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Abstract. We obtain sharp estimate on p-spectral gaps, or equivalently optimal constant in
p-Poincaré inequalities, for metric measure spaces satisfying measure contraction property.
We also prove the rigidity for the sharp p-spectral gap.
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1. Introduction

Sharp estimates on spectral gap for p-Laplacian, or equivalently, the optimal con-
stant in p-Poincaré inequalities is a classical problem in comparison geometry. It
addresses the following basic problem. Given a family F := {(Xα, dα,mα) : α ∈
A} of metric measure spaces, the corresponding optimal constant λF in p-Poincaré
inequalities is defined by

λF := inf
α∈A

inf

{∫
Xα

|∇dα f |p dmα∫
Xα

| f |p dmα

: f ∈ Lip∩L p,

∫
Xα

f | f |p−2 dmα =0, f �=0

}
,

(1.1)

where the local Lipschitz constant |∇dα f | : Xα �→ R is defined by

|∇dα f |(x) := lim
y→x

| f (y) − f (x)|
dα(y, x)

.
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One of the most studied families of metric measure spaces is Riemannian mani-
folds with lower Ricci curvature bound K ∈ R, upper dimension bound N > 0 and
diameter bound D > 0. In this case, λF is theminimumof all first positive eigenval-
ues of the p-Laplacian (assuming Neumann boundary conditions if the boundary is
not empty). Based on a refined gradient comparison technique and a careful anal-
ysis of the underlying model spaces, sharp estimate on the first eigenvalue of the
p-Laplacian was finally obtained by Valtorta and Naber [22,26].

Another important family is weighted Riemannian manifolds (called smooth
metric measure spaces) satisfying BE(K , N ) curvature-dimension condition à la
Bakry–Émery [5,6].More generally, thanks to the deveploment of optimal transport
theory, it was realized that Bakry–Émery’s condition in smooth setting can be equiv-
alently characterized by convexity of an entropy functional along L2-Wasserstein
geodesics (c.f. [14] and [27]). In this direction, metric measure spaces satisfy-
ing CD(K , N ) condition was introduced by Lott–Villani [20] and Sturm [24,25].
This class of metric measure spaces with synthetic lower Ricci curvature bound
and upper dimension bound includes the previous smooth examples, and is closed
in the measured Gromov–Hausdorff topology. Recently, using measure decom-
position technique on Riemannian manifolds developed by Klartag [19] (and by
Cavalletti–Mondino [10] on metric measure spaces), sharp p-Poincaré inequalities
under the BE(K , N ) condition and the CD(K , N ) condition have been obtained by
E. Calderon in his Ph.D thesis [9].

In addition, Measure Contraction Property MCP(K , N ) was introduced inde-
pendently by Ohta [23] and Sturm [25] as a weaker variant of CD(K , N ) condition.
The family MCP(K , N ) is strictly larger than CD(K , N ). It was discovered by
Juillet [18] that the n-th Heisenberg group equipped with the left-invariant mea-
sure, which is the simplest sub-Riemannian space, does not satisfy any CD(K , N )

condition but do satisfy MCP(0, N ) for N ≥ 2n + 3. More recently, interpola-
tion inequalities à la Cordero–Erausquin–McCann–Schmuckenshläger [14] were
obtained, under suitable modifications, by Barilari and Rizzi [8] in the ideal sub-
Riemannian setting, Badreddine and Rifford [4] for Lipschitz Carnot group, and by
Balogh, Kristály and Sipos [7] for the Heisenberg group. As a consequence, more
and more examples of spaces verifying MCP but not CD have been found, e.g. the
generalized H-type groups and the Grushin plane (for more details, see [8]).

In [17], the author and Milman proved a sharp Poincaré inequality for subsets
of (essentially non-branching) MCP(K , N ) metric measure spaces, whose diame-
ter is bounded from above by D. The current paper is a subsequent work of [17].
We will study the general p-poincaré inequality within the class of spaces ver-
ifying measure contraction property. Thanks to measure decomposition theorem
(c.f. Theorem 3.5 [12]), it suffices to study the corresponding eigenvalue problems
on one-dimensional model spaces introduced by Milman [21]. In particular, we
identify a family of one-dimensional MCP(K , N )-densities with diameter D, not
verifying CD(K , N ), achieving the optimal constant λp

K ,N ,D .

