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Abstract. Let X be a CR manifold with transversal, proper CR action of a Lie group G.
We show that the quotient X/G is a complex space such that the quotient map is a CR map.
Moreover the quotient is universal, i.e. every invariant CR map into a complex manifold
factorizes uniquely over a holomorphic map on X/G. We then use this result and complex
geometry to prove an embedding theorem for (non-compact) strongly pseudoconvex CR
manifolds with transversal G � S1-action. The methods of the proof are applied to obtain a
projective embedding theorem for compact CR manifolds.

Introduction

An important and much studied question in CR geometry is whether an abstract
CR manifold can be realized, locally or even globally, as a CR submanifold of C

n ,
see for example [1,4] or [15]. There have also been several works on the topic of
CR manifolds with transversal group actions [2], Lempert proved an embedding
result for the otherwise difficult 3-dimensional case assuming the existence of a
transversal CR R-action [16].

There have been more recent results for CR manifolds with transversal S1-
action by Herrmann et al. [12] and also an equivariant Kodaira embedding theorem
by Hsiao et al. [13].

Most of the above results are for the case of CR codimension 1, but the high
codimension case is also interesting, as the following example from the theory of
transformation groups shows.

Let (Z , ω) be a Kähler manifold with holomorphic action of a Lie group G
which leaves ω invariant. Let μ : Z → g∗ be a momentum map such that 0 is a
regular value and defineM := μ−1(0). Then TxM∩ iTxM = (Cg(x))⊥ω andM
is a CR submanifold of Z with transversalG-action. Here, g(x) denotes the tangent
space at x to the orbit Gx and Cg(x) the complex subspace generated by g(x).

The spaceM and the induced complex structure on the quotientM/G is of high
interest in geometric invariant theory. In the casewhere Z is a bounded domain inC

n
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with Bergmann metric ω and G a unipotent subgroup of the group of holomorphic
isometries of (Z , ω), very little is generally known about the quotient M/G.

In this paper we will consider X to be a CR manifold with proper, transversal
action of a group G such that G is a subgroup of its universal complexification GC.
We recall that G is a subgroup of its universal complexification if and only if it is
a Lie subgroup of some complex Lie group. For example every closed subgroup
of a matrix group is a subgroup of a complex group but the universal covering of
SL2(R) is not.

We systematically start by showing that X may always be embedded into a
complex manifold. In particular, we say that a complex manifold Z with holomor-
phic action of GC and a G-equivariant CR embedding � : X → Z is the universal
equivariant extension of X if every equivariant CR map f : X → Y into a complex
manifold Y with holomorphic GC-action extends uniquely to a GC-equivariant
holomorphic map on Z .

Theorem 1.6. Let X be a CR manifold with proper, transversal, CR action of a Lie
group G. Assume that G is a subgroup of its universal complexification. Then there
exists a universal equivariant extension for X.

We use this to show that the quotient space X/G carries the structure of a
complex space such that the sheaf of holomorphic functions on X/G is given by
the sheaf of G-invariant CR functions on X (Theorem 1.8). In Sect. 2, we will
generalize the notion of strong pseudoconvexity to CR manifolds with transversal
of codimension one group action.Wewill then prove a connection between strongly
pseudoconvex CR manifolds and S1-bundles in positive orbifold line bundles (see
Theorem 2.3).

Using the quotient result and methods from complex geometry, we prove the
following equivariant embedding theorem. Let H be a closed subgroup of its uni-
versal complexification, such that HC is complex reductive and H = G � S1,
then we have HC = GC

� C
∗. Let X be a CR manifold with proper, transversal,

CR action of H such that H0
x < G0

x for every x ∈ X and let Y be the universal
equivariant exension of X .

Theorem 3.5. Under the assumptions above, let X be strongly pseudoconvex and
X/G be compact. Then there exists a HC-representation V and a HC-equivariant
holomorphic embedding � : Y → C

m\{0} × V , such that �|X : X → C
m × V

is an embedding. Here, C
m is the trivial GC-representation and decomposes into

irreducible C
∗-representations with positive weights.

In chapter 4, we use these techniques for a proof of a Kodaira-type embedding
theorem for CR manifolds.

Corollary 4.1. Let X be a compact CR manifold with a transversal CR action of
a compact Lie group K . Assume that there exists a weakly negative line bundle
LK → X/K and let L → X be the induced CR line bundle. Then there exists
a natural number k and finitely many CR sections si ∈ �(X, L−k) such that, for
W = span(si ), we have that

X → P(W ∗)
y �→ [s �→ s(y)]
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is a CR embedding.

Moreover we will show that the above embedding can be chosen to be K -
equivariant.

1. Quotients

Let X be a smooth manifold and G a Lie group with smooth action on X . For an
element ξ ∈ g, we denote by ξX (x) := d

dt

∣
∣
0exp(tξ)x the fundamental vector field

of ξ on X . We set g(x) := {ξX (x) | ξ ∈ g} and say that the action is locally free if
ξX (x) �= 0 for every ξ ∈ g\{0}.
For a manifold X , we write CT X for the complexified tangent bundle.
Let T 1,0X be a smooth complex subbundle of CT X such that T 1,0X ∩ T 1,0X =
{0} and [�(U, T 1,0X), �(U, T 1,0X)] ⊂ �(U, T 1,0X) for every open subset U
of X . Here, �(U, T 1,0X) denote the smooth sections into T 1,0X on U . Set
n =dimCT 1,0X and d =dimRX − 2n, then we call (X, T 1,0X) a CR manifold
of dimension (2n, d). We write T 0,1X := T 1,0X .
A typical example is given by a real submanifold X of a complex submanifold Z
such that dim(Tx X∩ JTx X) is constant in x , where J denotes the complex structure
on Z .
Let (X, T 1,0X) be a CR manifold with a CR action of a Lie group G. We call the
action transversal, if Cg(x) ⊕ T 1,0

x X ⊕ T 0,1
x X = CTx X for every x ∈ X , where

Cg(x) is the complex subspace in CTx X generated by g(x).

A result of Loose states that if the action fulfills Cg(x)∩T 1,0
x X ⊕T 0,1

x X = {0}
and is proper and free, then the quotient X/G may be equipped with a CR structure
such that the projection X → X/G is a CR map [17, Theorem 1.1]. Our first goal
is to show that if the action is proper and transversal, but not necessarily free, then
the quotient X/G is a complex space.

For the proof, we first recall some basic techniques regarding quotients in the
smooth case.

Let X be a smoothmanifold andG a Lie groupwith proper and free action on X .
For every point x ∈ X , we find a smooth submanifold S of X with x ∈ S such that
the map G× S → X , (g, s) �→ gs is a diffeomorphism onto an open subsetU of X
[20, Theorem 2.3.3]. The quotient map π : X → X/G induces a homeomorphism
π |S : S → π(U ), which defined on X/G the structure of a smooth manifold.

If G is a closed subgroup of a Lie group H and G acts on a manifold X , then G
acts proper and free on H × X via (g, (h, x)) �→ (hg−1, gx), hence H ×G X :=
(H × X)/G is a manifold.

This lets us formulate the general slice theorem as follows. Let G act on X
properly, then around every x ∈ X , there exists a slice, i.e. a smooth, Gx -invariant
submanifold S of X such that the map G ×Gx S → X , [g, s] �→ gs is a diffeomor-
phism onto an open subset of X [20, Theorem 2.3.3].
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On CR manifolds, it is in general not possible to construct a reasonable CR
structure on the quotient using slices directly. More precisely, if G acts freely
and transversally on a CR manifold X and S is a slice at x ∈ X such that
CTx S = T 1,0

x X ⊕ T 0,1
x X , then this would imply that T 1,0X ⊕ T 0,1X is invo-

lutive and X is flat. This fails in general.

We will use the following Lemma to construct complex structures on quotient
spaces. For a smooth map f : X → Y between manifolds, we may extend d f to
a C-linear map d f : CT X → CTY . For the sake of simplicity, we will denote the
extension with d f , as well.

Lemma 1.1. Let X,Y be smooth manifolds and π : X → Y a surjective submer-
sion. Let E be a smooth, complex subbundle of CT X. For every y ∈ Y , let Fy

be a complex subspace of CTyY such that dxπ : Ex → Fπ(x) is an isomorphism
for every x ∈ X. Then F = ⋃

y Fy is a smooth subbundle of CTY and for every
x ∈ X, there exist open neighborhoods U of x and � of π(x) with π(U ) = �,
such that for every smooth section W ∈ �(�, F), there exists a smooth, π -related
section V ∈ �(U, E), i.e. we have dπ ◦ V = W ◦ π .

Proof. Denote by Bn the ball with radius 1 in R
n .

Since the result is local in X , we may assume that X = Bn × Bd , Y = Bn

and π is the projection onto the first component. We may also assume that we find
smooth sections Vi ∈ �(X, E), i = 1, .., k, such that Vi (p) form a complex basis
for Ep in every point p ∈ X .

