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Abstract. We consider the fractional mean curvature flow of entire Lipschitz graphs. We
provide regularity results, and we study the long time asymptotics of the flow. In particular
we show that in a suitable rescaled framework, if the initial graph is a sublinear perturbation
of a cone, the evolution asymptotically approaches an expanding self-similar solution. We
also prove stability of hyperplanes and of convex cones in the unrescaled setting.

1. Introduction

Given a set E ⊆ R
n+1, we define the fractional mean curvature flow Et starting

from E as the flow obtained by the following geometric evolution law: the velocity
at a point p ∈ ∂Et is given by

∂t p · ν(p) = −Hs(p, Et ) :
= − lim

ε→0

∫
Rn+1\Bε(p)

(
χRn+1\Et

(y) − χEt (y)
) 1

|p − y|n+1+s
dy, (1.1)

where s ∈ (0, 1) is a fixed parameter and ν(p) is the outer normal to ∂Et at p.
The fractional mean curvature flow can be interpreted as the fractional analogue

of the classical mean curvature flow. Indeed, as the mean curvature flow is the
L2 gradient flow of the perimeter, the fractional mean curvature flow is the L2

gradient flow of the so-called fractional perimeter, see [3], which can be seen as
an interpolation norm (the Gagliardo fractional seminorm) of the characteristic
function of a measurable set, which interpolates between the BV norm, which is
the standard perimeter, and the L1 norm, which is the volume.

Therefore, the fractional mean curvature flow presents some analogies with the
classical mean curvature flow. Recently a local existence result for smooth solutions
starting from compact C1,1 initial sets was provided in [18] (see also [4,9] for an
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analog of the BMO scheme), moreover existence and uniqueness of the level set
flow for general nonlocal evolution equations, including (1.1), has been developed
in [8] (see also [17]), using the maximum principle and the monotonicity of the
curvature with respect to inclusions. On the other hand, the fractional flow presents
some different features with respect to the classical mean curvature flow, since
nonlocal effects come into play. For instance, as a basic example one can consider
a planar strip, which is stationary for the curvature flow, and shrinking for the
fractional flow.

An important issue in the study of the fractional flow, as for the classical one,
is the investigation of the long time behavior of solutions and the analysis of the
formation of singularities. In the local case, one of the most important tool in this
analysis is the monotonicity formula established by Huisken in [16]. The analog of
such formula in the fractional setting is still an open problem. As a consequence,
it is still missing a systematic approach for the study of long time asymptotics
of the flow and the classification of the possible singularities which may appear.
Nevertheless some results have been recently obtained, we recall for instance the
analysis of the formation of neckpinch singularities in [10], and of the fattening
phenomenon for the evolution of curves with cross-type and cusp-type singularities
in [5]. Moreover, in [11] it has been proved that smooth convex sets evolving under
the volume preserving fractional mean curvature flow approach round spheres.

Here we analyze the evolution (1.1) under the additional assumption that the
boundary of the initial datum E0 can be written as a Lipschitz graph, that is, there
exists e ∈ R

n+1, such that ν(p) · e > 0 for every p ∈ ∂E0. By monotonicity of
the flow it is possible to show that the evolution Et maintains this property for all
positive times t > 0, that is, ν(p) · e > 0 for every p ∈ ∂Et , see Sect. 2. Up to a
rotation of coordinates, we will assume that e = en+1.

For the local case, the analysis of the mean curvature flow of entire Lipschitz
graphs goes back to thework byEcker andHuisken [13,14],whereas the anisotropic
mean curvature flow of entire Lipschitz graphs has been recently considered by the
authors and a coauthor in [7]. In particular, in [13] it is proved that the evolution
admits a smooth solution for all times, which approaches a self-similar solution
as t → +∞, provided that the initial graph is “straight”at infinity, in the sense
that is a sublinear perturbation of a cone, see assumption (5.1) below. In this paper
we provide analogous results in the fractional setting. In particular, in Sect. 3 we
prove the C1,α regularity of the flow starting from a Lipschitz graph, which can be
strengthened to C∞ if the initial graph enjoys more regularity. These results are
based on the fact that the fractional curvature is an elliptic operator, and so we may
apply the regularity results for nonlinear fractional parabolic problems obtained
in [21,22] and the parabolic bootstrap argument developed in [18]. In the case of
initial graphs which are merely Lipschitz continuous, we do not recover the C∞
regularity obtained in the local case, except in the case of self-similar solutions
(see Theorem 4.1), and this is due to the fact that a parabolic bootstrap regularity
argument is missing in this setting for quasilinear fractional operators.

Finally, in Sect. 5 we provide the convergence of the rescaled solution to a self-
similar expanding solution, under the assumption that the initial graph is straight



Fractional mean curvature flow of Lipschitz graphs 429

at infinity in the sense of Ecker and Huisken. We recall here what we mean for
self-similar expanding or contracting solution to 1.1.

Definition 1.1. An expanding homothetic solution is a solution to (1.1) such that
Et = λ(t)E1 where λ(1) = 1 and λ′(t) � 0 for t > 1. This is equivalent to assume
that E1 is a solution to

c(p · ν) = −Hs(p, E1) (1.2)

for some c � 0. Observe that necessarily λ(t) = [c(s + 1)(t − 1) + 1]
1

s+1 .
A shrinking homothetic solution to (1.1) is a solution to (1.1) such that Et =

λ(t)E1 where λ(1) = 1 and λ′(t) � 0 for t > 1. This is equivalent to assume that
E1 is a solution to

c(p · ν) = Hs(p, E1) (1.3)

for some c � 0.

In Sect. 4 we study the main properties of the expanding self-similar solutions
to (1.1), whereas in Sect. 7 we show that the only graphical shrinking self-similar
solutions to (1.1) are actually stationary solutions. In the local setting, this result has
been obtained for entire graphs without growth condition at infinity in [23]. In the
fractional setting we obtain the result for entire Lipschitz graphs as a byproduct of
a Liouville theorem for ancient solutions of parabolic nonlinear equations obtained
in [21]. We also recall that a preliminary analysis of existence and stability of
fractional symmetric shrinkers has been developed in [6].

Finally Sect. 6 contains convergence results in the unrescaled setting. In particu-
lar we provide the stability of hyperplanes, when we start the evolution from graphs
which are asymptotically flat. In the local setting this stability can be proved by
using comparisonwith large balls and area decay estimates, see [12,14,19],whereas
in the fractional setting we use comparison with large balls and an argument based
on construction of appropriate periodic barriers. We show also stability of convex
cones and, in some particular cases, of mean convex cones, in the unrescaled set-
ting. Analogous results in the local setting were obtained in [12] for the isotropic
case and in [7] for the anisotropic case.

2. Level set formulation

The level set flow associated to (1.1) can be defined as follows. Given an initial set
E0 ⊂ R

n+1 we choose a bounded Lipschitz continuous function U0 : Rn+1 → R

such that

∂E0 = {p ∈ R
n+1 s.t. U0(p) = 0} = ∂{p ∈ R

n+1 s.t. U0(p) � 0}
and E0 = {p ∈ R

n+1 s.t. U0(p) � 0}.
Let alsoU (p, t) be the viscosity solution of the following nonlocal parabolic prob-
lem{

Ut (p, t) + |DU (p, t)|Hs((p, t), {(p′, t) |U (p′, t) � U (p, t)}) = 0
U (p, 0) = U0(p).