As a basic problem in metric geometry, the rigidity theorem helps us to under-
stand more about the spaces under study. For the family of metric measure spaces
satisfying RCD(K , N ) condition with K > 0, a space that reaches the equality
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in (1.1) must have maximal diameter π

√
N−1
K . By maximal diameter theorem this

space is isomorphic to a spherical suspension (see [11] and references therein for
details). For MCP(K , N ) spaces, the situation is very different. For K > 0, due
to lack of monotonicity, we do not know whether a space that reaches the minimal
spectrum has maximal diameter. For K ≤ 0, by monotonicity (Proposition 3.6) and
one-dimensional rigidity (Theorem 3.13) we can prove the rigidity Theorem 4.2.

2. Prerequisites

Let (X, d) be a complete metric space and m be a locally finite Borel measure
with full support. Denote by Geo(X, d) the space of geodesics. We say that a set
� ⊂ Geo(X, d) is non-branching if for any γ 1, γ 2 ∈ �, it holds:

∃t ∈ (0, 1) s.t. γ 1
s = γ 2

s , ∀s ∈ [0, t] ⇒ γ 1
s = γ 2

s , ∀s ∈ [0, 1].
Let (μt ) be a L2-Wasserstein geodesic. Denote byOptGeo(μ0, μ1) the space of

all probability measures � ∈ P(Geo(X, d)) such that (et )�� = μt (c.f. Theorem
2.10 [1]) where et denotes the evaluation map et (γ ) := γt . We say that (X, d,m)

is essentially non-branching if for any μ0, μ1 � m, any � ∈ OptGeo(μ0, μ1) is
concentrated on a set of non-branching geodesics.

It is clear that if (X, d) is a smooth Riemannian manifold then any subset
� ⊂ Geo(X, d) is a set of non-branching geodesics, in particular any smooth Rie-
mannian manifold is essentially non-branching. In addition, many sub-Riemannian
spaces are also essentially non-branching, which follows from the existence and
uniqueness of the optimal transport map on some ideal sub-Riemannian manifolds
(c.f. [15]).

Given K , N ∈ R, with N > 1, we set for (t, θ) ∈ [0, 1] × R
+,

σ
(t)
K ,N

(
θ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞, if K θ2 ≥ (N − 1)π2,
sin(tθ

√
K/(N−1))

sin(θ
√
K/(N−1))

, if 0 < K θ2 < (N − 1)π2,

t, if K θ2 = 0,
sinh(tθ

√−K/(N−1))
sinh(θ

√−K/(N−1))
, if K θ2 < 0.

and

τ
(t)
K ,N := t

1
N

(
σ

(t)
K ,N−1

)1− 1
N
.

Definition 2.1. (MeasureContraction PropertyMCP(K , N ))We say that an essen-
tially non-branching metric measure space (X, d,m) satisfies measure contrac-
tion property MCP(K , N ) if for any point o ∈ X and Borel set A ⊂ X
with 0 < m(A) < ∞ (and with A ⊂ B(o,

√
(N − 1)/K if K > 0), there

is � ∈ OptGeo( 1
m(A)

m|A, δo) such that the following inequality holds for all
t ∈ [0, 1]

1

m(A)
m ≥ (et )�

[
τ

(1−t)
K ,N

(
d(γ0, γ1)

)N
�(dγ )

]
. (2.1)
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Theorem 2.2. (Localization for MCP(K , N ) spaces, Theorem 3.5 [12]) Let
(X, d,m) be an essentially non-branching metric measure space satisfying
MCP(K , N ) condition for some K ∈ R and N ∈ (1,∞). Then for any 1-Lipschitz
function u on X, the non-branching transport set Tu associated with u (roughly
speaking, Tu coincides with {|∇u| = 1} up tom-measure zero set) admits a disjoint
family of unparameterized geodesics {Xq}q∈Q such that

m(Tu \ ∪Xq) = 0,

and

m|Tu =
∫
Q
mq dq(q), q(Q) = 1 and mq(Xq) = 1 q − a.e. q ∈ Q.

Furthermore, for q-a.e. q ∈ Q, mq is a Radon measure with mq � H1|Xq
and

(Xq , d,mq) satisfies MCP(K , N ).

3. One dimensional models

3.1. One dimensional MCP densities

Let h ∈ L1(R+,L1) be a non-negative Borel function. It is known (see e.g. Lemma
4.1 [17]) that (supp h, | · |, hL1) satisfies MCP(K , N ) condition if and only if h is
a MCP(K , N ) density in the following sense

h(t x1 + (1 − t)x0) ≥ σ
(1−t)
K ,N−1(|x1 − x0|)N−1h(x0) (3.1)

for all x0, x1 ∈ supp h and t ∈ [0, 1].
Definition 3.1. Given K ∈ R, N > 1. Denote by DK ,N the Bonnet–Meyers diam-
eter upper-bound:

DK ,N :=
{ π√

K/(N−1)
if K > 0

+∞ otherwise
. (3.2)

For any D > 0, we define FK ,N ,D as the collection of MCP(K , N ) densities
h ∈ L1(R+,L1) with supp h = [0, D ∧ DK ,N ].

