̄) \ E) = 1.
Consider the L1-optimal transportation problem fromμ0 toμ1. ByKantorovich

duality (see Theorem 5.10 in [38]), there exists a 1-Lipschitz function ϕ : X → R,
called a Kantorovich potential, such that for any optimal plan π̄ ∈ �(μ0, μ1), we
have π̄(�0) = 1, where

�0 := {(x, y) ∈ X × X | ϕ(x) − ϕ(y) = d(x, y)}. (4.2)

Define �1 := �0 ∩ Bδ(x̄) × BD(x̄). Since μ0(Bδ(x̄)) = μ1(BD(x̄)) = 1, it is easy
to check that for any optimal plan π̄ ∈ �(μ0, μ1), it holds

π̄(�1) = 1. (4.3)

Then we define

� := {(γs, γt )|γ ∈ Geo(X), 0 ≤ s ≤ t ≤ 1, (γ0, γ1) ∈ �1}.
Define transport relation to be

R = � ∪ �−1,

where �−1 := {(x, y) ∈ X × X | (y, x) ∈ �}. Denote by R(x) = {y | (x, y) ∈ R}.
Define the associated transport set to be

Te := P1(R \ {x = y}),
and the set of branching points to be A = A+ ∪ A−, where

A+ := {x ∈ Te | ∃z, w ∈ Te, (x, z), (x, w) ∈ �, (z, w) /∈ R},
A− := {x ∈ Te | ∃z, w ∈ Te, (x, z), (x, w) ∈ �−1, (z, w) /∈ R},

and define the transport set without branching points to be

T := Te \ A.

One can check that the set T is Borel. Making use of the essentially non-branching
assumption, and the MCP(K , N ) assumption, together with Theorem 1.1 in [14],
we can follow the proof of Proposition 4.5 in [11] verbatim to obtain

m̄(A) = 0. (4.4)
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As in [11], one can prove that Rb := R ∩ (T × T ) is an equivalence relation
over T , and for any x ∈ T , the equivalence class Rb(x) is isometric to an interval.

There exists an A-measurable map Q : T → T such that (x,Q(x)) ∈ Rb and
Q(x) = Q(y) whenever (x, y) ∈ Rb, and the quotient set Q := {x = Q(x)} is
A-measurable. See [8] or [17]. HereA denotes the σ -algebra generated by analytic
sets. Then we endow a Borel measure on Q defined by

q = Q#(m̄ |T ). (4.5)

For q ∈ Q, we use Xq to denote the equivalence class Rb(q). By construction,
each Xq is a geodesic, and it is part of a possibly longer geodesic whose two
end points are contained in Bδ(x̄) and BD(x̄) respectively. Hence by the triangle
inequality, one can easily check that, for every q ∈ Q, the length of Xq (denoted
by Lq ), is no larger than D + δ, and Xq ⊂ BD+2δ(x̄).

In the above we have introduced the notation when the localization method
applied to BD+2δ(x̄). Now we give some important conclusions.

(1) BD+2δ(x̄) can be written as the disjoint union of two sets Z and T with T
admitting a partition {Xq}q∈Q ; every Xq is a geodesic in (X, d) with Lq ≤
D + δ.

(2) There exists a family of measures {m̄q}q∈Q ⊂ M(X) such that, for q-a.e.
q ∈ Q, m̄q is a probability measure and is concentrated on Xq ; for every Borel
set C , the map q �→ m̄q(C) is q-measurable, and it holds

m̄ |T (C) =
∫

Q
m̄q(C ∩ T )q(dq). (4.6)

(3) For q-a.e. q ∈ Q, m̄q = hqH1 |Xq� H1 |Xq , and (Xq , d, m̄q) is an
MCP(K , N ) space.

(4) fE = 0 m̄-a.e. in Z , where fE was defined in (4.1).
(5) For q-a.e. q ∈ Q, it holds

∫

Xq

fE m̄q = 0. (4.7)

Properties (1)–(5) are standard in the localization technique, as we briefly
explain below. In (1), the set T , the map Q : T → T , the section Q, the measure
q are obtained in the previous construction. (2) is obtained by applying the disinte-
gration theorem (see e.g. Section 452 in [21] or Theorem A.7 in [9]) to decompose
m̄ |T according to the quotient map Q. (3) can be obtained as in the proof of The-
orem 9.5 in [8]. The proof of (4) and (5) can consult Step 2 and Step 3 in the proof
of Theorem 5.1 in [13] respectively. We remark that in these two part of proofs
in [13], the authors only use the fact (4.4) and use some argument based on basic
definitions in optimal transport. Using (4.3), we can slightly modify the proofs in
[13] to obtain (4) and (5) in our setting.

