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Abstract. Sasakian manifolds are odd-dimensional counterpart to Kähler manifolds. They
can be defined as contact manifolds equipped with an invariant Kähler structure on their
symplectic cone. The quotient of this cone by the homothety action is a complex mani-
fold called Vaisman. We study harmonic forms and Hodge decomposition on Vaisman and
Sasakian manifolds. We construct a Lie superalgebra associated to a Sasakian manifold in
the same way as the Kähler supersymmetry algebra is associated to a Kähler manifold. We
use this construction to produce a self-contained, coordinate-free proof of the results by
Tachibana, Kashiwada and Sato on the decomposition of harmonic forms and cohomology
of Sasakian and Vaisman manifolds. In the last section, we compute the supersymmetry
algebra of Sasakian manifolds explicitly.
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1. Introduction

Sasakian manifolds are odd-dimensional counterparts to Kähler manifolds. They
can be defined as contact manifolds equipped with an invariant Kähler structure on
their symplectic cone. Taking a quotient of this cone by the homothety action one
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obtains a complex manifold called Vaisman. Here we develop a version of Hodge
theory on Sasakian and Vaisman manifolds.

The modern approach to Hodge theory is inspired by the supersymmetry. Given
a manifold with a geometric structure (such as Kähler, hyperkähler, HKT, G2-
manifold and so on), one takes a bunch of natural operators on the de Rham algebra
(such as the de Rham differential, the Lefschetz sl(2)-triple etc.) and proves that
these operators generate a finite-dimensional Lie superalgebra. In most cases, the
Laplacian is central in this superalgebra. This gives an interesting geometric action
on the cohomology.

In this paper we write the natural superalgebra for a Sasakian manifold. Hodge
theory for Sasakian manifolds is well developed, but most proofs are written in
classical differential geometry style,mixing coordinate computationswith invariant
ones. We wanted to give a more conceptual proof.

In the end we arrived at a very simple approach to the Hodge theory on Sasakian
and Vaismanmanifolds (Theorem 6.6, Theorem 8.2). The Sasakian supersymmetry
algebra is not used in this development, but it is interesting in itself, and the relations
are quite surprising.

When the Sasakian manifold is also Einstein, the superalgebra structure seems
to be simpler. Using this approach, J. Schmude ([28]) obtained a closed formula
for the de Rham Laplacian in terms of the transversal Laplacian operator.

1.1. Supersymmetry in Kähler and non-Kähler geometry

The connection between de Rham calculus on manifolds with special geometry
(such as Kähler and hyperkähler) and their supersymmetry appeared as early as
in 1997 ([14]). It is well known that extra supersymmetries of the σ -model force
the target space to acquire extra geometric structures: the N = 1 supersymmetry
implies Kähler structure on the target space, the N = 2 supersymmetry makes it
hyperkähler, and so on. In [14], this supersymmetry was interpreted in terms of the
de Rham calculus on the target space.

In [24], the connection between the supersymmetry and rational homotopy
theory is further expounded, with the constructions of rational homotopy theory
(such as Sullivan’s minimal models) interpreted in terms of quantum mechanics.

For Sasakian manifolds, this approach was pioneered by [34], who used the
transversal Kähler relations to obtain results about rational homotopy of Sasakian
manifolds. This work was applied to homotopy formality of Sasakian manifolds
([4]) and in applications to the geometry of Sasakian nilmanifolds ([8]).

Traditionally, the Kähler identities were obtained using the Levi-Civita connec-
tion. Alternatively, one may show that a Kähler manifold can be approximated up
to second order by a flat space. Using supersymmetry to prove the Kähler identities
(Sect. 2) has many advantages over either of these approaches. In [38], supersym-
metry was used to develop the Hodge theory for the HKT manifolds (hyperkähler
manifolds with torsion), where the structure tensors are neither preserved by the
Levi-Civita connection nor admit a second order approximation. The supersym-
metry approach was later used in supersymmetric σ -models associated to HKT
manifolds ([15,16,32]).
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In [40], the supersymmetry approach was used to obtain the Hodge decomposi-
tion on nearly Kähler manifolds, where the structure tensors are also non-parallel.

In another direction, one may use the supersymmetry to obtain the superalgebra
action on manifolds with parallel differential forms ([39]). The Hodge-theoretic
results obtained in this directionwere used in [20] to study the geometry of complete
G2- and Spin(7)-manifolds with d(linear) structure form.

Summing up, finding a superalgebra associatedwith a given geometric structure
seems to be worthwhile, for mathematics as well as for mathematical physics.

1.2. Structure of this paper

• In Sect. 2 we relate the Lie superalgebra approach to de Rham calculus and
obtain the Kähler identities which lie at the foundation of Hodge theory.

• Section 3 introduces the Sasakian manifolds and explains the basic notions of
Sasakian geometry.

• In Sect. 4 we explain how one employs de Rham calculus to obtain the Leray-
Serre spectral sequence; this approach was used by A. Hattori in 1960.We need
a version of the Leray-Serre spectral sequence which can be applied to smooth
foliations with fibers which are not necessarily closed or compact. We compute
the differentials of this spectral sequence for Sasakian manifolds explicitly, for
later use.

• In Sect. 5 we deal with transversally Kähler structures on smooth foliations.We
give simple proofs of the standard results on transversal (basic) cohomology,
due to El Kacimi-Alaoui ([12]), much simplified because we need them only
for Vaisman and Sasakian manifolds.

• In Sect. 6, we prove the standard results on cohomology for Sasakian mani-
folds, in Sect. 7 we introduce the Vaisman manifolds, and in Sect. 8 we prove
the standard results on cohomology for Vaisman manifolds. The cohomology
calculations for Sasakian and Vaisman manifolds are very similar and rely on
the same homological algebra argument. Throughout Sect. 8, we use the 1-
dimensional transversally Sasakian foliation, generated by the Lee field, and
apply the superalgebra computations done in Sect. 6 on Sasakian manifolds.
However, the results on Vaisman manifolds cannot be deduced from the results
on Sasakianmanifolds, because the Lee foliationmight have non-closed leaves.

• We finish the paper with an explicit calculation of the Sasakian superalgebra in
Sect. 9. This section depends only on Sects. 2–4.

2. Lie superalgebras acting on the de Rham algebra

2.1. Lie superalgebras and superderivations

In the following, all vector spaces and algebras are considered over R. Let A be a
Z/2Z-graded vector space,

A = Aeven ⊕ Aodd.
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We say that a ∈ A is pure if a belongs to Aeven or Aodd. For a pure element a ∈ A,
we write ã = 0 if a ∈ Aeven, and ã = 1 if a ∈ Aodd. Consider a bilinear operator

{·, ·} : A × A −→ A,

called supercommutator. Assume that {·, ·} is graded anti-commutative, that is,
satisfies

{a, b} = −(−1)ãb̃{b, a}
for pure a, b ∈ A. Assume, moreover, that {·, ·} is compatible with the grading: the
commutator {a, b} is even when both a, b are even or odd, and odd if one of these
elements is odd and another is even. We say that (A, {·, ·}) is a Lie superalgebra if
the following identity (called the gradedJacobi identity, or super Jacobi identity)
holds, for all pure elements a, b, c ∈ A:

{a, {b, c}} = {{a, b}, c} + (−1)ãb̃{b, {a, c}}. (2.1)

Up to a sign, this is the usual Jacobi identity.
Every reasonable property of Lie algebras has a natural analogue for Lie super-

algebras, using the following rule of thumb: every time one would exchange two
elements a and b, one adds a multiplier (−1)ãb̃.

Example 2.1. Let V = V even ⊕ V odd be a Z/2Z-graded vector space, and End(V )

its space of endomorphisms, equipped with the induced grading.We define a super-
commutator in End(V ) by the formula:

{a, b} = ab − (−1)ãb̃ba

It is easy to check that (End(V ), {·, ·}) is a Lie superalgebra.
Remark 2.2. Given aZ-graded vector space A, one defines Aeven as the direct sumof
even components, and Aodd as the direct sum of odd components. Then a Z-graded
Lie superalgebra is given by a supercommutator on A satisfying {Ap, Aq} ⊂ Ap+q

and satisfying the graded Jacobi identity. In the sequel, all Lie superalgebras we
consider are of this type.An endomorphism u ∈ End(A) is called even if u(Aodd) ⊂
Aodd and u(Aeven) ⊂ Aeven, and odd if u(Aeven) ⊂ Aodd and u(Aodd) ⊂ Aeven. An
endomorphism which is either odd or even is called pure.

Definition 2.3. A graded algebra A is called graded commutative if {a, b} = 0
for all a, b ∈ A.

The Grassmann algebra and de Rham algebra are clearly graded commutative.

Definition 2.4. Let g be a graded commutative algebra. A map δ : g −→ g is
called an even derivation if it is even and satisfies δ(xy) = δ(x)y + xδ(y). It is
called an odd derivation if it is odd and satisfies δ(xy) = δ(x)y + (−1)x̃ xδ(y). It
is called graded derivation, or superderivation, if it shifts the grading by i and
satisfies δ(ab) = δ(a)b + (−1)i j aδ(b), for each a ∈ A j .

Remark 2.5. The supercommutator of two superderivations is again a derivation.
Therefore, the derivations form a Lie superalgebra.
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2.2. Differential operators on graded commutative algebras

We need some algebraic results, which are almost trivial, and well-known for com-
mutative algebras. We extend these statements to graded commutative algebras; the
proofs are the same as in the commutative setting (see [9]).

Definition 2.6. Let A∗ be a graded commutative algebra. The algebra of differ-
ential operators Diff(A∗) is an associative subalgebra of End(A∗) generated by
graded derivations and A∗-linear self-maps. Let Diff0(A∗) be the space of A∗-linear
self-maps, Diff0(A∗) = A∗, Diff1(A∗) ⊃ Diff0(A∗) the subspace generated by
Diff0(A∗) and all graded derivations, and Diff i (A∗) := Diff i−1(A∗) · Diff1(A∗).
This gives a multiplicative filtration Diff0(A∗) ⊂ Diff1(A∗) ⊂ Diff2(A∗) ⊂ · · ·
The elements of Diff i (A∗) are called differential operators of order i on A∗.