Now fix w ∈ Bd , set sw : Bn → Bn × Bd , z �→ (z, w) and define
Ww

i (z) := d(z,w)π(Vi (sw(z))). Since dπ : E → F is an isomorphism in every
point, the Ww

i (z) define a basis for Fw for every w ∈ Bd and z ∈ Bn which
depends smoothly on w and z. In particular, the space F = ⋃

w Fw defines a
smooth subbundle of CTY .

Now let W ∈ �(Y, F) be a smooth section. For w ∈ Bd , we write W (z) =
∑

i f w
i (z)Ww

i (z) for complex-valued smooth functions f w
i .

Then the π -related smooth section is given by V (z, w) := ∑

i f w
i (z)Vi (z, w).

�

We formalize the notion of CR embeddings.

Definition. Let X , Y be CR manifolds. A map � : X → Y is called a CR embed-
ding if it is a smooth embedding of X into Y and

d�(T 1,0X) = d�(CT X) ∩ T 1,0Y,

i.e. �(X) is a CR submanifold of Y . We require all embeddings to be closed.

Note that in the case where X is of CR codimension 1, it suffices that � is an
embedding and a CR map. For higher CR codimension however, this is not true.
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If a CR manifold X may be embedded into a complex manifold Z , it is an
interesting question whether the CR functions on X may (locally) be extended to
holomorphic functions on Z .

If H is a complex Lie group acting on a complex manifold Z , we say that the
action is holomorphic if the action map H × Z → Z is holomorphic.

Definition. Let G be a Lie group and X a CR manifold with transversal action of
G. Let Z be a complex manifold with holomorphic GC-action and � : X → Z
a G-equivariant CR map. We say that (Z ,�) is a universal equivariant extension
of X if for every complex manifold Y with holomorphic GC-action and every G-
equivariant CRmap f : X → Y , there exists a uniqueGC-equivariant holomorphic
map F : Z → Y with f = F ◦ �.

If the universal equivariant extension exists, it is unique up to a GC-equivariant
biholomorphic map.

From now on, denote by GC the universal complexification of G and assume
that G is a subgroup of GC. This is for example the case if there exists any injective
morphism of G into a complex Lie group. In particular, it is the case for every
linear group. Now G being a subgroup of GC implies that G is a totally real, closed
subgroup of GC [11, 1 Proposition].

Let X be a CR manifold with proper, transversal CR action of G. For a Lie
group G, we will denote by G0 the connected component of the identity, which is
a normal Lie subgroup of G.

Let S be a (smooth) slice at x ∈ X and L = Gx . Because all G-orbits are of
the same dimension, all isotropy groups Gs for s ∈ S have to contain L0. Since L0

acts trivially on S, we get an L/L0-action on S and the L-orbits on S are finite.
Since L is compact, we have LC = Lexp(i l) and every connected component

of LC intersects L . We conclude that LC/(L0)C = L/L0 and get an LC-action on
S as a finite group.

Because of [11, 3 Corollary 1], we see that LC is a closed complex subgroup
of GC. For � = G ×L S, define the smooth manifold

�C := GC ×LC

S.

Note that for s ∈ S, we get (Ls)
C = (LC)s . Hence for g ∈ G and [g, s] ∈

GC ×LC

S, we conclude (GC)[g,s] = g(LC)sg−1 = g(Ls)
Cg−1 = (G[g,s])C.

We call �C the extension of the slice S or just a slice extension around x .
We want to show that�may be embedded into�C and start with the following

Lemma.

Lemma 1.2. Let G be a closed subgroup of H. Let H0 be a closed subgroup of
H, define the subgroup G0 := G ∩ H0 and assume that the image of the map
G/G0 → H/H0 is closed. Let X be a smooth manifold with H0-action, then the
map � : G ×G0 X → H ×H0 X is an embedding.

Proof. By construction of G0 and H0, the map G/G0 → H/H0 is an immersion.
In particular, it is a smooth embedding [19, 2.13 Theorem]. Since the following
diagram of bundle maps
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G ×G0 X H ×H0 X

G/G0 H/H0

�

commutes, it follows that � is an embedding. �

Lemma 1.3. The natural map � : G ×L S → GC ×LC

S is an embedding.

Proof. The idea of the proof is to apply Lemma 1.2 for H = GC, H0 = LC and
H = L . Due to [11, 3 Corollary 1], we have LC ∩ G = L . It remains to show that
the image of G/L → GC/LC is closed.

From [11, 1 Proposition] we get the existence of an involutive anti-holomorphic
homomorphism � on GC such that G is the fixed point set of �.

Let θ be the corresponding involution on gC, then l is fixed under θ and lC is
invariant. Since L is compact, we have LC = Lexp(i l).

Now let gn be a sequence in G such that the image of gn in GC/LC converges.
We find a sequence ln ∈ LC such that gnln → g ∈ GC.

Write ln = knexp(Pn) with kn ∈ L and Pn ∈ i l. Then

lng
−1
n �(lng

−1
n )−1 = ln�(ln)

−1 = knexp(Pn)�(knexp(Pn))
−1

= knexp(Pn)exp(−θ(Pn))k
−1
n = knexp(2Pn)k

−1
n ,

using the same computation as above. Since L is compact, we may assume that
kn and therefore exp(Pn) converges. This implies that ln and therefore gn is a
convergent sequence. �


In order to formulate our first result, we fix x ∈ X and a Slice S at x . We
identify � = G · S with G ×L S where L = Gx and denote by �C = GC ×LC

S
the corresponding slice extension. We have the following

Theorem 1.4. (1) The slice extension �C is a complex manifold such that the nat-
ural GC-action on �C is holomorphic.

(2) The G-equivariant map � : G ×L S → GC ×LC

S is a CR embedding.
(3) For every G-invariant open subset U ⊂ �, the restriction �|U : U → GCU is

a CR embedding and GCU is a universal complexification of U.

Proof. We begin by showing that �C is a complex manifold. The map

η : GC × � → �C

(h, x) �→ h�(x).

is a surjective submersion. We denote by [h, s]C the elements of GC ×LC

S.
The fiber η−1([1, s0]C ) consists of the elements (h, [g, s]) ∈ GC × (G ×L S)

such that [hg, s]C = [1, s0]C . In particular, this means that there exists an l ∈ LC

such that ls = s0. But since the LC-orbits on S are equal to the L-orbits, we may
choose l to be in L . We get

η−1([1, s0]C ) = {(h, [g, s0]) | [hg, s0]C = [1, s0]C }.
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This condition is equivalent to the existence of an l ∈ (GC)[1,s0] = (G[1,s0])C such
that hgl−1 = 1, hence h = lg−1. We have shown that

η−1([1, s0]C ) = {(lg−1, [g, s0]) | l ∈ (G[1,s0])C, g ∈ G}.
Now let h0 ∈ GC. Since η is GC-equivariant, we get

η−1([h0, s0]) = {(h0lg−1, [g, s0]) | l ∈ (G[1,s0])C, g ∈ G}.
Since η is a submersion, every fiber of η is a submanifold with tangent space equal
to the kernel of dη. hence in a point (h0, y) ∈ GC × �, we get

ker d(h0,y)η = {(dh0(ξ − μ),μ�(y)) | ξ ∈ (gy)
C, μ ∈ g},

where (gy)
C denotes the Lie algebra of the isotropy group (GC)y and dh0 is the

differential of the left translation by h0.
Nowwe considerGC×� as a CRmanifold. LetW ∈ ker d(h0,y)η∩T 1,0(GC×

�). Since the G-action on � is transversal, we have W = (dh0(ξ), 0) for ξ ∈
C(gy)

C. Define

K(h0,y) := ker d(h0,y)η ∩ T 1,0
(h0,y)

(GC × �) = {(dh0(ξ), 0) | ξ ∈ T 1,0
1 (Gy)

C}
then

K (h0,y) = {(dh0(ξ), 0) | ξ ∈ T 0,1
1 (Gy)

C}
and

ker d(h0,y)η ∩ (T 1,0(GC × �) ⊕ T 0,1(GC × �)) = K(h0,y) ⊕ K (h0,y).

Since all isotropy groups of the G-action on � are of the same dimension, we see
that the dimension of Ky does not depend on y ∈ GC × �, hence it defines a com-
plex subbundle of T 1,0(GC ×�). Let E be a complex subbundle of T 1,0(GC ×�)

such that E ⊕ K = T 1,0(GC × �).

For x ∈ GC ×�, define Fx := {dxη(V ) | V ∈ T 1,0
x (GC ×�)} and for y ∈ �C,

set Fy := ⋃

η(x)=y Fx . Note that dη defines an isomorphism between Ex and Fx
in every point. We want to show that Fy = Fx for every x ∈ η−1(y).