Besides (1)–(5), we need to supplement some properties which will be used in
the proofs of Theorems 1.2 and 1.3.

Following the proof of Theorem7.10 in [12], we conclude that, for q-a.e. q ∈ Q,
X̄q coincide with R(q), which is a geodesic whose two end points are contained in
Bδ(x̄) and BD(x̄) respectively. Thus we have
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(6) For q-a.e. q ∈ Q, Xq ∩ Bδ(x̄) �= ∅.
Combing (4) with the facts that fE (x) > 0 for x ∈ E and fE (x) < 0 for

x ∈ BD(x̄) \ E , we have

m̄(BD(x̄) ∩ Z) = 0.

Thus if δ is sufficiently small (depending on N , K and D), then we have

m̄(T ) ≥m̄(BD(x̄)) = m(BD(x̄))

m(BD+2δ(x̄))

≥ VolK ,N (D)

VolK ,N (D + 2δ)
=

∫ D
0 sK/(N−1)(t)N−1dt

∫ D+2δ
0 sK/(N−1)(t)N−1dt

≥1 − Cδ, (4.8)

where C is a positive constant depending on N , K and D. In conclusion, we have

(7) If δ is sufficiently small (depending on N , K and D), then

q(Q) = m̄(T ) ≥ 1 − Cδ. (4.9)

5. Proof of Theorem 1.2

In this section, C denotes some positive constant depending only on N , K , D, and
it may vary in different lines. Recall that K = 0 or −(N − 1) and correspondingly,
κ = 0 or −1. For every L > 0, denote by

kL =
∫ L

0
sκ(t)dt.

By (4.7) and (4.1), we have

0 =
∫

Xq

fE m̄q = m̄q(E ∩ Xq) − m̄(E)

m̄(BD(x̄))
m̄q(BD(x̄)), for q-a.e. q ∈ Q.

(5.1)

If ρ is sufficiently small, then E ⊂ Eρ ⊂ BD(x̄). Therefore, we have

m̄+(E) = lim inf
ρ↓0

m̄(Eρ) − m̄(E)

ρ

= lim inf
ρ↓0

m̄(Eρ ∩ T ) − m̄(E ∩ T )

ρ

= lim inf
ρ↓0

∫

Q

m̄q(Eρ ∩ Xq) − m̄q(E ∩ Xq)

ρ
q(dq)

≥ lim inf
ρ↓0

∫

Q

m̄q((E ∩ Xq)
ρ) − m̄q(E ∩ Xq)

ρ
q(dq)

≥
∫

Q
lim inf

ρ↓0
m̄q((E ∩ Xq)

ρ) − m̄q(E ∩ Xq)

ρ
q(dq)
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=
∫

Q
m̄+

q (E ∩ Xq)q(dq)

≥
∫

Q
ĨK ,N ,Lq (m̄q(E ∩ Xq))q(dq)

=
∫

Q
ĨK ,N ,Lq (

m̄q(BD(x̄))

m̄(BD(x̄))
m̄(E))q(dq). (5.2)

In (5.2), (E ∩ Xq)
ρ := {x ∈ Xq | d(x, E ∩ Xq) < ρ}, Lq denotes the length of

Xq , and we use Fatou’s Lemma in the fifth line.
In the following, we assume q ∈ Q satisfies all the properties in (2)–(6).
By (4.8), m̄(BD(x̄)) ≥ 1 − Cδ, hence

m̄q(BD(x̄))

m̄(BD(x̄))
≤ 1

1 − Cδ
≤ 1 + Cδ. (5.3)

If we view Xq as a map of constant-speed parametrization Xq : (0, Lq) → X
of the geodesic Xq , then, since hq is an MCP(K , N ) density on (0, Lq) which
integrates to 1, by Lemma 2.4 in [18], it holds

sup
x∈(0,Lq )

hq(x) ≤ 1

Lq

(
∫ 1

0
(σ

(t)
K ,N−1(Lq))

N−1dt
)−1

. (5.4)