Claim 2.7. Let D ∈ Diff i (A∗), D′ ∈ Diff j (A∗) be differential operators on a
graded commutative algebra. Then {D, D′} ∈ Diff i+ j−1(A∗).

Proof. Since the commutator of two derivations is a derivation, one has {Diff1(A∗),
Diff1(A∗)} ⊂ Diff1(A∗). Then we use induction on i and the standard commutator
identities in the associative algebra. 	


We shall apply this claim to geometric operations on the de Rham algebra,
obtaining differential operators of first order. Note that the “differential operator”
in the usual sense is a different notion. For example, the interior product operator
iv of contraction with a vector field v on a manifold M is an odd derivation of
the de Rham algebra, hence it is a first order differential operator; however, iv is
C∞(M)-linear, and thus it is not a differential operator in the usual sense.

Claim 2.8. Let D be a differential operator of first order on A∗. Then D(x) =
D(1)x + δ(x), where δ is a derivation.

Proof. This is seen by defining δ := D − D(1)·, then observing that δ(1) = 0,
which implies that δ ◦ a − a ◦ δ = δ(a) (we identify a ∈ A with a ∈ End(A),
a(b) = ab). We then have

δ(ab) = (δ ◦ a)(b) = (a ◦ δ)(b) + δ(a)(b) = aδ(b) + δ(a)b,

proving that δ is a derivation. 	

We use this formalism to compare first order differential operators on A∗ as

follows.

Claim 2.9. Let δ be a derivation on A∗. Then δ is uniquely determined by the values
it takes on any set of multiplicative generators of A∗. 	

Claim 2.10. Let D be a first order differential operator on A∗. Then D is uniquely
determined by D(1) and the values it takes on any set of multiplicative generators
of A∗
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Proof. ByClaim 2.8, D−D(1) is a derivation, hence Claim 2.9 implies Claim 2.10.
	

Corollary 2.11. Let d1, d2 : �∗(M) −→ �∗+1(M) be first order differential oper-
ators on the de Rham algebra of a manifold M, satisfying d21 = d22 = 0, and
V ⊂ �1(M) a subspace such that the space d1(C∞(M)) + V generates �1(M)

as a C∞(M)-module. Suppose that d1
∣
∣
∣C∞(M)

= d2
∣
∣
∣C∞(M)

and d1
∣
∣
V = d2

∣
∣
V . Then

d1 = d2.

Proof. Clearly, d1 = d2 on C∞(M) ⊕ d1(C∞(M)). Then d1 = d2 on the set
of multiplicative generators C∞(M) + d1(C∞(M)) + V , and Claim 2.10 implies
Corollary 2.11. 	


The following claim is used many times in the sequel.

Claim 2.12. Let d be an odd element in a Lie superalgebra h, satisfying {d, d} = 0.
Then {d, {d, u}} = 0 for any u ∈ h.

Proof. By the super Jacobi identity,

{d, {d, u}} = −{d, {d, u}} + {{d, d}, u} = −{d, {d, u}}. (2.2)

	

This claim is a special case of the following:

Claim 2.13. Let d be an odd element in a Lie superalgebra h. Then 2{d, {d, u}} =
{{d, d}, u} for any u ∈ h.

Proof. Follows from (2.2). 	


2.3. Supersymmetry on Kähler manifolds

One of the purposes of this paper is to obtain a natural superalgebra acting on the
de Rham algebra of a Sasakian manifold. This is modeled on the superalgebra of a
Kähler manifold, generated by the de Rham differential, Lefschetz triple, and other
geometric operators. To make the analogy more clear, we recall the main results on
the supersymmetry algebra of Kähler manifolds. We follow [38, Section 1.3].

Let (M, I, g, ω) be a Kähler manifold. Consider �∗(M) as a graded vector
space. The differentials d, dc := −I d I = I d I−1 can be interpreted as odd ele-
ments in End(�∗(M)), and the Hodge operators L ,�, H as even elements. As
usual, we denote the supercommutator as {·, ·}. In terms of the associative algebra,
{a, b} = ab + ba when a, b are odd, and {a, b} = ab − ba if at least one of them
is even. Let d∗ := {�, dc}, (dc)∗ := −{�, d}. The usual Kodaira relations can be
stated as follows

{L , d∗} = −dc, {L , (dc)∗} = d, {d, (dc)∗} = {d∗, dc} = 0,

{d, dc} = {d∗, (dc)∗} = 0, {d, d∗} = {dc, (dc)∗} = �,
(2.3)

where � is the Laplace operator, commuting with L ,�, H , and d, dc.

Here, as elsewhere, “differential operators on the de Rham algebra” are understood in
the algebraic sense as above.
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Definition 2.14. Let (M, I, g, ω) be a Kähler manifold. Consider the Lie superal-
gebra a ⊂ End(�∗(M)) generated by the following operators:

1. d, d∗, �, constructed out of the Riemannian metric.
2. L(α) := ω ∧ α.
3. �(α) := ∗L ∗ α. It is easily seen that � = L∗.
4. The Weil operator W

∣
∣
∣
�p,q (M)

= √−1 (p − q)

This Lie superalgebra is called the algebra of supersymmetry of the Kähler
manifold.

Using Theorem 2.15 below, it is easy to see that a is in fact independent from
M .

This Lie superalgebra was studied from the physicists’ point of view in [14].

Theorem 2.15. Let M be a Kähler manifold, and a its supersymmetry alge-
bra acting on �∗(M). Then a has dimension (5|4) (that is, its odd part is 4-
dimensional, and its even part is 5-dimensional). The odd part is generated by
d, dc = I d I−1, d∗, (dc)∗, the even part is generated by the Lefschetz triple
L ,�, H = [L ,�], theWeil operator W and the Laplacian� = {d, d∗}. Moreover,
the Laplacian � is central in a, hence a also acts on the cohomology of M. The
following are the only non-zero commutator relations in a:

1. sl(2)-relations in 〈L ,�, H = [L ,�]〉:

[H, L] = 2L , [H,�] = −2�, [L ,�] = H.

For any operator D of grading k, one has [H, D] = kD.
2. The Weil operator acts as a complex structure on the odd part of a:

[W, d] = dc, [W, dc] = −d, [W, d∗] = −(dc)∗, [W, (dc)∗] = d∗.

3. The Kähler-Kodaira relations between the differentials and the Lefschetz oper-
ators are:

[�, d] = (dc)∗, [L , d∗] = −dc, [�, dc] = −d∗, [L , (dc)∗] = d. (2.4)

4. Almost all odd elements supercommute, with the only exception

� = {d, d∗} = {dc, (dc)∗},

and� is central. In other words, the odd elements of a generate the odd Heisen-
berg superalgebra, see Claim 2.16.

Proof. These relations are standard in algebraic geometry (see e.g. [18]), but prob-
ably the easiest way to prove them is using the results about Lie superalgebras
collected in Sect. 2.2. 	




636 L. Ornea, M. Verbitsky

Proof of the Lefschetz sl(2)-relations: These relations would follow if we prove
that H := [L ,�] acts on p-forms by multiplication by p−n, where n = dimC M .
Since L ,�, H are C∞(M)-linear, it would suffice to prove these relations on a
Hermitian vector space.

Let V be a real vector space equipped with a scalar product, and fix an orthonor-
mal basis {v1, . . . , vm}. Denote by evi : �kV −→ �k+1V the operator of multipli-
cation, evi (η) = vi ∧ η. Let ivi : �kV −→ �k−1V be the operator of contraction
with vi . The following claim is clear.

Claim 2.16. The operators evi , ivi , Id form a basis of the odd Heisenberg Lie
superalgebra, with the only non-trivial supercommutator given by the formula
{evi , iv j } = δi j Id. 	


Let now V be an even-dimensional real vector space equipped with a scalar
product, and {x1, . . . , xn, y1, . . . , yn} an orthonormal basis. Consider the complex
structure operator I such that I (xi ) = yi , I (yi ) = −xi . The fundamental symplec-
tic form is given by

∑

i xi ∧ yi , hence

L =
∑

i

exi eyi , � =
∑

i

ixi iyi .

Clearly, for any odd elements a, b, c, d such that {a, b} = {a, d} = {b, c} =
{c, d} = 0, one has {ab, cd} = −{a, c}bd + ca{b, d}. Then

[L ,�] =
[
∑

i

exi eyi ,
∑

ixi iyi

]

=
n

∑

i=1

eyi iyi −
n

∑

i=1

ixi exi

=
n

∑

i=1

eyi iyi +
n

∑

i=1

(exi ixi − 1)

This term, applied to a monomial α of degree d, would give (d − n)α. This proves
the Lefschetz sl(2)-relations.
Proof of the relations between the Weil operator W and the odd part of a.
Clearly, it is enough to prove [W, d] = dc, the remaining relations follow by duality
or by complex conjugation. Writing the Hodge components of d = d1,0 + d0,1,

with d1,0 = d+√−1 dc

2 and d0,1 = d−√−1 dc

2 , we obtain [W, d] = √−1 d1,0 −√−1 d0,1 = dc. 	

Proof of the Kähler-Kodaira relations between the Lefschetz sl(2)-operators
and the odd part of a. As before, it is enough to prove [L , d∗] = −dc, the
remaining Kähler-Kodaira relations follow by duality or by complex conjugation.
The operator L is C∞(M)-linear, hence it is a differential operator of order 0. The
operator d∗ can be written in a frame {vi } of T M as

d∗(η) =
∑

i

ivi ∇vi η, (2.5)

where ∇ is the Levi-Civita connection of the metric g. Since ∇vi and ivi are both
derivations of the de Rham algebra, their product is an order 2 differential operator
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(in the algebraic sense as given by Definition 2.6). From Claim 2.7 it follows that
[L , d∗] is a first order operator.