(2.1)
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Then the level set flow of ∂E0 is given by

�E (t) := {p ∈ R
n+1 s.t. U (p, t) = 0}. (2.2)

We associate to this level set the outer and inner flows defined as follows:

E+(t) := {p ∈ R
n+1 s.t. U (p, t) � 0} and

E−(t) := {p ∈ R
n+1 s.t. U (p, t) > 0}. (2.3)

We observe that the equation in (2.1) is geometric, so if we replace the initial
condition with any function V0 with the same level sets {U0 � 0} and {U0 > 0},
the evolutions E+(t) and E−(t) remain the same. Existence and uniqueness of
viscosity solutions to the level set formulation of (1.1) has been provided in [8,17],
and qualitative properties of smooth solutions have been studied in [20].

In this paper we consider the particular case in which the initial set E0 can
be written- up to suitable rotation of coordinates- as the subgraph of a function
u0 : Rn → R. So, it is possible to define the evolution Et at time t as the subgraph
of the solution u(·, t) to the following nonlocal quasilinear system{

ut + √
1 + |Du|2Hs((x, u(x, t)), {(x ′, z) |z � u(x ′, t)}) = 0

u(x, 0) = u0(x).
(2.4)

Theorem 2.1. Let u0 : Rn → R be a uniformly continuous function. Let v,w ∈
C(Rn × [0,+∞)) be respectively a viscosity subsolution and a viscosity superso-
lution to (2.4) such that v(x, 0) � u0(x) � w(x, 0).

Then v(x, t) � w(x, t) for all (x, t) ∈ R
n × (0,+∞).

In particular (2.4) admits a unique viscosity solution u(x, t) ∈ C(Rn ×
[0,+∞)) with u(x, 0) = u0(x). Moreover, if u0 is Lipschitz continuous with
Lipschitz constant ‖Du0‖∞, then |u(x, t) − u(x ′, t)| � ‖Du0‖∞|x − x ′| for all
x, x ′ ∈ R

n and t > 0.

Proof. For every x ∈ R
n and z ∈ R, we define the uniformly continuous function

U0(x, z) := u0(x) − z, and the functions V (x, z, t) = v(x, t) − z, W (x, z, t) =
w(x, t) − z. Then it is easy to check that V,W are respectively a viscosity sub and
supersolution to (2.1) such that V (x, z, 0) � U0(x, z) � W (x, z, 0). Then by the
comparison principle proved in [17] (and for general nonlocal geometric equations
in [8]) we get that V (x, z, t) � W (x, z, t) for all x ∈ R

n , z ∈ R, t > 0. This
implies the result.

Moreover, again by the results proved in [8,17], the system (2.1) admits a
unique viscosity solutionU (x, z, t). IfU0 is Lipschitz continuous, then it is easy to
check that alsoU (x, z, t) is Lipschitz continuous in space, with Lipschitz constant
less or equal to the Lipschitz constant of U0, by using the comparison principle
and the invariance by translation of the differential operator appearing in (2.1). By
comparison and again using the fact that the operator is invariant by translation in
space, for every h ∈ R

U (x, z, t) + h = U (x, z + h, t).

Therefore, we conclude thatU (x, z, t) = z−u(x, t), where u is a viscosity solution
to (2.4). 	
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We now define the rescaled time variables as follows:

τ(t) := log(t (s + 1) + 1)

s + 1
that is t = e(s+1)τ − 1

s + 1
. (2.5)

In the rescaled time variables, the evolution (1.1) becomes

∂τ p̃ · ν̃ = − p̃ · ν̃ − Hs( p̃, Ẽτ ). (2.6)

We define the rescaled variables eτ y = x , with τ as in (2.5), and set

ũ(y, τ ) := e−τu

(
yeτ ,

e(s+1)τ − 1

s + 1

)
. (2.7)

Then ũ solves the system

{
ũτ + ũ − Dũ · y + √

1 + |Dũ|2Hs((y, ũ(y, τ )), {(y′, z) |z � ũ(y′, t)}) = 0
ũ(y, 0) = u0(y).

(2.8)
Clearly, the same existence, uniqueness and regularity results stated for (2.4)

in Theorem 2.1 are valid for (2.8).

2.1. Fractional curvature on graphs

Werecall an equivalent formulationof the fractionalmean curvature Hs ongraphical
hypersurfaces, see [2,20]. First of all observe that if
 = {(x ′, z′), | z′ � u(x, t)+
Du(x, t) · (x ′ − x)} then by symmetry

lim
ε→0

∫
Rn+1\Bε(p)

(
χRn+1\
(y) − χ
(y)

) 1

|p − y|n+1+s
dy = 0.

Therefore, for p = (x, u(x, t)) and Et := {(x ′, z) | z � u(x ′, t)}, we get (intending
the integrals in the principal value sense)

Hs(p, Et ) =
∫
Rn+1

(
χRn+1\Et

(y) − χ
(y)

|p − y|n+1+s
+ χRn+1\
(y) − χEt (y)

|p − y|n+1+s

)
dy

= 2
∫
Rn

∫ u(x,t)+Du(x,t)·(x ′−x)

u(x ′,t)

1(|x ′ − x |2 + |z′ − u(x, t)|2)(n+1+s)/2
dzdx ′

= 2
∫
Rn

1

|x − x ′|n+s

∫ Du(x,t)· x−x ′
|x−x ′ |

u(x ′,t)−u(x,t)
|x−x ′ |

1

(1 + w2)(n+1+s)/2
dwdx ′. (2.9)

We now introduce the function

Gs(t) :=
∫ t

0

1

(1 + w2)(n+1+s)/2
dw.
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By (2.9) we get

Hs ((x, u(x, t)) , Et ) = 2
∫
Rn

Gs

(
Du(x, t) · x−x ′

|x−x ′|
)

− Gs

(
u(x ′,t)−u(x,t)

|x−x ′|
)

|x − x ′|n+s
dx ′

= 2
∫
Rn

Gs

(
Du(x, t) · z

|z|
)

− Gs

(
u(x−z,t)−u(x,t)

|z|
)

|z|n+s
dz.

(2.10)

We observe that this formula holds also in the viscosity sense (that is it is verified
at points where the graph of u can be touched with paraboloids).

Moreover, if we change variable from z to −z in (2.10) and recalling that Gs is
odd, we get

Hs((x, u(x, t)), Et ) = −
∫
Rn

Gs

(
u(x+z,t)−u(x,t)

|z|
)

+ Gs

(
u(x−z,t)−u(x,t)

|z|
)

|z|n+s
dz

= −
∫
Rn

Gs

(
u(x+z,t)−u(x,t)

|z|
)

− Gs

(
u(x,t)−u(x−z,t)

|z|
)

|z|n+s
dz

= −
∫
Rn

A(x, z, u)
u(x + z, t) + u(x − z, t) − 2u(x, t)

|z|n+s+1 dz.

(2.11)

where

A(x, z, u)

:=
∫ 1

0
G ′

s

(
w
u(x + z, t) − u(x, t)

|z| + (1 − w)
u(x, t) − u(x − z, t)

|z|
)
dw.

(2.12)

Observe that A(x, z, u) = A(x,−z, u) and

(
1 + 4‖Du0‖2∞

)− n+s+1
2 � A(x, z, u) � 1.

This implies that the differential operator Hs((x, u(x, t)), Et ) is elliptic, see e.g.
[21].

3. Regularity results

In this section, we provide some regularity results for the flow starting from a
Lipschitz graph. These results are based on the fact that the fractional curvature for
graphs is an elliptic fractional operator, and so it enjoys regularizing effects.
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Proposition 3.1. Let u0 : Rn → R be a Lipschitz continuous function. Then there
existsα ∈ (0, s) depending on s and n such that the viscosity solution u(x, t) to (2.4)
is in C1+α(Rn) for every t > 0, with norm uniformly bounded inRn ×[t0,+∞) by
a constant only depending on ‖Du0‖∞ and t0. In particular, there exists a constant
C > 0 only depending on ‖Du0‖∞ and t0 such that

‖Du(·, t)‖Cα(Rn) � Ct−
α

s+1 for t � t0.