For κ ∈ R, we define the function sκ : [0,+∞) �→ R (on [0, π/
√

κ) if κ > 0)

sκ(θ) :=
⎧⎨
⎩

(1/
√

κ) sin(
√

κθ), if κ > 0,
θ, if κ = 0,
(1/

√−κ) sinh(
√−κθ), if κ < 0.

It can be seen that (3.1) is equivalent to(
sK/(N−1)(b − x1)

sK/(N−1)(b − x0)

)N−1

≤ h(x1)

h(x0)
≤

(
sK/(N−1)(x1 − a)

sK/(N−1)(x0 − a)

)N−1

(3.3)

for all [x0, x1] ⊂ [a, b] ⊂ supp h.
Furthermore, we have the following characterization.
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Lemma 3.2. Given D ≤ DK ,N , a density h is in FK ,N ,D if and only if(
sK/(N−1)(D − x1)

sK/(N−1)(D − x0)

)N−1

≤ h(x1)

h(x0)
≤

(
sK/(N−1)(x1)

sK/(N−1)(x0)

)N−1

∀ 0 ≤ x0 ≤ x1 ≤ D. (3.4)

Furthermore, h ∈ FK ,N ,D if and only if ln h is L1-a.e. differentiable and

−h(x) cotK ,N ,D(D − x) ≤ h′(x) ≤ h(x) cotK ,N ,D(x), L1 − a.e. x ∈ [0, D]
where the function cotK ,N ,D : [0, D] �→ R is defined by

cotK ,N ,D(x) :=

⎧⎪⎪⎨
⎪⎪⎩

√
K (N − 1) cot

(√
K

N−1 x
)

, if K > 0,

(N − 1)/x, if K = 0,√−K (N − 1) coth
(√

−K
N−1 x

)
, if K < 0.

Proof. It can be checked that the function

a �→ sK/(N−1)(x1 − a)

sK/(N−1)(x0 − a)

is non-decreasing on [0, x0], and the function

b �→ sK/(N−1)(b − x1)

sK/(N−1)(b − x0)

is non-decreasing on [x1, D]. Thus, (3.4) follows from (3.3).
Furthermore, for any h ∈ FK ,N ,D , it can be seen that (3.4) holds if and only if

x �→
(
sK/(N−1)(D − x)

)N−1

h(x)
is non-increasing, (3.5)

and

x �→
(
sK/(N−1)(x)

)N−1

h(x)
is non-decreasing. (3.6)

From (3.4) we can see that ln h is locally Lipschitz, so ln h is differentiable almost
everywhere. So, by (3.5) and (3.6) we know (3.4) is equivalent to(
ln sN−1

K/(N−1)(D − ·)
)′ ≤ (ln h)′ = h′

h
≤

(
ln sN−1

K/(N−1)

)′
L1 − a.e. on [0, D]

which is the thesis. ��
Notice that the function

[0, D] � x �→ sK/(N−1)(D − x)

sK/(N−1)(x)

is decreasing. By Lemma 3.2 (or (3.5) and (3.6)) we immediately obtain the fol-
lowing rigidity result.
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Lemma 3.3. (Onedimensional rigidity)Denote h1K ,N ,D = (
sK/(N−1)(x)

)N−1 |[0,D]
and h2K ,N ,D = (

sK/(N−1)(D − x)
)N−1 |[0,D]. Then we have h1K ,N ,D, h2K ,N ,D ∈

FK ,N ,D. Furthermore, h1K ,N ,D is the unique FK ,N ,D density (up to multiplicative
constants) satisfying

h′(x) = h(x) cotK ,N ,D(x)

and h2K ,N ,D is the unique FK ,N ,D density satisfying

h′(x) = −h(x) cotK ,N ,D(D − x).

3.2. One dimensional p-Poincaré inequalities

Definition 3.4. For p ∈ (1,∞) and h ∈ FK ,N ,D , the p-spectral gap associated
with h is defined by

λp,h := inf

{∫ |u′|ph dx∫ |u|ph dx : u ∈ Lip∩L p,

∫
u|u|p−2h dx = 0, u �= 0

}
. (3.7)

Definition 3.5. Let K ∈ R, D > 0 and N > 1. The optimal constant λ
p
K ,N ,D is

defined as the infimum of all p-spectral gaps associated with admissible densities,
i.e. λp

K ,N ,D is given by

λ
p
K ,N ,D := inf

h∈∪D′≤DFK ,N ,D′
λp,h .