We shall prove [L , d∗] = −dc by applying Corollary 2.11. First, let us show
that [L , [L , d∗]] = 0. Clearly, [�, d∗] = ([L , d])∗ = 0, and [H, d∗] = −d∗,
hence d∗ is the lowest weight vector in a weight 1 representation of sl(2). This
gives [L , [L , d∗]] = 0. Now, the super Jacobi identity gives

{{L , d∗}, {L , d∗}} = {L , {d∗, {L , d∗}} + {d∗, {L , {L , d∗}}}}.
The first term in the RHS vanishes by Claim 2.12, and the second term vanishes
because [L , [L , d∗]] = 0. Then ([L , d∗])2 = 0. Clearly, dc(C∞(M)) generates
�1(M) over C∞(M). To deduce [L , d∗] = −dc from Corollary 2.11, it remains to

show that [L , d∗]
∣
∣
∣C∞(M)

= −dc
∣
∣
∣C∞(M)

. This is clear for the following reason. For

any function f ∈ C∞(M), one has [L , d∗] f = −d∗( f ω).Writing d∗ = ∑

i ivi ∇vi

as in (2.5), and using ∇ω = 0, we obtain

d∗( f ω) =
∑

i

ivi ∇vi ( f ω) =
∑

i

Lievi ( f )ivi (ω) =
∑

i

−Lievi ( f )I (vi )
	 = −dc f.

This finishes the proof of [L , d∗] = −dc. 	

Proof of the commutator relations between the odd part of a. We have already
shown that dc = [W, d]. Then {d, dc} = {d, {W, d}} = 0 by Claim 2.12. Similarly,
d∗ = −[�, dc], giving {dc, d∗} = 0. The relation {(dc)∗, d} = 0 is obtained by
duality. Finally, {d, d∗} = {dc, (dc)∗} is obtained by applying [�, ·] to {d, dc} = 0.
Using the Kähler-Kodaira relations (2.4), we obtain

0 = {�, {d, dc}} = {{�, d}, dc} + {d, {�, dc}} = {(dc)∗, dc} − {d, d∗},
giving {d, d∗} = {dc, (dc)∗}.

We proved all the relations in the Kähler supersymmetry algebra a, finishing
the proof of Theorem 2.15. 	


Further in this paper, we shall develop similar relations for the superalgebra
associated with a Sasakian manifold.

3. Sasakian manifolds: definition and the basic notions

In this section we provide the necessary background on Sasakian manifolds. For
details, please see [5,6]. The most convenient definition for our context is the one
which relates Sasakian and Kähler geometries in terms of Riemannian cones.

Definition 3.1. A Sasakianmanifold is a Riemannian manifold (S, g)with a Käh-
ler structure on its Riemannian cone C(S) := (S × R

>0, t2g + dt2), such that the
homothety map hλ : C(S) −→ C(S) mapping (m, t) to (m, λt) is holomorphic.

Remark 3.2. (i) A Sasakian manifold is clearly contact, because its cone is sym-
plectic and hλ acts by symplectic homotheties.

(ii) Let S be a Sasakian manifold, ω the Kähler form on C(S), and ξ = t d
dt

the homothety vector field along the generators of the cone (it is also called Euler
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field). The contact form is η = iξω
∣
∣
t=1 . Then LieI ξ t = 〈dt, I ξ 〉 = 0 (where

Liev denotes the Lie derivative in the direction of v), and hence I ξ is tangent to
S ⊂ C(S). Then η(I ξ) = 1 and i I ξdη = 0, and thus the Reeb vector field of a
Sasakian manifold is �r = I ξ .

(iii) The function t2 is a Kähler potential onC(S). Moreover, the form ddc log t
vanishes on 〈ξ, I (ξ)〉 and the rest of its eigenvalues are positive.

Proposition 3.3. The Reeb field has constant length and acts on a Sasakian mani-
fold by contact isometries, i.e. the flow of �r contains only isometries which preserve
the contact subbundle. Moreover, its action lifts to a holomorphic action on its cone.

Remark 3.4. On a 2n+1-dimensional Sasakian manifold, the contact form satisfies
η ∧ (dη)n �= 0. Since i�r dη = 0, we see that dη is a volume form on the contact
distribution �r⊥.

Definition 3.5. A Sasakian (resp. contact) manifold is called regular if its Reeb
field generates a free action of S1; it is called quasi-regular if all orbits of the Reeb
field are closed, and it is called irregular otherwise.

Example 3.6. Let S be a regular Sasakian manifold, and �r its Reeb field. Then the
space of �r -orbits X is Kähler. Moreover, X is equipped with a positive holomorphic
Hermitian line bundle L such that S is the space of unit vectors in L . Conversely: if
X is a compact projective manifold, together with an ample line bundle L −→ X ,
then the space of unit vectors in L is a regular Sasakian manifold.

4. Hattori differentials on Sasakian manifolds

4.1. Hattori spectral sequence and associated differentials

Letπ : M −→ B be a smooth fibration, and Fk ⊂ �∗(M) be the ideal generated by
π∗�k(B). The Hattori spectral sequence ([19]) is the spectral sequence associated
with this filtration.

The E p,q
1 -term of this sequence is �p(B) ⊗R Rqπ∗RM , where R∗π∗RM

denotes the local system of cohomology of the fibres, and the E p,q
2 -term is

H p(B, Rqπ∗RM ).
The same can be done when M is a manifold equipped with an integrable

distribution F ⊂ T M , giving a spectral sequence converging to H∗(M). This is
done as follows.

Definition 4.1. Let M be a manifold, and F ⊂ T M an integrable distribution. A
k-form α ∈ �∗(M) is called basic if for any vector field v ∈ F , one has Lievα = 0
and ivα = 0.

If F is the tangent bundle of the fibres of a fibration π : M −→ B, then the
space of basic forms is π∗�k(B). We are going to produce a spectral sequence
which gives the standard Hattori spectral sequence when F is tangent to the leaves
of a fibration.
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Define the Hattori filtration associated with F as Fn ⊂ Fn−1 ⊂ · · · by
putting Fk ⊂ �∗(M), where Fk is the ideal generated by basic k-forms.

When M is Riemannian and the metric is compatible with the foliation, this
filtered bundle is decomposed into the direct sum of subquotients. This gives a
decomposition of the de Rham differential, d = d0 + d1 + d2 + · · · + dr+1, where
r = rkF with each successive piece associated with the differential in E p,q

k , as
follows.

Using the metric, we split the cotangent bundle into orthogonal complements
as�1(M) = �1

hor(M)⊕�1
vert(M), where�1

hor(M) is generated by basic 1-forms,
and �1

vert(M) = F∗ is its orthogonal complement. Denote by �
p
hor(M), �q

vert(M)

the exterior powers of these bundles.
This gives the following splitting of the de Rham algebra of M :

�m(M) =
⊕

p

�
p
hor(M) ⊗ �

m−p
vert (M) (4.1)

with Fp/Fp−1 = ⊕

q �
p
hor(M)⊗�

q
vert(M)where F∗ denotes the Hattori filtration.

Consider the associated decomposition of the de Rham differential, d = d0 +
d1 + d2 + · · · + dr+1, where r = rkF , and

di : �
p
hor(M) ⊗ �

q
vert(M) −→ �

p+i
hor (M) ⊗ �

q+1−i
vert (M)

The terms di vanish for i > r + 1 because F is r -dimensional, hence for i > r + 1
either �

q+1−i
vert (M) or �

q
vert(M) is 0.

These differentials are related to the differentials in theHattori spectral sequence
in the following way: to find E p,q

1 , one takes the cohomology of d0. Then one
restricts d1 to E p,q

1 , and its cohomology gives E p,q
2 , and so on. In this sense, the

Hattori differentials are indeed differentials in the Hattori spectral sequence.

Remark 4.2. Each of the differentials di is a derivation, because the decomposition
�∗(M) = ⊕

p,q �
p
hor(M) ⊗ �

q
vert(M) is multiplicative.

The spectral sequence which we call “Hattori spectral sequence” was re-
invented independently on several instances after Hattori. In a book [7, Section 1.6]
by J.-L. Brylinski it was described as “Cartan spectral sequence”, without refer-
ence. About the same time, it was described in Vlad Sergiescu’s Ph. D. thesis and
in his subsequent papers ([13,30,31]) under the name “Leray-Serre type spectral
sequence”. This work was quite influential, with a number of publications citing
Sergiescu’s papers and his thesis (for example, [1,2,10]). In [1], it was shown that
all terms on E2 page of this spectral sequence are finite-dimensional when the foli-
ation admits a transversal Riemannian structure, and in [10] the same result was
proven for cohomology with coefficients in a local system.

4.2. Hattori differentials on Sasakian manifolds

Let now Q be a Sasakian manifold, �r its Reeb field, normalized in such a way that
|�r | = 1, and R ⊂ T Q the 1-dimensional foliation generated by the Reeb field. The
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corresponding Hattori differentials are written as d = d0 + d1 + d2, because R is
1-dimensional. Since d2 = 0, one has d20 = d22 = 0 and {d0, d2} = −{d1, d1}. The
differentials d0, d2 can be described explicitly as follows.

Claim 4.3. Let e�r : �∗(Q) −→ �∗+1(Q) be the operator of multiplication by the
form �r 	 = η dual to �r . Then d0 = e�rLie�r .

Proof. Locally, the sheaf �1(Q) is generated over C∞(Q) by the basic 1-forms
and �r 	. Clearly, the differential of a basic 1-form α belongs to �2

bas(Q), hence
d0(α) = 0, and e�rLie�r (α) = 0. Also, d0(�r 	) = e�rLie�r (�r 	) = 0. By Claim 2.9,
to prove d0 = e�rLie�r it remains to show that these two operators are equal on
C∞(Q). However, onC∞(Q), we have d0 = e�rLie�r , because d0 f is the orthogonal
projection of d f to �1

vert(Q) = R∗ generated by e�r , for all f ∈ C∞(Q). 	