This implies that, if ũ is the rescaled function defined in (2.7), for every τ0 > 0,
there exists a constant C > 0 only depending on ‖Du0‖∞ and τ0 such that

‖D̃u(·, τ )‖Cα(Rn) � C

(
1 − e−τ0(s+1)

s + 1

)− α
s+1

for τ � τ0.

Proof. If u0 is Lipschitz continuous, then by Theorem 2.1 the solution to (2.4) is
Lipschitz continuous in x with Lipschitz constant bounded by ‖Du0‖∞. Then the
differential operator Hs on graphical hypersurfaces is elliptic, see (2.11), see e.g.
[21,22] for the definition. Then, by applying the Hölder regularity theory to the
incremental quotients of u (see [21, Theorem 2.1, Theorem 2.2]) we get that they
are of class Cα for some α ∈ (0, 1), with norm bounded by the Lipschitz constant
of u.

Finally, observe that for every r > 0, there holds thatvr (x, t) = r−1u(r x, r1+s t)
is the viscosity solution to (2.4) with initial datum v0(x) = r−1u0(x). Then v0 is
Lipschitz continuous, with the same Lipschitz constant as u0, and we may apply to
vr the same regularity results as for u. In particular for every t0 there exists a constant
C depending on t0 and on ‖Du0‖∞ such that for all t � t0, ‖Dvr (·, t)‖Cα � C.

Rescaling back to u, for every t � t0rs+1 we get

‖Du(·, t)‖Cα � Cr−α.

We conclude by choosing r = (t/t0)
1

s+1 .
Finally we consider the rescaled solution ũ. Note that Dũ(y, τ ) =

Du
(
yeτ , eτ (s+1)−1

s+1

)
and ‖Dũ(·, t)‖Cα(Rn) = eτα‖Du(·, eτ (s+1)−1

s+1 )‖Cα(Rn). Then

by the previous estimate, for every τ � τ0,

‖Dũ(·, τ )‖Cα(Rn) � eατC

(
eτ(s+1) − 1

s + 1

)− α
s+1

� C

(
1 − e−τ0(s+1)

s + 1

)− α
s+1

.

	

Let now u(x, t) be a C2,1 solution to (2.4) with initial datum u0, and let

w(x, t) :=
√
1 + |Du(x, t)|2Hs((x, u(x, t)), Et ).

Since ut (x, t) = −w(x, t), using (2.11) we compute

wt = −Hs((x, u(x, t)), Et )√
1 + |Du|2 Du(x, t) · Dw(x, t) +

+2
√
1 + |Du|2

∫
Rn

G ′
s

(
u(x + z, t) − u(x, t)

|z|
)

w(x + z, t) − w(x, t)

|z|n+s+1 dz.
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Therefore w is a solution to

wt + B(x, t) · Dw(x, t) − 2
∫
Rn

C(x, z, t)
w(x + z, t) − w(x, t)

|z|n+s+1 dz = 0, (3.1)

where

B(x, t) : = Hs((x, u(x, t)), Et )√
1 + |Du(x, t)|2 Du(x, t)

C(x, z, t) : =
√
1 + |Du(x, t)|2G ′

s

(
u(x + z, t) − u(x, t)

|z|
)

. (3.2)

Lemma 3.2. Let u0 : R
n → R be a Lipschitz continuous function such that

Hs((x, u0(x)), E0) is bounded, and let u(x, t) be the viscosity solution to (2.4)
with initial datum u0.

Then C(x, z, t) is well defined for every x, z ∈ R
n, t > 0, C(·, z, t) ∈ Cα(Rn)

and

0 < (1 + ‖Du0‖2∞)−
n+s+1

2 � C(x, z, t) �
√
1 + ‖Du0‖2∞.

Moreover, the following inequalities hold in the viscosity sense:

−1

2
C � Hs ((x, u(x, t)) , Et )√

1 + |Du(x, t)|2 |Du(x, t)| � 1

2
C,

where C = ‖Hs((x, u0(x)), E0)‖∞(1 + ‖Du0‖∞).

Proof. First of all we observe that by Theorem 2.1, u(·, t) is Lipschitz with
‖Du(x, t)‖∞ � ‖Du0‖∞. Then the regularity and the bounds on C(x, z, t) are
a direct consequence of the definition of Gs .

Let C := ‖Hs((x, u0(x)), E0)‖∞(1 + ‖Du0‖∞). Note that u0(x) ± Ct are
respectively a supersolution and a subsolution to (2.4), so that by comparison we
get

u0(x) − Ct � u(x, t) � u0(x) + Ct for all t � 0.

Moreover for every t � τ > 0, the functions u(x, t) ± supx |u(x, τ ) − u0(x)| are
respectively a supersolution and a subsolution to (2.4) with initial datum u(x, τ ),
whence

|u(x, t + τ) − u(x, t)| � sup
x

|u(x, τ ) − u0(x)| � Cτ.

This implies that u(x, ·) is Lipschitz continuous with |ut (x, t)| � C , which in turns
implies that, in the viscosity sense,

−C �
√
1 + |Du(x, t)|2Hs((x, u(x, t)), Et ) � C

for all x ∈ R
n and t > 0. We now conclude recalling that u(·, t) ∈ C1. 	
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Theorem 3.3. Let u0 : R
n → R be a Lipschitz continuous function such that

Hs((x, u0(x)), E0) is bounded. Let u(x, t) be the viscosity solution to (2.4) with
initial datum u0.

Then u ∈ C∞, with norms bounded in Rn × [t0,+∞) by constants depending
on t0, ‖Du0‖∞ and ‖Hs((x, u0(x)), E0)‖∞.

Finally, the map t �→ supx∈Rn

√
1 + |Du(x, t)|2|Hs((x, u(x, t)), Et )| is

decreasing in t.

Proof. We first prove the result under the additional assumption that u0 is in C2+α

with bounded norms. Then the general case will follow by the stability of viscos-
ity solutions with respect to uniform convergence, recalling that all the estimates
depend only on the Lipschitz constant of u0 and on ‖Hs((x, u0(x)), E0)‖∞.

The short time existence result in [18, Theorem 5.1] implies that, if u0 ∈ C2+α

with bounded norms, then there exists a time t > 0, such that the system (2.4)
admits a smooth solution u(x, t).

Let w(x, t) be the unique solution to (3.1) with initial datum
√
1 + |Du0(x)|2

Hs((x, u0(x)), E0). Since u is smooth, by the computations in (3.1) and (3.2), we
get that

w(x, t) =
√
1 + |Du(x, t)|2Hs((x, u(x, t)), Et ).

By comparison w(x, t) is bounded by ‖w(x, 0)‖∞ and supx |w(x, t + r)| �
supx |w(x, r)|, for every r � 0 and t > 0.

Sincew is a bounded viscosity solution of a linear integro-differential equation,
with boundeddrift and uniformly elliptic integro-differential operator, the regularity
results obtained in [22, Theorem 8.1] apply. Hence there exists α ∈ (0, s) such that

w(·, t) ∈ C1+α(Rn), w(x, ·) ∈ C
1+α
2 (0,+∞) with

sup
t∈(0,T )

‖w(·, t)‖C1+α + sup
x∈Rn

‖w(x, ·)‖
C

1+α
2

� C(‖Du0‖∞, ‖Hs((x, u0(x)), E0)‖∞, s).

This implies thatut (x, ·) = √
1 + |Du(x, ·)|2Hs((x, u(x, ·)), Et ) ∈ C

1+α
2 (0,+∞).