The map η is invariant under the CR action of G on GC × � via (g, (h, x)) �→
(hg−1, gx), which shows that F[h,gx] = F[hg,x] for g ∈ G.

Because of that, it suffices to show F(h,[1,s]) = F(h0,[1,s0]) if η(h, [1, s]) =
η(h0, [1, s0]). But the latter implies that [h, s]C = [h0, s0]C , hence there exists an
l ∈ LC such that ls = s0 and we may again choose l to be in L .

We may therefore assume s = s0 and hh−1
0 ∈ (G[1,s])C. It then remains to

prove F(l,[1,s]) = F(1,[1,s]) for all l ∈ (G[1,s])C.
We have F(l,[1,s]) = F[1,l[1,s]] = F(1,[1,s]) for all l ∈ G[1,s]. Note that [1, s] ∈ �

implies (G[1,s])C = (GC)[1,s].
Because η is equivariant, we conclude F(l,[1,s]) = dl(F(1,[1,s])) and need to

show that dl(F(1,[1,s])) = F(1,[1,s]) for l ∈ GC[1,s]. But now CTη(1,[1,s])�C is a
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holomorphic GC[1,s]-representation and F(1,[1,s]) is a complex subspace which is

invariant under G[1,s]. Therefore it is invariant under GC[1,s].

We have shown that dxη induces an isomorphism between Ex and Fη(x) = Fx
and from Lemma 1.1 we get that F = ⋃

x Fη(x) is a subbundle ofCT�C. We claim
that F defines a CR structure on �C.

Let dxη(V ), dxη(W ) ∈ Fη(x) and assume dxη(V ) = dxη(W ) = dxη(W ). We
conclude V − W ∈ Kx ⊕ Kx and get V − W = V0 − W 0 with V0 ∈ Kx and
W 0 ∈ K x . But then V0 = V , W0 = W and dxη(V ) = dxη(W ) = 0.

For V ∈ �∞(�C, F), we use Lemma 1.1 and find a smooth section V0 ∈
�∞(GC × �, E) with dxηV0 = V (π(x)). Then

V (η(x))( f ) = d f (V (η(x))) = d f (dη(V0(x))) = V0(x)( f ◦ η),

or alternatively (V f ) ◦ η = V0( f ◦ η). For another W ∈ �∞(�C, F) and W0 as
above, this then implies

(η(x))( f ) = V (W ( f ))(η(x)) − W (V ( f ))(η(x))

= V0(W0( f ◦ η))(x) − W0(V0( f ◦ η))(x)

= [V0,W0](x)( f ◦ η) = dη([V0,W0](x))( f ).
Hence [V,W ](η(x)) = dη([V0,W0](x)) and [V,W ](η(x)) ∈ Fη(x).

We have shown that �C is a CR manifold. Since its real codimension is zero,
it is a complex manifold.

The GC-action on �C is holomorphic if the pulled back map GC ×GC ×� →
�C, (g, (h, x)) �→ gh�(x) is CR. This is true because η is a CR map by construc-
tion.

Lemma 1.3 says that � is a smooth embedding, let us check that it is a CR
embedding. Note that � is a CR map by construction and �0 : � → GC × �,
x �→ (1, x) is a CR embedding with � = η ◦ �0.

Let y ∈ � and W ∈ dy�(CTy�) ∩ T 1,0
η(1,y)�

C. By construction of the CR

structure, W = d(1,y)η(W0) for W0 ∈ T 1,0
(1,y)(G

C × �) and W = dy�(V0) for
V0 ∈ CTy�.

NowW0−dy�0(V0) ∈ ker d(1,y)η = {(ξ −μ,μ�(y)) | ξ ∈ C(gC)y, μ ∈ Cg}.
We find ξ ∈ C(gC)y , μ ∈ Cg such that W0 = (ξ − μ,μ�(y) + dy�0(V0)). But
W0 ∈ T 1,0

(1,y)(G
C × �) and since g is totally real in gC, we get Cg∩ T 1,0

1 GC = {0}
and μ = 0. Because �0 is a CR embedding, this implies V0 ∈ T 1,0

y � and shows
that � is a CR embedding.

Now let us consider the universality condition. We will assume U = �, the
general case is analogous. Let Y be a complex manifold with holomorphic GC-
action and f : � → Y a G-equivariant CR map.

We define F : �C → Y , hx �→ h f (x) for h ∈ GC, x ∈ �. For this to be
well-defined, we need to check that h ∈ (GC)x implies h ∈ (GC) f (x).
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Since x ∈ �, we have (GC)x = (Gx )
C and because the action of GC on Y is

holomorphic, Gx ⊂ (GC) f (x) implies (GC)x = (Gx )
C ⊂ (GC) f (x).

We need to show that F is holomorphic. Consider the commuting diagram

GC × � GC × Y

�C Y

η

id × f

F

ϕ

where ϕ is the action map. Now F is holomorphic if and only if F ◦η is CR, which
follows from the diagram. �


We want to give a global version of this local statement. For this, we consider
the union over all slice extensions and identify the overlapping parts. We formalize
this as follows.

Around every x ∈ X , there exists a slice extension �C
x . We may cover X with

countably many sets �i with extensions �C

i for i ∈ N.
For i, j ∈ N with �i ∩ � j �= ∅, define the open subset

�C

i j := GC · (�i ∩ � j ) ⊂ �C

i .

Then the identity map �i ∩ � j → �i ∩ � j extends to a unique GC-equivariant
holomorphic map ϕ j i : �C

i j �→ �C

j i , using Theorem 1.4.
Because of the uniqueness, we get ϕi i = id�C

i
and ϕk j ◦ ϕ j i = ϕki on the open

subset GC(�i ∩ � j ∩ �k) ⊂ �C

i . This also implies ϕi j = ϕ−1
j i .

Now define

Z :=
⋃

i∈N
�C

i

/

∼,

where x ∈ �C

i and y ∈ �C

j are equivalent if�i ∩� j �= ∅ and ϕ j i (x) = y. Because
of the remarks above, this does indeed define an equivalence relation.

Define Z0 := ⋃

i∈N �C

i to be the disjoint union over the �C

i , the quotient map
π : Z0 → Z and equip Z with the quotient topology.

Lemma 1.5. The space Z is Hausdorff and second countable.

Proof. Fix i ∈ N and letU ⊂ �C

i be open. Thenπ−1(π(U ))∩�C

j = ϕ j i (U∩�i j ),

which shows that π−1(π(U )) is open.
We show that Z is Hausdorff. If U, V ⊂ �C

i are disjoint, then π−1(π(U )) and
π−1(π(V )) are also disjoint.

It therefore only remains to treat the case where x ∈ �C

1 \�C

12 and y ∈ �C

2 \�C

21.
First assume that x ∈ �1 ⊂ �C

1 and y ∈ �2 ⊂ �C
2 . Then x and y can not be

in the same G-orbit in X , since �1\�C

12 is a G-invariant neighborhood of x not
containing y. Using the existence of slices on X , we find open, G-invariant disjoint
neighborhoods Ux and Uy of x and y in X with Ux ⊂ �1 and Uy ⊂ �2.
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Define the open subsets Wx := GC · Ux and Wy := GC · Uy of �C

1 and �C

2 .
Assume that π(Wx ) and π(Wy) are not disjoint. Then we find x0 ∈ Wx ∩ �C

12 and
y0 ∈ Wy ∩ �C

21 such that x0 and y0 are equivalent. There exists h ∈ GC such that
hx0 ∈ �1∩Wx = Ux and since ϕ21(�1) ⊂ �2, we conclude hy0 ∈ �2∩Wy = Uy .
But hx0 and hy0 are equivalent if and only if hx0 = hy0 in X , implying that Ux

and Uy are not disjoint, which is a contradiction.
The general case now follows because the sets Whx x and Why y we constructed

are GC-invariant and every GC-orbit in �C

i intersects �i .
Now Z is second countable because the �C

i are second countable. �


The �C

i give Z the structure of a complex manifold. The GC-action on Z is
holomorphic because the GC-actions on the �C

i are holomorphic. The CR embed-
dings �i : �i → �C

i extend to a CR embedding � : X → Z .
We summarize our results in the following Theorem.

Theorem 1.6. Let G be a subgroup of its universal complexification and X a CR
manifold with proper, transversal CR G-action. Then the map � : X → Z is a
G-equivariant CR embedding of X into the complex manifold Z.

Furthermore, for every G-invariant open subset U ⊂ X, the set (GC�(U ),�)

is the universal equivariant extension of U. In particular, the manifold (Z ,�) is
the universal equivariant extension of X.

