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Abstract. We study contact loci sets of arcs and the behavior of Hironaka’s order function
defined in constructive Resolution of singularities. We show that this function can be read in
terms of the irreducible components of the contact loci sets at a singular point of an algebraic
variety.
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Introduction

Resolution of singularities is a classical subject in algebraic geometry. Given an
algebraic variety X, defined over a field k, the problem is to find a non-singular
variety X and a proper and birational morphism f : X — X. The theorem of
Hironaka [27] asserts that a resolution of singularities exists when k is a field of
characteristic zero. Moreover, the theorem says that f : X — X can be defined as
a composition of a finite number of blow ups at regular centers, such that it induces
an isomorphism on the non-singular locus of X, X \ Sing(X). The general problem,
for varieties defined over arbitrary fields k, remains open, although we know that
the answer is afirmative in low dimensions (see for instance [3-5,16-18,33,36]).

The work of J. Nash on the theory of arc spaces was in part motivated by
Hironaka’s Theorem (cf. [40]). A resolution of singularities of an algebraic variety
X may not be unique, and one may wonder how much information about the process
of resolution can be read on its space of arcs £(X). There is a large number of papers
where arcs and singularities are studied. Just to mention a few see [20,32,35,38,
39,43].

This paper concerns the study of an invariant that is used in constructive reso-
lution of singularities and how it can be read in the space of arcs of a given variety.
More precisely, we explore how this invariant shows up when considering the so
called contact loci with a singular closed point &, say Cont=" (mg), i.e, the set of
arcs that have order at least » at the maximal ideal mg of & forn € N (see [21,22,30]
where the structure of these sets is studied).

Constructive resolution of singularities and Hironaka’s order function
Hironaka’s Theorem is existencial. A constructive resolution of singularities con-
sists on describing a procedure to construct, step by step, a sequence of blow ups
that leads to the resolution of a given variety X,

X=Xg«< X| << X,=X. (0.0.1)

Constructive resolutions are givenin [7,45,46]; see also [11,23,24]. Roughly speak-
ing, to construct a sequence like (0.0.1) one uses the so called resolution functions
defined on varieties. These are upper semi-continuous functions

Sx X = (A, >)
&~ fx(&)

that are constant if and only if the variety is regular and whose maximum value,
max fx, achieved in a closed regular subset Max fx, selects the center to blow up.
Thus the sequence (0.0.1) is defined so that

max fx, > max fx, > --- > max fx

n’

where max f, denotes the maximum value of fx, fori =0, 1, ..., n. Usually, fx
is defined at each point as a sequence of rational numbers, the first set of coordinates
being the Hilbert—Samuel function at the point (see [11]) or the multiplicity (see
[50]). Suppose that we are in this second case, and use the multiplicity as first
coordinate of the resolution function fx. Suppose in addition that X is a variety
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of dimension d. Then, the second coordinate of fy is the so called Hironaka’s
order function in dimension d, ordgf) which is some positive rational number (see
Sect. 5). The resolution function at a given point £ would be something like the
following:

d
fx(®) = (multy, Ox ¢, ord§ (£), ..., 0.0.2)
where multm, Ox ¢ denotes the multiplicity of the local ring Oy ¢ at the maximal

ideal mg. The remaining coordinates of fx (§) can be shown to depend on ordgf) &),
thus, we usually say that this rational number is the main invariant in constructive
resolution.

In [10] (see also [41]) we showed that ordg?) (&), can be read from the set of arcs
with center &, £(X, &). To this end we worked with the so called Nash multiplicity
sequences of arcs introduced by Lejeune-Jalabert [34] for the case of a germ of
a point of a hypersurface, and generalized afterwards by Hickel [26]. For a given
point £ in a variety X, these sequences of numbers are intrinsic, and only depend
on the set £(X, &).

Finally we point out that the invariant ordgf) (&) can also be defined if & is a
perfect field of positive characteristic; only, it is too coarse and it does not provide
enough information to be able to construct a resolution function. In [9] we showed
that the results in [10] can also be extended to this case, therefore providing a
geometrical meaning to Hironaka’s order function in positive characteristic.

Nash multiplicity sequences: the persistance and the Q-persistance

Suppose X is a singular variety of maximum multiplicity m > 1. Then given a
point & € Sing(X) of multiplicity m, and an arc ¢ € L(X, &), the sequence of Nash
multiplicities of ¢ is a non-increasing sequence of integers,

m=mqo>mg>my>--- (0.0.3)

where mo = m is the multiplicity at the point £, and the rest of the numbers in the
sequence can be interpreted as a refinement of the ordinary multiplicity at & along
the arc ¢ (see the discussion in Sects. 2 and 5).

Suppose that ¢ is a K -arc, with K D k, which gives a morphism ¢ : Ox ¢ —
K[t]]. When the generic point of ¢ is not contained in the stratum of multiplicity
m of X, then there is some subindex / > 1 in sequence (0.0.3) for which m; < my.
We will be interested in the first subindex for which the inequality holds and call
it the persistance of the arc ¢, px . To eliminate the impact of the order of the arc
at the point, we will normalize the persistance setting

ﬁ — IOX,(/)
Xe v (@)

where v;(¢) denotes the order of the image by ¢, of the maximal ideal of &, i.e.,
@(mg), at the regular local ring K [[¢]]. We will work simultaneously with another
invariant which is a refinement of the persistance: the Q-persistance, which we
denote by rx 4, and its normalized version 7x ,. In fact, the two invariants are
related since for a given arc ¢ it can be shown that

(0.0.4)

- lim 22 c o, (0.0.5)

PX,p = |_rX,g0J and X, p = (@) nooo n
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where foreachn > 1, ¢, = ¢ oi, and i) : K[[t]] — K[[¢"]] maps ¢ to t".

In what follows we will denote by Max multy the (closed) set of points of
maximum multiplicity m of X. With this notation, in [9, 10] we proved the following
theorem:

Theorem 0.1. [10, Theorem 3.6], [9, Theorem 6.1] Let X be a d-dimensional alge-
braic variety defined over a perfect field k, and let ¢ € Max multy. Then

lim "X—W} 0.1.1)

) - - -
ord < inf {r = inf
x ()= weﬁ(x,z;){ xl pel {vz(<p) n—0o n

X.6)

Moreover, the infimum is a minimum, i.e., there is some arc n € L(X, §) such that:

. PX,nn
lim ——.
vi(n) n—oo  n

ord? (&) =7x, = (0.1.2)
Results

The purpose of this paper is to study the behaviour of the normalized Q-
persistance, 7'y, as a function on £(X, &). Observe that, from the way 7 is defined,
it will not be an upper-semi continuous function.

One may wonder, for instance, if equality (0.1.2) holds generically at £(X, &).
This we do not know, and do not expect it either. Thus we formulate our question
in a slightly different way by selecting suitable closed sets in £(X, §).

Recall that if a is a sheaf of ideals on X, then, for each n € Z~ one can define
the closed subset of £(X):

Cont="(a) := {p € L(X) : v;(p(a)) > n},
and the locally closed set
Cont™(a) :={p € L(X) : v/ (p(a)) = n}.

See Definition 1.6 below. With this notation, we show:
Proposition 6.4. Let X be a d-dimensional algebraic variety defined over a perfect
field k, and let &€ € Max multy. Suppose there is some s > 1 and an arc ¢y €
Cont=* (mg) WithTx 4, = ordéd) (X). Then there is a non-empty open subset 20 of

Cont=* (mg), containing @, such that for all arcs ¢ € W, 7x » = ordgd) (X).1f, in
addition, the generic point of ¢g is not contained in Sing(X) and the characteristic
of k is zero, then there are fat (divisorial) arcs in 20.

It is natural to ask for which values of s the previous proposition holds. Observe
that, since & € X is a singular point, it may happen that:

L(X,£) = Cont=! (mg) = Cont=2(mg) = - -- = Cont="0(mg) 2 Cont="0+(mg) > ...

and it would be interesting to know whether the statement is valid for s = 1y, the
minimum order of an arct at £. We do not know how to compute the value #(, but
we can find values for which the proposition holds by looking at the normalized
blow up of X at £, X <— X;. Observe that in this setting, after removing a closed
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set of codimension at least two in X |, we can restrict to an open set U such that we
have a log resolution of the maximal ideal of the point, me:

mg(DU =T(H) ... I(Hp) (0.1.3)

where the hypersurfaces H; are irreducible and have only normal crossing in U. In
fact the number ¢ := min{cy, ..., c¢} is an upper bound for 7.

Proposition 6.5. Let X be a d-dimensional algebraic variety defined over a perfect
field k and let & € Max multy. Then for every n > 1 and every c; as in (0.1.3),
i =1,...,4, there is a non-empty open set ., Cont="¢i (mg) such that for all
¢ € L, Py = ord (&),

In particular, for those cases in which ¢ = ty, the statement says that there is
a non-empty open set 4 C L(X, &) such that for all arcs in 4 the equality (0.1.2)
holds.

In [21,22] it was shown that if X is a complex algebraic variety, then for each n,
the closed subsets Cont="(a) have a finite number of (fat) irreducible components
and that, moreover, these fat irreducible components are maximal divisorial sets.

Here we study the behaviour of the normalized QQ-persistance on the irreducible

fat components of Cont="(mg¢). On the one hand we show that for certain values
of n, equality (0.1.2) always holds for the generic point of some irreducible fat
component:
Theorem 7.1. Let X be a d-dimensional algebraic variety defined over a perfect
field k,let§ € Maxmulty, and let {T},,}4,,en,, be the fat irreducible components
of Cont=" (mg), with generic points {Wy, }r,.en,, form > 1. If m = nc; for some
n > 1 and some c; as in (0.1.3) then

ord (§) = min{Fx g, :Am € An).