Moreover since
√
1 + |Du(x, t)|2Hs((x, u(x, t), Et ) ∈ C1+α(Rn) as a func-

tion of x , recalling that u ∈ C1+α by Proposition 3.1, with norm bounded
only by ‖Du0‖∞, by the bootstrap argument in [2, Theorem 6] we get that
u(·, t) ∈ C1+s+α+β(Rn) for all β < 1 and all t > 0, with norm bounded only
on ‖Du0‖∞, ‖Hs((x, u0(x)), E0)‖∞.

Finally, we apply the bootstrap regularity argument obtained in [18] and we get
the full regularity. 	


4. Homothetically expanding graphical solutions

Weshall provide a complete characterizationof graphical homothetically expanding
solutions to (1.1).
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Theorem 4.1. Let ū0 : R
n → R be a Lipschitz continuous and positively 1-

homogeneous function, that is,

∃C > 0 |ū0(x) − ū0(y)| � C |x − y| ū0(r x) = r ū0(x) ∀r > 0, x, y ∈ R
n .

(4.1)
Then, for every t > 0 the subgraph Ēt of the viscosity solution ū(x, t) to (2.4), with
initial datum ū0, satisfies for p ∈ ∂ Ēt

p · ν = −t (s + 1)Hs(p, Ēt ), (4.2)

that is, for every t > 0 Ēt satisfies (1.2) with c−1 = t (s + 1), and the flow starting
from Et is an expanding homothetic solution to (1.1) according to Definition 1.1.

Moreover ū(x, t) is in C∞(Rn × (0,+∞)), and for every T > 0,

lim
t→+∞ |ū(x, t + T ) − ū(x, t)| = 0 locally uniformly inRn .

Proof. By the fact that the differential operator is invariant under translations and
by uniqueness of solutions, see Theorem 2.1, we get that for all r �= 0, it holds

ū(x, t) = 1

r
ū

(
r x, rs+1t

)
.

Letting r := t−
1

s+1 for t > 0, we get

ū(x, t) = t
1

s+1 ū
(
xt−

1
s+1 , 1

)
. (4.3)

This implies that, if p ∈ ∂ Ē1 then pt
1

s+1 ∈ Ēt and

Hs

(
pt

1
s+1 , Ēt

)
= t−

s
s+1 Hs(p, Ē1). (4.4)

Substituting in (1.1) we get that Ē1 solves (1.2) with c−1 = s + 1. The same
argument holds substituting t = 1 with another positive time t .

By the uniform C1,α estimate in Proposition 3.1 we know that ū(x, 1) is in
C1,α . Moreover, since Ē1 solves (1.2) with c−1 = s + 1, we get that ū(x, 1) solves

ū(x, 1)−Dū(x, 1) ·x+(1+s)
√
1 + |Dū(x, 1)|2Hs((x, ū(x, 1)), Ē1) = 0. (4.5)

Therefore, since
√
1 + |Dū(x, 1)|2Hs(x, ū(x, 1), Ē1) is in Cα , with norm locally

bounded by the Lipschitz constant of ū0, we can apply the bootstrap argument in [2,

Theorem 6] and get that ū(x, 1) is inC∞. Finally, since ū(x, t) = t
1

s+1 ū(xt−
1

s+1 , 1)
for every t > 0, we conclude that ū is in C∞(Rn × (0,+∞)).
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Now, observe that by scaling properties (4.3), for every T > 0 and t > 0 and
by the fact that ū(x, t) is Lipschitz continuous with the same Lipschitz constant as
ū0,

|ū(x, t + T ) − ū(x, t)| = |(t + T )
1

s+1 ū
(
x(t + T )−

1
s+1 , 1

)
− t

1
s+1 ū

(
xt−

1
s+1 , 1

)
|

� (t + T )
1

s+1 |ū
(
x(t + T )−

1
s+1 , 1

)
− ū

(
xt−

1
s+1 , 1

)
|

+[(t + T )
1

s+1 − t
1

s+1 ||ū
(
xt−

1
s+1 , 1

)
|

� C(t + T )
1

s+1 |x ||(t + T )−
1

s+1 − t−
1

s+1 |
+C[(t + T )

1
s+1 − t

1
s+1 ||x |t− 1

s+1

� C |x |
((

1 + T

t

) 1
s+1 −

(
1 − T

t

) 1
s+1

)
.

Sending t → +∞, we get the result. 	

By using the properties of homothetically expanding solutions, we show the

following result about uniform continuity of solutions to (2.4).

Proposition 4.2. Let u0 : Rn → R be a Lipschitz continuous function. Then the
viscosity solution to (2.4) with initial datum u0 satisfies for all x, y ∈ R

n, t, s � 0

|u(x, t) − u(y, r)| � ‖Du0‖∞|x − y| + K |t − r | 1
s+1

for some constant K > 0 which depends only on ‖Du0‖∞.

Proof. We prove just the Hölder continuity in time, since the Lipschitz continuity
has already been proved in Theorem 2.1. Let C = ‖Du0‖∞.

Let v0(x) = C |x |. Since v0 satisfies (4.1), the solution vC (x, t) with ini-
tial datum v0 is a homothetically expanding solution to (2.4). Moreover, since
Hs((x,C |x |), {(x ′, z′), | z′ � C |x ′|}) � 0 in the viscosity sense at every
x ∈ R

n , v0(x) is a stationary subsolution to (2.4), which implies by compari-
son that vC (x, t) � v0(x) for every t > 0, and then, again by comparison that
vC (x, t) � vC (x, r) if 0 < r < t .

Let us fix x0 ∈ R. By Lipschitz continuity we get that u0(x + x0) � v0(x) +
u0(x0), so by comparison we conclude that u(x + x0, t) � vC (x, t) + u0(x0), for
all x . If we compute the previous inequality in x = 0, using also (4.8) we get

u(x0, t) − u0(x0) � vC (0, t) = vC (0, 1)t
1

s+1 ∀x0 ∈ R
n .

By comparison this implies that

u(x0, t + r) − u(x0, t) � vC (0, 1)r
1

s+1 ∀x0 ∈ R
n .

The other inequality is obtainedwith an analogous argument by considering−C |x |.
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Remark 4.3. We observe that if ū0 in Theorem 4.1 is also a convex function, then
there exists C > 0 such that

sup
x∈Rn

|Hs(x, ū(x, t))| � Ct−
s

s+1 ∀t > 0. (4.6)

We conjecture that this property is actually true also for nonconvex functions ū0,
which satisfy (4.1), as in the local setting. Observe that due to (4.4) it is sufficient
to show that that there exists C > 0 such that

sup
x∈Rn

|Hs(x, ū(x, 1))| � C,

which is in turn equivalent by (4.5) to show that

sup
x∈Rn

|ū(x, 1) − Dū(x, 1) · x | � C(s + 1)−1.

Note that ū(x, 1) is a convex function, since convexity is preserved by the
fractional flow (1.1), see [9]. Moreover ū(x, 1) � ū0(x) by comparison (since
ū0(x) is a stationary subsolution to (2.4)). For λ > 0, and x ∈ R

n fixed, we define
v(λ) = ū(λx, 1). Note that this function is convex. By convexity we get that

ū(0, 1) = v(0) � v(1) − v′(1) = ū(x, 1) − Dū(x, 1) · x .
Recalling Proposition 4.2 we get that there exists K > 0 depending only on the
Lipschitz constant of ū0(x) such that ū0(λx) + K � ū(λx, 1) for every λ ∈ R. So
using again convexity of v and by (4.1) we get for λ � 0,

λū0(x) + K = ū0(λx) + K � ū(λx, 1) = v(λ) � v(1) + v′(1)(λ − 1)

= ū(x, 1) + (λ − 1)Dū(x, 1) · x .
This implies, sending λ → +∞, that ū0(x) � Dū(x, 1) · x and so in turn

ū(x, 1) − Dū(x, 1) · x � ū(x, 1) − ū0(x) � 0.