Proof. It remains to prove the universality condition.We will again assumeU = X
and take a G-equivariant CR map f : X → Y . For every x ∈ X , the map f extends
to a GC-equivariant holomorphic map Fi : �C

i → Y and we define F : Z → Y via
F(y) = Fi (y) if y ∈ �C

i . We need to show that this is well-defined. Consider �C

i
and �C

j with �i ∩ � j �= ∅. But then Fi : �C

i j → Y and Fj ◦ ϕ j i : �C

i j → Y are
both extensions of the same function f on �i ∩ � j , hence Fi = Fj ◦ ϕ j i and F is
well-defined. �


We now consider the quotient X/G, using that X/G = Z/GC, and show that
it has the structure of a complex space. Since the action of GC on Z is generally not
proper, we need to prove the existence of holomorphic slices, i.e. for every z ∈ Z ,
there exists a (GC)z-invariant complex submanifold SC of Z with z ∈ SC such that
the map GC ×(GC)z SC → Z , [h, w] �→ hw is biholomorphic onto an open subset
of Z .

Definition. Let Z be a complex manifold with an action of a complex reductive
group KC, where K is amaximal compact subgroup of KC. An open subsetW ⊂ Z
is called K -orbit convex if W is K -invariant and for all z ∈ W , ξ ∈ k the set
{t ∈ R | exp(i tξ)z ∈ W } is connected.

If Z , Y are complex manifolds with KC-action, W ⊂ Z is K -orbit convex and
f : W → Y is a K -equivariant holomorphicmap, thenwemay define F : KCW →
Y by setting F(kz) := k f (z) for k ∈ KC and z ∈ W . The identity theorem for
holomorphic functions then gives that F is well-defined.
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Proposition 1.7. Let G be a subgroup of its universal complexification GC and
X a CR manifold with transversal, proper G-action. Let x ∈ X, L = Gx and
�C = GC ×LC

S a slice extension around x. Then there exists a holomorphic slice
SC for the GC-action on �C.

Proof. The group GC is a Stein manifold [11, 1 Proposition] and LC is complex
reductive, henceGC/LC is a Steinmanifold [18].We have an LC-action onGC/LC

via the multiplication from the left. Since LC is complex reductive and 1 · LC ∈
GC/LC is a fixed point, we find an LC-invariant neighborhood U of 1 · LC and a
LC-equivariant embedding of U onto an open subset UV of an LC-representation
V [22, Theorem 5.2 and Remark 5.4]. Since 1 · LC is a fixed point, translation by
1 · LC ∈ UV is LC-equivariant and we may assume that 1 · LC gets mapped to
0 ∈ V .

Now L acts by unitary transformations on V for a suitable inner product. Apply-
ing [10, 3.4 Proposition] to the inner product, we conclude that 0 ∈ V has a basis
of L-orbit convex neighborhoods.

The inverse image of an L-orbit convex neighborhood of 1 · LC via the LC-
equivariant quotientmapGC/(L0)C → GC/LC is an L-orbit convex neighborhood
W̃ of 1 · (L0)C in GC/(L0)C which is invariant under the LC-action from the right.

Now if W̃ is as above and W0 is an LC-invariant neighborhood of x ∈ S, then
the image of W̃ × W0 is an L-orbit convex neighborhood of x in GC ×LC

S. We
conclude that x ∈ GC ×LC

S has an L-orbit convex neighborhood basis.
Now take some L-orbit convex neighborhood W1 of x and an open L-

invariant neighborhoodW2 of 0 ∈ Tx�C with an L-equivariant biholomorphic map
ϕ : W1 → W2. We may extend ϕ to a LC-equivariant map � : LCW1 → LCW2.

Apply [10, 3.4 Proposiiton] on the origin in Tx�C and find some L-orbit convex
neighborhood W̃2 ⊂ W2. Then extend ϕ−1 to a LC-equivariant map �̃ : LCW̃2 →
LCW1. Set U1 = LC�̃(W̃ ) and U2 = W̃ , then �̃ is inverse to � : U1 → U2
because of equivariance.

By choosing an LC-invariant subspace of Tx�Cwhich is perpendicular to lC(x),
we find an LC-invariant complex submanifold SC of �C through x such that the
induced map η : GC ×LC

SC → �C is an immersion in [1, x].
We find some L-invariant neighborhood W̃ of x in �C and an L-equivariant

holomorphic map η̃ : W̃ → GC ×LC

SC with η ◦ η̃ = Id.

Write �C = GC ×LC

S, then η̃|S∩W̃ is an LC-equivariant map, which extends
to a GC-equivariant map η̄ on the open set GC · (W̃ ∩ S). Because of equivariance,
we get η ◦ η̄ = Id on GC · (W̃ ∩ S) and η is biholomorphic after possibly shrinking
SC . �


Theorem 1.8. Let G be a closed subgroup of its universal complexification and
X a CR manifold with transversal, proper CR G-action. Then X/G is a complex
space, such that the sheaf of holomorphic functions on X/G is given by the sheaf
of G-invariant CR functions on X.
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Proof. Let x ∈ X and let �C be a slice extension. Proposition 1.7 then implies that
locally,�/G = �C/GC = SC/LC, where SC may be realized as an open subset of
an LC-representation V . Now LC acts as a finite group on SC and V , hence V/LC

is an affine variety, giving X/G the structure of a complex space.
Because of the universality condition, every G-invariant CR map on � extends

to a unique GC-invariant holomorphic function on �C. �


Remark. We have actually shown that X/G is a complex orbifold.

Remark. If X is a CR manifold with proper, transversal and locally free G-action,
then the G-action on GC × X is free, proper and transversal, hence GC ×G X is a
complex manifold. Writing X = G ×G X and applying Lemma 1.2, one gets that
X → GC ×G X is an embedding. From the construction, it follows that GC ×G X
is the universal equivariant extension of X .

2. Pseudoconvexity

In general, we need to impose additional conditions on a CR manifold to ensure
the existence of an embedding into C

n .
In the presence of a G-action, we will generalize the notion of pseudoconvex-

ity to CR manifolds of higher codimension and establish a link between strongly
pseudoconvex CR manifolds and positive line bundles.

Definition. Let X be a CR manifold of dimension (2n, d) with an action of a Lie
group G. We say that the action of G on X is transversal of codimension one if
dim g(x) = d − 1 for all x ∈ X and

g(x) ∩ (T 1,0
x X ⊕ T 0,1

x X) = {0}.

Example. Let G be a Lie group and M a CR manifold of dimension (2n, d) with
transversal CR action of G. Let X be a G-invariant hypersurface of M , then X is a
CR manifold of dimension (2(n − 1), d + 1) with G-action which is transversal of
codimension one.

To see this, define Wx = (T 1,0
x M ⊕ T 0,1

x M) ∩ TxM , then

dimWx + dimTx X = dim(Tx X + Wx ) + dim(Tx X ∩ Wx ).

Since X isG-invariant, Tx X does contain g(x) and Tx X+Wx = TxM . This implies
dim(Tx X ∩ Wx ) = 2n − 1.

Now every Wx has a complex structure, which we denote by Jx . Define Vx :=
Tx X ∩ Wx , then

dim(Vx ∩ JxVx ) = dim Vx + dim JxVx − dim(Vx + JxVx ),

hence dim(Vx ∩ JxVx ) = 2(n − 1).
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Let X be a CR manifold with locally free action of a Lie group G which is
transversal of codimension one and assume that X is orientable.

Let L be a line bundle transversal to g(x)⊕(T 1,0
x X⊕T 0,1

x X)∩Tx X in T X . Since
(T 1,0X ⊕ T 0,1X) ∩ T X is a complex vector space bundle over X , it is orientable.
Since the action is locally free, the bundle

⋃

x g(x) is trivial and L is orientable,
hence trivial.

We conclude that in this case, we always find transversal vector fields, i.e. a
vector field T on X such that CT (x) ⊕ Cg(x) ⊕ T 1,0

x X ⊕ T 0,1
x X = CTx X .

In fact, the above argument shows that, under the above conditions on the group
action, X is orientable if and only if there exist transversal vector fields.

Fromnowon, let X be aCRmanifoldwith group action ofGwhich is transversal
of codimension one and let T be a transversal vector field on X . We define a 1-form
on X via α(T ) = 1 and α(g(x)⊕Tx X ∩ (T 1,0X ⊕T 0,1X)) = 0, which we will call
the projection onto T . For V,W ∈ T 1,0X , we define ω(V,W ) := 1

2i dα(V,W ),
by extending dα to a C-bilinear map on every fiber of CT X . By definition, ω is a
hermitian form on T 1,0X .

Definition. Let T be a transversal vector field on X , the form α the projection onto
T and ω be the induced hermitian form. We say that T is strongly pseudoconvex
if ω is positive definite. We call X strongly CR-pseudoconvex if there exists a
strongly pseudoconvex vector field T on X .

Note that if X is of CR codimension one with trivial group action, this is the
usual definition of strong pseudoconvexity.