In addition, if k = C then equality (0.1.2) holds at the generic point of a maximal
divisorial set.

In particular, for those cases in which ¢ = 1y, the statement says that the equality
(0.1.2) holds at the generic point of a fat irreducible component of L£(X, &).

It is quite natural to investigate if the same statement holds for the fat irreducible

components of Cont="(mg) for arbitrary values of n, but Example 7.2 indicates
that this is not the case. However, it can be proved that equality (0.1.2) holds
assymptotically when n is arbitrary large:
Theorem 7.3. Let X be a d-dimensional algebraic variety defined over a perfect
field k, and let § € Maxmulty. For each m € N, let {T}, ;, }5,.cA,, be the fat
irreducible components of Cont=""(mg) and let W, ,, be the generic point of
Ty fOr M € Ay For eachm > 1 set:

Sm =inf {Fu,, | Am € Am}.

Then we have that
ord? (&) = lim §,,.
m—0o0

In the last section of this paper we explore the possible values of the normalized
Q-persistance when X is defined over a field of characteristic zero (resolution of
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singularities is needed for these results). On the one hand we show that, regarding
the study of the values of 7y, it suffices to study fat divisorial arcs:

Theorem 8.1. Let X be a d-dimensional algebraic variety defined over a field of
characteristic zero. Fix a point & € Max multy and let ¢ € L(X, &) be an arc such
that ¢ ¢ L(Sing(X)). Then there exists a divisorial fat arc € L(X, &) such that

e v c{Y)and
® X =TXy-

Finally in [42] it is proven that £ is an isolated point of Max multy if and only

if the set {Fx,(p }(/)e L(X.6) has an upper bound. Here we give more accurate bounds
for ¥y on L(X, &) in the isolated case. To state this result, we use the fact that it is
possible to associate a (canonical) Rees algebra with the set Max multy, say Gy,
in an (étale) neighborhood of &, say X’ — X (see 5.1).
Theorem 8.2. Let X be a d-dimensional algebraic variety defined over a field of
characteristic zero k and let § € Max multy. Let u : X' — X be an étale morphism
with w(¢") = & where Gy is defined, and assume that, up to integral closure,
Gx' = Ox/[IW?] (see (5.1.6)). Let T1 : Y — X' be a simultaneous log-resolution
of the ideals I and mgr. Denote by Hy, ..., Hy the irreducible components of the
exceptional locus,

IOy = I(H)™ ... I(Hy)N, mg Oy = I(H)' ... I(Hy)V.  (0.1.4)

Set A = {i € {l,...,N}|a; #0}). Then, for any arc ¢ in L(X,E) with ¢ ¢
L(Sing(X)),

lminai<_ <1ma di

- — <7 — max —,

bieh ¢; — Y = b ica ¢

where we use the convention that f—’ = oo whenever c; = 0and a; # 0. Moreover,
1

%Ilrél}\lccl—: =inf {fxy | ¢ € L(X, &)} and %rlrgg‘c’—j = sup {Fxy | ¢ € LX,E)).
On the organization of the paper
The paper is organized as follows. Section 1 introduces concepts and definitions
about arc spaces, contact loci sets and divisorial sets. Nash multiplicity sequences
and the persistance are defined in Sect. 2. Section 3 is devoted to Rees Algebras, here
we define the natural order function of a Rees Algebra. Section 4 introduces local
presentations, which allow to express the maximum stratum of the multiplicity
function in terms of a Rees Algebra. Hironaka’s order function is presented in
Sect. 5.

Results are stated and proved in Sects. 6, 7 and 8.

1. Arcs, valuations and contact loci

Definition 1.1. Let Z be a scheme over a field k, and let K D k be a field extension.
An m-jet in Z is a morphism ¢ : Spec (K[[¢]]/(t™ ")) — Z for some m € N.
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If Sch/k denotes the category of k-schemes and Ser the category of sets, then the
contravariant functor:

Sch/k —> Set
Y > Homg(Y xspeck) Spec(k[[t11/(t" 1)), Z)

is representable by a k-scheme L, (Z), the space of m-jets over Z. If Z is of finite

type over k, then so is £, (Z) (see [52]). For each pair m > m’ there is the (natural)

truncation map L,,(Z) — L,(Z). In particular, for m’ = 0, L,,,(Z) = Z and

we will denote by £,,(Z, &) the fiber of the (natural) truncation map over a point

& € Z. Finally, if Z is smooth over k then £,,(Z) is also smooth over k (see [31]).
By taking the inverse limit of the £,,(Z), the arc space of Z is defined,

L(Z):=1lim L, (Z).
This is the scheme representing the functor (see [6]):

Sch/k —> Set
Y +> Homg(Y XSpfkl[r]]), Z).

A K-point in £(Z) is an arc of Z and can be seen as a morphism ¢ :
Spec(K[[t]]) — Z for some K D k. The image by ¢ of the closed point is called
the center of the arc ¢. If the center of ¢ is £ € Z then itinduces a k-homomorphism
Oz, — K][[t]] which we will denote by ¢ too; in this case the image by ¢ of the
maximal ideal, ¢ (mg), generates an ideal (+"*) C K[[¢]] and then we will say that
the order of ¢ is m and we will denote it by v, (¢). We will denote by £(Z, &) the
set of arcs in £(Z) with center &. The generic point of ¢ in Z is the point in Z
determined by the kernel of ¢.

Definition 1.2. An arc ¢ : Spec(K [[t]]) — Z is thin if it factors through a proper
closed subscheme of Z. Otherwise we say that ¢ is fat. An irreducible closed subset
C C L(Z) is said to be a fat closed subset if its generic point is a fat arc. Otherwise
C is said to be thin.

Divisorial arcs and maximal divisorial sets
In the following lines we will assume that X is an (irreducible) algebraic variety
defined over a field k and will denote by K (X) its quotient field.

Observe that any fat arc ¢ : Spec(K[[#]]) — X defines a discrete valuation
on X. This is the valuation corresponding to ¢, v,. If ¢ is thin, then it defines a
valuation in the quotient field K (Y) of some (irreducible) subvariety ¥ C X. On
the other hand, note that for any discrete valuation v of K (X) one can define a
(non-necessarily unique) arc ¢ : Spec K[[¢]] — X, for a suitable field K D &,
whose corresponding valuation is v.

Definition 1.3. We say that a divisor D is a divisor over X if there is a proper and
birational morphism from a normal variety, X’ — X, so that D is a divisor on X'.
We say that a fat arc ¢ € L(X) is divisorial if the (discrete) valuation defined by
@, Vg, is a multiple of the valuation defined by some divisor over X, i.e., if there is
some g € N and some divisor D over X such that v, = gvalp.
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The divisorial fat arcs of a variety X form a subset of the fat arcs defined on it. We
refer to [29] for discussions and examples regarding this matter.

Definition 1.4. An irreducible closed subset C C L(X) is said to be a divisorial
closed subset if its generic point is a divisorial (fat) arc.

Definition 1.5. [30, Definition 2.8] Given a divisorial valuation v over a variety X,
the maximal divisorial set corresponding to v is defined as:

Cx(v) = {p € LX) : vy = ],

where { } denotes the Zariski closure in £(X).

Contact loci and (maximal) divisorial sets

Definition 1.6. [22,30] Let a be a sheaf of ideals on X. Then one can define:
Cont™(a) := {p € L(X) : v;(p(a)) = m} (1.6.1)

and

Cont="(a) 1= {¢ € L(X) : v;(p(a)) > m]}, (1.6.2)
where, if ¢ : Spec(K[[¢]]) — X, and if U C X is an affine open set containing
the center of ¢, then v;(¢(a)) is defined as the usual order at K[[¢]] of the ideal
(T (U, a)). For m € N, the subsets Cont=""(a) are closed and the Cont™ (a) are
locally closed in £(X). If Y C X is a closed subscheme of X defined by a sheaf of
ideals a then one can also define

Cont™(Y) := Cont™(a), and Cont="'(Y) := Cont="(a).

In the following paragraphs we recall some results from [21,22,30] regarding
the expression of the subsets (1.6.1) and (1.6.2) in terms of irreducible components
in the space of arcs of X and their connection with the notion of maximal divisorial
sets from Definition 1.5.

Suppose now that X is a smooth complex variety and let E = Z;:l E; be a
simple normal crossing divisor on X. Given a multi-index v = (v;) € N, define
the support of v to be

supp := {i € [1,¢] :v; # 0}
and
E, = miesupp(v)Ei~

Then E, is either empty or a smooth subvariety of X. Assume that E), is connected.
For a multi-index v € N’ and an integer m > max; {v;}, consider the multi-contact
loci:

Cont”(E)py = {0 € L(X) : vi(o(E) =v;, 1 <i <t} (1.6.3)
and the corresponding subset Cont”(E) C L(X). Provided that E, # @ it can be
checked that Cont”(E),, is a smooth irreducible locally closed subset of L, (X)
(see [22, Sect. 2]). Furthermore, Cont” (E) it is a maximal divisorial set (see [22,
Corollary 2.6] and [21, Proposition 2.12]). The following theorem asserts that the
fat irreducible components of Cont” (a) for a given sheaf of ideals in X can be
computed via a log-resolution of the ideal:
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Theorem 1.7. [22, Theorem 2.1] Let X be a smooth complex variety andleta C Oy
defining a subscheme Z C X. Let T1 : Y — X be a log resolution of X with
E = Z;:l H; a simple normal crossing divisor on Z with

t
a0y = Oy (— ZriH,) . (1.7.1)

i=1

Then for every positive integer p, we have a disjoint union

| | Mo (Cont”(E)) € Cont?(2), (1.7.2)

where the union is taken over those v € N' such that Zi vir; = p, and the
complement in Cont? (Z) of the above union is thin.