Suppose for some q ∈ Q it holds X−1
q (BD+2δ(x̄) \ BD(x̄)) �= ∅. By property

(6), Xq intersects Bδ(x̄), hence Lq ≥ D − δ > D
2 . Also note that Lq ≤ D + δ

holds, hence by (5.4), for such q, we have

sup
x∈(0,Lq )

hq(x) ≤ C. (5.5)

Thus

m̄q(BD+2δ(x̄) \ BD(x̄)) ≤
∫ Lq

D−δ

hq(x)dx ≤ Cδ, (5.6)

and hence

m̄q(BD(x̄)) = m̄q(BD+2δ(x̄)) − m̄q(BD+2δ(x̄) \ BD(x̄)) ≥ 1 − Cδ. (5.7)

If X−1
q (BD+2δ(x̄) \ BD(x̄)) = ∅, then (5.7) still holds because in this case

m̄q(BD(x̄)) = 1.
Thus we have

m̄q(BD(x̄))

m̄(BD(x̄))
≥ 1 − Cδ. (5.8)

Remark 5.1. If K = N − 1, then by Lemma 2.4 in [18], we have

sup
x∈(0,Lq )

hq(x) ≤ N

Lq
. (5.9)

Thus the above argument still holds and we still have (5.3) and (5.8).
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By (3.10), we choose v̄ depending on N , K and D such that

ĨK ,N ,L(v) = k
− 1

N
L v

N−1
N (1 + o(1)) (5.10)

holds for v ∈ (0, 2v̄) and L ∈ [ D2 , 2D].
Now we choose δ̄ sufficiently small (depending on N , K , D and f̄ ) so that,

sup
r∈(0,δ̄)∩(0,r0)

f̄ (r) < v̄ (5.11)

and for every δ ∈ (0, δ̄),

kD+δ

kD
=

∫ D+δ

0 sκ(t)dt
∫ D
0 sκ(t)dt

≤ 1 + Cδ. (5.12)

By (5.3) and assumption (2), we have:

m̄q(BD(x̄))

m̄(BD(x̄))
m̄(E) ≤ (1 + Cδ)m̄(E) < 2v̄. (5.13)

By Lemma 3.9 in [18], the map D �→ ĨK ,N ,D(v) is strictly decreasing because
K ≤ 0. Combining this fact with (5.8), (5.10), (5.12) and (5.13), we have

IK ,N ,Lq (
m̄q(BD(x̄))

m̄(BD(x̄))
m̄(E)) ≥ IK ,N ,D+δ(

m̄q(BD(x̄))

m̄(BD(x̄))
m̄(E))

= k
− 1

N
D+δ

(
m̄q(BD(x̄))

m̄(BD(x̄))
m̄(E)

)1− 1
N + o((

m̄q(BD(x̄))

m̄(BD(x̄))
m̄(E))1−

1
N )

≥ (1 − Cδ)1−
1
N (1 + Cδ)−

1
N k

− 1
N

D m̄(E)1−
1
N + o((m̄(E))1−

1
N )

= (1 − 
(δ))k
− 1

N
D m̄(E)1−

1
N (5.14)

By (5.2), (4.9) and (5.14), we have

m̄+(E) ≥ (1 − Cδ)[(1 − 
(δ))k
− 1

N
D m̄(E)1−

1
N ] = (1 − 
(δ))k

− 1
N

D m̄(E)1−
1
N .

(5.15)

Combined with assumption (1), we obtain

m+(E) ≥ m(BD+2δ(x̄))
1
N (1 − 
(δ))k

− 1
N

D m(E)1−
1
N .

≥ (NωNkD)
1
N (1 − 
(δ))k

− 1
N

D m(E)1−
1
N

≥ (1 − 
(δ))N
1
N ω

1
N
N m(E)1−

1
N (5.16)

This complete the proof.
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Remark 5.2. Weconsider a family of 1-dimensional spaces (X, d,ma) = ([0, D], |·
|, h̃aL1) (where a > 0). Here h̃a = VolK ,N (D)ha , with ha(x) = haK ,N ,D(x) given
in (3.2), K = −(N − 1), 0, or N − 1. Assume a is sufficiently small (depending
on N , D), then for r ∈ [0, a], we have

ma([0, r ]) = VolK ,N (D)
fD(a)

sκ(D − a)N−1

∫ r

0
sκ(D − t)N−1dt

= NωNkD

aN−1

kD
(1 + o(1))

sκ(D)N−1 + o(1)

∫ r

0
(sκ(D)N−1 + o(1))dt

= NωNa
N−1r(1 + o(1)). (5.17)

Thus lim supr↓0
ma([0,r ])

ωNr N
= +∞ as N > 1, and 1

ma([0,D])ma([0, r ]) ≤ r provided

a is sufficiently small. Choose f̄ (r) = r , x̄ = 0 ∈ X , then assumption (2) in
Theorem 1.2 always holds for every a > 0 sufficiently small.