So, we proved that

0 � ū(x, 1) − Dū(x, 1) · x � ū(0, 1)

which gives the result.

Remark 4.4. Observe that if (4.6) is satisfied, then we may strengthened the con-
vergence result in Theorem 4.1, that is for every T > 0 it holds that

lim
t→+∞ |ū(x, t + T ) − ū(x, t)| = 0 uniformly inRn .

Indeed substituting in the equation (2.4) and recalling that ū(x, t) is uniformly
Lipschitz, we get that |ūt (x, t)| � C ′t−

s
s+1 , for some C ′ > 0 depending on C and

on the Lipschitz norm of u0. So, integrating we get, for all T > 0

|ū(x, t + T ) − ū(x, t)| � C
(
(t + T )

1
s+1 − t

1
s+1

)

and so for every T > 0,

lim
t→+∞ |ū(x, t + T ) − ū(x, t)| = 0 uniformly in R

n .
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On the other hand, every homothetically expanding graphical solution to (1.1)
is obtained as in Theorem 4.1.

Proposition 4.5. Assume that E1 is a solution to (1.2) and that is the subgraph of
a Lipschitz continuous function u1 : Rn → R.

Then the solution u(x, t) to (2.4) with initial datum u(x, 1) = u1(x) is defined
in Rn × (t0,+∞) where t0 = 1 − 1

c(s+1) and satisfies

lim
t→t+0

u(x, t) = ū(x) locally uniformly in x, (4.7)

where ū : Rn → R
n is Lipschitz continuous and 1-homogeneous as in (4.1).

Proof. According to Definition 1.1,

Et = [c(s + 1)(t − 1) + 1]
1

s+1 E1 = λ(t)E1

is a solution to (1.1), which means in particular that the solution u to (2.4) with
initial datum u(x, 1) = u1(x) can be obtained as

u(x, t) : = λ(t)u1

(
x

λ(t)

)

= [c(s + 1)(t − 1) + 1]
1

s+1 u1
(
x [c(s + 1)(t − 1) + 1]−

1
s+1

)
.(4.8)

This implies immediately that u is well defined in R
n × (t0,+∞), where t0 =

1 − 1
c(s+1) .
Since u1 is Lipschitz continuous, we get that vr (x) = ru1(x/r) are equilips-

chitz, and moreover |vr (x)| � r |u1(0)|+‖Du1‖∞|x |. Then, by Ascoli Arzelà the-
orem, up to subsequences there exist the limits limrn→0+ vrn (x), locally uniformly
in x . We claim that actually the limit is unique, that is ū(x) := limr→0+ ru1(x/r)
locally uniformly in x . If the claim is true, then it is easy to check that ū(x) sat-

isfies (4.1) and moreover by (4.8), limt→t+0
u(x, t) = limt→t+0

λ(t)u1
(

x
λ(t)

)
=

limr→0+ ru1(x/r) = ū(x).
To prove the claim we observe that by (4.8) vr (x) = ru1(x/r) = u(x, λ−1(r))

for every r > 0. Let rn → 0 such that limrn→0 vrn (x) = v̄(x). Then un(x, t) :=
u(x, t + λ−1(rn)) is the viscosity solution to (2.4) with un(x, 0) = vrn (x). By
stability of viscosity solutions with respect to uniform convergence, since vrn → v̄,
we get that un(x, t) → v̄(x, t) locally uniformly, where v̄(x, t) is the solution to
(2.4) with initial datum v̄. But actually v̄(x, t) = u(x, t + t0) for every t > 0, and
then the limit v̄ is unique and independent of the subsequence. 	


5. Convergence to self-similar solutions

We show that homotetically expanding solutions are the long-time attractors for
the flow of Lipschitz graphs, when the initial datum is a sublinear perturbation of
a 1-homogeneous function.
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We now generalize to the fractional curvature flows the result obtained in [13]
for the mean curvature flow, under the assumption that the initial datum u0 is
Lipschitz continuous and is straight at infinity in the following sense: There exists
K > 0 and δ > 0 such that

|u0(x) − Du0(x) · x | � K (1 + |x |)1−δ ∀x ∈ R
n .

This condition is equivalent to the following one: there exist a function ū0 which
satisfies (4.1) and constants K > 0, δ > 0 such that

|u0(x) − ū0(x)| � K (1 + |x |)1−δ. (5.1)

Note that, if we define φ(r, x) := ru0
( x
r

)
for all x ∈ R

n , then the straight at
infinity condition reads, for r � 1,

∣∣∣∣ ∂

∂r
φ(r, x)

∣∣∣∣ =
∣∣∣u0

( x
r

)
− x

r
· Du0

( x
r

)∣∣∣
� K (r + |x |)1−δr δ−1 � K (1 + |x |)1−δr δ−1.

Then, for all 0 < r1 < r2 � 1 we get
∣∣∣∣r2u0

(
x

r2

)
− r1u0

(
x

r1

)∣∣∣∣ =
∣∣∣∣
∫ r2

r1

∂

∂r
φ(r, x)dr

∣∣∣∣ � K

δ
(1 + |x |)1−δ(r δ

2 − r δ
1).

Observe that, since u0 is Lipschitz continuous, up to a subsequence there exists the
limit limr→0+ ru0

( x
r

)
, which is locally uniform in x . By the previous inequality,

we conclude that the limit is unique, so that the limit is a function ū0 which satisfies
(4.1) and finally

∣∣∣∣
∫ 1

0

∂

∂r
φ(r, x)dr

∣∣∣∣ = |u0(x) − ū0(x)| � K

δ
(1 + |x |)1−δ .

Actually, the convergence result proved in [13] is stronger than ours, since they
provide exponential in time convergence of the flows.

Theorem 5.1. Let u0 be a Lipschitz continuous function, such that there exist ū
which satisfies (4.1), and constants K > 0, δ ∈ (0, 1) for which (5.1) holds. Let
u and ũ be respectively the solutions to (2.4) and (2.8) with initial datum u0, and
ū(x, t) be the solution to (2.4) with initial datum ū0(x). Then

lim
τ→+∞ ũ(y, τ ) = ū

(
y,

1

s + 1

)
locally uniformly in C1(Rn).

In particular, the rescaled flow

1

[(s + 1)t + 1]1/(s+1)
Et (5.2)

where Et is the subgraph of u(·, t), converges as τ → +∞ to a graphical hyper-
surface Ẽ which satisfies (1.2) (with c = 1).
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Proof. Let ψ : (0,+∞) → (0,+∞) be a smooth function such that ψ(k) ≡ 0 if
k < 1 and ψ(k) ≡ 1 if k > 2. Define for r > 1

ur0(x) = ū0(x) + ψ

( |x |
r

)
(u0(x) − ū0(x)).

Then our assumption implies that

|u0(x) − ur0(x)| � K (1 + 2r)1−δ ∀x ∈ R
n .

By the comparison principle we get that, if ũ and ũr are respectively the solutions
to (2.8) with initial datum u0 and ur0,

ũr (y, τ ) − K (1 + 2r)1−δe−τ � ũ(y, τ ) � ũr (y, τ ) + K (1 + 2r)1−δe−τ

∀y ∈ R
n, τ > 0. (5.3)

On the other hand,

ū0(x) − 2K

r δ
|x | � ur0(x) � ū0(x) + 2K

r δ
|x |.

Let ū±r be the solutions to (2.4) with initial datum respectively ū0(x) ± 2K
rδ |x |.