The next results generalize the previous theorem to the context of non-
necessarily smooth complex varieties, and moreover relate the expressions in The-
orem 1.7 to the maximal divisorial sets of valuations that dominate the sheaf of
ideals a:

Proposition 1.8. [30, Proposition 3.4] Let v = q - valp be a divisorial valuation
over a (non-necessarity smooth) variety X. Let T1 : Y — X be a resolution of
singularities of X such that the irreducible divisor D appears on Y. Then,

Cx(v) = Iy (Cont 1(D)).
In particular, Cx (v) is irreducible.

Proposition 1.9. [21, Proposition 2.12] Let X = Spec(A) be a (non necessarily
smooth) affine complex variety and let a be a non-zero sheaf of ideals. Then for any
m € N the number of fat irreducible components of Cont=""(a) is finite, and every
fat irreducible component is a maximal divisorial set.

Arc spaces and étale morphisms

As our results are of local nature we will be assuming that X is an affine algebraic
variety. In addition, most of the arguments used in the proofs along Sects. 6, 7
and 8 are first proven in an étale neighborhood of a point § € X. Thus we include
here a few comments concerning the behavior of arcs up to étale morphisms. In the
following lines we will be assuming that u : X’ — X is an étale morphism with
w(E) =&, forsome &’ € X'.

Remark 1.10. By [52, Proposition 5.9], we have that £(X) = L£(X) xx X'. As
a consequence, the induced morphism e : £(X') — L(X) is étale (locally of
finite type), therefore flat (see [8, Sect. 8.5, Proposition 17]), and hence open.

Remark 1.11. Let ¢ : Spec(K[[t]]) — X be an arc with center &. Since u :
X’ — X is étale, then it is formally étale (see [37, Chapter I, Remark 3.22]) and
therefore there is a lifting ¢’ with center &/, ¢’ : Spec(K'[[¢]]) — X', where
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K’ is a separable extension of K. Another way to prove the same is by using that
L(X") = L(X) xx X' (Remark 1.10). In any case one gets a commutative diagram:

Spec(K'[[¢1]) Y x

| b

Spec(K[[1]]) ——= X.

In particular, oo (@) = .

Remark 1.12. With the setting as in Remark 1.11,let 7 : ¥ — X be the blow
up of X at £ and let ¢y be the lifting of ¢ to Y (provided that ¢ is not constant).
We have the following commutative diagram,

(p/

<

Y

)
.
N )

Spec(K'[[1]]
Spec(K[[z1])
where Y' =Y xx X', uy is étale and ¢}, is the lifting of ¢’ to Y'. Note that Y is
the blowup at ,u_l (&). Let &y be the center of ¢y. If E{, is the center of the arc <p§,,
then 11y (§) = &y.

Lemma 1.13. Let ¢, € L(X, &) be two arcs such that ¢ € (). Assume that
¢ € L(X', &) is an arc with e (@) = @. Then there is an arc V' € L(X', &)
with ¢' € {Y'} and such that peo (V') = .

Proof. The morphism oo : £(X') — L(X) is flat (see Remark 1.10). From here
it can be checked that there exists an arc ' € L(X',&’) with ¢’ € {¥'} and
Moo (Y') = ¥ (see [37, Chapter 1, Corollary 2.8]). O

2. Nash multiplicity sequences, the persistance, and the Q-persistance

In this section we will recall the notion of Nash multiplicity sequence along an arc
of a variety X. This will lead us to define an invariant for each arc ¢ with center a
given point & € X: the persistance, and a refinement, the Q-persistance.
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Nash multiplicity sequences

Let X be an algebraic variety defined over a perfect field k and let £ € X be a
(closed) point. Assume that X is locally a hypersurface in a neighborhood of &,
X C V,where V is smooth over k, and work at the completion (7)\‘/,mé . Under these
hypotheses, in [34], Lejeune-Jalabert introduced the Nash multiplicity sequence
along an arc ¢ € L(X, &) (in fact, the hypotheses in [34] are weaker, but we are
interested in working over perfect fields). The Nash multiplicity sequence of X
along ¢ is a non-increasing sequence of non-negative integers

mOZmlz"'zml:ml-l-l:"'Zl, (201)

where m is the usual multiplicity of X at &, and the rest of the terms are computed
by considering suitable stratifications on £, (X, £) defined via the action of certain
differential operators on the fiber of the jets spaces L, (Spec(@v,mg)) over & for
m € N. The sequence (2.0.1) can be interpreted as the multiplicity of X along the
arc @: thus it can be seen as a refinement of the usual multiplicity. The sequence
stabilizes at the value given by the multiplicity m; of X at the generic point of the
arc ¢ in X (see [34, Sect. 2, Theorem 5]).

In [26], Hickel generalized Lejeune-Jalabert’s construction to the case of an
arbitrary variety X and presented the sequence (2.0.1) in a different way which we
will explain along the following lines.

Since the arguments are of local nature, let us suppose that X = Spec(B) is
affine. Let £ € X be a point (which we may assume to be closed) of multiplicity
mo, and let ¢ be an arc in X centered at £. Consider the natural morphism

Fo=¢®i:B®xk[t] > K[[]],

which is additionally an arc in X = X X A}C centered at the point &y = (£, 0) € Xj.
This arc determines a sequence of blow ups at points:

Spec(K[t11)
ro ry Iy
Xo=X x Al < X, i X
& = (£,0) & &
(2.0.2)
Here, 7; is the blow up of X;_ at &_;, where & = Im(I;) N 7, ' (&) for
i=1,...,1,...,and I'; is the (unique) arc in X; with center & which is obtained

by lifting g via the proper birational morphism 7 o - -- o 7;. This sequence of
blow ups defines a non-increasing sequence

m02m12~-~2ml=ml+1="-21, (203)

where m; corresponds to the multiplicity of X; at & foreachi = 0,...,1,....
Note that m( is nothing but the multiplicity of X at &, and it is proven that for
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hypersurfaces the sequence (2.0.3) coincides with the sequence (2.0.1) above. We
will refer to the sequence of blow ups in (2.0.2) as the sequence of blow ups directed

by ¢.

The persistance

Let ¢ € L(X, &) be an arc whose generic point is not contained in the stratum of
multiplicity mq of X, and consider, as in (2.0.3), the Nash multiplicity sequence
along ¢. For the purposes of this paper, we will pay attention to the first time that the
Nash multiplicity drops below m, see [34, Sect. 2, Theorem 5] and the discussion
in 5.1 below).

Definition 2.1. Let ¢ be an arc in X with center § € X, a point of multiplicity
mo > 1. Suppose that the generic point of ¢ is not contained in the stratum of
points of multiplicity mq of X. We denote by px , the minimum number of blow
ups directed by ¢ which are needed to lower the Nash multiplicity of X at &. That
is, px,p is such that mg = --- = myy 1 > mpy , in the sequence (2.0.3) above.
We call px , the persistance of ¢.

To keep the notation as simple as possible, px , does not contain a reference
to the point &, since it is determined by the center of ¢.

Remark 2.2. Using Hickel’s construction, it can be checked that the first index
i €{l,...,1+ 1} for which there is a strict inequality in (2.0.3) (i.e., the first index
i for which mog > m;) can be interpreted as the minimum number of blow ups
needed to separate the graph of ¢ from the stratum of points of multiplicity mg
of X (actually, to be precise, this statement has to be interpreted in B ® K[[¢]],
where the graph of ¢ is defined).

Next we define a normalized version of px , in order to avoid the influence of
the order of the arc in the number of blow ups needed to lower the Nash multiplicity.

Definition 2.3. For a given arc ¢ : Spec(K[[t]]) — X with center & € X, we will
write

PX,p
vr (@) '

/SX,(p =
where v; (@) denotes the oder of the arc, i.e., the usual order of ¢(m¢) at K[[]].

Definition 2.4. For each point £ € X we define the functions:

px  L(X,§) = QzoU{oo} and py : L(X,§) > Q=0 U {oc}

s 2.4.1)
Q= Px.p @ Dx g

The Q-persistance
In our arguments we will be using a refinement of the persistance: the Q-persistance.
As we will see both notions are closely related.

Definition 2.5. Let ¢ be an arc in X with center § € X, a point of multiplicity
mo > 1, say ¢ : Spec(K[[t]]) —> X. Consider the family of arcs given as
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¢p = @oi, forn > 1, where i’ : K[[t]] — K|[[¢"]] maps ¢ to t". Then the
Q-persistance of ¢, rx ,, is defined as the limit:

pX,(pn

TX,p = nli)ngo . (2.5.1)
And the normalized Q-persistance of ¢ is:
1
Py = X0 im 2Xn (252)

vi(p)  wi(p) n—oo n

In 5.1 we will justify that both limits (2.5.1) and (2.5.2) exist. In fact, we will also
see that the QQ-persistance of ¢ can somehow be interpreted as the order of contact
of the arc ¢ with the stratum of multiplicity mg of the variety X.

Definition 2.6. For each point £ € X we define the functions:

rx : L(X, &) > QspU{oo} and 7x: L(X,&) - Q50U {00}

= (2.6.1)
Y= TXe Y>TX e

Remark 2.7. Note that both, functions px and rx are two invariants that encode
the same piece of information. On the one hand, for each arc ¢, it can be shown that
Px,p can be obtained by taking the integral part of rx , (see [9, Proposition 5.11],
and also [10]). On the other, expression (2.5.2) indicates that the function 7x can
be read from the function py.

Remark 2.8. The persistance is stable by étale morphisms. In fact the whole
sequence {m;};>o in (2.0.3) does not change in an étale neighborhood of & € X
in the sense that we explain in the following lines. Using Remarks 1.11 and 1.12,
diagram (2.0.2) can be lifted by pull back with u:

Spec(K'[[111)

!/
. I r;
0
T T

Xy =X x A X} X,
KoY, u1¢ MI¢
T %) Ty
Xo=X x A} X X;
I
OT / I
Spec(K[[1])

Setting &) = (£', 0), observe that for each index i =0, 1, ..., one has that:

(i) The morphism p; is étale ;
(ii) Each arc I'} is a lifting of I';;
(iii) If we set &/ as the center of I'}, then y; (§)) = &;.