Recall that the space of leaves of R on a regular Sasakian manifold is equipped

with a complex and Kähler structure, Example 3.6. The corresponding Kähler
structure can be described very explicitly.

Claim 4.4. Let Q be a regular Sasakian manifold, and �r 	 its contact form. Then
ω0 := d(�r 	) is basic with respect to R, and defines a transversally Kähler structure,
that is, the Kähler structure on the space of leaves of R (Definition 5.1).

Proof. Let X = Q/�r be the space of orbits. This quotient is well defined and
smooth, because �r is regular. Then X = C(Q)/C∗, where theC∗-action is generated
by ξ = t d

dt and �r = I (ξ), and hence it is holomorphic. Therefore, X is a complex
manifold (as a quotient of a complex manifold by a holomorphic action of a Lie
group). It is Kähler by Remark 3.2 (iii). 	

Proposition 4.5. Let Lω0 : �∗(Q) −→ �∗+2(Q) be the operator ofmultiplication
by the transversally Kähler form ω0 = d(�r 	), and i�r the contraction with the Reeb
field. Then d2 = Lω0 i�r .

Proof. Clearly, the Hattori differentials

di : �
p
hor(Q) × �

q
vert(Q) −→ �

p+i
hor (Q) ⊗ �

q+1−i
vert (Q)

vanish on �0(Q) unless i = 0, 1. Therefore, the differentials d2, d3, ... are always
C∞(Q)-linear. By Claim 2.9, it only remains to show that d2 = Lω0 i�r on some set
of 1-forms generating �1(Q) over C∞(Q).

Clearly, on �1
hor(Q) the differential d2 should act as

d2 : �1
hor(Q) −→ �3

hor(Q) ⊗ �−1
vert(Q),

hence d2

∣
∣
∣
∣�1

hor(Q)
= 0. To prove Proposition 4.5 it remains to show that d2(�r 	) =

Lω0 i�r (�r 	). However, d2(�r 	) is the�2
hor(Q)-part of d(�r 	), giving d2(�r 	) = d(�r 	) =

ω0, and Lω0 i�r (�r 	) = ω0 because i�r (�r 	) = 1. 	
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The Hattori differential d1 is, heuristically speaking, the “transversal compo-
nent” of the de Rham differential. Indeed, d1(η) = d(η) for any basic form η. Since
the leaf space of R is equipped with a complex structure, it is natural to expect that
the Hodge components of d1 have the same properties as the Hodge components
of the de Rham differential on a complex manifold.

Claim 4.6. Let Q be a Sasakian manifold, and �m(Q) = ⊕

p �
p
hor(Q) ⊗

�
m−p
vert (Q) the decomposition associated with R ⊂ T Q as in (4.1). Using the com-

plex structure on the basic forms, consider the Hodge decomposition �m
hor(Q) =

⊕

p �
m−p,p
hor (Q). Then the differential d1 : �

p
hor(Q)⊗�

q
vert(Q) −→ �

p+1
hor (Q)⊗

�
q
vert(Q) has two Hodge components d0,11 and d1,01 . Moreover, the differen-

tial dc1 := d0,11 − d1,01 satisfies dc1 = I d1 I−1, where I acts as
√−1 p−q on

�
p,q
hor (Q) ⊗ �m

vert(Q).

Proof. First, let us prove that d1 has only two non-zero Hodge components. A
priori, d1 could have several Hodge components, d1 = d−k,k+1

1 + d−k+1,k
1 + · · · +

dk,−k+1
1 + d−k,k+1

1 . This is what happens with the Hodge components of the de
Rham differential on an almost complexmanifold. All these components are clearly
derivations. However,

d(�0(Q)) ⊂ �1
vert(Q) ⊕ �

1,0
hor(Q) ⊕ �

0,1
hor(Q).

Therefore, only d0,11 and d1,01 are non-zero on functions, the rest of the Hodge
components are C∞(Q)-linear. By Claim 2.9, it would suffice to show that the
other differentials vanish on a basis in �1(Q).

Since the space of leaves of R is a complex manifold, and d = d1 on basic
forms, we have d1 = d0,11 + d1,01 on basic forms. Since d(�r 	) = ω0, we find

d1(�r 	) = 0, which gives d1 = d0,11 + d1,01 on �r 	. We proved the decomposition

d1 = d0,11 + d1,01 . The relation d0,11 − d1,01 = I d1 I−1 follows in the usual way,

because
d1+

√−1 dc1
2 has Hodge type (1, 0), hence satisfies d1,01 = d1+

√−1 dc1
2 . 	


5. Transversally Kähler manifolds

Definition 5.1. A manifold M equipped with an integrable distribution F ⊂ T M
is called a foliated manifold. In the sequel, we shall always assume that F is ori-
entable. Let ω0 ∈ �2(M) be a closed, basic 2-form on a foliated manifold (M, F),
vanishing on F and non-degenerate on T M/F . Let g0 ∈ Sym2(T ∗M) be a basic
bilinear symmetric formwhich is positive definite on T M/F . Since g0, ω are basic,
the operator I := ω−1

0 ◦ g0 : T M/F −→ T M/F is well defined on the leaf space
L of F (locally the leaf space always exists by Frobenius theorem). Assume that I
defines an integrable complex structure on L for any open set U ⊂ M for which
the leaf space is well defined. Then (M, F, g, ω) is called transversally Kähler.
A vector field v such that Liev(F) ⊂ F , and Liev I = 0 is called transversally
holomorphic; it is called transversally Killing if, in addition, Lievg0 = 0.
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Definition 5.2. Let F ⊂ T M be an integrable distribution and �∗
bas(M) the com-

plex of basic forms. Its cohomology algebra is called the basic, or transversal
cohomology of M . We denote the basic cohomology by H∗

bas(M).

Remark 5.3. Note that H∗
bas(M) can be infinite-dimensional even when M is com-

pact, [29].

The main result of this section is the following theorem, which is a weaker form
of the main theorem from [12]. Our result is less general, but the proof is simple
and self-contained.

Theorem 5.4. Let (M, F, ω0, g0) be a compact, transverally Kähler manifold.
Assume, moreover that:

(*) M is equippedwith aRiemannianmetric g such that the restriction of g to the
orthogonal complement F⊥ = T M/F coincides with g0, and F is generated
by a collection of Killing vector fields v1, ..., vr .
(**) There exists a closed differential form  on M which vanishes on F and
gives a Riemannian volume form on T M/F.

Then the basic cohomology H∗
bas(M) of M is finite-dimensional and admits the

Hodge decomposition and the Lefschetz sl(2)-action, as in the Kähler case.

Proof. Consider the differential graded algebra of basic forms�∗
bas(M). This alge-

bra is equipped with an action of the superalgebra of Kähler supersymmetry a as
in Theorem 2.15. Indeed, define the Lefschetz sl(2)-action by taking the Lefschetz
triple Lω0 ,�ω0 := ∗Lω0∗ and Hω0 := [Lω0 ,�ω0 ], and the transversal Weil oper-
ator W acting in the standard way on �∗

bas(M) and extended to �∗(M) by acting
trivially on �1

bas(M)⊥ (or in any other way, it does not matter). Together with the
de Rham differential d : �∗

bas(M) −→ �∗
bas(M) these operators generate the

Lie superalgebra a ⊂ End(�∗
bas(M)), which is isomorphic to the superalgebra of

Kähler supersymmetry a (Theorem 2.15), because �∗
bas(M) is locally identified

with the algebra of differential forms on the leaf space of F which is Kähler.

Then Theorem 5.4would follow if we identify ker(�bas

∣
∣
∣
�∗
bas(M)

)with the space

H∗
bas(M), where �bas ∈ a is the transversal Laplace operator, �bas = {d, d∗

bas},
where d∗

bas denotes the d
∗-operator on the leaf space.

We reduced Theorem 5.4 to the following result. 	

Proposition 5.5. Let (M, F, g), rkF = r , be a Riemannian foliated manifold,
d = d0 + d1 + · · · + dr+1 the Hattori decomposition of the differential, and
�bas := {d, d∗

bas} the basic Laplacian defined on basic forms. Assume that:

(*) F is generated by a collection of Killing vector fields v1, v2, . . .

(**) The Riemannian volume form  ∈ �r
vert(M) satisfies d1() = 0.

Then there exists a natural isomorphism between the basic harmonic forms and
H∗
bas(M).

The assumption (*) and (**) hold for Sasakian manifolds (Proposition 3.3 and
Remark 3.4) and Vaisman manifolds (Remark 7.7).
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We start from the following lemma.

Lemma 5.6. In the assumptions of Proposition 5.5, let α, β ∈ �∗
bas(M) be two

basic forms. Then g(dα, β) = g(α, d∗
basβ), where d∗

bas denotes the d
∗-operator on

the leaf space of F.

Proof. This is where we use the assumption (**) of Proposition 5.5. Let d∗
h be the

composition of d∗ with the orthogonal projection to the horizontal part �∗
hor(M)

(see Sect. 4.1). We only need to show that

g(d∗
hα, β) = g(d∗

basα, β) for all α, β ∈ �∗
bas(M). (5.1)

By Theorem 2.15, one has d∗
bas = − ∗bas d∗bas where ∗bas is the Hodge star

operator on the leaf space. Let r = rkF and  ∈ �r F be the Riemannian volume
form.Using the assumption (**), we obtain that d ∈ ⊕r−1

i=0 �∗
hor(M)⊗�i

vert(M).
Then ∗α =  ∧ ∗bas(α), which gives

∗d ∗ α = ∗d( ∧ ∗bas(α)) = d∗
basα + ∗(d ∧ α).