Note that ū0(x) ± 2K
rδ |x | satisfy (4.1) with Lipschitz constant ‖Dū0‖∞ + 2K

rδ �
‖Dū0‖∞ + 2K . By scaling properties of ū0(x) ± 2K

rδ |x |, see (4.3), and by formula

(2.7), we get that ū±r

(
y, 1−e−(s+1)τ

s+1

)
is the solution to (2.8) with initial datum

ū0(x) ± 2K
rδ |x |. Then by comparison principle

ū−r

(
y,

1 − e−(s+1)τ

s + 1

)
� ũr (y, τ ) � ū+r

(
y,

1 − e−(s+1)τ

s + 1

)
.

By Proposition 4.2, recalling that ū0(x) ± 2K
rδ |x | are Lipschitz functions with Lip-

schitz constant less than ‖Dū0‖∞ + 2K , we get that there exists B depending only
on ‖Dū0‖∞ and K such that

ū−r

(
y,

1

s + 1

)
− Be−τ � ũr (y, τ ) � ū+r

(
y,

1

s + 1

)
+ Be−τ .

Therefore by (5.3) we conclude that for all y ∈ R
n , τ > 0, and all r >> 1,

ū−r

(
y,

1

s + 1

)
− (B + K (1 + 2r)1−δ)e−τ � ũ(y, τ ) � ū+r

(
y,

1

s + 1

)

+
(
B + K (1 + 2r)1−δ

)
e−τ .

Note that as r → +∞, ū±r

(
y, 1

s+1

)
→ ū

(
y, 1

s+1

)
locally uniformly in y by

stability of viscosity solutions, since ū0(x) ± 2K
rδ |x | → ū0(x) locally uniformly.

So taking r = eτ in the previous inequality and sending τ → +∞, we get the
local uniform convergence of ũ. Finally, since by Proposition 3.1, ũ has uniform
C1,α norm inRn ×[t0,+∞), for every t > 0, we conclude that the locally uniform
convergence holds in C1,α sense. 	
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Remark 5.2. If condition (5.1) is violated, then in general we cannot expect the
asymptotic convergence result proved in Theorem 5.1. Indeed, observe that if ũ is
the solution to (2.8) with initial datum u0, then reasoning as in Proposition 4.2 we
get that

|ũ(y, τ ) − e−τu0(ye
τ )| � K

(
1 − e−(s+1)τ

s + 1

) 1
s+1

� K

(
1

s + 1

) 1
s+1 =: K ′.

In particular, if the convergence takes place, then for every compact set B ⊂ R
n

there exists τB > 0 such that

|e−τ1u0(ye
τ1) − e−τ2u0(ye

τ2)| � 3K ′ for all τ1, τ2 � τB .

For instance, this condition is not satisfied by initial data oscillating at infinity
between different positively homogeneous functions. We refer to [13, Proposition
6.1] for an explicit example.

6. Convergence of the unrescaled flow

In this section we will consider some cases in which convergence of the unrescaled
flow holds. To get stability without rescaling, we have to impose some decay or
periodicity condition of the initial datum.

6.1. Stability of hyperplanes

We show that hyperplanes are stable with respect to the flow (1.1), that is, if the
initial datum is flat at infinity (resp. periodic), then the solution stabilizes to the
hyperplane at which the initial datum is (resp. stabilizes to a constant).

We remark that the behavior of the solution to (2.4) for these families of ini-
tial data is analogous to the behaviour of solutions to the fractional heat equation

ut + (−�)
s+1
2 u = 0, with the same initial data. Analogous results for the local

mean curvature flow of graphs have been obtained in [12,14,19], with different
approaches: either comparison with large balls as in our case (even if in the local
case the argument is more involved), or reduction to stabilization of solutions to
the heat equation.

We start with a result about periodic initial data, showing that the solution
stabilizes to a constant. For a particular class of periodic initial datum we may
show that actually this constant is given by the mean value of the initial datum.

Proposition 6.1. Let u0 : Rn → R be a Lipschitz function which is Zn periodic.
Then, there exists a constant c ∈ (min u0,max u0) such that the solution u to (2.4)
with initial datum u0 satisfies

lim
t→+∞ u(x, t) = c uniformly in C1(Rn).
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If moreover u0 has also the property that

there exists v ∈ R
nsuch that for all x ∈ R

n, u0(x + v) = −u0(x) (6.1)

then

lim
t→+∞ u(x, t) = 0 =

∫
[0,1]n

u0(x)dx uniformly inC1(Rn).

Proof. We observe that by uniqueness the solution u(x, t) is Zn periodic in the x
variable. We define M(t) = maxx u(x, t) and m(t) = minx u(x, t). Note that by
Proposition 4.2, M(t) and m(t) are Hölder continuous functions, and moreover by
comparison, we have that minx u0(x) � m(t) � M(t) � maxx u0(x), and that
M(t) is decreasing and m(t) is increasing. Therefore M(t) and m(t) are differ-
entiable a.e. We want to prove that limt→+∞ M(t) − m(t) = 0. If this holds,
then the result follows, recalling that M(t) is decreasing and m(t) is increas-
ing. The C1 convergence is a consequence of the uniform estimates in Proposi-
tion 3.1. Assume by contradiction that limt→+∞ M(t) − m(t) = C̄ > 0. We fix
t > 0 and xM ∈ argmax u(·, t) ∩ [0, 1]n and xm ∈ argmin u(·, t) ∩ [0, 1]n . Let
C(t) = M(t) − m(t) � C̄ . We recall that u(·, t) is Lipschitz continuous with
Lipschitz constant less than ‖Du0‖∞ and we fix δ > 0 such that δ‖Du0‖∞ � C̄

2 .
It is immediate to check that

u(xM , t) − u(x, t) � u(xM , t) − u(xm, t) − δ‖Du0‖∞

= C(t) − C̄

2
� C(t)

2
∀x ∈ B(xm, δ),

and analogously

u(x, t) − u(xm, t) � C(t)

2
∀x ∈ B(xM , δ).

Then, at every point of differentiability t , the functions M,m satisfy

M ′(t) = ut (xM , t), m′(t) = ut (xm, t),

for all xM ∈ argmax u(·, t), xm ∈ argmin u(·, t).

Using the equation we get

M ′(t) = ut (xM , t)

= −Hs(xm, u(xM , t)) �
(
1 + ‖Du0‖2∞

)− n+s+1
2

∫
Rn

u(y, t) − u(xM , t)

|y − xM |n+s+1 dz

� −
(
1 + ‖Du0‖2∞

)− n+s+1
2 C(t)

2

∫
B(xm ,δ)

1

|y − xM |n+s+1 dz

= −
(
1 + ‖Du0‖2∞

)− n+s+1
2 C(t)

2

ωnδ
n

(δ + 1)n+s+1 < 0
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and

m′(t) = ut (xm, t)

= −Hs(xm, u(xm, t)) �
(
1 + ‖Du0‖2∞

)− n+s+1
2

∫
Rn

u(y, t) − u(xm, t)

|y − xm |n+s+1 dz

�
(
1 + ‖Du0‖2∞

)− n+s+1
2 C(t)

2

ωnδ
n

(δ + 1)n+s+1 > 0.

These two inequalities imply thatM(t) is strictly decreasing,m(t) is strictly increas-
ing and C ′(t) � −KC(t) for a constant K depending only on C̄ and ‖Du0‖∞.
Therefore limt→+∞ C(t) = 0, which is in contradiction with our assumption.

Finally, observe that if u0 satisfies (6.1), then by uniqueness,−u(x, t) = u(x +
v, t). This implies that necessarily limt→+∞ u(x, t) = − limt→+∞ u(x, t) and
then the limit is 0. 	