Suppose that the Nash multiplicity sequence for the arc ¢’ is {m/};>0, where
m; = multg (X;). Since all the morphisms j; are étale it can be concluded that
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m; = m; foralli > 0.Inparticular the persistance of ¢ is the same as the persistance
of ¢, and so is the normalized persistance at ¢ and ¢’, i.e.,

PX.p = px’,o and Px.p = Px'g-

Finally, since any arc with center & induces an arc with center &, it can be
concluded that we also have equality for the infimum value at & and at &,

min{px,e | ¢ € L(X, &)} = min{px o | ¢" € L(X', &)} and
min{py , | ¢ € L(X,8)} = min{py o | ¢" € LIX',EN}.

From here it also follows that the same equalities hold for the Q-persistance.

3. Rees algebras

The stratum defined by the maximum value of the multiplicity function of a variety
can be described using equations and weights [50]. The same occurs with the
Hilbert—Samuel function [28]. As we will see, such descriptions are convenient
when addressing a resolution of singularities by a composition of blow ups at
suitably chosen regular centers. Rees algebras are natural objects to work with this
setting, with the advantage that we can perform algebraic operations on them such
as taking the integral closure or the saturation by the action of differential operators
(the later if we work on smooth schemes defined over perfect fields).

Definition 3.1. Let R be a Noetherian ring. A Rees algebra G over R is a finitely
generated graded R-algebra

G=Enw' c Riw]

leN

forsomeideals I; € R,l € Nsuchthatlo = Rand ;1; C I;4;, VI, j € N.Here, W
is just a variable in charge of the degree of the ideals I;. Since G is finitely generated,
there exist some f1, ..., f, € R and positive integers (weights) ny,...,n, € N
such that

G=R[AW", ..., W"]. 3.1.1)

Remark 3.2. Note that this definition is more general than the (usual) one consid-
ering only algebras of the form R[/ W] for some ideal / C R, which we call Rees
rings, where all generators have weight one. There is another special type of Rees
algebras that will play a role in our arguments. We refer to them as almost Rees
rings, and they are Rees algebras of the form R[] wb ], for some ideal I/ C R and
some positive integer b (i.e., these algebras are generated by the elements of the
ideal I in weight b). Finally, Rees algebras can be defined over Noetherian schemes
in the obvious manner.

Definition 3.3. Two Rees algebras over a Noetherian ring R are integrally equiva-
lent if their integral closure in Quot(R)[W] coincide. We say that a Rees algebra
over R, G = @;>01; W' is integrally closed if it is integrally closed as an R-ring in
Quot(R)[W]. We denote by G the integral closure of G.
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Remark 3.4. Note that G is also a Rees algebra over R [12, Sect. 1.1]. It can be
shown that any Rees algebra G = @;I; W' is finite over an almost Rees ring, i.e.,
there is some positive integer N such that G is finite over R[Iy W] (see [25,
Remark 1.3]).

3.5. The Singular Locus of a Rees Algebra. [25, Proposition 1.4]. When working
over smooth schemes one can attach to a Rees algebra a closed set as follows. Let
G be a Rees algebra over a smooth scheme V defined over a perfect field k. The
singular locus of G, Sing(G), is the closed set given by all the points £ € V such
that ve (1) > 1, VI € N, where vg (1) denotes the order of the ideal / in the regular
local ring Oy e. If G = R[fiW"!, ..., f, W], the singular locus of G can be
computed as

Sing(G) = {& € Spec(R) : ve(fi) = n;, Vi=1,...,r} C V.

Note that the singular locus of the Oy-Rees algebra generated by fiW"!,
..., fr W' does not coincide with the usual definition of the singular locus of the
subscheme of V defined by f1, ..., f;.

Example 3.6. Suppose that R is smooth over a perfect field k. Let X C Spec(R) =
V be a hypersurface with 7(X) = (f) and let b > 1 be the maximum value of the
multiplicity of X. If we set G = R[fW?”] then Sing(G) = Max multy is the set
of points of X having maximum multiplicity. Along this paper we will be using
a generalization of this description of the maximum multiplicity locus in the case
where X is an equidimensional singular algebraic variety (defined over a perfect
field k) (see Theorem 4.1 and the discussion in 5.1).

3.7. Singular locus, integral closure and differential saturation. A Rees algebra
G =0l W! defined on a smooth scheme V over a perfect field k, is differentially
closed (or differentially saturated) if there is an affine open covering {U;};cy of V,
such that for every D € Dift"(U;) and h € I;(U;), we have D(h) € I;_,(U;)
whenever [ > r (where Diff" (U;) is the locally free sheaf over V of k-linear
differential operators of order less than or equal to r). In particular, I;4; C I; for
[ > 0. We denote by Diff (G) the smallest differential Rees algebra containing G (its
differential closure). (See [48, Theorem 3.4] for the existence and construction.)

It can be shown (see [49, Proposition 4.4 (1), (3)]) that for a given Rees algebra
GonV,

Sing(G) = Sing(?) = Sing(Diff (G)).

As we will see in Sect. 4, the problem of simplification of the multiplicity of an
algebraic variety can be translated into the problem of resolution of a suitably
defined Rees algebra (see (4.0.1) and (4.0.2)). This motivates Definitions 3.8 and 3.9
below (see also Example 3.10).

Definition 3.8. Let G be a Rees algebra on a smooth scheme V. A G-permissible
blow up

vZv,
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is the blow up of V at a smooth closed subset Y C V contained in Sing(G) (a
permissible center for G). We denote then by G the (weighted) transform of G by

7, which is defined as
G =P 1w,
leN

where
Iy =10y, - 1(E)” (3.8.1)

for / € N and E the exceptional divisor of the blow up V <.

Definition 3.9. Let G be a Rees algebra over a smooth scheme V. A resolution of
G is a finite sequence of blow ups

] ) T

V=W Vi - \%i 3.9.1)
G=20o Gi G

at permissible centers ¥; C Sing(G;),i =0, ...,[—1, such that Sing(G;) = @, and
such that the exceptional divisor of the composition Vy <— V; is a union of hyper-
surfaces with normal crossings. Recall that a set of hypersurfaces {Hy, ..., H,}ina
smooth n-dimensional V has normal crossings at a point £ € V if there is a regular
system of parameters xi,...,x, € Oyg such thatif £ € H;; N---N H,, and
§¢ Hforl e{l,....,rI\{i1,...,is}, then Z(H;;)e = (x;;) forij € {i1,...,ish
we say that Hy, ..., H, have normal crossings in V if they have normal crossings
at each point of V.

Example 3.10. With the setting of Example 3.6, a resolution of the Rees algebra
G = R[fWP"] induces a sequence of transformations such that the multiplicity of
the strict transform of X decreases:

G=2Go g1 Gi-1 G
] —
V=V~ <2 <y <y,
U U U U
T —
X = Xo n X1 - o ! X1 il X
b = max mult(Xg) = max mult(X) = --- = max mult(X;_;) > max mult(X;).

Here each X; is the strict transform of X;_; after the blow up 7r;. Note that the set
of points of X; having multiplicity b is Sing(G;) = @.

Remark 3.11. Resolution of Rees algebras is known to exists when V is a smooth
scheme defined over a field of characteristic zero [27,28]. In [7,45] different algo-
rithms of resolution of Rees algebras are presented (see also [23,24]). An algorith-
mic resolution requires the definition of invariants associated with the points of the
singular locus of a given Rees algebra so as to define a stratification of this closed
set. This is a way to select the permissible centers to blow up. The most important
invariant involved in the resolution process is Hironaka’s order function defined
below.
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3.12. Hironaka’s order function for Rees algebras. [25, Proposition 6.4.1] Let
V be a smooth scheme over a perfect field k and let G be an Oy -Rees algebra. We
define the order of an element fW" € G at & € Sing(G) as

ordg (fW") == M

n
We define the order of the Rees algebra G at & € Sing(G) as the infimum of the
orders of the elements of G ar &, that is

ordg (G) = lm(f){w} .

[

This is what we call Hironaka’s order function of Gat the point £&. If G =
R[AW™M, ..., f;W"] and & € Sing(G) then it can be shown (see [25, Propo-
sition 6.4.1]) that:

ordg (G) = i:r?in . {ordg(fi W”’)} .

It can be proven that for any point & € Sing(G) we have ordg (G) = ordg ©) =
ordg (Diff (G)) (see [25, Remark 3.5, Proposition 6.4 (2)]). Finally, along this paper
we use ‘v’ to denote the usual order of an element or an ideal at a regular local ring,
and ‘ord’ for the order of a Rees algebra at a regular local ring.

Remark 3.13. Let V be a smooth scheme over a field of characteristic zero k, and let
G be a Rees algebra on V. Then it can be shown that G, G and Diff G share the same
resolution invariants and therefore a resolution of any of them induces (naturally)
a resolution of any of the others [25, Proposition 3.4, Theorem 4.1, Theorem 7.18],
[51].

4. Local presentations of the Multiplicity

Let X be an equidimensional algebraic variety of dimension d defined over a perfect
field k. Consider the multiplicity function

multy : X — N
& — multyx(§) = Illultms OX,S
where multy,, Ox ¢ denotes the multiplicity of the local ring Ox ¢ at the maximal
ideal me. It is known that the function multx is upper-semi-continuous (see [19]).