For V,W ∈ C∞(X, T 1,0X), we get

dα(V,W ) = Vα(W ) − Wα(V ) − α([V,W ]) = −α([V,W ]). (1)

Let S be another transversal vector field. We get that α(S) is point-wise non-
vanishing, therefore β := α(S)−1 · α is the projection onto S. Equation (1) then
implies

1

2i
dβ(V,W ) = 1

2i
α(S)−1 · dα(V,W ). (2)

Definition. We say that a vector field T on a CR manifold X is a CR vector field
if the flow of T acts by CR automorphisms.

Note that in general, there do not need to exist transversal CR vector fields.
Let X be aCRmanifoldwith action of a compact Lie group K which is transver-

sal of codimension one. Let T be a transversal vector field and α the projection
onto T .

The K -action leaves the bundle Ck(x) ⊕ T 1,0
x X ⊕ T 0,1

x X invariant, hence for
k ∈ K , we get α(dxk(T (x))) �= 0. We say that K preserves the orientation of T if
α(dxk(T (x))) > 0 for all k ∈ K and x ∈ X . Note that if K is connected, this is
always the case.
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Lemma 2.1. Let X be a CR manifold with K -action which is transversal with
codimension one. Let T be a transversal CR vector field such that K preserves
the orientation of T . Then there exists a transversal CR vector field T̃ which is
K -invariant. If T is strongly pseudoconvex, then also T̃ is strongly pseudoconvex.

Proof. Let T̃ (x) := ∫

K dk(T (k−1x))dk be the vector field averaged over K . If α is
the projection onto T , then α(T̃ ) = ∫

K α(dkT (k−1x))dk. Because K preserves the
orientation of T , we conclude α(T̃ ) > 0. In particular, we get that T̃ is transversal.

The flow of T̃ is given by �T̃
t (x) = ∫

K k(�T
t (k−1x))dk, where �T

t is the
flow of T , which implies that T̃ is CR. Strong pseudoconvexity of T̃ follows from
Eq. (2). �

Theorem 2.2. Let X be a compact CR manifold with locally free K -action which
is transversal of codimension one. Let T be a strongly pseudoconvex K -invariant
CR vector field. Then there exists a strongly pseudoconvex K -invariant CR vector
field T̃ such that the flow of T̃ defines an S1-action.

Proof. Let α be the projection onto T . We will define a riemannian metric on
X . Since the K -action is locally free, the bundle k(x) is trivial and we choose a
riemannian metric h for it.

A vector V ∈ Tx X can be decomposed as V = VT + Vk + VC + V
C
, where

VC ∈ T 1,0
x X , V

C
∈ T 0,1

x X , VT ∈ RT (x) and Vk ∈ k(x). Define a riemannian
metric via

g(V,U ) = α(VT )α(UT ) + h(Vk,Uk) + 1

2i
dα(UC, VC) − 1

2i
dα(U

C
, V

C
).

Since 1
2i dα(UC, VC) is positive definite on T 1,0X , the form 1

2i dα(U
C
, V

C
) =

− 1
2i dα(V

C
,U

C
) is negative definite on T 0,1X .

Denote by �T
t the flow of T . Since T is K -invariant and CR, the flow �T

t
commutes with the K -action and leaves the bundles T 1,0X and T 0,1X invariant.
This implies that α is invariant under �T

t and that the flow acts by isometries with
respect to g.

The isometry group Iso(X) of (X, g) acts properly on X and since X is compact,
we conclude that Iso(X) is compact. Then the subgroup U of Iso(X) given by the
CR isometries which commute with the K -action is compact, as well.

Now T defines a subgroup of U , which is contained in a torus and the result
follows because the vector fields defining S1-actions are dense in this torus. �


Now let X be a compact CR manifold with transversal, locally free CR action
of S1 × K . Denote H = S1 × K , then Y := HC ×H X is a complex mani-
fold. Now consider the CR manifold (C × KC) × X with S1 × K -action given
by ((s, k), (z, h, x)) �→ (zs−1, hk−1, skx). This action is transversal, therefore
Z := (C × KC) ×H X := ((C × KC) × X)/H is a complex space. With the same
argument, Z/KC = C ×S1 (X/K ) is a complex space, as well. The natural map
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Y → Z is an open holomorphic injective immersion.

From Proposition 1.7, we conclude the existence of holomorphic slices on
HC ×H X . The following theorem will be the main motivation for our further
study.

Theorem 2.3. Let X be a compact CR manifold with transversal, locally free, CR
S1 × K-action such that the vector field T induced by the S1-action is strongly
pseudoconvex. Then the set

W := {[z, x] ∈ C ×S1 X/K = Z/KC | |z|2 < 1}

is strongly pseudoconvex in Z/KC.

Proof. For the map h : Z/KC → R, [z, x] �→ |z|2, we have W = {p ∈
Z/KC|h(p) < 1}.

Let U be the preimage of W under Z → Z/KC. We pull back h to a function
on Z , which we will still denote by h. We have U = {z ∈ Z |h(z) < 1}. The map
x �→ [1, 1, x] is a CR embedding of X and T extends to a C

∗ × KC-invariant
vector field on Y , which is the vector field induced by the S1-action on Y .

The boundary ∂U = {[1, g, x] ∈ (C∗ × KC)×S1×K X} = KCX is a hypersur-
face and therefore a CR submanifold of Y with transversal S1-action. We therefore
have CTx∂U = T 1,0

x ∂U ⊕ T 0,1
x ∂U ⊕ CT (x) and define the projection onto T via

α(T (x)) = 1 and α(T 1,0∂U ⊕ T 0,1∂U ) = 0.

Take y0 ∈ ∂W and let π : Z → Z/KC be the quotient map. We then find an
x0 ∈ X such that π(x0) = y0. Let S be a holomorphic slice through x0 for the
HC-action and � = HC ×L S, where L is the finite isotropy of HC in x0. We
may assume that S is biholomorphic to a ball and CTx0 S = T 1,0

x0 X ⊕ T 0,1
x0 X , since

actions of compact groups at fixed points can be linearised.
Let [w, g, y] be the coordinates of (C∗ × KC) ×L S and take some smooth

function ϕ on � such that h[w, g, y] · eϕ[w,g,y] = |w|2. By construction, ϕ is HC-
invariant and � ∩ ∂U is given by �[w, g, y] := |w|2 − eϕ[w,g,y] = 0.

Let ∂
∂w

be the complex vector field induced be the C
∗-component in �, let

( ∂
∂z j

) j=1,...,m be a basis for T 1,0S and extend this to a basis ( ∂
∂w

, ∂
∂z j

) j=1,...,n for

T 1,0�. This is always possible after shrinking �.
We want to compute the CR structure of ∂U ∩ � in terms of the above basis

and are therefore considering the equation

0 = d�

⎛

⎝
∑

j

a j
∂

∂z j
+ b

∂

∂w

⎞

⎠ = −
∑

j

a j e
ϕ ∂

∂z j
ϕ + bw.

This implies that Z j = ∂
∂z j

+ w
|w|2 e

ϕ ∂
∂z j

ϕ ∂
∂w

gives a basis for the CR structure.
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Rewriting ∂
∂w

in Polar coordinates (r, θ) gives

∂

∂w
= 1

2

w

|w|
∂

∂r
− 1

2
i

w

|w|2
∂

∂θ
.

We get Z j = ∂
∂z j

+ 1
2|w|

∂
∂z j

ϕ ∂
∂r − 1

2 i
∂

∂z j
ϕ ∂

∂θ
, using that eϕ

|w|2 = 1 on the boundary of

U . On ∂U , the projection α is given by α( ∂
∂θ

) = α(T ) = 1 and α(Z j ) = α(Z j ) =
0, therefore

α = dθ +
∑

j

1

2
i

∂

∂z j
ϕdz j −

∑

j

1

2
i

∂

∂z j
ϕdz j .

Now CTx0 S = T 1,0
x0 X ⊕ T 0,1

x0 X , hence for v,w ∈ T 1,0
x0 X , we have the equation

1

2i
dα(v,w) = −

∑

i j

1

2

∂2

∂z j∂zi
ϕ(v,w),

which implies that −ϕ is strictly plurisubharmonic in a neighborhood of x0 in S.
After shrinking S, we may assume that −ϕ is strictly plurisubharmonic on S.

We restrict ϕ to an L-invariant function on S, write �/KC = C
∗ ×L S and

W ∩ (�/KC) = {[w, y] ∈ C
∗ ×L S | |w|2 < eϕ(y)}.