We first of all prove stability of constant functions in R
n .

Theorem 6.2. Let u0 : Rn → R be a Lipschitz function such that

lim|x |→+∞ u0(x) = 0.

Then, the solution u to (2.4) with initial datum u0 satisfies

lim
t→+∞ u(x, t) = 0 uniformly in C1(Rn).

Proof. First of all we observe that it is sufficient to prove the result for initial
data which are nonnegative everywhere or nonpositive everywhere. Indeed the
general case is easily obtained by using as barriers the solutions with initial data
u+
0 = max(u0, 0) and u−

0 = min(u0, 0).
So, we prove the result only for the case u0 � 0, since the other case u0(x) � 0

is completely analogous. Note that by comparison, since the constant are stationary
solutions to (2.4), 0 � u(x, t) � maxy u0(y) for all x ∈ R

n, t > 0.
We claim now that for all t > 0,

inf
x
u(x, t) = 0 and thatM(t) := max

x
u(x, t)is decreasing in t.

Indeed for every ε > 0, let us fix R > 0 such that |u0(x)| � ε for all |x | � R. For
every |x | > R, fix K = |x | − R > 0 and observe that the ball B((x, K + ε), K ) of
center (x, K + ε) and radius K , is contained in Rn+1 \ E0. By monotoniciy of the
flow (1.1) with respect to inclusions, see [8], there holds that

B((x, K + ε), K (t)) ⊆ R
n+1 \ Et ,

where K (t) = (Ks+1 − (s+1)c̄t)
1

s+1 , and c̄ is the fractional mean curvature of the
unit ball in Rn+1. Therefore, we get that for all t with t � T � Ks+1

2(s+1)c̄ there holds

u(x, t) � ε + K − K (t) � ε − K ′(T )t

= ε + c̄

(Ks+1 − (s + 1)c̄T )
s

s+1
t � ε + c̄2

s
s+1

Ks
t.
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This implies that for all ε > 0, there exists R > 0 such that for |x | > R,

0 � u(x, t) � ε + c̄2
s

s+1

(|x | − R)s
t for all t � (|x | − R)s+1

2(s + 1)c̄
. (6.2)

This implies that infx u(x, t) = 0 for all t > 0 and moreover that supx u(x, t) =
maxx u(x, t). The fact that maxx u(x, t) is decreasing in t is a consequence of
comparison with stationary solutions.

Now, sinceM(t) is decreasing, let M̄ = limt→+∞ M(t) = inf t M(t).We claim
that M̄ = 0. If the claim holds, then we get the conclusion. The C1 convergence is
a consequence of the uniform estimates in Proposition 3.1.

Assume by contradiction that M̄ > 0. We fix 0 < ε < M̄
2 and t̄ > 0 such that

M(t̄) � M̄ + ε. We fix also R = R(t̄) such that u(x, t̄) < M̄
2 for all |x | > R.

Now we aim to get a contradiction by constructing a periodic barrier which
satisfies (up to suitable vertical translation) a condition like (6.1).We fix a Lipschitz
continuous function φ : [−R, 2R] → R, such that φ is non increasing, φ(z) =
M̄ + ε for z ∈ [−R, R], and φ(2R) = M̄

2 . Now we extend it to a function φ :
[−R, 5R] → R by putting φ(z) = 3

2 M̄ + ε − φ(z − 3R) for all 2R � z � 5R.
Finally, we extend it by periodicity to be a 6RZ periodic function. Then the function
v0(x) = φ(x · e1), is a 6RZn periodic function, which is Lipschitz continuous, and
satisfies v0(x + 3Re1) = 3

2 M̄ + ε − v0(x).
Note that by construction, u(x, t̄) � v0(x) for all x ∈ R

n and then by compar-
ison

u(x, t + t̄) � v(x, t), and in particular lim sup
t→+∞

u(x, t) � lim
t→+∞ v(x, t)

where v(x, t) is the solution to (2.4) with initial datum v0. Now by Proposition 6.1
we get that limt→+∞ v(x, t) = c uniformly in C1, and moreover, since v0(x +
3Re1) = 3

2 M̄+ε−v0(x) there holds that c = 3
2 M̄+ε−c, and so c = 3

4 M̄+ ε
2 < M̄ ,

recalling our choice of ε. But then we get that lim supt→+∞ u(x, t) < M̄ , in
contradiction with the definition of M̄ . 	


Remark 6.3. Let uλ
0 be a family of Lipschitz continuous functions which fulfills

uniformly in λ the condition in Theorem 6.2, in the sense that

sup
λ

sup
|x |>R

|uλ
0(x)| → 0 as R → +∞.

Then it is easy to check that the convergence is uniform in λ in the sense that

sup
λ

‖uλ(x, t)‖C1 → 0 ast → +∞

where uλ is the solution to (2.4) starting from uλ
0.

Finally we give the general result about stability of hyperplanes. We denote
with d(A, B) the Hausdorff distance between the sets A, B.
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Corollary 6.4. Let E0 ⊆ R
n+1 be a set such that ∂E0 is a Lipschitz surface and

that there exists a half-space H for which

lim
R→+∞ d(E0 \ B(0, R), H \ B(0, R)) = 0.

Then the outer and inner level set flows E+(t), E−(t) defined in (2.3) satisfy

lim
t→+∞ d(E+(t), H) = 0 = lim

t→+∞ d(E−(t), H).

Proof. Since the fractionalmean curvature is invariant by rotations and translations,
we may assume without loss of generality that H = {(x, z) ∈ R

n × R | z � 0}.
Moreover, by the assumption that limR→+∞ d(E0 \ B(0, R), H \ B(0, R)) = 0,
there exist two Lipschitz functions u0, v0 : Rn → R such that lim|x |→+∞ u0(x) =
0 = lim|x |→+∞ v0(x) and {(x, z) ∈ R

n × R | z � u0(x)} ⊆ E0 ⊆ {(x, z) ∈
R
n ×R | z � v0(x)}. By comparison we get that {(x, z) ∈ R

n ×R | z � u(x, t)} ⊆
E−
t ⊆ E+

t ⊆ {(x, z) ∈ R
n × R | z � v(x, t)}, where u(x, t), v(x, t) are the

solutions to (2.4) with initial datum u0, v0. By Theorem 6.2 limt→+∞ u(x, t) =
limt→+∞ v(x, t) = 0 uniformly in Rn , and this gives the conclusion. 	


6.2. Stability of convex cones

In this section we provide the convergence of the unrescaled flow in the case the
initial data is decaying at infinity to a Hs-mean convex cone, staying above it. The
result can be strenghtened if the initial cone is convex, by using the stability of
hyperplanes.

Proposition 6.5. Let u0 : R
n → R be a Lipschitz continuous function. Assume

there exists a non linear function ū0 which satisfies (4.1), and

Hs (x, ū0(x)) � 0 in the viscosity sense, (6.3)

such that

u0(x) � ū0(x) and lim|x |→+∞ u0(x) − ū0(x) = 0.

Then, if u is the solution to (2.4) with initial datum u0, it holds

lim
t→+∞ u(x, t) − ū(x, t) = 0 locally uniformly inC1(Rn).

