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Abstract. We present a formula to compute the Brasselet number of f : (Y, 0) → (C, 0)
where Y ⊂ X is a non-degenerate complete intersection in a toric variety X . As applications
we establish several results concerning invariance of the Brasselet number for families of
non-degenerate complete intersections. Moreover, when (X, 0) = (Cn, 0) we derive suffi-
cient conditions to obtain the invariance of the Euler obstruction for families of complete
intersections with an isolated singularity which are contained in X .
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1. Introduction

Given a germ of an analytic function f : (Cn, 0) → (C, 0) with an isolated critical
point at the origin, an important invariant of this germ is its Milnor number [28],
denoted by μ( f ). The Milnor number is considered as a central invariant, since
it provides algebraic, topological and geometric information about the germ f .
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For instance, the Milnor number coincides with the number of Morse points of a
morsefication of f .

Initially the Milnor number was associated to germs of analytic functions f :
(Cn, 0) → (C, 0) with an isolated critical point, and consequently it was used to
study isolated hypersurface singularities. However this invariant is well defined
in many others contexts, for example curves [9], isolated complete intersection
singularities (ICIS) [21], and determinantal varieties of codimension two [39], to
name just a few.

The local Euler obstructionwas defined byMacPherson in [23] for the construc-
tion of characteristic classes of singular complex algebraic varieties. Thereafter, it
has been deeply investigated by many authors such as Brasselet and Schwartz [7],
Dutertre [13], Gaffney et al. [15], Gonzalez-Sprinberg [20], Lê and Teissier [22],
Matsui and Takeuchi [26], among others. We denote by (X, 0) a germ of an ana-
lytic singular space embedded in C

n and by f : (X, 0) → (C, 0) a germ of an
analytic function with an isolated critical point at the origin. Brasselet, Massey,
Parameswaran and Seade [4] introduced an invariant associated to f called the
Euler obstruction of f and denoted by Eu f,X (0). Roughly speaking, Eu f,X (0) is
the obstruction to extending a lifting of the conjugate of the gradient vector field
of f as a section of the Nash bundle of (X, 0). This invariant is closed related with
the local Euler obstruction of X , what explains its name.

An important consequence of the definition given by MacPherson, is that the
local Euler obstruction does not depend on the Whitney stratification of X . More-
over, it was proved in [7] that the local Euler obstruction is a constructible function,
which means that, it is constant along the strata of a Whitney stratification of X .
This is essentially a consequence of the topological triviality of X on the Whit-
ney strata. The following Lefschetz-type formula was proved by Brasselet, Lê and
Seade [2].

Theorem 1.1. Let (X, 0) ⊂ (Cn, 0) be an equidimensional complex analytic sin-
gularity germ with a Whitney stratification {Vi }, then given a generic linear form
L, there exists ε0 such that for any ε with 0 < ε < ε0, we have

EuX (0) =
∑

i

χ
(
Vi ∩ Bε ∩ L−1(δ)

) · EuX (Vi ),

where χ is the Euler–Poincaré characteristic, Bε := Bε(0) is the ball with center
the origin and radius ε, EuX (Vi ) is the value of the local Euler obstruction of X at
any point of the stratum Vi , and 0 < |δ| � ε � 1.

The previous theorem says that the local Euler obstruction, as a constructible
function on X , satisfies the Euler condition relatively to a generic linear function.

For the Euler obstruction of an analytic function f : (X, 0) → (C, 0) with
an isolated critical point at the origin, there is also a Lefschetz-type formula. This
formula was proved in [4]. The purpose of the authors was to understand what
prevents the local Euler obstruction from satisfying the local Euler condition with
respect to functions which are singular at the origin.
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Theorem 1.2. Let (X, 0) ⊂ (Cn, 0) be an equidimensional complex analytic sin-
gularity germ with a Whitney stratification {Vi }, and let f : (X, 0) → (C, 0) be a
function with an isolated singularity at 0. Then,

Eu f,X (0) = EuX (0) −
(
∑

i

χ
(
Vi ∩ Bε ∩ f −1(δ)

) · EuX (Vi )

)
,

where 0 < |δ| � ε � 1.