The last term belongs to
⊕r

i=1 �∗
hor(M) ⊗ �i

vert(M), hence it is orthogonal to
�∗

hor(M). This proves (5.1). 	

Now we can prove Proposition 5.5. By (5.1), for any basic form α we have

g(�basα, α) = (dα, dα) + (d∗
basα, d∗

basα), (5.2)

hence a basic form belongs to ker�bas if and only if it is closed and orthogonal to
all exact basic forms. This gives an embedding

ker�bas

∣
∣
∣
�∗
bas(M)

↪→ H∗
bas(M). (5.3)

It remains only to show that the map (5.3) is surjective. This is where we use the
assumption (*) of Proposition 5.5.

Consider theHattori decomposition d = d0+d1+· · ·+dr+1 (see Sect. 4.1). Let
v1, . . . , vr ∈ F be the Killing, transversally Killing vector fields, postulated in (*),
and �s the “split Laplacian”, �s := {d1, d∗

1 }−∑

i Lie
2
vi
. Clearly, �s is an elliptic,

second order differential operator. By definition, g(evi iviα, α) = g(iviα, ivi α).
Since vi are Killing, one has Lievi = −Lie∗

vi
. Therefore �s is self-adjoint and

positive, with

g(�sα, α) = g(d1α, d1α) + g(d∗
1α, d∗

1α) +
∑

i

g(Lievi α,Lievi α).

We obtain that each α ∈ ker�s satisfies ivi α = Lievi α = 0.
Consider the orthogonal projection map �hor : �∗(M) −→ �∗

hor(M). Since
the vector fields vi are Killing and preserve F , the projection �hor commutes with
Lievi . It is not hard to see that �hor commutes with d1 and d∗

1 . Indeed, d1 is the

part of d which maps �
p
hor(M) ⊗ �

q
vert(M) to �

p+1
hor (M) ⊗ �

q
vert(M), and d∗

1 its
adjoint. We obtain that �hor commutes with �s .

Since�s is a positive, self-adjoint, Fredholmoperator, its eigenvectors are dense
in �∗(M). Since [�hor,�s] = 0, the eigenvectors of �s are dense in �∗

hor(M).
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Let G be the closure of the Lie group generated by the action of eRvi . Since
each eRvi acts by isometries, the group G is compact. By construction, G acts on
M preserving the foliation F , the metric and the transversal Kähler structure, hence
it commutes with the Laplacian. Averaging on G, we obtain that the eigenvectors
of �s are dense in the space �∗

hor(M)G = �∗
bas(M) of all basic forms.

On basic forms, d = d1, hence on�∗
bas(M) one has [d,�s] = 0. Let�∗

bas(M)λ

be the eigenspace of�s

∣
∣
∣
�∗
bas

(M) corresponding to the eigenvalue λ. For any closed

α ∈ �∗
bas(M)we have λα = (dd∗ +d∗d)(α) = dd∗α. Therefore, any closed form

in �∗
bas(M)λ is exact when λ �= 0. We have shown that the only eigenspace of

�bas which contributes to the basic cohomology is�∗
bas(M)0 = ker�bas

∣
∣
∣
�∗
bas(M)

.

This proves (5.3); we finished the proof of Proposition 5.5 and Theorem 5.4. 	


6. Basic cohomology and Hodge theory on Sasakian manifolds

6.1. Cone of a morphism of complexes and cohomology of Sasakian manifolds

We recall first several notions in homological algebra, see [17]:

Definition 6.1. A complex (C∗, d) is a collection of vector spaces and homomor-
phisms

· · · d−→ Ci
d−→ Ci+1

d−→ · · ·

(more generally, a collection of objects in an abelian category) such that d2 = 0.
A morphism of complexes is a collection of maps Ci −→ C ′

i from the vector
spaces of a complex (C∗, d) to the vector spaces of (C ′∗, d), commuting with the
differential. The cohomology groups of a complex (C∗, d) are the groups

Hi (C∗, d) := ker d
∣
∣
C i

imd
∣
∣
∣Ci−1

.

Clearly, any morphism induces a homomorphism in cohomology. An exact
sequence of complexes is a sequence

0 −→ A∗ −→ B∗ −→ C∗ −→ 0

of morphisms of complexes such that the corresponding sequences

0 −→ Ai −→ Bi −→ Ci −→ 0

are exact for all i .

The following claim is very basic.
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Claim 6.2. Let 0 −→ A∗ −→ B∗ −→ C∗ −→ 0 be an exact sequence of com-
plexes. Then there is a natural long exact sequence of cohomology

· · · → Hi−1(C∗, dC ) → Hi (A∗, dA) → Hi (B∗, dB) → Hi (C∗, dC ) → · · ·
	


Definition 6.3. Let (C∗, dC )
ϕ−→ (C ′∗, dC ′) be a morphism of complexes. Con-

sider the complex C(ϕ)∗, with C(ϕ)i = Ci+1 ⊕ C ′
i and differential

d := dC + ϕ − dC ′ : Ci ⊕ C ′
i−1 −→ Ci+1 ⊕ C ′

i .

or, explicitly:

d(ci , c
′
i−1) = (

dC (ci ), ϕ(ci ) − dC ′(c′
i−1)

)

.

The complex (C(ϕ)∗, d) is called the cone of ϕ.

Denote by C∗[1] the complex C∗ shifted by one, with Ci [1] = Ci+1. The exact
sequence of complexes

0 −→ C ′∗ −→ C(ϕ)∗ −→ C∗[1] −→ 0

gives the long exact sequence

· · · −→ Hi (C)
ϕ−→ Hi (C ′) −→ Hi (C(ϕ)) −→

−→ Hi+1(C)
ϕ−→ Hi+1(C ′) −→ · · · (6.1)

Proposition 6.4. Let Q be a Sasakian manifold, and �r the Reeb field. Denote by
�∗

�r (Q) the differential graded algebra of Lie�r -invariant forms, and let �∗
bas(Q) ⊂

�∗
�r (Q) be the algebra of basic forms. Denote by ω0 ∈ �∗

bas(Q) the transversal

Kähler form (Claim 4.4), and let Lω0 : �∗
bas(Q) −→ �∗+2

bas (Q) be the multiplica-
tion map. Then the complex �∗

�r (Q) is naturally identified with C(Lω0)[−1], where
C(Lω0) is the cone of the morphism Lω0 : �∗

bas(Q) −→ �∗+2
bas (Q).

Proof. Consider the Hattori decomposition of the differential in �∗(Q), d = d0 +
d1+d2 (Sect. 4.2). ByClaim4.3, d0 vanishes on�∗

�r (Q); Proposition 4.5 implies that
d2 = Lω0 i�r . Clearly, �∗

�r (Q) = �∗
bas(Q) ⊕ �r 	 ∧ �∗

bas(Q). The operator d2�ω0 i�r
acts trivially on �∗

bas(Q) and maps �r 	 ∧ α to Lω0(α) for any α ∈ �∗
bas(Q).

Therefore, under the natural identification

�∗
�r (Q) = �∗

bas(Q) ⊕ �r 	 ∧ �∗
bas(Q) = �∗

bas(Q) ⊕ �∗
bas(Q)[−1].

By Proposition 4.5, the differential d1 + d2 in �∗
�r (Q) gives the same differential

as in C(Lω0)[−1] = �∗
bas(Q) ⊕ �∗

bas(Q)[−1]:
d(α ⊕ �r 	 ∧ β) = dα + Lω0(β) ⊕ (−�r 	 ∧ dβ)

for any α, β ∈ �∗
bas(Q). 	
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6.2. Harmonic forms decomposition on Sasakian manifolds

We give a new proof of the main result on harmonic forms on compact Sasakian
manifolds (see [6, Proposition 7.4.13], essentially based on a result by Tachibana,
[33]). 	

Theorem 6.5. Let Q be a 2n + 1-dimensional compact Sasakian manifold, R
the Reeb foliation, and H∗

bas(Q) the corresponding basic cohomology. Consider
the Lefschetz sl(2)-triple Lω0 ,�ω0 , Hω0 acting on the basic cohomology (Theo-
rem 5.4). Then:

Hi (Q) =

⎧

⎪⎪⎨

⎪⎪⎩

ker Lω0

∣
∣
∣
∣Hi

bas(Q)
, for i � n,

Hi
bas(Q)

im
Lω0 , for i < n.

Proof. Step 1: The cohomology of the algebra �∗
�r (Q) of Lie�r -invariant forms

is equal to the cohomology of �∗(Q). Indeed, let G be the closure of the action of
et�r . Since �r is Killing, et�r acts on Q by isometries, hence its closure G is compact.
Since G is connected its action on cohomology is trivial. The averaging mapAvG :
�∗(Q) −→ �∗

�r (Q) induces an isomorphism on cohomology.
Step 2: Applying (6.1), Proposition 6.4, and taking into account the isomor-

phism H∗(�∗
�r (Q)) = H∗(Q), we obtain the long exact sequence

· · · −→ Hi−2
bas (Q)

Lω0−−→ Hi
bas(Q) −→ Hi (Q) −→

−→ Hi−1
bas (Q)

Lω0−−→ Hi+1
bas (Q) −→ · · · (6.2)

Since the Lefschetz triple Lω0 ,�ω0 , Hω0 induces an sl(2)-action on Hi
bas(Q) (The-

orem 5.4), the map Hi−2
bas (Q)

Lω0−→ Hi
bas(Q) is injective for i � n and surjective

for i > n. Therefore, the long exact sequence (6.2) gives the short exact sequences

0 −→ Hi−2
bas (Q)

Lω0−→ Hi
bas(Q) −→ Hi (Q) −→ 0

for i � n and

0 −→ Hi (Q) −→ Hi−1
bas (Q)

Lω0−→ Hi+1
bas (Q) −→ 0

for i > n.