Proposition 3.6. Let K ∈ R, D > 0 and N > 1. The function D �→ λ
p
K ,N ,D is

non-increasing, and

λ
p
K ,N ,D = inf

h∈∪D′≤DFK ,N ,D′∩C∞ λp,h . (3.8)

If K ≤ 0, the map D �→ λ
p
K ,N ,D is strictly decreasing, and

λ
p
K ,N ,D = inf

h∈FK ,N ,D∩C∞ λp,h . (3.9)

Proof. By Lemma 3.2 we know MCP densities are locally Lipschitz. Thus, using
a standard mollifier we can approximate h uniformly by smooth MCP densities.
Then by a simple approximation argument (see e.g. Proposition 4.8 [17]) we can
prove

λ
p
K ,N ,D = inf

h∈∪D′≤DFK ,N ,D′∩C∞ λp,h .

Let h ∈ FK ,N ,D′ be a MCP density for some D′ > 0, and u be an admis-

sible function in (3.7). Then h̄(x) := h( D
′

D x) ∈ FK ′,N ,D with K ′ = ( D′
D

)2
K ,
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and ū(x) := u( D
′

D x) is also an admissible function. By computation, we have∫ |ū′|ph̄ dx∫ |ū|ph̄ dx = ( D′
D

)p ∫ |u′|ph dx∫ |u|ph dx . Therefore, if K ≤ 0 and D′ < D, we have

inf
h∈FK ,N ,D

λp,h ≤ inf
h∈FK ′,N ,D

λp,h ≤
(
D′

D

)p (
inf

h∈FK ,N ,D′
λp,h) < inf

h∈FK ,N ,D′
λp,h

and so

λ
p
K ,N ,D < λ

p
K ,N ,D′ .

Then we obtain (3.9). ��
Remark 3.7. The difference between the cases K ≤ 0 and K > 0 was already
observed in [13] in the isoperimetric context and in [17] in the 2-Poincaré context.
It is known that the monotonicity property (3.9) is false when K > 0.

In order to study the equation (3.18) in Theorem 3.10, we recall some basic
facts about generalized trigonometric functions sinp and cosp.

Definition 3.8. For p ∈ (1,+∞), define πp by

πp :=
∫ 1

−1

dt

(1 − |t |p) 1
p

= 2π

p sin(π/p)
> 0.

The periodic C1 function sinp : R �→ [−1, 1] is defined on [−πp/2, 3πp/2] by:⎧⎨
⎩
t = ∫ sinp(t)

0
ds

(1−|s|p) 1
p

if t ∈ [−πp
2 ,

πp
2

]
,

sinp(t) = sinp(πp − t) if t ∈
[

πp
2 ,

3πp
2

]
.

(3.10)

It can be seen that sinp(0) = 0 and sinp is strictly increasing on [−πp
2 ,

πp
2 ]. Define

cosp(t) = d
dt sinp(t), thenwehave the followinggeneralized trigonometric identity

| sinp(t)|p + | cosp(t)|p = 1.

Definition 3.9. Let hiK ,N ,D , i = 1, 2 be MCP(K , N ) densities defined in Lemma
3.3. Define hK ,N ,D by

hK ,N ,D(x) :=
{
h1K ,N ,D(x) if x ∈ [ D

2 , D
]

h2K ,N ,D(x) if x ∈ [
0, D

2

]
.

Define TK ,N ,D by

TK ,N ,D := (
ln hK ,N ,D

)′ =
{
cotK ,N ,D(x) if x ∈ [ D

2 , D
]

− cotK ,N ,D(D − x) if x ∈ [
0, D

2

]
.

By Lemma 3.2 we know hK ,N ,D is a MCP(K , N ) density. It can be seen that
(c.f. Lemma 3.4 [13]) hK ,N ,D does not satisfy any forms of CD condition.
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Theorem 3.10. (One dimensional p-spectral gap) Let K ∈ R, N > 1, D > 0.
Denote by λ̂

p
K ,N ,D the minimal λ such that the following initial value problem has

a solution: ⎧⎨
⎩ϕ′ =

(
λ

p−1

) 1
p + 1

p−1TK ,N ,D cosp−1
p (ϕ) sinp(ϕ),

ϕ(0) = −πp
2 , ϕ

( D
2

) = 0, ϕ(D) = πp
2 .