Define the map πL : C
∗ × S → C

∗ ×L S, then the set π−1
L (W ) =

{(w, y) | |w|2 < eϕ̃(y)} is a Hartogs domain, which is strongly pseudoconvex
because −ϕ is strictly plurisubharmonic and S is biholomorphic to a ball. Now
the boundary of π−1

L (W ) in C
∗ × S is given by a strongly plurisubharmonic L-

invariant map ρ. Then ρ defines a map ρ on C
∗ ×L S, which is plurisubharmonic

[8, Satz 3] and it only remains to prove that it remains plurisubharmonic under
perturbations. But this follows using [8, Satz 3] again and the fact that πL is proper.
�

Remark. We have actually shown that the orbifold line bundle Z/KC → Y/(C∗ ×
KC) is weakly negative (see Sect. 4).

3. Equivariant embeddings

In this section we prove an embedding theorem for strongly pseudoconvex CR
manifolds.

Let H be a subgroup of its universal complexification HC and assume that HC

is complex reductive. Let G be a normal subgroup of H such that H = G � S1.
This is a slightly more general setting then the direct product K × S1 we considered
before. The group HC is isomorphic to GC

� C
∗ and C

∗ is a closed subgroup of
HC.

For h ∈ H , we denote by hS ∈ H/G ∼= S1 the image of h in the quotient
and for h ∈ HC we write hC ∈ HC/GC ∼= C

∗, respectively. Note that the maps
h �→ hS and h �→ hC are group morphisms.
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Now let X be a CR manifold with transversal, proper CR action of H and
assume that H0

x < Gx in every point x ∈ X . Denote by T the vector field induced
by the S1-action. The condition on the isotropy groups is equivalent to CT (x) ⊕
Cg(x) ⊕ T 1,0

x X ⊕ T 0,1
x X = CTx X .

Note that the condition H0
x < G0

x is always satisfied if the H -action is locally
free.

We have an H -action on the CR manifold C × X given by (h, (z, x)) �→
(zh−1

S , hx). This action is proper andCR and H0
x < G0

x implies that it is transversal.
We conclude that

Z := (C × X)/H ∼= C ×S1 (X/G)

is a complex space.
We may embed X into its universal equivariant extension Y as in Theorem

1.6. We define the complex space (C × Y )/HC = C ×C
∗

(Y/GC) in the same
manner as above and show that the natural map (C × X)/H → (C × Y )/HC is an
isomorphism.

It is sufficient to consider a slice neighborhood � = H ×Hx S of X and show
that the map ϕ : (C × �)/H → (C × �C)/HC is biholomorphic. But the inverse
of ϕ is given by ϕ−1 : (C × (HC ×HC

x S))/HC → (C × (H ×Hx S))/H with
[z, [h, s]] �→ [zhC , [1, s]].
Definition. We say that X is strongly pseudoconvex if the set

Z� := {[w, z] ∈ C ×S1 X/G | |w| < 1}
is strongly pseudoconvex in Z .

The following construction, including Corollary 3.2, is based on ideas of
Grauert, see [7, 3.2]. We will reformulate it here, in our context.

Definition. Let M be a set with S1-action, U ⊂ M a subset and V a vector space.
We say that a map f : U → V is of order d ∈ Z if for all s ∈ S1 and m ∈ U such
that sm ∈ U , we have f (sm) = sd f (m).

Consider the complex space X/H = Y/HC. The structure sheaf OH
Y of Y is

given by the sheaf of H -invariant holomorphic functions on Y . Given a coherent
analytic sheaf GY over Y/HC, we define a sheaf GZ over Z as follows. The holo-
morphic map p : Z → Y/HC gives the structure sheafOZ of Z the structure of an
OH

Y -module. Define

GZ (U ) = GY (p(U )) ⊗OH
Y (p(U )) OZ (U ).

Now GZ is coherent and analytic on Z because GY is coherent and analytic on
Y/HC.

The map Y/HC → Z , y �→ [0, y] is an embedding of Y/HC as the analytic
set of C

∗-fixed points. Define the coherent sheaf OY
Z of holomorphic functions on



154 K. Fritsch , P. Heinzner

Z which vanish on Y/HC. We have the (non-analytic) subsheaf OY
Z ,d of functions

vanishing on Y/HC which are of order d. The sheaves OY
Z and OY

Z ,d then define

analytic sheaves OY
Y (U ) and OY

Y,d(U ) on Y/HC via pulling back with p.

Let GY be a coherent analytic sheaf over Y/HC. The natural map OY
Y,d(U ) →

OZ (p−1(U )) induces the map

A≤d0 :
⊕

0≤d≤d0

Hq(Y/HC,GY ⊗ OY
Y,d) → Hq(Z ,GZ ),

where Hq denotes the q-th Čech cohomology.

We now define a map

Bd : Hq(Z ,GZ ) → Hq(Y/HC,GY ⊗ OY
Y,d)

as follows.
Let U ⊂ Z be open with U ∩ Y/HC �= ∅ and g : U → C a holomorphic

function.
Let π : C × Y → (C × Y )/HC = Z be the quotient map, then g := g ◦ π is a

HC-invariant holomorphic function on π−1(U ). Consider the set U0 = {(0, w) ∈
π−1(U )}, take (0, w0) ∈ U0 and develop g into a power series g = ∑

d z
d fd,w0(w)

in some connected neighborhood of (0, w0) of the form Bw0 × �w0 .
If (0, w1) ∈ U0 is another point such that Bw1 × �w1 ∩ Bw0 × �w0 �= ∅, we

have fd,w0 = fd,w1 on the intersection.Wemay therefore assume that fd is defined
on � := ⋃

(0,w)∈U0
Bw × �w and set gd(z, w) := zd fd(w) on �.

Now the gd are actually HC-invariant, which we will see as follows. Set
g̃d(hx) := gd(x) for h ∈ HC, x ∈ �, we need to show that this is well-defined.
For this, fix some h ∈ HC and observe that every connected component of h�

intersects U0. For (0, w0) ∈ U0, we consider the power series expansions of g
and g ◦ h−1, which have to coincide because g is HC-invariant. For c ∈ C

∗, we
compute

gd(h
−1(cz, w)) = gd(czhC , h−1w) = cdgd(zhC , h−1w).

Comparing coefficients in the power series expansions then gives gd = gd ◦ h−1

on � ∩ h� and g̃d is well-defined.
We may therefore assume that the sets Bw × �w are HC-invariant. Since the

gd are of order d, they may be extended to functions on
⋃

(0,w)∈U0
C × �w. Now

the gd define holomorphic functions gd on p−1(p(U ∩ Y/HC)) of degree d.

For every open subset U ⊂ Z with U ∩ Y/HC �= ∅, we have a map

Bd,U : GZ (U ) → GY (p(U ∩ Y/HC)) ⊗ OY
Y,d(p(U ∩ Y/HC))

by restriction in the first component and the construction from above in the second
component.

Now we want to define Bd on the cohomology groups.



Equivariant embeddings of strongly pseudoconvex Cauchy–Riemann manifolds 155

If V is an open subset of U with V ∩ Y/HC �= ∅, then V ∩ Y/HC is a subset
of U ∩ Y/HC and from the above construction, we see

Bd,V (resUV (g)) = resp(U∩Y/HC)

p(V∩Y/HC)
Bd,U (g). (3)

Given a covering V of Z , we define a covering VY of Y/HC via VY
i := p(Vi ∩

Y/HC),
if Vi ∩Y/HC �= ∅. For a cochain g ∈ Cq(V,GZ ) and a q-simplex σ Y for VY , with
corresponding simplex σ for V , we define Bd(g)(σ Y ) := Bd,|σ |(g(σ )).

Now if G ∈ Cq−1(V,GZ ) is a cochain, σ is a q-simplex for V and ∂ jσ is the
corresponding (q − 1)-simplex by omitting the j-th set, then we have

Bd,|σ |(δG(σ )) = Bd,|σ |

⎛

⎝
∑

j

(−1) j res
|∂ jσ |
|σ | (G(∂ jσ))

⎞

⎠

=
∑

j

(−1) j res
p(|∂ jσ |∩Y/HC)

p(|σ |∩Y/HC)
(Bd,|∂ jσ |(G(∂ jσ))).

From this computation and Eq. (3), we conclude that the maps

Bd : Hq(Z ,GZ ) → Hq(Y/HC,GY ⊗ OY
Y,d),

and

B≤d0 : Hq(Z ,GZ ) →
⊕

d≤d0

Hq(Y/HC,GY ⊗ OY
Y,d).

arewell-defined, since theymap cocycles to cocycles and coboundaries to cobound-
aries.

Since B≤d0 ◦ A≤d0 =Id, we conclude that A≤d0 is injective for every d0.

The following Proposition was proved by Grauert [6, Proposition 4] for the
structure sheaf on complex manifolds and the proof also holds for this case using
[5, Theorem 5.4], also see [7, Hilfssatz 1].

Proposition 3.1. Let Z be a complex space and � ⊂ Z a strongly pseudoconvex,
relatively compact set. Let G be a coherent analytic sheaf on Z. Then the complex
vector spaces Hq(�,G) are finite-dimensional for q > 0.

From Proposition 3.1 and the injectivity of A≤d0,, we conclude the following
result.