In particular, suppose that m is the maximum value of the multiplicity at points of
X, i.e., suppose that my = max multy, then the set

Max multy := {§ € X | multx(§) > mo} = {§ € X | multy (§) = mo}

is closed (although not necessarily regular). It is also known that the multiplicity
function can not increase after a blow up ¢ : X’ — X with regular center Y
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provided that ¥ € Max multy (cf. [19]). This means that multy/ (&) < multy (&)
for§ = ¢, ¢ € X'.

One could try to approach a resolution of singularities by defining a sequence
of blow ups at regular equimultiple centers

X = Xo X1 X1 =—X; 4.0.1)

so that
mo = max multy, = maxmulty, = ... = maxmulty, , > maxmulty, . (4.0.2)

A sequence like (4.0.1) with the property (4.0.2) is a simplification of the multiplicity
of X.

One way to approach a simplification of the multiplicity of X is by describing the
set Max multy via the singular locus of a suitably chosen Rees algebra G, defined
on some smooth scheme V, and then trying to find a resolution of G (compare
with Examples 3.6 and 3.10 where the case of hypersurfaces is treated). To be
more precise, in [50] it is proven that for each £ € Max multy there is an (étale)
neighborhood U C X of & which we denote again by X to ease the notation, and
an embedding X C V = Spec(R) for some smooth k-algebra R, together with an
R-Rees algebra, G, so that

Max mult y = Sing (), (4.0.3)
and so that, in addition, given a sequence of blow ups at regular equimultiple centers,

@1 [} [

V=W Vi - \%] (4.0.4)
U U U
X =Xo X1 .. X
G =0 g1 e G
the following equality of closed subsets holds:
{6 € X; | multx,;(§) = mo} = Sing(Gj), j=0.1,....1L (4.0.5)

It is worth mentioning that in fact, the link between the maximum multiplicity
locus of X and the Rees algebra G is much stronger (it can be checked that equality
(4.0.5) is also preserved after considering smooth morphisms or restrictions to
open subsets). Thus the problem of finding a simplification of the multiplicity
of an algebraic variety is translated into the problem of finding a resolution of a
suitable Rees algebra defined on a smooth scheme. And this can be done when the
characteristic of the base field is zero. The local embedding together with the Rees
algebra G strongly linked to Max multy is what we call a local presentation of the
multiplicity, and we will use the notation (V, G). Precise statements about local
presentations can be found for instance in [14, Part II] or in [44].

Theorem 4.1. [50, 7.1] Let X be a reduced equidimensional scheme of finite type
over a perfect field k. Then for every point & € X there exists a local presentation
for the function multy in an (étale) neighborhood of &.



Contact loci and Hironaka’s order 149

Remark 4.2. Local presentations are not unique. For instance, once a local (étale)
embedding X C V is fixed, there may be different Oy -Rees algebras representing
Max multy . However, it can be proven that they all lead to the same simplification of
the multiplicity of X, i.e., they all lead to the same sequence (4.0.4) with Sing G; = ¢/
(at least in characteristic zero, see [12,15,25]).

5. Hironaka’s order function, the persistance, and the Q-persistance

For a given d-dimensional singular algebraic variey X defined over a perfect field,
and once a local presentation of the multiplicity is chosen, say (V, G) (see Sect. 4),
one would like to design an algorithm to find a resolution of G (i.e., an algorithm
to find a simplification ot the multiplicity of X). When the characteristic is zero
this is done via the so called resolution invariants that are used to asign a string
of numbers to each point § € Max multy = Sing(G). In this way one can define
an upper semi-continuos function g : Sing(G) — (I', >), where I is some well
ordered set, and whose maximum value determines the first center to blow up. This
function is constructed so that its maximum value drops after each blow up and as
a consequence a resolution of G is achieved after a finite number of steps.

Now, it turns out that the first relevant invariant, i.e., the first relevant coordinate
of the function g is Hironaka’s order function in dimension d, ordg?). This function
is defined using the so called elimination algebra in dimension d. We will not
give the precise definition here; instead we will describe a way to construct it (full
details and the precise definition can be found in [13,48]). We underline that both the
elimination algebra, and Hironaka’s order function in dimension d can be defined
in any characteristic (for the definition it suffices to work over perfect fields).

Thus, the main purpose of this section is to establish the common setting and
the notation that will be used in the proofs of our results in the following sections.
To this end:

(1) We will sketch the main ideas of the proof of Theorem 4.1 which will serve
us to set a common context for our proofs;

(i) We will present a construction of the elimination algebra and give the defi-
nition of Hironaka’s orden function in dimension d (all this using the setting
established in (i));

(i) We will give an expression that leads to the computation of the persistance
and the Q-persistance of a given arc using the elimination algebra;

(iv) Items (i), (ii) and (iii) are set in an étale neigborhood of a point £ € X;in 5.2,
we will explain how the previous items give us enough information to prove
our results for arcs in X.

5.1. The common setting for the proofs of the results in Sects. 6, 7 and 8.
Our statements are of local nature. So, let us assume that X is an affine algebraic
variety of dimension d over a perfect field k, and let £ € Max multy be a point of
multiplicity m. Taking this starting point we now sketch some of the main lines in
the proof of Theorem 4.1, and then we will pursue objectives (ii) and (iii) afterwards.
Most of the contents of these parts were developed and proved in [9, 10].
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Some ideas behind the proof of Theorem 4.1

In [50, Sect. 5, Sect. 7] it is proven that after considering suitably defined étale
extensions, k C k/, and p : X' — X with u(¢’) = &, we are in the following
setting: X" = Spec(B), &' € Max Multy, and there is a smooth k’-algebra, S with
the following properties:

(i) There is an extension S C B which is finite, inducing a finite morphism
B : Spec(B) — Spec(S);

(i) If K(S) if the field of fractions of S and Quot(B) is the total quotient ring of
B, then the rank of Quot(B) as K (S)-module equals my, i.e., the generic rank
of B as S-module equals my = max multy-.

Under these assumptions, B = S[6y, ..., 0,_4], for some 6, ...,0,_4 € B
and some n > d. Observe that the previous extension induces a natural embedding
X' ¢ V™ := Spec(R), where R = S[x1, ..., Xu—al.

Now, if f;(x;) € K(S)[x;] denotes the minimal polynomial of 6; for i =
1,..., (n — d), then it can be shown that in fact f; € S[x;], and as a consequence
(FixD), .oy fu—a(Xn_a)) C Z(X'), the defining ideal of X’ in V ) Finally, if each
polinomial f; is of degree m;, it can be proven that the differential Rees algebra

G = Diff (RLAW™, ..., fo—aW™=4]) (5.1.1)

is a local presentation of Max multy at £ (in étale topology). Therefore, a reso-
lution of G induces a simplification of the multiplicity of X (see (4.0.1) and
(4.0.2)). The pair (V™ , G™) gives the local presentation of the multiplicity stated
in Theorem 4.1.

The elimination algebra and Hironaka’s order function in dimension d
Following the previous argument, denote by

a @ Spec(S[xq, ..., xp—q]) = Spec(S)

the natural morphism induced by the inclusion S C R = S[x1, ..., x,—g]. Taking
G™ asin (5.1.1), up to integral closure the elimination algebra in dimension d over
V@ js:

GD .= g™ nsw, (5.1.2)

(see [48, Definition4.10, Theorem 4.11], and also [13, Sect. 8.11]). Then Hironaka’s
order function in dimension d is defined as:

ordgf) : Maxmulty — Q (5.1.3)

¢ > ordgery G if (g = ¢. o

It can be shown that for each point { € Max multy, the number ordgf) (¢) does not

depend on the choice of the local presentation (V™ , G nor on the choice of the

finite projection to a smooth d-dimensional scheme, so far as it is generic enough
(cf. [48, Theorem 5.5], [13, Theorem 10.1] and [15, Sect. 25]).

Finally, it is worthwhile mentioning that, when the characteristic is zero, there

is a strong link between the Rees algebras G™ and G4). For instance, it can be
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shown that o induces a homeomorphism between Sing G and Sing G), and for
each regular center ¥ C Sing G™, a(Y) C Sing G is regular too (and viceversa).
Moreover, it can be proven that finding a resolution of G is equivalent to finding
a resolution of ), When the characteristic is positive, the link between G ™) and
G is weaker, since in general, the containment o (Sing(G™)) C Sing(G?) may
be strict. See [47, Theorem 2.9, Lemma 7.1], [48, Corollary 2.12, Sect. 6], [15,
Theorem 28.10]).

The restriction of G™ 1o X’

Continuing with the arguments above, let G/ denote the restriction of G M) o X' =
Spec(B) (where G™ is as in (5.1.1)). It can be shown that this Ox/-Rees algebra
is well defined up to integral closure (i.e., it does not depend on the choice of the
local presentation, see [1, Theorem 5.3]). Then we have the following commutative
diagram together with different Rees algebras:

(Vim, gy (X', Gx")

R =S[x1,....xp—ql = Slx1, ..., xu—al/{f1, -\ fr—a) B

S
(V@ gy,
(5.1.4)
Now, it can be proven that the following extension of B-Rees algebras
B*(G) C Gxi (5.1.5)

is finite (see [48, Theorem 4.11], the discussion in [9, 3.8] and also [9, 4.6]). In
addition, by Remark 3.4 we can assume that, up to integral closure,

G9 = s[Iwh] (5.1.6)

for some ideal / C S and some positive integer b. As a consequence, using again
that 8*(G (d)) C Gy is a finite extension, we can assume that, up to integral closure,
gx = B[(IB)Wb]. Finally, it can be checked that V(/ B) = Maxmultys (where
V(I B) denotes the Zariski closed set determined by the ideal 7B in X’). This
follows from the fact that, since G™ = @&J,W" is a differential Rees algebra,
Sing(g(”)) =V(J,) forall n > 1, cf. [48, Proposition 3.9].