Proof. Observe that by (6.3), ū0(x) is a stationary viscosity subsolution to (2.4),
therefore ū(x, t) � ū0(x) and so in particular ū(0, t) � ū0(0). Observe that, if ū0
is a homogeneous Lipschitz function, then either it is linear or it is singular at 0, in
the sense that the curvature in a neighborhood of x = 0 is not bounded. Therefore,
since we assumed that ū0 is non linear, then ū(0, t) > 0 since ū is smooth by
Theorem 4.1. Again by comparison, we get that also ū(x, t + r) � ū(x, t) for all
t � 0, r > 0, x ∈ R

n .
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Fix ε > 0 and R > 0 such that u0(x) � ū0(x) + ε for all |x | > R. Therefore
we get that for all T > 0,

u0(x) � ū(x, T ) + ε for all |x | > R. (6.4)

Observe now that by (4.3) and Lipschitz continuity

ū(x, t) � ū(0, t) − C |x | = t
1

s+1 ū(0, 1) − C |x |.
Since ū(0, 1) > 0 there exists T > 0 sufficiently large such that

ū(x, T ) � T
1

s+1 ū(0, 1) − C |x | � u0(x) for all |x | � R. (6.5)

Therefore, by (6.4), (6.5), and by comparison we get that for some T > 0
sufficiently large

u(x, t) � ū(x, T + t) + ε ∀t � 0, x ∈ R
n .

Note that since u0 � ū, by comparison u(x, t) � ū(x, t) for all x, t . Then we
get, for ε > 0 and T > 0 fixed (and depending on ε),

0 � u(x, t) − ū(x, t) � ū(x, T + t) − ū(x, t) + ε.

We conclude by letting t → +∞ and recalling that, by Theorem 4.1, ū(x, T + t)−
ū(x, t) → 0 as t → +∞ uniformly in x , for all fixed T . 	

Theorem 6.6. Let u0 : Rn → R be a Lipschitz continuous function. Assume there
exists a convex function ū0 which satisfies (4.1) and such that

lim|x |→+∞ u0(x) − ū0(x) = 0.

Then, if u the solution to (2.4) with initial datum u0,

lim
t→+∞ u(x, t) − ū(x, t) = 0 uniformly in C1(Rn).

Proof. We divide the proof in several steps.
Step 1: for every ε > 0 there exists T = T (ε) such that

u(x, t) � ū(x, T (ε) + t) + ε ∀t � 0, x ∈ R
n . (6.6)

Since ū0 is convex, then it also satisfies (6.3). We proceed as in Proposition 6.5.
So for every ε > 0, there exists R = R(ε) > 0 such that u0(x) � ū0(x) + ε �
ū(x, t) + ε for all |x | > R and moreover, arguing as in the proof of (6.5), we get
that there exists T > 0 sufficiently large such that

ū(x, T ) � u0(x) for all |x | � R.

Therefore, since u0(x) � ū(x, T ) + ε, we conclude by comparison.
Step 2: for every δ > 0 there exist T (δ) > 0 such that

u(x, t) � ū0(x) − δ ∀t � T (δ). (6.7)
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Since ū0 is convex and is positively 1-homogeneous, we get that for all ν ∈ S
n

there exists pν ∈ R
n , such that ū0(x) � pν · x , with equality at every x = λν with

λ � 0.
We define the family of functions uν

0(x) = inf(u0(x), pν · x) and observe that
by the assumption there holds that

lim
R→+∞ sup

ν∈Sn
sup

|x |>R
uν
0(x) − pν · x = 0.

So, by Corollary 6.4, and arguing as in Remark 6.3, we get that

lim
t→+∞ sup

ν∈Sn
d(Eν

t , H
ν) = 0

where Hν is the halfspace with normal (−pν, 1). This in particular implies that
limt→+∞ uν(x, t) − pν · x = 0 uniformly in ν, which in turns gives that
lim inf t→+∞ u(x, t) − pν · x � limt→+∞ uν(x, t) − pν · x = 0 uniformly in
ν, and so in particular lim inf t→+∞ u(x, t) � ū0(x). This permits to conclude.
Step 3: conclusion.

Observe that by Step 2, and comparison principle, for δ > 0 fixed, there holds
that u(x, t + T (δ)) � ū(x, t) − δ. So, for every ε > 0 and t � T (δ), we get by
Step 1 and the previous observation that

ū(x, t − T (δ)) − ū(x, t) − δ � u(x, t) − ū(x, t) � ū(x, t + T (ε)) − ū(x, t) + ε.

Now we conclude by arbitrariness of ε, δ and by Remark 4.4, letting t → +∞. 	


7. Ancient and homothetically shrinking solutions

Finally we consider homothetically shrinking solutions in the graphical case, and
we show that they are necessarily hyperplanes.

Definition 7.1. An ancient solution to (1.1) is a solution to (1.1) defined for all
t ∈ (−∞, 0).

We recall the following Liouville theorem for ancient solutions of parabolic frac-
tional equations with rough kernels, proved in [21, Theorem 3.1]. We state it in the
setting we are going to apply it.

Theorem 7.2. [21, Theorem 3.1] Let I be a translation invariant operator, elliptic
with fractional order 1+s, with I (0) = 0 and u ∈ C(Rn × (−∞, 0]) be a viscosity
solution to ut − I (u) = 0 in R

n × (−∞, 0]. Assume there exists C > 0 such that
for all R � 1 there holds

sup
|x |�R,−R1+s�t�0

|u(x, t)| � CR.

Then there exists a ∈ R
n, b ∈ R such that u(x, t) = a · x + b.
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Theorem 7.3. The only graphical Lipschitz solutions to (1.3) are hyperplanes (with
c = 0).

Moreover the only graphical uniformly Lipschitz ancient solutions to (1.1) are
hyperplanes.

Proof. The result is a consequence of Theorem 7.2.
Let E be a graphical Lipschitz solution to (1.3), that is let u1 : Rn → R be a

Lipschitz continuous function such that E = {(x, z) |z � u1(x)} is a solution to
(1.3). Then arguing as in Proposition 4.5 we may connstruct a solution to (2.4) in
(−∞, 0) with u1(x, t) = u1(x). Indeed let

Et := [−c(s + 1)t + 1]
1

s+1 E = λ(t)E for t < 0.

It is easy to check, using the fact that E is a solution to (1.3), that Et is a solution
to (1.1). Therefore the function

u1(x, t) := λ(t)u1

(
x

λ(t)

)
= [−c(s + 1)t + 1]

1
s+1 u1

(
x [−c(s + 1)t + 1]−

1
s+1

)

(7.1)
is a solution to (2.4) in (−∞, 0) and satisfies u1(x, 0) = u1(x). Since u1 is Lipschitz
continuous we get that

|u1(x, t)| � λ(t)|u1(0)| + ‖Du1‖∞|x |.
This implies that there exists K > 0 depending on c, s, ‖Du1‖∞, u1(0), such that
for all R > 1,

max
|x |�R,t∈[−Rs+1,0]

|u1(x, t)| � K R.

Recalling the formula for Hs (2.11), we get that u1 is a viscosity solution to

ut − I (u) = 0, t ∈ (−∞, 0),

where I is a translation invariant operator, elliptic with fractional order s + 1, and
I (0) = 0. Then, by Theorem 7.2 we conclude that there exist a ∈ R

n and b ∈ R

such that u1(x, t) = a · x + b for all t � 0 and x ∈ R
n . This implies that E is a

hyperplane and c = 0.
Finally, if Et is a graphical uniformly Lipschitz and ancient solution to (1.1),

then u(x, t) is a continuous viscosity solution to ut − I (u) = 0 for t ∈ (−∞, 0) and
moreover, since |Du(x, t)| � C , arguing as in Proposition 4.2 we obtain that there

exists a constant K only depending onC such that |u(x, t)−u(x, t+h)| � K |h| 1
1+s .

So, again by Theorem 7.2 we conclude that u is affine and does not depend on t . 	

Remark 7.4. In the case of classical mean curvature flow, see for instance [15] and
references therein, there are translating, hence eternal, solutions which are smooth
but not Lipschitz.We expect that such solutions, with polynomial growth depending
on s, exist also for the graphical fractional mean curvature flow (2.4).
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