Corollary 3.2. Let X/G be compact, X be strongly pseudoconvex and GY a coher-
ent analytic sheaf on Y/HC. Then for every q > 0, there exists a d0 such that

Hq(Y/HC,GY ⊗ OY
Y,d) = 0

for all d ≥ d0.
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Let V be a HC-representation. We may define a new HC-representation struc-
ture on V via (h, v) �→ hdChv, which we denote by Vd .

Note that for an open subset U of Y , the GC-invariant holomorphic functions
of order d > 0 on U are one-to-one with the holomorphic functions of order d on
C ×C

∗
U/GC.

Now let π : Y → Y/HC be the projection and V a HC-representation. We
define the sheaf FY on Y/HC as

FY (U ) := { f : π−1(U ) → V | f holomorphic,HC -equivariant }. (4)

For z ∈ Y/HC we set

FY
z,z(U ) := { f ∈ FY (U ) | f (z) = 0 and d f (z) = 0} (5)

and for z, w ∈ Y/HC, consider

FY
z,w(U ) := { f ∈ FY (U ) | f (z) = f (w) = 0}. (6)

The existence of holomorphic slices (Proposition 1.7) also implies that every HC-
orbit is analytic. This shows that for a fixed y ∈ Y , the sheafOV

HCy
of holomorphic

maps to V which vanish on HCy is a coherent analytic HC-sheaf (see [21]).
Given a point x ∈ Y , we find a slice SC which is a Stein manifold. Since HC is

complex reductive, we have that HC ×HC
y SC is Stein. Hence Y/HC has a neigh-

borhood basis such that the preimages under the quotient map are Stein. We may
use [21, Theorem 3.1] to see that both sheaves above are coherent analytic sheaves
on Y/HC.

Let x ∈ X and L = Hx with L0 ⊂ G. Then LC acts from the right on HC/GC

as a finite group N . We call the order |N | of the finite group N the order of C
∗ in

x . The map hC �→ h|N |
C is an N -invariant map on HC/GC.

Proposition 3.3. Let y ∈ X, L = Hy and HC ×LC

SC be a holomorphic slice in
Y . Let l be the order of C

∗ in x. Then there exists a HC-representation V and a
HC-equivariant holomorphic injective immersion ϕ : HC ×LC

SC → V such that,
for every m ∈ N, the map

� : HC ×LC

SC → Vml × V(m+1)l

[h, z] �→ (hml
C ϕ[h, z], h(m+1)l

C ϕ[h, z])

is a well-defined, injective equivariant immersion on some open, HC-invariant
neighborhood Um of y in Y .

For all y0 ∈ Um, the restricted map � : GCy0 → Vml × V(m+1)l is an embed-
ding.
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Proof. We May assume that SC ⊂ TyY and HC ×LC

SC ⊂ HC ×LC

TyY . The

quotient HC ×LC

TyY is an affine variety with an action of the complex reductive
group HC, therefore we find an equivariant holomorphic embedding into some
representation V .

Let ϕ : HC ×LC

SC → V be the restriction of that embedding. The LC-orbits
in SC are all finite. We conclude that all HC-orbits in HC ×LC

SC are also closed
in HC ×LC

TyY , hence ϕ is an embedding on every HC-orbit.

Let � be defined as in the statement of the Proposition. Using that ϕ is an
equivariant immersion and therefore non-vanishing, a direct computation shows
that � is injective.

Now consider z̃ := [1, z], take ξ ∈ C = T1C∗, ν ∈ GC and v ∈ Tz̃ SC .
Define : w = ξ(z̃) + ν(z̃) + v, then

dz̃�(w) = (lm · ξ · ϕ(z̃) + dz̃ϕ(w), l(m + 1) · ξ · ϕ(z̃) + dz̃ϕ(w))

and because ϕ(z̃) �= 0 and ϕ is an immersion, one sees that � is an immersion in z̃.
Because � is equivariant, it is an immersion in some invariant neighborhood Um

of HCy.
For fixed y0 ∈ Um , we get �|GCy0 = (c1ϕ, c2ϕ) for some constants c1 and c2,

which is an embedding. �


For fixed y ∈ X with order l of C
∗ in y, define fm : HC ×LC

SC → C,
[h, x] �→ hml

C . Let ϕ be the map as in Proposition 3.3, then ϕ ⊗ fm defines an ele-
ment inFY ⊗OY

Y,ml (see (4)). Applying Corollary 3.2 to the sheaf (5) and choosing

m large enough, we find a HC-representation Vy , and a HC-equivariant holomor-
phic map �y : Y → Vy such that �y = ( fmϕ, fm+1ϕ) on HCy up to order 2.
We therefore find a neighborhood Uy of y, such that the map �y : Uy → Vy is an
immersion on Uy , injective on HCy and �y : GCy → Vy is an embedding.

Using the same argument for the trivial HC-representation C and ϕ being a
constant map, we may construct a GC-invariant holomorphic map F : Y → C

m

which does not vanish on Y and every component Fi of F is of order di > 0.
Because X/G is compact, we obtain infx∈X ||F(x)||2 = c > 0.

Lemma 3.4. Let �y , F be as above. Then there exist open, HC-invariant neigh-
borhoods Uy of y in Y and Wy of (F × �y)(y) in C

m\{0} × Vy such that
(F × �y) : Uy → Wy is an embedding. Furthermore, the set Wy is saturated
with respect to the quotient map C

m\{0} × Vy → (Cm\{0} × Vy)//HC and two
distinct HC-orbits in (F × �y)(Uy) may be separated by disjoint, HC-invariant
neighborhoods.

Proof. We will omit the subscript and write � = �y . We begin by showing that
the map (F × �) : HCy → C

m\{0} × V is an embedding.
Let wn ∈ C

∗, hn ∈ GC such that (F × �)(wnhn y) converges in C
m\{0} × V .

We get F(wnhn y) = F(wn y) = ⊕
w

di
n Fi (y), which converges against a non-zero
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value. There exists an i such that Fi (y) �= 0, hence wn is bounded from below and
above, therefore we may assume that it converges in C

∗.
But then w−1

n �(wnhn y) = �(hn y) converges and since � is an embedding on
GCy, we have proved the claim.

We get that the C
∗-action on C

m\{0} induced by the orders of the Fi is proper
and locally free, therefore we find a complex slice S around F(y) which is biholo-
morphic to some complex ball. Let � = C

∗
F(y), then � := C

∗ ×� S is an open,

C
∗-invariant Stein neighborhood of F(y) in C

m\{0} and the HC-orbit through
(F × �)(y) is closed in � × V .

Using [9, Einbettungssatz 1], we find a closed HC-equivariant embedding μ

of � × V into some HC-representation V0. Now μ ◦ (F × �), defined on (F ×
�)−1(� × V ), is an immersion in y and an embedding on the HC-orbit through y.

From the proof of Proposition 5.1 in [22], one finds a slice S0 through μ◦ (F ×
�)(y) in V0 and a slice SY through y in Y such that the maps μ◦ (F,�) : SY → S0
and also μ ◦ (F × �) : HC ×LC

SY → HC ×LC

S0 are embeddings. Additionally,
HC · S0 is saturated with respect to the quotient map.

DefineW0 = HC · S0,W := μ−1(W0) andU := HC · SY . ThenW is saturated
with respect to the quotient map and (F × �) : U → W is an embedding.

Now every HC-orbit in U is closed, hence every HC-orbit in μ ◦ (F × �)(U )

is closed inW0. We may separate two distinct, closed orbits inW0 by HC-invariant
open neighborhoods and the result follows. �


Let us shortly summarize the assumptions we made to this point. We have
that H is a subgroup of its universal complexification HC, G is a closed, normal
subgroup of H such that H = G � S1. Furthermore, we assume HC to be complex
reductive. Now let X be a CR manifold with proper, transversal CR action of H
such that H0

x ⊂ G0
x for every x ∈ X and Y the universal equivariant extension of

X . Our main result is the following.

Theorem 3.5. Let X be as above and assume that X/G is compact.
Then there exists a HC-representation V and a HC-equivariant holomorphic
embedding � : Y → C

m\{0} × V , such that �|X : X → C
m × V is a CR embed-

ding. Here, C
m is the trivial GC-representation and decomposes into irreducible

C
∗-representations with positive weights.

Proof. Let F , �y , Uy ⊂ �C
y and Wy be as in Lemma 3.4.

Using that X/G is compact, we may cover Y be finitely many open subsetsUy

with y ∈ I and consider

�̃ := (F,
⊕

y∈I
�y) : Y → C

m ×
⊕

y∈I
Vy,

which is an immersion on Y and injective on every HC-orbit.