On the computation of the Q-persistance
For an arc ¢’ € L(X’, &) it can be shown ([9, (5.10.2)] that:

rxry = ord; (¢'(Gx1)) € Qx1, (5.1.7)

and hence,
=, ordi(@'(Gx)
Xt m v (¢')

€Qs1, (5.1.8)
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where, if we assume that Gy is locally generated by g W%, ..., g,_qW’d in
some affine chart Spec(B) of X’ containing the center of the arc ¢’ : B — K[[¢]],
then

¢ (Gx) == K[t (gNW"', ..., ¢’ (gu—a) Wr4] C K[[t1I[W].

Thus in (5.1.8) ord,(¢’(Gx)) denotes the order of the Rees algebra at the regu-
lar local ring K[[t]], while v; denotes the usual order at K[[7]] (see 3.12). From
here it can be checked that, if the generic point of the arc ¢’ is not contained in
Max multy, = Sing(G™), then ¢'(Gx) C K[[t]] is a non zero Rees algebra. As a
consequence, ry’ . is finite, and so is the persistance px- ,/. From equality (5.1.7)
it also follows that the limit in (2.5.1) exists.

Some consequences of Zariski’s multiplicity formula for finite projections
Since the generic rank of the extension S C B equals mo = max multy, by Zariski’s
multiplicity formula for finite projections (cf., [53, Chapter 8, Sect. 10, Theo-
rem 24]) it follows that:

(1) The point &’ is the unique point in the fiber over B(¢’) € Spec(S);

(2) The residue fields at £” and B(&’) are isomorphic;

(3) The defining ideal of B(£') at S, mg/), generates a reduction of the maximal
ideal of &', mg/, at Bmé,.

Observe that for a given arc ¢’ : B — K[[r]] in X we obtain, by composition, an
arc @' : S — K[[¢]]in V@ and it follows that:

_ordi(¢'(Gx)  ordi (@' (B*(GD))  ordi(§'(GD))

y = = = — , 5.1.9
X T (@ (me) vy (¢ (mg)) @ ey

where the second equality follows from the fact that 8*(G @) ¢ Gy is a finite
extension (see (5.1.5)); and the third because mg ) B is a reduction of mg.

5.2. The Q-persistance, the persistance, and the use of étale morphisms. Notice
that that expressions (5.1.7) and (5.1.8) are actually computed in an étale neigh-
borhood of & € X. For an étale morphism X’ — X, if ¢ € L(X, &) we use the fact
that there is always a lifting ¢’ € L£(X’, ') with s (¢") = ¢ (see Remark 1.11),
and by Remark 2.8:

1 . PX. 1 . Pxg,  ordi(¢'(Gx))
- lim ——= = - lim = =T7x g

V(@) n—=oo n V(@) n—>o0  n v (@)
(5.2.1)

X, =

Finally, as indicated above, the function rx is not upper-semi-continuous in
L(X, &). However, if two arcs ¢, ¥ € L(X, &) have the same order (as arcs), and

if ¢ € {1y} then one obtains the expected inequality:

Lemma 5.3. Let g, v € L(X) twoarcs centeredat&. If g € (Y} and v, (¢) = v; ()
then
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Proof. By Lemma 1.13 and the discussion in Remark 2.8, it suffices to prove the
statement after considering an étale extension of X, which we denote again by
X for simplicity. Thus we can assume that we are in the same setting as in 5.1.
Recall that the elimination algebra is, up to integral closure, [{CONRR [Z wb ] and
Gx = B[(I B)W"] (see 5.1.6). By formula (5.1.8),

c_ode@n) | o (G0) _
YT pme) T w(Y(me) v

6. Generic values in contact loci sets

Using the work developed in [9, Sect. 5], we start this section by giving a stronger
version of the second statement in Theorem 0.1. More precisely we show that
Hironaka’s order function can actually be read by considering suitably chosen
divisorial arcs with center £ (see Theorem 6.2 below). Next, observe that, from the
way the normalized QQ-persistance, 7 x, is computed (see (5.1.7) and (5.1.8)) at first
glance it is not obvious that the equality of the expression in (6.2.1) below, holds
generically. We address this kind of questions in Propositions 6.4 and 6.5. First we
fix some notation and some constructions that we will be using along this and the
following section.

Remark 6.1. Let X «<— X be the blow up at &, and let X| <«— X, be the
normalization. The total transform of the maximal ideal m¢ is locally principal at
X,. After removing a closed set of codimension at least two in X, we can restrict
to an open set U such that we have a log resolution of me:

m:Oy = I(H) ' ... 1(Hp)* 6.1.1)

where the hypersurfaces H; are irreducible and have only normal crossing in U.
Note that the integers cq, . . ., ¢ do not depend on the choice of U since the com-
plement of U in X has codimension larger or equal than two.

Denote by h; € H; the generic point of H; and let K; denote the residue field
of the local ring Oy; . Set

¢ =min{cy, ..., cg}. (6.1.2)

Note that if 4 :€ X" — X is an étale neighborhood of £ with u(§') = &, and
if we consider the normalized blow up of X’ at&’, X' «— X i, then one may have
a different number of hypersurfaces

me Oy = T(H) .. T(H}),

at a suitable open subset U’ C X/, but the sets of integers are the same
{c1,....ce) = {c’l,...,c;j,}.

Moreover suppose X’ = Spec(B) is as in the setting 5.1, for some ring B
together with a finite morphism 8* : S — B. Then we have that under those
hypotheses one has that mg) Bm,, is a reduction of mg'.
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Then, since mg B is a reduction of mg, after blowing up V@ at B(¢') and

X’ at &, and after considering the normalization X_i of X ’1, there is a commutative
diagram,

X (6.1.3)

y @ T Vl(d)

where B is a finite morphism and so is B, (see [2, Theorem 4.4]).
If v is the valuation on V@ defined by the maximal ideal mg, C S, note
that the valuation ring of vy is Ov(d) o where E denotes the exceptional divisor of
s

7 and e is the generic point of E.
Denote by /; € H; the generic point of H;. The local rings O ,, correspond to
1%

valuations v;,i = 1,...,¢/,and vy, ..., vy are exactly the extensions of vy to X_/l
We will denote by K the residue field of (’)7 .- Consider foranyi e {1, ..., '},
17
the natural morphism,
/. _ A o~ K
n:B— OX,I’h; — OX“L; ~ K;[[]]. (6.1.4)

Note that 7] is a divisorial arc in X'.
Consider the K/-morphism: i, : K/[[t]] — K/[[¢]] where t > ¢". We will
denote by 7; , the arc obtained from »; by composing with i,

Min: B i, K] -2 K11 (6.1.5)

Now we revisit Theorem 0.1 and restate the second part of that result in Theo-
rem 6.2. Our purpose is to prove a stronger statement by showing that the arc giving
the equality in (0.1.2) can be chosen to be divisorial. Compared to the proof given
in [9] (see Remark 6.3) here we follow a sligthely different strategy by consider-
ing normalized blowing ups and the commutative diagram (6.1.3). This allows us
to find the desired divisorial arc. As we indicate in the proof below, the fact that
inequality (0.1.1) holds for all arcs also shows in our way to prove Theorem 6.2.

Theorem 6.2. Let X be a d-dimensional algebraic variety defined over a perfect
field k, and let ¢ € Max multy. Then there is a divisorial arc n € L(X, &) such
that

1
d — . PX,nn
ordgf)(f) =Txy= —vr(n) nhm —nn .

6.2.1)

Proof. We will first prove that the theorem holds for arcs defined in some étale
neighborhood of & € Max multy, say u : X' — X, with u(¢’) = &, and after we
will show that the same statement actually holds for arcs in X.

Since the statements are of local nature, we will start by assuming that, locally,
in an étale neighborhood of & € Max multy, i : X’ — X, with u(&§) = &, one has
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that X’ = Spec(B) for some ring B together with a finite morphism g* : S — B
as in the setting of 5.1. Also, recall that under those hypotheses one has that
mﬁ@/)Bmé, is a reduction of mg.

Now we use the construction and the notation introduced in Remark 6.1. Thus
have the numbers cy, ..., ¢y and ¢ defined in (6.1.1) and (6.1.2), and the diagram
(6.1.3).

Suppose that, up to integral closure, G = S[IW?”] for some ideal I C S (see
(5.1.6)). Then, if ordg G = %, one has that vg(I) = a. Hence, the total

transform of 7 in Vl(d) is IOV(d) = T(E)*J, for some sheaf of ideals J QZ I(E).
1
Observe that any arc ¢’ € £(X', £') induces an arc ¢’ € L(V @D, B(£"), i.e.,

Boo(¢) = @', and if ¢’ is not constant (i.e., if ¢’ is not constant) then it can be lifted
to an arc in ¢ € L',(Vl(d)). By (5.1.9) it follows that

o ord, @@y | MEEED o (G (T(EY)) + v (@)

"X = T T (@ (Z(E)) bv (¢} (Z(E)))

v

[CRS YRS

)

6.2.2)

~

which gives a proof of the inequality in (0.1.1).
Now, consider for any i € {1, ..., ¢}, the divisorial arc nl/. from (6.1.4). It can
be checked that v, (1;(I B)) = ac]. Then we have

. B ord (1} (Gx')) _ v (n;(IB)) _ a_cl/. _4 (6.2.3)
X — Vz(’?,{) B bv:(nf) B bct/' b B

To conclude, both (6.2.2) and (6.2.3) are actually proven for arcs defined in an étale
neighborhood X’ of & € X. The fact that inequality (6.2.2) holds for arcs in X
follows from Remark 2.8. On the other hand, it can also be checked that equality
(6.2.3) holds for a divisorial arc in X: set it := u o7, and observe that the divisorial
arc r}l’. from (6.1.4) induces a commutative diagram:

Spec(K;[[z1]) B X (6.2.4)

| i

Spec(K;[[7]]) X

n

where 1 = Tl (n)). Since 11 : Y’l — X is a dominant morphism between varieties
of the same dimension one has that  is divisorial if and only if #; is divisorial (see
[29, Proposition 2.10, Lemma 3.2], where the case of varieties over C is treated,
and the general case follows using [53, Sect. 6, Corollary 1, Sect. 14, Theorem 31]).
]

Remark 6.3. In the following lines we give a few indications on how the proof
of Theorem 0.1 was addressed in [9, Sect. 6.3]. With the same notation as in the
proof of Theorem 6.2, in [9] we only worked with the finite map S — B. Then
we showed that for any arc ¢’ € £(X’, £'), inducing an arc ¢’ € L(VD, (")),
we obtained the inequality (0.1.1) by using (5.1.9) and the properties of the order
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function in §S. This way, finding an arc giving the equality (0.1.2), required more
work:

e First, given an element ng € G such that vge(g) = a, we needed to find
an arc ¢ € L(V@, B(£)) such that v,(¢(g)) = av,;(mg). To this end we
worked at the graded ring of the local ring Sy, , and at its completion. Here
an étale extension of the base field may have to be considered.

e In principle we did not know much about the arc ¢, except that it defined a
semi-valuation (a valuation on a closed subvariety of V@) dominated by a
finite number of semi-valuations on X’.

o Finally it was shown that any of those semi-valuations gave us arcs fulfilling
equality (0.1.2).