Theorem 6.6. Let Q be a 2n + 1-dimensional compact Sasakian manifold, and
Hi

bas(Q) the space of basic harmonic forms. Let �r 	 be the contact form, dual to
the Reeb field. Denote by Hi the space of all i -forms α on Q which satisfy

for i � n: α is basic harmonic (that is, belongs to the kernel of the basic
Laplacian) and satisfies �ω0(α) = 0;
for i > n: α = β ∧ �r 	 where β is basic harmonic and satisfies Lω0(β) = 0.
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Then all elements of H∗ are harmonic, and, moreover, all harmonic forms on Q
belong toH∗.

Proof. Step 1:We prove that all γ ∈ H∗ are harmonic. Let ∗bas be the Hodge
star operator on basic forms. Then for any γ ∈ �∗

hor(Q) one has ∗(γ ) = ∗bas(γ )∧
�r 	. This implies that the two classes of forms in Theorem 6.6 are exchanged by ∗,
and it suffices to prove that all α ∈ �i (Q) which are basic harmonic and satisfy
�ω0(α) = 0 for i � n are harmonic. Such a form α is closed by Theorem 5.4. Since
α is basic hence Lie�r -invariant, it satisfies d∗

0 (α) = 0 (Claim 4.3). By (5.2), a basic
form α is basic harmonic if and only if d1(α) = d∗

1 (α) = 0. Finally, d∗
2 = �ω0e�r

(Proposition 4.5), hence d∗
2 (α) = 0. This implies d∗α = (d∗

0 + d∗
1 + d∗

2 )(α) = 0.
Step 2: Now we prove that all harmonic forms on Q belong to H∗. By The-

orem 6.5, the dimension of Hi (Q) is equal to the dimension of Hi , hence the
embeddingHi −→ Hi (Q) constructed in Step 1 is also surjective for all indices i .
	


7. Vaisman manifolds

In this section we present, without proofs, the necessary background for LCK and
Vaisman manifolds. We refer to [11] and to recent papers of ours for details, e.g.
[27].

7.1. LCK manifolds

Definition 7.1. Let (M, I, g) be a Hermitian manifold of complex dimension n �
2, with fundamental form ω. It is called locally conformally Kähler (LCK) if
there exists a closed 1-form θ (the Lee form) such that dω = θ ∧ ω. If θ is exact,
M is called globally conformally Kähler (GCK). The vector field θ� metrically
equivalent with θ is called the Lee field.

Remark 7.2. The definition is conformally invariant: if (M, I, g, θ) is LCK, then
(M, I, e f g, θ + d f ) is LCK too.

Remark 7.3. (Equivalent definition) (M, I, g) is LCK if and only if there exists a
cover M̃ admitting a Kähler metric g̃ such that the deck group � acts with holo-
morphic homotheties w.r.t. g̃.

Remark 7.4. (i) On a Kähler cover as above, the pull-back of the Lee form is exact
and the pull-back of the LCK metric is GCK.

(ii) Let (M̃, I, g̃) be the universal cover of M . The equivalent definition in
Remark 7.3 shows the existence of a homothety character χ : π1(M) −→ R

>0

defined by χ(γ ) = γ ∗g
g , for all γ ∈ π1(M).

Definition 7.5. The rank of im(χ) ⊂ R
>0 is called the LCK rank of the LCK

manifold M .
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7.2. Vaisman manifolds

Definition 7.6. An LCK manifold (M, I, g, θ) is called Vaisman if the Lee form
is parallel w.r.t. the Levi-Civita connection of g.

Remark 7.7. (i) The Lee form of a Vaisman metric is, in particular, co-closed, and
hence it is a Gauduchon metric. Therefore, on a compact LCKmanifold a Vaisman
metric, if it exists, is unique in its conformal class (up to constant multiplier).

(ii) Since θ is parallel, it has constant norm. The metric g can be rescaled such
that |θ | = 1. The fundamental form ω of the Vaisman metric with unit length Lee
form satisfies the equality:

d(Iθ) = ω − θ ∧ (Iθ). (7.1)

In particular, d(Iθ) is positive definite on �⊥, thus defining a volume form on �⊥.
(iii) Let (M, I, g, θ) be a Vaisman manifold, θ� its Lee field. Then θ� and Iθ� are
holomorphic (Lieθ� I = 0, LieIθ� I = 0) and Killing (Lieθ�g = 0, LieIθ�g = 0).
Therefore, they generate a foliation � of real dimension 2 which is complex, Rie-
mannian and totally geodesic. In particular, � is transversally Kähler (see Defini-
tion 5.1).

(iv) Moreover, � is canonical in the following sense: on a compact LCK mani-
fold, theLeefields of allVaismanmetrics are proportional, and hence the foliation�

is the same for all Vaisman metrics. Therefore, � is called the canonical foliation.
(v) Compact complex submanifolds of Vaisman manifolds are Vaisman ([37]).

Remark 7.7 (iii) admits the following converse which is a powerful criterion
for the existence of a Vaisman metric in a conformal class (it was proven in [22] for
compact LCK manifolds, but a careful analysis of the proof shows that it is valid
for non-compact manifolds too).

Theorem 7.8. Let (M, I, g, θ) be an LCK manifold equipped with a holomorphic
and conformal C-action ρ without fixed points, which lifts to non-isometric homo-
theties on a Kähler cover M̃. Then g is conformally equivalent with a Vaisman
metric.

AVaismanmanifoldM can have anyLCK rank between 1 and b1(M). However,
they always admit deformations to Vaisman structures with LCK rank 1:

Theorem 7.9. ([27]) Let (M, I, g, θ) be a compact Vaisman manifold, α a har-
monic 1-form such that the deformed 1-form θ ′ := θ + α has rational cohomology
class. Consider the (1,1)-form ω′ := dθ ′ = θ ′ ∧ Iθ ′ − dcθ ′ obtained as a defor-
mation of ω = θ ∧ Iθ − dcθ (cf. (7.1)). Assume that α is chosen sufficiently small
in such a way that ω′ is positive definite. Then the LCK metric associated ω′ is
conformally equivalent to a Vaisman metric.

Remark 7.10. It is known that a mapping torus of a compact contact manifold is
locally conformally symplectic. Correspondingly, a mapping torus of a compact
Sasakian manifold is a Vaisman manifold ([36]). Theorem 7.9 can be used to prove
the following converse (the Structure Theorem for compact Vaisman manifolds):
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Theorem 7.11. ([26,27]) Every compact Vaisman manifold is biholomorphic to

C(S)/Z, where S is Sasakian, Z =
〈

(x, t) �→ (ϕ(x), qt)

〉

, q > 1, ϕ is a Sasakian

automorphism of S, and C(S) is the Sasakian cone considered as a complex man-
ifold.

Remark 7.12. Since θ is parallel, the de Rham splitting theorem implies that a
Vaisman manifold is locally the product of R with a Riemannian manifold which
can be shown to be Sasakian. The above Structure Theorem shows that this local
decomposition is canonical.

Example 7.13. (i)All linearHopfmanifolds (Cn\0)/〈A〉, with A ∈ GL(n,C) semi-
simple are Vaisman. From Remark 7.7 (v) it follows that all compact submanifolds
of semi-simple linear Hopf manifolds are Vaisman.

(ii) Vaisman compact surfaces are classified by Belgun (see [3], [41]): diagonal
Hopf surfaces and elliptic surfaces.

(iii) Non semi-simple Hopf manifolds, Kato manifolds ([21]) and some
Oeljeklaus-Toma manifolds are LCK manifolds which cannot have Vaisman met-
rics.

8. Hodge theory on Vaisman manifolds

8.1. Basic cohomology of Vaisman manifolds

Let M be a Vaisman manifold, θ� its Lee field, and �r := I (θ�). Using the local
decomposition of M as a product of R and a Sasakian manifold (Remark 7.12), �r
can be identified with the Reeb field on its Sasakian component. The manifold M
is equipped with 2 remarkable foliations, � = 〈�r , θ�〉 andL = 〈θ�〉. Both of these
foliations satisfy the assumptions of Proposition 5.5 (see also Remark 7.7 (iii)).

Consider the corresponding algebras of basic forms:

(i) �∗
sas(M) – forms which are basic with respect toL,

(ii) �∗
kah(M) – forms which are basic with respect to �.

Denote by H∗
sas(M), H∗

kah(M) the corresponding basic cohomology algebras.
By Theorem 5.4, the algebra H∗

kah(M) is equipped with the Lefschetz sl(2)-
action and the Hodge decomposition in the same way as for Kähler manifolds.

The cohomology of Vaisman manifolds can be expressed non-ambiguously in
terms of H∗

kah(M) and the Lefschetz sl(2)-action. The following theorem is the
Vaisman analogue of Theorem 6.5.

Theorem 8.1. Let M be a compact Vaisman manifold, dimR M = 2n, and θ its
Lee form. Then

Hi (M) ∼= Hi
sas(M) ⊕ θ ∧ Hi−1

sas (M),

Hi
sas(M) =

⎧

⎪⎪⎨

⎪⎪⎩

ker Lω0

∣
∣
∣
∣Hi

kah(M)
for i � n − 1,

Hi
kah(M)

imLω0

for i < n − 1
(8.1)
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where {Lω0 ,�ω0 , Hω0} is the Lefschetz sl(2)-triple acting on Hi
kah(M).

Proof. Step 1: We start by proving (8.1). Let Gθ� be the closure of the 1-
parametric group etθ

�
in the group Iso(M) of isometries of M . Since Iso(M) is

compact, the groupGθ� is also compact. Clearly, averaging onGθ� does not change
the cohomology class of a form. Therefore, the algebra of Gθ� -invariant forms has
the same cohomology as�∗(M). Consider the decomposition (4.1) associated with
the rank 1 foliation L:

�m(M) =
⊕

p

�
p
hor(M) ⊗ �

m−p
vert (M). (8.2)

The bundle �1
vert(M) = L∗ is 1-dimensional and generated by θ . Therefore, (8.2)

gives

�m(M) = �m
hor(M) ⊕ θ ∧ �m−1

hor (M).