(3.11)

Then λp,h ≥ λ̂
p
K ,N ,D for any h ∈ FK ,N ,D.

Proof. Step 1. Firstly we will show the existence of λ̂
p
K ,N ,D .

By Lemma 3.2 we know TK ,N ,D ∈ C∞((0, D
2 )∪( D2 , D)) and− cotK ,N ,D(D−

·) ≤ TK ,N ,D ≤ cotK ,N ,D . Denote T = TK ,N ,D , and denote by u = uT,λ the
(unique) solution of the following equation:{(

u′|u′|p−2
)′ + Tu′|u′|p−2 + λu|u|p−2 = 0,

u( D2 ) = 0.
(3.12)

Next we will study the equation (3.12) using a version of the so-called Pfüfer
transformation. Define the functions e = eT,λ and ϕ = ϕT,λ by:

α :=
( λ

p − 1

) 1
p
, αu = e sinp(ϕ), u′ = e cosp(ϕ).

By Lemma 3.11 we know that ϕ, e solve the following equation:{
ϕ′ = α + 1

p−1T | cosp(ϕ)|p−2 cosp(ϕ) sinp(ϕ),
d
dt ln e = e′

e = − 1
p−1T | cosp(ϕ)|p. (3.13)

Consider the following initial valued problem on (0, D
2 ) ∪ ( D2 , D).{

ϕ′ = α + 1
p−1T | cosp(ϕ)|p−2 cosp(ϕ) sinp(ϕ),

ϕ( D2 ) = 0.
(3.14)

By Cauchy’s theorem we have the existence, uniqueness and continuous depen-
dence on the parameters. Fix an ε ∈ (0, D

2 ). We can find α = α(ε) > 0, such
that ϕ′(x) >

πp
D−2ε > 0 for all x ∈ (ε, D

2 ). So there exists aα ∈ [0, D
2 ) such that

ϕ(aα) = −πp
2 . Similarly, there is bα ∈ ( D2 , D] such that ϕ(bα) = πp

2 . Conversely,
assume there is α > 0 such that the following problem has a solution ϕ for some
aα ∈ [0, D

2 ) and bα ∈ ( D2 , D]:{
ϕ′ = α + 1

p−1T | cosp(ϕ)|p−2 cosp(ϕ) sinp(ϕ),

ϕ(aα) = −πp
2 , ϕ

( D
2

) = 0, ϕ(bα) = πp
2 .

(3.15)

Then for any α′ > α, the following problem also has a solution for some a′
α ∈

(aα, D
2 ) and b′

α ∈ ( D2 , bα){
ϕ′ = α′ + 1

p−1T | cosp(ϕ)|p−2 cosp(ϕ) sinp(ϕ),

ϕ(a′
α) = −πp

2 , ϕ
( D
2

) = 0, ϕ(b′
α) = πp

2 .
(3.16)
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Therefore, by connectedness, there is a minimal λ̄ ≥ 0 such that for any λ > λ̄,
there exist ϕ = ϕT,λ, 0 ≤ aλ < D

2 and D
2 < bλ ≤ D such that⎧⎨

⎩ϕ′ =
(

λ
p−1

) 1
p + 1

p−1T cosp−1
p (ϕ) sinp(ϕ),

ϕ(aλ) = −πp
2 , ϕ

( D
2

) = 0, ϕ(bλ) = πp
2 .

(3.17)

By continuous dependence on the parameter λ, we know (3.17) has a solution ϕ∞
for γ = γ̄ , some aλ̄ ∈ [0, D

2 ) and bλ̄ ∈ ( D2 , D]. In particular, λ̄ > 0.
Since T (x) = −T (D − x) on [0, D

2 ], by symmetry and minimality (or domain

monotonicity) of λ̄, we have aλ̄ = 0 and bλ̄ = D (otherwise we can find a smaller
λ). In particular, there is aminimal λ̂p

K ,N ,D such that the initial value problem (3.11)

has a solution ϕ
TK ,N ,D ,λ̂

p
K ,N ,D.

Step 2. Given h ∈ FK ,N ,D ∩ C∞, we will show that λ̂p
K ,N ,D ≤ λp,h .

First of all, by a standard variational argumentwe can see thatλp,h is the smallest
positive real number such that there exists a non-zero u ∈ W 1,p([0, D], hL1)

solving the following equation (in weak sense):

�h
pu = −λu|u|p−2 (3.18)

with Neumann boundary condition, where �h
pu is the weighted p-Laplacian on

([0, D], | · |, hL1):

�h
pu = �pu + u′|u′|p−2(log h)′ = (

u′|u′|p−2)′ + u′|u′|p−2 h
′

h
.