The key point in the proof of Theorem 6.2 is the use of the commutative dia-
gram (6.1.3). Given a finite morphism S — B such a commutative diagram only
exists under very special conditions. Normalized blowing ups were not considered
in [9].

Proposition 6.4. Let X be a d-dimensional algebraic variety defined over a perfect
field k, and let ¢ € Max multy. Suppose there is some s > 1 and an arc ¢g €

Cont=* (mg) WithTx 4, = ordéd) (X). Then there is a non-empty open subset 23 of
Cont=*(mp), containing ¢o, such that for all arcs ¢ € 20, Fx,, = ordéd)(X).

If, in addition, the generic point of ¢ is not contained in Sing(X) and the
characteristic of k is zero, then there are fat (divisorial) arcs in 20.

Proof. The statement is local, so we can assume that X is an affine algebraic variety
over k. First we prove that the theorem holds in a suitably chosen étale neighborhood
of X, u: X' — X with w(¢’) = &. Thus, we will set X’ = Spec(B), and we will
be considering the finite morphism 8 : X’ — V@ with V(@ = Spec(S) a smooth
k’-algebra as in 5.1.

Now, suppose that, up to integral closure, G — S[1 Wb] for someideal I C S
(see (5.1.6)). Then, if ordg e G = %, one has that vgen (1) = a.

In L(X', &), set

20’ = Cont=* (mg/) \ Cont=**1(IB).
We claim that if ¢’ € 200, then
_ a d
Fxg =g = ord? ().

Indeed, since ¢’ € 20’, we have that v, (¢’ (mg/)) = h > 5. If Boo(¢’) = ¢’ denotes
the arc induced on V@ by ¢’, one has that v, (¢’ (mgen)) = h > s, which implies
that

sa < ha < v (@' (I)) = v (¢'(IB)) < sa+ 1.
Thus, necessarily, s = h = v,(¢'(mp 1)) = vy (¢ (mgr)), and

'(IB
— ord; (¢"(Gx1)) _vt(wlg . _fsa_4a
X g me) s sb b

(6.4.1)
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To finish, the proof above shows that, after considering an étale morphism u : X’ —
X with u(&) = &, there is an open subset 20’ of Cont=* (mg’) where the equality
(6.4.1) holds. Now, by Remark 1.10, the morphism 1t is open, and oo (20') =
20 C Cont=*(mg) is an open subset of Cont=*(mz) where the statement of the
theorem holds (see Remark 2.8).

The last statement of the Proposition follows from Theorem 8.1, which we
postpone to Sect. 8. O

Proposition 6.5. Let X be a d-dimensional algebraic variety defined over a perfect
field k and let & € Max multy. Then for everyn > 1 and every ci, i = 1,...,¢,
there is a non-empty open set U, < Cont=" (mg) such that for all ¢ € U,,,

x.p = ord (&),

Proof. After the proof of Proposition 6.4, it suffices to prove the statement at an
étale neighborhood of £. We use the notation and the construction of Remark 6.1: let
7 : X} — X'be the normalized blow up of X" at £’, which induces the commutative
diagram (6.1.3) of blow ups and finite morphisms.

As in the proof of Theorem 6.2, we denote by E the exceptional divisor of 7.
Then m,g(g/)Ovlu) =7(E), and

mE’OJT; = I(E)OTQ

After blowing up at mgs/), IOV(,1> = T(E)*J, for some sheaf of ideals J ,@
1

Z(E), and therefore, B*(1)Oxr = Z(E)* J'. Set
1

80, == Cont="¢ (m;/) \ Cont="</“+1(IB),

ne;

7 . . / /
Observe that ilnc; is non-empty since the arc n; , from (6.1.5) belongs to ilnc;. O

7. Fat irreducible components of contact loci and Hironaka’s order

In the previous section we proved that given a d-dimensional algebraic variety X
defined over a perfect field k, and a point of maximum multiplicity £ € Max multy,
there are locally open sets in £(X, &) where the value of the normalized Q-
persistance, 7y, is constant and equal to the value of Hironaka’s order at the point
&, ordg?) (&) (Proposition 6.4). In fact such open subsets exist for some contact sets
Cont="¢ (mg) (see Propostion 6.5).

In this section we will prove that the value ordgf) (&) can be read by means
of the Q-persistance of some of the irreducible (fat) components of Cont=* (mg)
for some values of s (see Theorem 7.1). It is natural to ask whether a similar
statement holds for the irreducible components of Cont="" (m¢) for any m € N, but
Example 7.2 already illustrates that this is not the case. However we will show that
the value of Hironaka’s order function at £ is obtained asymptotically by looking
at the irreducible components of Cont="" (mg) when m goes to infinity. This is the
content of Theorem 7.3.
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Theorem 7.1. Let X be a d-dimensional algebraic variety defined over a perfect
field k, let & € Max multy, and let {T},,}5,,ea,, be the fat irreducible components
of Cont=" (mg), with generic points {¥y, }1, ea,, form > 1. If m = nc; for some
n > 1 and some c; as in (6.1.1) then

m

d C—
ordg()(é) =min{rx v, :Am € Am}.

In addition, ifk = C then the minimum is achieved at the generic point of a maximal
divisorial set.

Proof. The statement is local, so we can assume that X is an affine algebraic variety
over k. First we chose a suitable étale neighborhood of X, u : X’ — X with
w(€') = &, so that setting X’ = Spec(B), there is a finite morphism g : X’ — V(@
with V(@ = Spec(S) a smooth k’-algebra in the same situation as in 5.1. Now we
use the same notation and constructions as in Remark 6.1. So let 7 : X_/1 — X' be
the normalized blow up of X’ at &', which induces a commutative diagram of blow
ups at finite morphisms as in (6.1.3).

For a giveni € {1, ..., £}, we may assume after reordering that clf = ¢;. Now
consider the arcs n;,” as in (6.1.5). After the proof of Proposition 6.5, rx: ,» =
J ,

ord? &)

Now define n; , € L(X, &) as the arc obtained composing ’71/'," with the étale
morphism u : X' — X, ie, uoo(r;;’n) = nin. Since n;, € Cont="% (mg) is
fat then it belongs to some fat irreducible component of Cont="¢ (mg), which
we denote by 7T, for some A € A,, with generic point W,. Then notice that
vi(Mi.n) > v (W), but in fact these two numbers are equal: by Lemma 1.13, there
is an arc W' € Cont="“ (mgs) such that jtoo(¥') = W, and so that n;’n e {V'}.
Then

ne; = v(n;,) = v (¥') = ne;.

And the claim follows because u : X’ — X is étale, and hence v; (W) = v, (V') (=
ve(n} ) = v (i)
Since 1, , € {¥}, by Lemma 5.3 we have
a

A =TX, ZTX0 = 5

S

where last inequality follows from Theorem 6.2.
Finally, for k = C the last statement of the theorem follows from [21, Proposi-
tion 2.12] (see also Proposition 1.9 in this paper). O

The following example shows that the result in Theorem 7.1 may not hold for
the irreducible components of Cont="(m¢) for arbitrary values of n.

Example 7.2. Let X be the hypersurface of Az given by x2y3 — 70 = 0, with k a
field of characteristic zero. Consider the contact sets Cont=" (mz) where mg is the
maximal ideal of X at the point § = 0. For any n > 11 such that 2 { n and 3 1 n,
any fat irreducible component of Cont=" (m¢) gives a Q-persistance strictly greater
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than ordg) (¢) = 1 at its generic point. This can be computed using (1.7.2), via the
blow up of X at &, IT : X1 — X, which gives a log-resolution of mg. We have
that m¢ Oy, = I(H1)2 . 1(H2)3, where Hy, H, are the irreducible components of
excepcional divisor, according to the notation in the previous theorem.

To see this, denote

Ca,p = Moo (Cont™P) (E)) C L(X, §)

where the { } denotes the Zariski closure. Let W, g be the generic point of Cy g.