For any ε > 0, by (3.10),

ĨK ,N ,D(v) ≥ (1 − ε)k
− 1

N
D v

N−1
N (5.18)

holds for every v sufficiently small. For every v sufficiently small, we take a =
aD(v) as in (3.9), and then take (X, d,ma), E = [0, a]. Note that ma(E) =
VolK ,Nv = NωNkDv. By Theorem 3.4 and (5.18), we have

m+
a (E) = VolK ,N (D)ha(a) = NωNkD ĨK ,N ,D(v)

≥ (1 − ε)NωNk
N−1
N

D v
N−1
N = (1 − ε)N

1
N ω

1
N
N (ma(E))

N−1
N . (5.19)

Thus the constant N
1
N ω

1
N
N in (1.3) is sharp.

6. Proof of Theorem 1.3

In this section, K = N − 1 and κ = 1. For every L ∈ (0, π), denote by

kL =
∫ L

0
sκ(t)dt.

C denotes some positive constant depending only on N , K , D, and it may vary in
different lines.

Let Q1 := {q ∈ Q|Lq < D
2 }, Q2 := Q \ Q1. Denote by A = q(Q1).

Given δ > 0 sufficiently small, we choose c = δ− 1
2 . Hence (c + 1)δ < 3δ

1
2 <

D
10 .

By property (6), for q-a.e. q ∈ Q, there exists q̌ ∈ Xq such that q̌ ∈ Bδ(x̄).
Hence we have Bcδ(q̌) ⊂ B(c+1)δ(x̄). Thus by (4.6), we have

m̄(B(c+1)δ(x̄)) ≥
∫

Q1

m̄q(Bcδ(q̌))q(dq) +
∫

Q2

m̄q(Bcδ(q̌))q(dq)
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≥
∫

Q1

m̄q(B D
2
(q̌))

VolK ,N (cδ)

VolK ,N ( D2 )
q(dq)

+
∫

Q2

m̄q(BD+δ(q̌))
VolK ,N (cδ)

VolK ,N (D + δ)
q(dq)

=
∫

Q1

VolK ,N (cδ)

VolK ,N ( D2 )
q(dq) +

∫

Q2

VolK ,N (cδ)

VolK ,N (D + δ)
q(dq), (6.1)

where in the second inequality, we apply Bishop–Gromov inequality to the
MCP(K , N ) spaces (Xq , | · |, m̄q), and use the fact that Br (q̌) ∩ Xq is identical to
{y ∈ Xq | |yq̌| < r} for r > 0.

Then we have

1

m(BD+2δ(x̄))

VolK ,N ((c + 1)δ)

VolK ,N (cδ)

m(B(c+1)δ(x̄))

VolK ,N ((c + 1)δ)

≥
∫

Q1

1

VolK ,N ( D2 )
q(dq) +

∫

Q2

1

VolK ,N (D + δ)
q(dq). (6.2)

If δ is sufficiently small, we have

VolK ,N ((c + 1)δ)

VolK ,N (cδ)
≤ (

c + 2

c
)N = 1 + 2Nδ

1
2 + o(δ

1
2 ) (6.3)

By assumption (2) and Bishop–Gromov inequality, we have

m(B(c+1)δ(x̄))

VolK ,N ((c + 1)δ)
≤ 1 + η. (6.4)

Combining it with assumption (1) and (4.9), (6.2), (6.3), we have
(

1 + 2Nδ
1
2 + o(δ

1
2 )

)
1 + η

(1 − η)VolK ,N (D)

≥ A

VolK ,N ( D2 )
+ 1 − Cδ − A

VolK ,N (D + δ)
(6.5)

Since δ and η is sufficiently small, we have

VolK ,N (D)

VolK ,N (D + δ)
= kD

kD + ∫ D+δ

D sκ(t)dt
= 1 − 1

kD
δsκ(D) + o(δ). (6.6)

Denote by h := VolK ,N (D)

VolK ,N ( D
2 )

> 1. By (6.5) and (6.6), we have

(

1 + 2Nδ
1
2 + o(δ

1
2 )