Denote by �m(M)Gθ� the Gθ� -invariant part of �m(M). Since θ is Gθ�-invariant,
and the Gθ� -invariant part of �m

hor(M) is identified with �m
sas(M), this gives

�m(M)Gθ� = �m
sas(M) ⊕ θ ∧ �m−1

sas (M).

Taking cohomology, we obtain (8.1).

Step 2: Now we shall prove Hi
sas(M) = ker Lω0

∣
∣
∣
∣Hi

kah(M)
for i � n − 1 and

Hi
sas(M) = Hi

kah(M)

imLω0

for i < n − 1.

Let �r ⊂ T M be the Reeb field defined as above, and G�r the closure of the
1-parametric group et�r . Then (as in Step 1 and in the proof of Theorem 6.5), the
G�r -invariant part of �∗

sas(M) is written as

�i
sas(M)G�r = �i

kah(M) ⊕ �r 	 ∧ �i−1
kah(M) (8.3)

with the differential acting (see Proposition 6.4) as

d(α ⊕ �r 	 ∧ β) = dα + Lω0(β) ⊕ (−�r 	 ∧ dβ) (8.4)

for any α, β ∈ �∗
kah(M).

Using Cartan’s formula, we notice that G�r acts trivially on the cohomology of
the complex (�∗

sas(M), d), hence the cohomology of (�∗
sas(M)G�r , d) is identified

with H∗
sas(M). From (8.3) and (8.4), we obtain that �i

sas(M)G�r is the cone of the
morphism of complexes Lω0 : �∗

kah(M)[−1] −→ �∗
kah(M)[1]. From the long

exact sequence (8.4) we obtain a long exact sequence identical to (6.2):

· · · −→ Hi−2
kah (M)

Lω0−−→ Hi
kah(M) −→ Hi

sas(M) −→
−→ Hi−1

kah (M)
Lω0−−→ Hi+1

kah (M) −→ · · · (8.5)
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Since Lω0 : Hi−2
kah (M) −→ Hi

kah(M) is injective for i � n − 1 and surjective for
i > n − 1, this long exact sequence breaks into short exact sequences of the form

0 −→ Hi−2
kah (M)

Lω0−→ Hi
kah(M) −→ Hi

sas(M) −→ 0

for i � n − 1 and

0 −→ Hi (M)sas −→ Hi−1
kah (M)

Lω0−→ Hi+1
kah (M) −→ 0

for i > n. We finished the proof of Theorem 8.1. 	


8.2. Harmonic forms on Vaisman manifolds

It turns out that (just like it happens in the Sasakian case) the cohomology decom-
position obtained in Theorem 8.1 gives a harmonic form decomposition. Together
with the Hodge decomposition of the basic cohomology of transversally Kähler
structure this allows us to represent certain cohomology classes by forms of a given
Hodge type. This theorem was obtained in [23], see also [36] and [35].

Recall that on a compact Vaisman manifold (M, I, g, θ) with fundamental
form ω, the canonical foliation � is transversally Kähler (Remark 7.7 (iii)). We
denoted �r the vector field g-equivalent with Iθ , �∗

kah(M) the space of basic forms
with respect to �, and �kah : �∗

kah(M) −→ �∗
kah(M) the transversal Lapla-

cian (Proposition 5.5). From Theorem 5.4 we obtain that the space Hi
kah(M) of

basic harmonic forms is equipped with the Lefschetz sl(2)-action by the operators
Lω0 ,�ω0 , Hω0 . The main result of this section is:

Theorem 8.2. Let (M, I, g, θ) be a compact Vaisman manifold of complex dimen-
sion n, with fundamental form ω, and canonical foliation �. Denote by Hi the
space of all basic i-forms α ∈ �∗

kah(M) which satisfy:

for i � n: α is basic harmonic (i.e. �kah(α) = 0) and satisfies �ω0(α) = 0;
for i > n: α = β ∧ Iθ where β is basic harmonic and satisfies Lω0(β) = 0.

Then all elements ofH∗ ⊕θ ∧H∗ are harmonic and, moreover, all harmonic forms
on M belong toH∗ ⊕ θ ∧ H∗.

Proof. Step 1: This statement is similar to Theorem 6.6, and the proof is essen-
tially the same. We start by proving that all γ ∈ H∗ ⊕θ ∧H∗ are harmonic. Notice
that a product of a parallel form ρ and a harmonic form is again harmonic (see
e.g. [39, Proposition 2.7]). This result is proven in the same way as Theorem 2.15,
by considering the Lie superalgebra generated by d, d∗, and multiplication by ρ.
Since θ is parallel, it suffices only to show that all elements inH∗ are harmonic:

H∗ ⊂ ker�. (8.6)

Consider the foliation L = 〈θ�〉. Since M is locally a product of a Sasakian
manifold and a line (Remark 7.12), all L-basic, transversally harmonic forms are
harmonic. Therefore, (8.6) would follow if we prove

H∗ ⊂ ker�sas. (8.7)
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where �sas is the transversal Laplacian of the foliation L.
It would suffice to prove (8.7) locally in M . However, locally L admits a leaf

space Q, which is Sasakian, and we can regard elements from H∗ as forms on Q
and �sas as the usual Laplacian on �∗(Q). Then (8.7) follows from Theorem 6.6,
step 1.

Step 2: We have shown that all elements of H∗ ⊕ θ ∧ H∗ are harmonic; this
gives a natural linear map

� : H∗ ⊕ θ ∧ H∗ −→ H∗(M).

To show that all harmonic form are obtained this way, it would suffice to prove that
� is surjective. This follows from Theorem 8.1 by dimension count.

By Theorem 8.1, the cohomology of M is isomorphic to Hi
sas(M) ⊕ θ ∧

Hi−1
sas (M). All forms in H∗ are closed and belong to �∗

sas(M), which gives a
map �sas : H∗ −→ Hi

sas(M). To prove that � is surjective, it remains to show
that �sas is surjective.

However, the dimension of Hi
sas(M) is equal to dim ker Lω0

∣
∣
∣
∣Hi

kah(M)
for i �

n − 1 and to dim
Hi
kah(M)

imLω0

for i < n − 1. The space Hi has the same dimension

by the transversal Hodge decomposition (Theorem 5.4). This finishes the proof of
Theorem 8.2. 	


9. Supersymmetry on Sasakian manifolds

Let Q be a Sasakian manifold. In this section we describe the Lie superalgebra
q ⊂ End(�∗(Q)) reminiscent of the supersymmetry algebra of a Kähler mani-
fold (Theorem 2.15). Unlike the Kähler supersymmetry algebra, the algebra q is
infinitely-dimensional; however, it has a simple and compact description, indepen-
dent of the choice of Q.

When this project was started, we expected to use Theorem 9.2 to give a more
conceptual proof of the classical results on Hodge decomposition of the coho-
mology of Sasakian and Vaisman manifolds (Theorem 6.6, Theorem 8.2). How-
ever, the Lie superalgebra q which we obtained in the end does not contain the de
Rham Laplacian operator (the “de Rham Laplacian” is the usual Laplacian operator
defined on differential forms on a Riemannian manifold). The de Rham operator
on a Sasakian manifold is decomposed onto its Hattori components as d0 +d1 +d2
(Sect. 4.2). The operators d0, d1 are elements of q, but d2 is in fact an element of
its universal enveloping algebra Uq.

Any attempt to add d2 or the de Rham Laplacian to q lead to a large subalgebra
of Uq which is complicated and very difficult to control.

The current version of the proof of Theorem 8.2 is independent from Theo-
rem 9.2.

The statement of Theorem 6.6 is global, however, the proof of Theorem 6.6, step 1 is
local, and this statement is essentially identical to (8.7).
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Remark 9.1. Some of the relations we derive can be found in P.A.-Nagy’s doctoral
thesis, in a more general setting, for a compact Riemannian manifold endowed with
a unitary vector field (see [25]).

We first recall the notations. Let Q be a Sasakian manifold, �r its Reeb field, and
R ⊂ T M the corresponding rank 1 distribution. Let

�∗(Q) :=
⊕

�
p,q
hor (Q) × �m

vert(Q)

be the corresponding decomposition (Hodge and Hattori) of the de Rham algebra,
and d = d0 + d1 + d2 the Hattori differentials (see Sect. 4.2). Denote by W
the Weil operator acting as multiplication by

√−1 (p − q) on
⊕

�
p,q
hor (Q) ×

�m
vert(Q). Let d1, d∗

1 , dc1 and (dc1)
∗ be the differentials defined in Claim 4.6. Let

Lω0 ,�ω0 := L∗
ω0

, Hω0 := [Lω0 ,�ω0 ] be the Lefschetz sl(2)-triple associated with
the transversally Kähler form ω0. For an operator A ⊂ End(Q), commuting with
Lie�r , we denote by A(k) the composition A◦ (Lie�r )k . Let i�r be the contraction with
�r and e�r the dual operator (above denoted e�r 	 ).

Denote by q the Lie superalgebra generated by all operators

Lω0(i), �ω0(i), Hω0(i), d1(i), e�r (i), i�r (i), Id(i),W (i) for all i ∈ Z
�0.

Since the vector field �r acts by Sasakian isometries, q commutes with Lie�r ; in other
words, Lie�r is central in q. We consider q as an R[t]-module, with t mapping A(i)
to A(i + 1). Then the Lie superalgebra q is a free R[t]-module of rank (6|6) (with
6 even and 6 odd generators) over R[t]. Its even generators are

Lω0 , �ω0 , Hω0 , W, �1 := {d1, d∗
1 }, Id,

and the odd generators are

d1, d∗
1 , dc1, (dc1)

∗, e�r , i�r .