Note that the Rees algebra Gy C B[W] is generated by xW, yW and 20w,
up to integral closure. By (1.7.2), we have that Co g C Cont="(mg) if and only
if 20 +38 > n. If vy, P is the valuation associated to the arc W, g then it can be
checked that VW, 4 (x) = 3a + 386, Vw, 4 (y) =20 +4p and vy (z) = 20 + 36 and
the Q-persistance is

min{3a + 3, 2a + 48, £ (2a + 3B)}
min{3« + 38, 2o + 48, 2« + 38}
min{3e + 38, 2a + 48, £ 20 + 3B)}
200 + 38 '
For any (e, p), it follows that 7y, , > 1 if and only if @ # O and g # 0.
Now letn > 11 be not divisible by 2 neither by 3. We want to prove that if Cy g

is an irreducible component of Cont="(m¢) then 7 x s > 1 (equivalently o # 0
and B # 0). Since X is a toric variety, by [30, Lemma 3.11] we have that

ny\ya,ﬂ =

Co{,ﬂ C Ca/’ﬂ/ — U\I/a,/g > U\I/a’,ﬁ" (721)

Assume thatn =2m +1 =3l +i wherei = 1or2,sincen > 11 we havem > 5,
I > 3. Let Cy g be an irreducible component of Cont=" (mg) with 7x g, p = 1.
Then either (o, 8) = (m 4+ 1,0) or (&, B) = (0,1 + 1).

If (¢, B) = (m +1,0) then Cpyy1,0 C Cpp—1,1 by (7.2.1), since vy,,,, ,(x) =
3m+3 > vy, (x) =3m, vy, () =2m+2=>vy, ,(y) =2m+2and
Vi1 0(2) =2m +2 > vy, (2) =2m + 1. In this case Fxy,_,, = | + L.

If (o, B) = (0, I4+1)then Cp ;41 C Ca—1incasen = 3l+1and Co 41, C Cyi
in case n = 31 + 2.

The first case, n = 31 + 1, comes from the inequalities:

Vg, () =31+ 3 > vy, (x) =3[ +3,
Vw0 (V) = 4 +4 > v, () = 41,
AT (2)=31+3=> vqu,lfl(z) =3[+ 1.

Here we have thatrx y,, , =1+ %
The second case, n = 3/ + 2, comes from the inequalities:

Vg (0) =31+ 3 > vy, (x) =30+ 3,
Vg, (V) =4l +4> vy, (y) =41+ 2,
V(@) =30+ 3 > vy, (z) =31+ 2.

And we have that 7x w,, = 1 + %
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The previous computations show that if {7}, ;,},ea, are the irreducible com-
ponents of the set Cont=" (mg) and W, ,, is the generic point of T}, ;, then, for
n > 11 with 2 { n and 3 1 n we have that

Sp = min{f\pn‘,\n | Ap € Ay} > 1.
Hovewer, note that lim, .~ 6§, = 1 = ordg?) (&), and this is a general fact as it is
stated in the following theorem.

Theorem 7.3. Let X be a d-dimensional algebraic variety defined over a perfect
field k, and let & € Maxmulty. For each m € N, let {T,; 3,,}5,,.en, be the fat
irreducible components of Cont=""(mg) and let Uy, ;, be the generic point of
Tin 5, for Am € Ay. For eachm > 1 set:

Sm =inf {Fy,, | Am € Am}.

Then we have that
ord? (&) = lim §,,.
m—0o0

Proof. The statement is local, so we can assume that X is an affine algebraic variety
over k. Choose a suitable étale neighborhood of X, u : X’ — X with (&) = &
so that setting X’ = Spec(B) we are in the same situation as the one considered
in 5.1. Thus we will be considering the finite morphism g : X’ — V@ with
V@ = Spec(S) a smooth k’-algebra as in 5.1. Let 77 : X| — X’ be the normalized
blow up of X’ at &', which induces a commutative diagram of blow ups at finite
morphisms as in (6.1.3). We use the same notation as in Remark 6.1. Recall that
we use ¢ for the minimum of the set {cy, ..., c¢} and assume ¢ = cy.

As in (5.1.6) assume that the Rees algebra G@ has the same integral closure
as Oy [IW"], and assume ordge) G = a/b.

Let n} € L(X', &) be the arc defined in (6.1.4) for i = 1, and set:

m
Wy = ’7——‘ and ¢, = n’l’wm,
c1
where ’7/1,(»,,, is as in (6.1.5). Let n; € L(X, &) be the arc obtained by composing
with X" — X, i.e., ttoo(n}) = 11, and similarly, define ¢, 1= oo (¢),)-
Note that
_ordi(¢,,(Gx)) _ vilp,(IB)) ci-a-on a

; R = _ _ = — = ords 9.
X, 0m X »Om vl‘(w;{n) b . U[((p'/n) b < Cl - Wy b 3 g

By construction ¢, € Cont=""(m). Let A,, € A, be an index such that ¢, € Ty,
with generic point Wy, ;,,. Using Lemma 1.13, let lIJ;n o be an arcin £(X’, £) such

that woo (W), ;) = W 3, and so that g, € {¥) , }.
Note that for every m we have

m4cip > opcr =v(g,) = v (Y, ;5 ) =m
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and
O - c1 - a = vi(g(IB)) = v(W, . (IB)).
Finally
wm-cr-a V(¥ (UB) v(¥,, (IB) _ _ a
> > 7 =rxw =TIX U, = T-
m-b m-b b"’t(‘l’m,xm) m.km mTp

Now the result follows by observing that:

< lim 8, < lim Fxg,, < lim (

a I Wy -+ C -a)
b n—00 m— 00 n m—00

m-b
i ci-alm a (73.1)
= lim — )= -, 3.
m—oo\m-b | ¢ b

where the last equality follows by noticing that:

m
m+cy=cy|— |=m,
(&

and that

Ccl m—+cq c1 | m com
I+ —=——>—|—|2=-—=1
m m m | c]

8. On the values of the Q-persistance

The results in the previous sections are valid for varieties defined over a perfect
field of arbitrary characteristic. In this section we restrict to fields of characteristic
zero since we use the existence of resolution of singularities.

Theorem 8.1. Let X be a d-dimensional algebraic variety defined over a field of
characteristic zero. Fix a point & € Max multy and let ¢ € L(X, &) be an arc such
that ¢ ¢ L(Sing(X)). Then there exists a divisorial fat arc v € L(X, &) such that

e ¢ c (Y} and
X =Txy-

Proof. Assume X is affine. Recall that there is an étale morphims u : X’ — X
and a point £ € X’ with u(§’) = &, such that the situation in 5.1 holds for X’'.
This means that X’ = Spec(B), there exists a finite morphism g : X’ — V@
with V(@ = Spec(S) smooth as in 5.1. Moreover, as in (5.1.6), we have that, up
to integral closure, G = S[IWP"]. There exists an arc ¢’ € £(X’, &) such that
Hoo(@') = @.

Let IT : Y/ — X’ be a simultaneous log-resolution of the ideals /Oy  and
mxs gt

10y = I(H)™ ... I(Hy)™, my Oy = I(H)" ... I(Hy)™. (8.1.1)
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Note that V (I') = Max multy: C Sing(X’), and therefore, since ¢’ ¢ L(Sing(X")),
it factors through Y’ and there is a unique ¢}, € L£(Y") such that ¢" = IToo(¢},).
Set £; = v, (¢, (I(H;))),i =1,..., N, then we have that

o v (¢ (10x)) v (¢}, (1Oy1)) YL biai
X, 0 = X', ¢ = = = .
Y Y by (@ (mx s Ox))  bu(h (mx Oy)) b N e
(8.1.2)
Consider the multi-index £ = (£1, ..., £5) and the multi-contact loci (1.6.3)

(see also [22])
Cont'(E}) = {¢ € L) | v(@U(H)) =¢;, i =1,...,N}

where EY, is the simple normal crossing divisor on Y’ with irreducible com-
ponents Hj, ..., Hy. The set Conte(E;,,) is irreducible and not empty since
@y € Cont‘(E v)- By [22, 2.6] this set is divisorial. Let vy, be the generic point
of Conte(E;,/). The arc ¥" = Too () is a fat divisorial arc on X, we have that

¢ e {Y'Yand ryx gy = Fyx, . Now set ¥ = poo(¥'), we also have that ¢ € {1/}
and by [29, 3.2] the arc v is divisorial in X. O

Theorem 8.2. Let X be a d-dimensional algebraic variety defined over a field of
characteristic zero k and let § € Max multy. Let u : X' — X be an étale morphism
with w(¢") = & where Gy is defined (see 5.1), and assume that, up to integral
closure, Gyr = Ox/[IW?] (see (5.1.6)). Let T1 : Y — X' be a simultaneous
log-resolution of the ideals 1 and wg. Denote by Hy, ..., Hy the irreducible
components of the exceptional locus,

IOy = I(H)™ ... I(Hy)*,

‘ ‘ (8.2.1)
me Oy = I(H)' ... T(Hy)N.

Set A = {i €{l,...,N}|a; #0}. Then, for any arc ¢ in L(X, &), with ¢ ¢
L(Sing(X)),
1 . a _ 1 a;
—min — <7y, < —max —,
b ieA ¢; b ieA ¢
where we use the convention that Z—; = oo whenever ¢; = 0 and a; # 0.
Moreover
1 a;

_ 1 a; _
— in — = inf E X, d - - = E X? .
pmin = =inf{7xe | ¢ € LX.5)) and pmax = =sup(ixy | ¢ e LX D)}

Proof. The first inequalities are a consequence of (8.1.2),

1 . a (DTN aj
—min — <rxy = Py a— < —max —.
b ien c¢; b Yol tic b ien c;

We only need to study the case when some ¢; = 0. In this case the maximum value
has to be oo and we claim that there are arcs ¢ such that rx , is bigger than any
positive real number.



Contact loci and Hironaka’s order 163

Assume that ¢; = 0 and a; # 0. There exist some c; # 0, after reordering the
indexes assume that ¢y # 0.
Set¢, = (n,1,0,...,0)and let y, the generic point of Cont? (Ey). Note that
nay + az

lim r = lim —— =
n—00 X.¥n n—00 bcy
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