The last equation presents the relation between the local Euler obstruction of X and
the Euler obstruction of f .

Seade, Tibăr and Verjovsky continued the study of the properties of Eu f,X (0)
in [40]. The authors proved that the Euler obstruction of f is closely related to the
number of Morse points of a morsefication of f , as follows.

Proposition 1.3. Let (X, 0) be an equidimensional complex analytic singularity
germ of dimension d and f : (X, 0) → (C, 0) a germ of an analytic function with
an isolated critical point at the origin. Then

Eu f,X (0) = (−1)dnreg,

where nreg is the number of Morse points in the regular part of X appearing in a
stratified morsefication of f .

Therefore, the Euler obstruction of f is the number of Morse points of a morsefi-
cation of f on the regular part of X , up to the sign. Hence this invariant can be seen
as a generalization of the Milnor number of f .

Another invariant associated with a germ of an analytic function f : (X, 0) →
(C, 0) is the Brasselet number introduced by Dutertre and Grulha in [12]. We will
denote this number by B f,X (0). If f has an isolated critical point, then the Brasselet
number satisfies the equality

B f,X (0) = EuX (0) − Eu f,X (0).

If f is linear and generic, then B f,X (0) = EuX (0), hence it can be viewed as a
generalization of the local Euler obstruction.Moreover, even if f has a non-isolated
singularity it provides interesting results. For example, the Brasselet number sat-
isfies a Lê-Greuel type formula (see [12, Theorem 4.4] or Theorem 2.5 below),
i.e., the difference of the Brasselet numbers B f,X (0) and B f,Xg (0) is measured by
the number of Morse critical points on the top stratum of the Milnor fiber of f
appearing in a morsefication of g, where g : (X, 0) → (C, 0) is a prepolar function
(see Definition 2.4) and Xg = X ∩ g−1(0).

Although they are important, the invariants mentioned above are not easily
computed using their definition. In the literature there are formulas which make the
computation easier, see [2,4,13,22]. Some authors worked on more specific situa-
tions. In the special case of toric surfaces, an interesting formula for the local Euler
obstruction was proved by Gonzalez-Sprinberg [20]. This formula was generalized
by Matsui and Takeuchi [26] for normal toric varieties of any dimension.
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Toric varieties are particularly interesting objects, since they have a strong
relation with elementary convex geometry. On these varieties we have an action
of the algebraic torus (C∗)n that induces a finite decomposition of the variety into
orbits, all of which are homeomorphic to a torus.

In [41], Varchenko described the topology of the Milnor fiber of a function
f : (Cn, 0) → (C, 0) using the geometry of the Newton polygon of f , and con-
sequently, the Milnor number can be expressed by volumes of polytopes related
to the Newton polygon of f . In his proof, he constructed a toric modification of
C
n on which the pull-back of f defines a hypersurface with only normal crossing

singularities. While C
n is a very special smooth toric variety, it seems natural to

generalize his formula to Milnor fibers over general singular toric varieties. This
was done by Matsui and Takeuchi in [27].

We use [27] to establish several combinatorial formulas for the computation of
the Brasselet number of f : (Y, 0) → (C, 0) where Y ⊂ X is a non-degenerate
complete intersection in a toric variety X . These formulas will be given in terms of
volumes of Newton polygons associated to f .