We write Ṽ := C
m ×⊕

y Vy , Ṽ0 := (Cm\{0})×⊕

y Vy and show that the map

�̃ : Y → Ṽ0 is proper.
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Let an be a sequence in Y such that �̃(an) = bn converges against b ∈ Ṽ0.
BecauseY/HC = X/H is compact, wemay assume thatπ(an) → π(a) converges,
where we write π : Y → Y/HC for the quotient map.

Around a, we find a neighborhood Uy and an open neighborhood W̃y of �̃(a),
such that �̃ : Uy → W̃y is an embedding and W̃y defines an open neighborhood
of b in Ṽ0 // HC. This implies the convergence of a subsequence of an . Since
infx∈X ||F(x)||2 = c > 0, we conclude that �̃ : X → Ṽ is proper.

Since �̃ is injective on every HC-orbit it only remains to show that we may
separate points on different orbits.

Lemma 3.4 states that for every w, z ∈ Uy in different orbits, we may separate
�̃(w) and �̃(z) by HC-invariant open sets. For two distinct points z, w ∈ Y in
different HC-orbits, we may separate z and w by HC-invariant sets of the form
�z = HC ×HC

z SzC and �w = HC ×HC
w Sw

C . For every d that is a multiple of the
orders of C

∗ in z and w, the map fd [h, z] �→ hdC is well-defined on �z ∪ �w. Let
ϕ : �z ∪ �w → C

2 be equal to (1, 0) on �z and equal to (0, 1) on �w. Note that
ϕ is equivariant with respect to the trivial HC-representation.

Applying Corollary 3.2 on the sheaf (6) for the map fd ·ϕ and sufficiently large
d, we find a GC-invariant map Fz,w : Y → C

2 of order d > 0 such that F(z) and
F(w) may be separated by open, HC-invariant sets.

Because (Y/HC×Y/HC)/
⋃

y∈I (Uy/HC×Uy/HC) is compact, we conclude
that we may use this argument finitely many times and the result follows. �


4. Line bundles

We apply the methods used in the previous sections for a proof of an equivariant
embedding theorem similar to the Kodaira embedding theorem.

Let X be a compact CR manifold and K a compact Lie group with transversal
CR action on X .

We will use the definitions from [13] for rigid, positive CR line bundles, gen-
eralized to arbitrary compact groups.

Let X be a CRmanifold with transversal K -action.We say that a CR line bundle
L → X is K -invariant if there exists a cover Ui of X over which L is trivial such
that each Ui is K -invariant and the transition functions gi j are K -invariant and
CR. The transition functions can be viewed as holomorphic functions on X/K and
give rise to a holomorphic line bundle LK → X/K . On the other hand, every
holomorphic line bundle LK → X/K also induces a CR line bundle L → X . We
say that L is positive if LK is positive.

Note that if� is a slice-neighborhood of x in X and f : � → R is a K -invariant
smooth map, then f extends to a KC-invariant map F on �C. Assume now that
the hermitian form (V,W ) �→ i∂∂F(V,W ) is positive for V,W ∈ T 1,0

x X . We find
a slice SC through x in �C such that CTx SC = T 1,0

x X ⊕ T 0,1
x X , hence F |SC is

strictly plurisubharmonic after possibly shrinking SC . Since (Kx )
C acts as a finite

group on SC , we conclude that F |SC defines a strictly plurisubharmonic function
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on SC/(Kx )
C, using the same argument as at the end of Theorem 2.3. From [14,

Proposition 6.1], we then see that if L is a positive, invariant CR line bundle in the
sense of [13], then it is also positive using the definition given above.

Note that every negative line bundle with metric h is weakly negative. This
means that the set {z ∈ L | h(z) < 1} is strongly pseudoconvex, see [7, 3 Satz 1].

Now let L → X be a weakly negative line bundle and XS the S1-bundle of
L , which is a strongly pseudoconvex CR manifold. Then C ×S1 XS ∼= L and
C ×S1 XS/K ∼= LK .

If V is a KC-representation and ϕ : L → V a CR map of order d, then we may
define a section X → L−d ⊗ V by setting sϕ(x) := 1 ⊗ ϕ(1, x) in a trivialization
of L . A direct computation shows that this does indeed define a global section.

Now let x ∈ X , ϕ : U → V an equivariant injective immersion in some neigh-
borhood U into a KC-representation V (see proof of theorem 3.3). Denote by
p : L → X the bundle map. After shrinking U , we may assume that L is trivial
over U and define the map fd : p−1(U ) → C, (w, x) �→ wd . Applying Corollary
3.2 to the sheaf (5) for the point (1, [x]) ∈ LK , the map fd · (ϕ ◦ p) and large
d gives an equivariant map � : L → Vd with � = fd · (ϕ ◦ p) of order 2 on
(S1 × K ) · (1, x) ∈ L .

Themap� induces a section ϕ0 : X → L−d ⊗V . Indentifying L−d ⊗V with V
onU using c⊗v �→ cv, we get ϕ0(x) = �(1, x) = f (1, x) · (ϕ ◦ p)(1, x) = ϕ(x).
Let v ∈ TxU , then dxϕ0(v) = d(1,x)�(0, v) = d(1,x)( f · (ϕ ◦ p))(0, v) = dxϕ(v).

Denote by Lk(C) the CR sections X → L−d and by Lk
x (X) and Lk

x,y(X) the
sections vanishing in x of order 2 and the sections vanishing in x and y, respectively.
For x ∈ X , we may use the argument above and choose a basis for V to obtain
sections s1, . . . , sm ∈ Ld(X) such that the dxsi form a generating system for
(Tx X)∗. Using the same argument as above for ϕ being a constant map, we also
find a section s ∈ Ld(X) with s(x) �= 0 and ds(x) = 0. Using an analogous
argument for Corollary 3.2 and sheaf (6), we also conclude that given two points
x, y ∈ X in different K -orbits, we find a section s ∈ Ldx,y (X) such that s(x) = 0
and s(y) �= 0.

We have therefore shown that for every x ∈ X , there exists a k such that the
sequence

0 → Lk
x (X) → Lk(X) → (Lk/Lk

x )(X) → 0 (7)

is exact. Also, given x, y ∈ X , there exists a k such that the sequence

0 → Lk
x,y(X) → Lk(X) → (Lk/Lk

x,y)(X) → 0 (8)

is exact.
Now if Sequence (7) is exact in x for k, it is also exact in a neighborhood of x .

The same applies for Sequence (8). The natural map�(X, (L−d)k) → �(X, L−dk)

is surjective, hence if sequences (7) and (8) are exact for k, they are also exact for
dk for every d > 0.

Since X is compact, we conclude that there exists a k such that sequences (7)
and (8) are exact for every point in X and pairs of points in X , respectively.
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Corollary 4.1. Let X be a compact CR manifold with a transversal CR action of a
compact Lie group K .
Assume that there exists a weakly negative line bundle LK → X/K. Then there
exists a natural number k and finitely many CR sections si ∈ Lk(X) such that, for
W = span(si ), we have that

X → P(W ∗)
y �→ [s �→ s(y)]

is a CR embedding.

Proof. For a subspace W ⊂ Lk(X), we denote by �W the map defined in the
corollary for this subspace. We may assume that �W is always well-defined.

Choose k so that Sequences (7) and (8) are exact for every x ∈ X and pairs
x, y ∈ X .

Take x ∈ X , then we find sections g1, . . . , gm ∈ Lk such that y �→
(g1(y), . . . , gm(y)) is an immersion in x in a trivialization around x . We also get a
section g0 with g0(x) �= 0 and dx g0 = 0.

Set Wx = span(g0, . . . , gm). We may assume that the gi form a basis for Wx ,
then �Wx (y) = [g0(y), . . . , gm(y)] in the corresponding dual basis. This shows
that �Wx is an immersion in x .

We may repeat this process finitely many times to find a subspace W of Lk(X)

such that �W is an immersion on X . We may therefore cover X by finitely many
open sets Ui such that �W : Ui → P(W ∗) is injective.

Now (X × X)/
⋃

i (Ui × Ui ) is compact, and for two points (x, y) ∈ (X ×
X)/

⋃

i (Ui ×Ui ), we find a section ŝ such that �W+Cŝ separates x and y.
We only need to do this finitely many times to ensure that � is injective. �

Since the bundle is K -invariant, we have a K -action on the space of global

sections defined by ks(x) := s(k−1x). We then get a K -action on �(X, L)∗ via
kλ(s) := λ(k−1s). The map in Corollary 4.1 is equivariant if W is K -invariant.

We may define a seminorm on the global CR sections by taking a K -invariant
open subsetU of X over which L is trivial and defining ||s||U := supx∈U ||s(x)||2+
supx∈U ||ds(x)||2. Since X is compact, this induces a norm by taking the supremum
over finitelymany such seminorms. Then the K -action defined above is continuous.
From [3, Proposition 3.6], we conclude that the K -finite sections are dense and the
embedding from above can be chosen to be equivariant.
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