By regularity theory we know u ∈ C1,α ∩ W 1,p for some α > 0, and u ∈ C2,α

if u′ �= 0. Conversely, for any u solving the Neumann problem (3.18), we have∫
u|u|p−2h dx = 0 and

∫ |u′|ph dx = λ
∫ |u|ph dx .

Assume by contradiction that λp,h < λ̂
p
K ,N ,D . From themonotonicity argument

in Step 1, we can see that there is λ < λ̂
p
K ,N ,D such that the following equation has

a (monotone) solution ϕ = ϕ
h′
h ,λ:⎧⎨

⎩ϕ′ =
(

λ
p−1

) 1
p + 1

p−1
h′
h cosp−1

p (ϕ) sinp(ϕ),

ϕ(0) = −πp
2 , ϕ(D) = πp

2 ,

(3.19)

Without loss of generality (or by symmetry), we may assume there is a′ ∈ [ D2 , D]
such that ϕ

h′
h ,λ(a′) = 0. Suppose there is a point x0 ∈ [a′, D) such that ϕ

h′
h ,λ(x0) =

ϕ
TK ,N ,D ,λ̂

p
K ,N ,D (x0). From Lemma 3.2 we know that h′

h ≤ TK ,N ,D . So we know(
ϕ

h′
h ,λ

)′
(x0) <

(
ϕ
TK ,N ,D ,λ̂

p
K ,N ,D

)′
(x0).

Therefore,

ϕ
h′
h ,λ(x) < ϕ

TK ,N ,D ,λ̂
p
K ,N ,D (x)

for all x ∈ (a′, D], which contradicts to the fact that ϕ h′
h ,λ( D2 ) = ϕ

TK ,N ,D ,λ̂
p
K ,N ,D ( D2 )

= πp
2 . ��
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The following formulas has been used in [22,26]. We give a proof for com-
pleteness.

Lemma 3.11. Let e, ϕ, T be functions defined in the proof of Theorem 3.10. Then
we have {

ϕ′ = α + 1
p−1T | cosp(ϕ)|p−2 cosp(ϕ) sinp(ϕ),

d
dt ln e = e′

e = − 1
p−1T | cosp(ϕ)|p. (3.20)

Proof. Firstly, we have(
u′|u′|p−2)′ = (

e cosp(ϕ)|e cosp(ϕ)|p−2)′

= |e cosp(ϕ)|p−2(e′ cosp(ϕ) + e sin′′
p(ϕ)ϕ′)

+e cosp(ϕ)(p − 2)e cosp(ϕ)|e cosp(ϕ)|p−4

×(
e′ cosp(ϕ) + e sin′′

p(ϕ)ϕ′)
= |e cosp(ϕ)|p−2(p − 1)

(
e′ cosp(ϕ) + e sin′′

p(ϕ)ϕ′).
Combining with (3.12) we obtain

|e cosp(ϕ)|p−2(e′ cosp(ϕ) + e sin′′
p(ϕ)ϕ′) sinp(ϕ)

+ 1

p − 1
T e cosp(ϕ) sinp(ϕ)|e cosp(ϕ)|p−2 + λ

p − 1
α1−pep−1| sinp(ϕ)|p = 0.

Differentiating the equation αu = e sinp(ϕ) and substituting u′ by e cosp(ϕ),
we get

αe cosp(ϕ) = e′ sinp(ϕ) + e cosp(ϕ)ϕ′.

Differentiating the identity | sinp(t)|p + | cosp(t)|p = 1 we also have

| sinp(t)|p−2 sinp(t) cosp(t) + | cosp(t)|p−2 cosp(t) sin
′′
p(t) = 0.

Therefore,

|e cosp(ϕ)|p−2(e′ cosp(ϕ) + e sin′′
p(ϕ)ϕ′) sinp(ϕ)

= |e cosp(ϕ)|p−2(αe cos2p(ϕ) − e cos2p(ϕ)ϕ′ + e sin′′
p(ϕ) sinp(ϕ)ϕ′)

= αep−1(ϕ)| cosp(ϕ)|p − ep−1(| cosp(ϕ)|p + | sinp(ϕ)|p)ϕ′

= αep−1(ϕ)| cosp(ϕ)|p − ep−1ϕ′.

Combining the results above, we prove the lemma. ��
Combining Proposition 3.6 and Theorem 3.10, we get the following corollary

immediately.