This paper is organized as follows. In Sect. 2, we present some background
material concerning the Brasselet number and toric varieties, which will be used
in the entire work. In Sect. 3, we compute the Brasselet number of a polynomial
function f : (X, 0) → (C, 0), where X ⊂ C

n is a toric variety. Moreover, we
compute this invariant for functions defined on Xg = X ∩ g−1(0), where g : X →
C
k is a non-degenerate complete intersection. As a consequence, assuming that g

has an isolated critical point on X and on X f , we also obtain a formula for the
number of stratified Morse critical points on the top stratum of the Milnor fiber of
f appearing in a morsefication of g : X ∩ f −1(δ) ∩ Bε → C. As applications we
establish several results concerning constancy of these invariants. In Sect. 4, we
consider the case where (X, 0) = (Cn, 0) and we derive sufficient conditions to
obtain the constancy of the Euler obstruction for families of complete intersections
with an isolated singularity which are contained on X .We use this result to study the
invariance of the Bruce–Roberts’ Milnor number for families of functions defined
on hypersurfaces. In Sect. 5, we work in the case of surfaces, i.e., in the case where
X is a 2-dimensional toric variety. In this situation, we present a characterization
of a polynomial function g : X → C which has a stratified isolated singularity
at the origin. We use this characterization to present some examples for a class
of toric surface that is also determinantal. In Sect. 6, we study the GSV-index on
non-degenerated complete intersection in toric varieties.

2. Generalities: stratifications, Brasselet number and toric varieties

For the convenience of the reader and to fix the notation we present some general
facts in order to establish our results.

2.1. Stratifications and Brasselet number

In order to introduce the definition and the properties of the Brasselet number,
we need some notions about stratifications. For more details, we refer to Massey
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[24,25]. Let A ⊂ C
n , B ⊂ C

m and f : A → B be a function with n,m ∈ N. We
will fix the notation, A f := A ∩ f −1(0).

Consider X ⊂ C
n a reduced complex analytic set of dimension d which is

included in an open set U . Let F : U → C be a holomorphic function and
f : X → C be the restriction of F to X , i.e., f := F |X .
Definition 2.1. A good stratification of X relative to f is a stratification V of X
which is adapted to X f , such that

{
Vi ∈ V; Vi �⊂ X f

}
is a Whitney stratification

of X \ X f , and for any pair of strata (Vα, Vβ) such that Vα �⊂ X f and Vβ ⊂ X f ,
the (a f )-Thom condition is satisfied. We call the strata included in X f the good
strata.

By [17], given a stratification S of X one can refine S to obtain a Whitney
stratification V of X which is adapted to X f . By [3,36] the refinement V satisfies
the (a f )-Thom condition, i.e., good stratifications always exist.

Definition 2.2. Consider X and f as before. Let V = {Vi } be a stratification of X .
The critical locus of f relative to V , denoted by �V f , is the union of the critical
locus of f restricted to each of the strata, i.e., �V f = ⋃

i �( f |Vi ).
A critical point of f relative to V is a point p ∈ �V f . If the stratification V

is clear, we will refer to the elements of �V f simply as stratified critical points of
f . If p is an isolated point of �V f , we call p a stratified isolated critical point of
f (with respect to V). If V is a Whitney stratification of X and f : X → C has a
stratified isolated critical point at the origin, then

{
Vα \ X f , Vα ∩ X f \ {0} , {0} ; Vα ∈ V

}
,

is a good stratification for f . We call it the good stratification induced by f .

Definition 2.3. Suppose that X is equidimensional. Let V = {Vi }qi=0 be a good
stratification of X relative to f . The Brasselet number is defined by

B f,X (0) :=
q∑

i=1

χ
(
Vi ∩ Bε(0) ∩ f −1(δ)

) · EuX (Vi ),

where 0 < |δ| � ε � 1.

If f has a stratified isolated critical point at the origin and X is equidimensional,
Theorem 1.2 implies that

B f,X (0) = EuX (0) − Eu f,X (0). (2.1)

The Brasselet number has many interesting properties, e.g., it satisfies several
multiplicity formulas, which enable the authors to establish in [12] a relative version
of the local index formula and a Gauss–Bonnet formula for B f,X (0). However, one
of the most important properties of this invariant is the Lê-Greuel type formula
(Theorem 2.5). To present this result we need to impose some conditions on the
functions to ensure that Xg meets X f in a nice way. So it is necessary to define:
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Definition 2.4. Let V be a good stratification of X relative to f . We say that g :
(X, 0) → (C, 0) is prepolar with respect toV at the origin if the origin is an isolated
critical point of g.