Notice that d0 = e�r (1) and d∗
0 = i�r (1) (Claim 4.3).

The main result of this section is:

Theorem 9.2. The only non-zero commutator relations in q can be written as fol-
lows.

(i) The Lefschetz’s sl(2)-action: the even elements Lω0 ,�ω0 , Hω0 satisfy the
usual sl(2)-relations (Theorem 2.15) and commute with

W,�1,�0, d0, d
∗
0 .

The operator Hω0 acts as multiplication by p − n on �
p
hor(Q) × �m

vert(Q),
where dimR Q = 2n + 1.
(ii) The Weil operator satisfies

[W, d] = dc1, [W, dc1] = −d1, [W, d∗
1 ] = −(dc1)

∗, [W, (dc1)
∗] = d1.

Also, W commutes with the rest of the generators of q.
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(iii) The differentials d1, d∗
1 , dc1, (d

c
1)

∗ have non-zero square:

{d1, d1} = {dc1, dc1} = −Lω0(1), {d∗
1 , d∗

1 } = {(dc1)∗, (dc1)∗} = �ω0(1)

Moreover, {d1, dc1} = {d∗
1 , (dc1)

∗} = 0.
(iv) The usual Kodaira relations still hold:

[�ω0 , d1] = (dc1)
∗, [Lω0 , d

∗
1 ] = −dc1,

[�ω0 , d
c
1] = −d∗

1 , [Lω0 , (d
c
1)

∗] = d1.
(9.1)

(v) Unlike it happens in the Kähler case, the differentials d∗
1 , dc1 , etc. do not

(super-)commute:

{d∗
1 , dc1} = {d1, (dc1)∗} = −1

2
Hω0(1). (9.2)

(vi) The only non-zero commutator between e�r , i�r , Id is {e�r , i�r } = Id. These
elements commute with the rest of q.
(vii) The Laplacian �1 := {d1, d∗

1 } satisfies �1 = {d∗
1 , (dc1)

∗} and commutes
with all even generators in q and with e�r , i�r . Its commutators with the other 4
odd generators are expressed as follows

{d1,�1} = −1

2
dc1(1), {dc1,�1} = 1

2
d1(1),

{d∗
1 ,�1} = −1

2
(dc1)

∗(1), {(dc1)∗,�1} = 1

2
(d1)

∗(1).
(9.3)

Proof of Theorem 9.2 (i):. The sl(2)-relations and the expression for Hω0 are
proven in Sect. 2.3; the proof in the Sasakian case is literally the same. Also,
from the definition it is clear that Lω0 ,�ω0 , Hω0 commute withW , i�r and e�r . Since
d0 = e�r (1) and d∗

0 = i�r (1) (Claim 4.3), these operators commute with the sl(2)-
action and satisfy {d0, d∗

0 } = Lie2�r . We postpone the commutator relation for �1
until we proved Theorem 9.2 (iv). 	

Proof of Theorem 9.2 (ii):. Same as Theorem 2.15, part 2. 	

Proof of Theorem 9.2 (iii):. Start from {d1, d1} = −Lω0(1).

Since d2 = 0, one has d20 = d22 = 0 and {d0, d2} = −{d1, d1}. However,
d0 = e�r (1) and d2 = Lω0 i�r , hence {d0, d2} = {e�r , i�r }Lω0(1) = Lω0(1). The
squares of the rest of the differentials dc1 , etc., are obtained by duality and complex
conjugation.

To show that {d1, dc1} = 0, we use dc1 = [W, d1]. By Claim 2.13,

{d1, dc1} = {d1, {d1,W }} = 1

2
{{d1, d1},W }.

Since {d1, d1} = −Lω0(1) andW commutes with Lω0 , this gives {d1, dc1} = 0. The
equation {d∗

1 , (dc1)
∗} = 0 is obtained by duality. We finished Theorem 9.2 (iii). 	
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Proof of Theorem 9.2 (iv), the Kähler-Kodaira relations:. Again, it suffices to prove
[Lω0 , d

∗
1 ] = −dc1 , the rest is obtained byduality and complex conjugation.Weprove

it applying the same argument as used in Theorem 2.15. As an operator on �∗(Q),
the commutator [Lω0 , d

∗
1 ] has first order, because Lω0 is zero order, and d

∗
1 is order

2 (Claim 2.7).
The differential operators [Lω0 , d

∗
1 ] and −dc1 are equal on functions for the

same reasons as in Theorem 2.15.
Clearly, dc1(C

∞(Q)) generates �1
hor(Q). Therefore, to prove [Lω0 , d

∗
1 ] = −dc1

on �1
hor(Q), we need only to show that

([Lω0 , d
∗
1 ])2 = (−dc1)

2. (9.4)

This is implied by the graded Jacobi identity, applied as follows. First, we notice
that [�ω0 , d

∗
1 ] = 0, because d1(ω0) = 0. Therefore, the sl(2)-representation

generated by the Lefschetz triple 〈Lω0 ,�ω0 , Hω0〉 from d∗
1 has weight 1,

and [Lω0 , [Lω0 , d
∗
1 ]] = 0. Applying the graded Jacobi identity, and using

[Lω0 , [Lω0 , d
∗
1 ]] = 0, we obtain

{[Lω0 , d
∗
1 ], [Lω0 , d

∗
1 ]} = [Lω0 , {d∗

1 , [Lω0 , d
∗
1 ]}]

= 1

2
[Lω0(1), [Lω0(1), {d∗

1 , d∗
1 }]] by Claim 2.13

= −1

2
[Lω0(1), [Lω0(1),�ω0 ]] by Theorem 9.2 (iii)

= −Lω0(1).

However, (−dc1)
2 = −Lω0(1) by Theorem 9.2 (iii), which proves (9.4).

This implies that [Lω0 , d
∗
1 ] = −dc1 on�1

hor(Q) . The space�1(Q) is generated
over C∞(Q) by �1

hor(Q) and V = 〈�r 	〉. Applying Corollary 2.11, we obtain
that [Lω0 , d

∗
1 ] = −dc1 if [Lω0 , d

∗
1 ](�r 	) = −dc1(�r 	). However, d(�r 	) = ω0, hence

dc1(�r 	) = 0. Then, [Lω0 , d
∗
1 ](�r 	) = d∗

1 (�r 	 ∧ ω0). It is not hard to see that ∗(�r 	 ∧
ω0) = 1

(n−1)!ω
n−1
0 , where dimR Q = 2n + 1. Therefore,

d∗
1 (�r 	 ∧ ω0) = ± ∗ d1 ∗ (ω0 ∧ �r 	) = ± ∗ d1

1

(n − 1)!ω
n−1
0 = 0

because dωn−1
0 = 0. We proved that [Lω0 , d

∗
1 ](�r 	) = −dc1(�r 	) and finished the

proof of the Kähler-Kodaira relations. 	

Proof of Theorem 9.2 (v), the commutators of d∗

1 , dc: The commutator {d∗
1 , dc}

is obtained from the Kähler-Kodaira relations. Indeed, {d∗
1 , dc} = {d∗

1 , {d∗
1 , Lω0}}.

Then Claim 2.13 gives

{d∗
1 , {d∗

1 , Lω0} = 1

2
{{d∗

1 , d∗
1 }, Lω0} = 1

2
[�ω0(1), Lω0 ] = −1

2
Hω0 .

The relation {d1, (dc1)∗} = − 1
2Hω0(1) is dual to {d∗

1 , dc1} = − 1
2Hω0(1).
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Proof of Theorem 9.2 (vi), the commutators of e�r and i�r : The equation {e�r , i�r } =
1 is standard. Vanishing of the commutators between e�r , i�r and Lω0 ,�ω0 , Hω0 ,W
is standard linear algebra. The only commutators for which we have to prove the
vanishing is between e�r , i�r and d1, d∗

1 , dc1 , (d
c
1)

∗. Using duality and complex con-
jugation, we reduce the vanishing of these commutators to only two of them:
{e�r , d1} = 0 and {e�r , d∗

1 } = 0. As d2 = 0 and {d0, d1} is the grading 1 part
of d2, one has {d0, d1} = 0. Since d0 = e�r (1), this also implies {e�r , d1} = 0.
Twisting with I , we obtain {e�r , dc1} = 0. Applying the graded Jacobi identity to
{e�r , d∗

1 } = −{e�r , {�ω0 , d
c
1}} (Theorem9.2 (iv)) and using {e�r , Lω0} = 0, we obtain

{e�r , d∗
1 } = −{e�r , {�ω0 , d

c
1}} = {{e�r ,�ω0}, dc1} + {�ω0 , {e�r , dc1}} = 0.

This finishes the proof of Theorem 9.2 (vi).

Proof of Theorem 9.2 (vii).. The equation

{d1, d∗
1 } = {(dc1), (dc1)∗}

follows from {d1, dc1} = 0 (Theorem 9.2 (iii)) because

0 = {�, {d1, dc1}} = {{�, d1}, dc1} + {d1, {�, dc1}} = {(dc1)∗, dc1} − {d1, d∗
1 }.

This implies, in particular, that [W, {d1, d∗
1 }] = 0. The commutators between the

Lefschetz operators and �1 follow from the Kähler-Kodaira relations:

{Lω0 , {d1, d∗
1 }} = {{Lω0 , d1}, d∗

1 } + {d1, {Lω0 , d
∗
1 }} = −{d1, dc1} = 0.

We proved that �1 commutes with the even part of q. By duality and complex
conjugation, to prove (9.3) it would suffice to prove only one of these relations,
say, {d1,�1} = − 1

2d
c
1(1). This equation follows from (9.1), (9.2) (i.e. (iv) and (v)

of this theorem) and Claim 2.13:

{d1, {d1, d∗
1 }} = 1

2
{{d1, d1}, d∗

1 } = −1

2
{Lω0(1), d

∗
1 } = −1

2
(dc1)

∗.

We finished the proof of Theorem 9.2. 	
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