Corollary 3.12. We have the following sharp p-spectral gap estimates for one
dimensional models:
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λ
p
K ,N ,D =

{
λ̂
p
K ,N ,D if K ≤ 0

infD′∈(0,min(D,DK ,N )] λ̂p
K ,N ,D′ if K > 0

Theorem 3.13. (One dimensional rigidity) Given K ≤ 0, N > 1 and D > 0. If
λp,h = λ̂

p
K ,N ,D for some h ∈ FK ,N ,D. Then h = hK ,N ,D up to a multiplicative

constant.

Proof. Assumeλp,h = λ̂
p
K ,N ,D for some h ∈ FK ,N ,D . Then there is hn ∈ FK ,N ,D∩

C∞ with hn → h uniformly, and a decreasing sequence (λp,hn ) with λp,hn →
λ̂
p
K ,N ,D , such that ϕn = ϕ

h′
n

hn
,λp,hn

solves the following equation:

⎧⎨
⎩ϕ′

n =
(

λp,hn

p−1

) 1
p + 1

p−1
h′
n

hn
cosp−1

p (ϕn) sinp(ϕn),

ϕn(0) = −πp
2 , ϕn(D) = πp

2 .

(3.21)

FromLemma 2.1we know that {ϕ′
n}n and {ϕn}n are uniformly bounded. ByArzelà–

Ascoli theorem we may assume ϕn → ϕ∞ uniformly for some Lipschitz function
ϕ∞.

By minimality of λ̂p
K ,N ,D and symmetry, we can see that limn→∞ ϕ−1

n (t) exists

for any t ∈ [−πp
2 ,

πp
2 ] and

lim
n→∞ ϕ−1

n = (
ϕ
TK ,N ,D ,λ̂

p
K ,N ,D

)−1
.

In fact, assume by contradiction that limn→∞ ϕ−1
n (t) �= (

ϕ
TK ,N ,D ,λ̂

p
K ,N ,D

)−1
(t) for

some t ∈ (−πp
2 ,

πp
2 ). By symmetry we may assume there are N1 ∈ N and δ > 0,

such that δn := (
ϕ
TK ,N ,D ,λ̂

p
K ,N ,D

)−1
(t) − ϕ−1

n (t) ≥ δ for all n ≥ N1. Define a
MCP(K , N ) density h̄n by

h̄n(x) :=
{
hn(x) if x ∈ [0, ϕ−1

n (t)],
hn(ϕ−1

n (t))

hK ,N ,D(ϕ−1
n (t)+δn)

hK ,N ,D(x + δn) if x ∈ [ϕ−1
n (t), D − δn].

Then ϕ̄n = ϕ
h̄′
n

h̄n
,λp,hn

satisfies (ϕ̄n)
−1(

πp
2 ) < D − δ

2 for n large enough, which

contradicts to Proposition 3.6 and the minimality of λ̂
p
K ,N ,D .

In conclusion, ϕ∞ = ϕ
TK ,N ,D ,λ̂

p
K ,N ,D and we have ϕn → ϕ

TK ,N ,D ,λ̂
p
K ,N ,D uni-

formly.
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Then we get

πp

2
= ϕn(ϕ

−1
n (0)) − ϕn(0)

= lim
n→∞

∫ ϕ−1
n (0)∧ D

2

0

( λp,hn

p − 1

) 1
p + 1

p − 1

h′
n

hn
cosp−1

p (ϕn) sinp(ϕn) dx

≤ lim
n→∞

∫ ϕ−1
n (0)∧ D

2

0

( λp,hn

p − 1

) 1
p + 1

p − 1
TK ,N ,D cosp−1

p (ϕn) sinp(ϕn) dx

=
∫ D

2

0

( λ̂
p
K ,N ,D

p − 1

) 1
p

+ 1

p − 1
TK ,N ,D cosp−1

p (ϕ
TK ,N ,D,λ̂

p
K ,N ,D ) sinp(ϕ

TK ,N ,D ,λ̂
p
K ,N ,D ) dx

= πp

2
.

Therefore,

(ln hn)
′ = h′

n

hn
→ TK ,N ,D = h′

K ,N ,D

hK ,N ,D

in L1([0, D
2 ], cosp−1

p (ϕ
TK ,N ,D ,λ̂

p
K ,N ,D ) sinp(ϕ

TK ,N ,D,λ̂
p
K ,N ,D )L1). By symmetry, we

can see that (ln hn)′ → (ln hK ,N ,D)′ in L1([0, D],L1). Hence h = hK ,N ,D up to
a multiplicative constant. ��

4. p-spectral gap

4.1. Sharp p-spectral gap estimates

Using standard localization argument (c.f. Theorem 1.1 [17], Theorem 4.4 [11]),
we can prove the sharp p-Poincaré inequality with one dimensional results.