)
1 + η

1 − η

≥ Ah + (1 − Cδ − A)(1 − 1

kD
δsκ(D) + o(δ))

= 1 − 1

kD
δsκ(D) + o(δ) + A(h − 1 + 1

kD
δsκ(D) + o(δ)), (6.7)
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-
and thus

A(h − 1 + 1

kD
δsκ(D) + o(δ))

≤ 1

kD
δsκ(D) − 1 + o(δ) +

(

1 + 2Nδ
1
2 + o(δ

1
2 )

)(

1 + 2η + o(η)

)

≤ 1

kD
δsκ(D) + o(δ) + 2Nδ

1
2 + o(δ

1
2 ) + 2η

(

1 + 2Nδ
1
2 + o(δ

1
2 )

)

+ o(η).

(6.8)

If δ and η are sufficiently small (depending on N , D), we have

A(h − 1) ≤ 4Nδ
1
2 + 3η, (6.9)

hence

A ≤ 4Nδ
1
2 + 3η

h − 1
. (6.10)

By (5.2), we have

m̄+(E) ≥
∫

Q
ĨK ,N ,Lq (

m̄q(BD(x̄))

m̄(BD(x̄))
m̄(E))q(dq)

≥
∫

Q2

ĨK ,N ,Lq (
m̄q(BD(x̄))

m̄(BD(x̄))
m̄(E))q(dq). (6.11)

By assumption (2) and Bishop–Gromov inequality, we have

m̄(E) ≤ m̄(Bδ(x̄)) ≤ (
lim sup

r↓0
m̄(Br (x̄))

VolK ,N (r)

)
VolK ,N (δ) ≤ (1 + η)VolK ,N (δ).

(6.12)

Recall that for K = N − 1, (5.3) and (5.8) still hold for q-a.e. q ∈ Q (see
Remark 5.9). Thus

m̄q(BD(x̄))

m̄(BD(x̄))
m̄(E) ≤ (1 + Cδ)(1 + η)VolK ,N (δ). (6.13)

By (3.10), we can choose δ̄, η̄ > 0 sufficiently small (depending on N , D) such
that, for any v ∈ (0, v̄) with v̄ = (1 + C δ̄)(1 + η̄)VolK ,N (δ̄),

ĨK ,N ,L(v) = k
− 1

N
L v

N−1
N (1 + o(1)) (6.14)

holds for every L ∈ [ D2 , D+ δ̄]. (We assume δ̄ is sufficiently small so that D+ δ̄ <

π .)
For q ∈ Q2, we have D

2 ≤ Lq ≤ D + δ. Thus for q-a.e. q ∈ Q2 and for any
δ ∈ (0, δ̄), η ∈ (0, η̄), we have
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- ĨK ,N ,Lq (
m̄q(BD(x̄))

m̄(BD(x̄))
m̄(E))

= k
− 1

N
Lq

(
m̄q(BD(x̄))

m̄(BD(x̄))
m̄(E)

)1− 1
N + o((

m̄q(BD(x̄))

m̄(BD(x̄))
m̄(E))1−

1
N )

≥ (1 − Cδ)1−
1
N k

− 1
N

D+δm̄(E)1−
1
N + o((m̄(E))1−

1
N )

≥ (1 − Cδ)1−
1
N (1 + Cδ)−

1
N k

− 1
N

D m̄(E)1−
1
N + o((m̄(E))1−

1
N )

≥ (1 − 
(δ))k
− 1

N
D m̄(E)1−

1
N , (6.15)

where in the second inequality, we use the fact that kLq ≤ kD+δ , and in the third
inequality, we use the fact that kD+δ ≤ (1+Cδ)kD provided δ is sufficiently small.

Combining (4.9), (6.10), (6.11) and (6.15), we have

m̄+(E) ≥(1 − Cδ − 4Nδ
1
2 + 3η

h − 1
)(1 − 
(δ))k

− 1
N

D m̄(E)1−
1
N

≥(1 − 
(δ, η))k
− 1

N
D m̄(E)1−

1
N . (6.16)

Thus by assumption (1), we have

m+(E) ≥ m(BD+2δ(x̄))
1
N (1 − 
(δ, η))k

− 1
N

D m(E)1−
1
N

≥ (NωNkD)
1
N (1 − 
(δ, η))k

− 1
N

D m(E)1−
1
N

≥ (1 − 
(δ, η))N
1
N ω

1
N
N m(E)1−

1
N . (6.17)

The proof is completed.
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