Theorem 4.1. (The sharp p-spectral gap under MCP(K , N )) Let (X, d,m) be an
essentially non-branching metric measure space satisfying MCP(K , N ) for some
K ∈ R, N ∈ (1,∞) and diam(X) ≤ D. For any p > 1, define λ

p
(X,d,m) as the

optimal constant in p-Poincaré inequality on (X, d,m):

λ
p
(X,d,m) := inf

{∫ |∇ f |p dm∫ | f |p dm : f ∈ Lip∩L p,

∫
f | f |p−2 dm = 0, f �= 0

}
.

Then we have the following sharp estimate

λ
p
(X,d,m) ≥ λ

p
K ,N ,D =

{
λ̂
p
K ,N ,D if K ≤ 0

infD′∈(0,min(D,DK ,N )] λ̂p
K ,N ,D′ if K > 0.
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Proof. Let f̄ = f | f |p−2 be a Lipschitz function with
∫

f̄ = 0. Let f̄ ± denote the
positive and the negative parts of f̄ respectively. Then we have

∫
f̄ + = − ∫

f̄ −.
Consider the L1-optimal transport problem from μ0 := f̄ +m to μ1 := − f̄ −m. By
Theorem 2.2, there exists a family of disjoint unparameterized geodesics {Xq}q∈Q
of length at most D, such that

m(X \ ∪Xq) = 0, m =
∫
Q
mq dq(q)

where mq = hqH1|Xq
for some hq ∈ FK ,N ,D′

q
with D′

q ≤ D, mq(Xq) = m(X)

and ∫
f̄ hq dH

1|Xq
= 0

for q-a.e. q ∈ Q.
Denote fq = f |Xq

. By definition we obtain

∫
| f ′

q |phq dH1|Xq
≥ λp,hq

∫
| fq |phq dH1|Xq

≥ λ
p
K ,N ,D

∫
| fq |phq dH1|Xq

.

Notice that | f ′
q | ≤ |∇ f |. Thus, we have

λ
p
K ,N ,D

∫
| f |p dm = λ

p
K ,N ,D

∫
Q

∫
Xq

| fq |pmq dq(q)

≤
∫
Q

∫
Xq

| f ′
q |pmq dq(q)

=
∫

|∇ f |p dm.

Combining with Corollary 3.12 we prove the theorem. ��

4.2. Rigidity for p-spectral gap

In this part, we will study the rigidity for p-spectral gap under the measure con-
traction property. We adopt the notation |D f | to denote the weak upper gradient of
a Sobolev function f . We refer the readers to [2] and [16] for details about Sobolev
space theory and calculus on metric measure spaces.

Theorem 4.2. (Rigidity for p-spectral gap) Let (X, d,m) be an essentially non-
branching metric measure space satisfying MCP(K , N ) for some K ≤ 0, N ∈
(1,∞) and diam(X) ≤ D. Assume there is a non-zero Sobolev function f ∈
W 1,p(X, d,m) with

∫
f | f |p−2 dm = 0 such that∫
|D f |p dm − λ̂

p
K ,N ,D

∫
| f |p dm = 0.
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Then diam(X) = D and there are disjoint unparameterized geodesics {Xq}q∈Q of
length D such thatm(X \∪Xq) = 0. Moreover,m has the following representation

m =
∫
Q
hq dH

1|Xq
dq(q),

where
h′
q

hq
= T p

K ,N ,D for q-a.e. q ∈ Q.

Proof. Similar to the proof of Theorem 4.1, we can find a measure decomposition
associated with f̄ := f | f |p−2, such that

m(X \ ∪Xq) = 0, m =
∫
Q
mq dq(q)

where mq = hqH1|Xq
for some hq ∈ FK ,N ,D′

q
with D′

q ≤ D, mq(Xq) = m(X)

and ∫
f̄ hq dH

1|Xq
= 0

for q-a.e. q ∈ Q.
By Theorem 7.3 [3] we know fq := f |Xq

∈ W 1,q(Xq) and |D fq | ≤ |D f |.
Then from the proof of Theorem 4.1 we can see that λp,hq = λ̂

p
K ,N ,D for q-a.e.

q ∈ Q. By Proposition 3.6 we know that the function D �→ λ̂
p
K ,N ,D is strictly

decreasing, so D′
q = D and diam(X) = D. Finally, by Theorem 3.13 we know

that
h′
q

hq
= T p

K ,N ,D . ��
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