The condition that g is prepolar means that g has an isolated critical point (in
the stratified sense), both on X and on X f , and that Xg intersects transversely
each stratum of V in a neighborhood of the origin, except perhaps at the origin
itself. However, it is important to note that, while Xg meets X f in a nice way,
X f may have arbitrarily bad singularities when restricted to Xg . The (a f )-Thom
condition in Definition 2.3 together with the hypothesis that g is prepolar ensure
that g : X ∩ f −1(δ) ∩ Bε → C has no critical points on g−1(0) [24, Proposition
1.12]. Therefore, the number of stratified Morse critical points on the top stratum
Vq ∩ f −1(δ) ∩ Bε(0), in a morsefication of g : X ∩ f −1(δ) ∩ Bε(0) → C, does
not depend on the morsefication.

The next theorem shows that the Brasselet number satisfies a Lê-Greuel type
formula [12, Theorem 4.4].

Theorem 2.5. Suppose that X is equidimensional and that g is prepolar with
respect to V at the origin. Then,

B f,X (0) − B f,Xg (0) = (−1)d−1nq ,

where nq is the number of stratified Morse critical points on the top stratum Vq ∩
f −1(δ)∩ Bε(0) appearing in a morsefication of g : X ∩ f −1(δ)∩ Bε(0) → C, and
0 < |δ| � ε � 1. In particular, this number is independent on the morsefication.

2.2. Toric varieties

The theory of toric varieties can be seen as a cornerstone for the interaction between
combinatorics and algebraic geometry, which relates the combinatorial study of
convex polytopes to algebraic torus actions. Moreover, for polynomial functions
defined on such varieties, it is possible to obtain a combinatorial description of the
topology of their Milnor fibers in terms of Newton polygons (see [27,34]). The
reader may consult [14,32] for an overview about toric varieties.

Let N ∼= Z
d be aZ-lattice of rank d and σ a strongly convex rational polyhedral

cone in NR = R ⊗Z N . We denote by M the dual lattice of N and the polar cone
σ̌ of σ in MR = R ⊗Z M by

σ̌ = {v ∈ MR; 〈u, v〉 ≥ 0 for any u ∈ σ } ,

where 〈·, ·〉 is the usual inner product in R
d . Then the dimension of σ̌ is d and we

obtain a semigroup Sσ := σ̌ ∩ M .

Definition 2.6. A d-dimensional affine toric variety Xσ is defined by the spectrum
of C[Sσ ], i.e., X = Spec(C[Sσ ]).
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The algebraic torus T = Spec(C[M]) ∼= (C∗)d acts naturally on Xσ and
the T -orbits in Xσ are indexed by the faces 	 of σ̌ (	 ≺ σ̌ ). We denote by
L(	) the smallest linear subspace of MR containing 	. For a face 	 of σ̌ , denote
by T	 the T -orbit in Spec(C[M ∩ L(	)]) which corresponds to 	. We observe
that the d-dimensional affine toric varieties are exactly those d-dimensional affine,
normal varieties admitting a (C∗)d -action with an open, dense orbit homeomorphic
to (C∗)d . Moreover, each T -orbit T	 is homeomorphic to (C∗)r , where r is the
dimension of L(	).

Therefore we obtain a decomposition Xσ = ⊔
	≺σ̌ T	 into T -orbits, which are

homeomorphic to algebraic torus (C∗)r . Due to this fact, and also the informations
coming from the combinatorial residing in these varieties, many questions that were
originally studied for functions defined on C

d can be extended to functions defined
on toric varieties.

Consider f : Xσ → C a polynomial function on Xσ , i.e., a function that
corresponds to an element f = ∑

v∈Sσ
av · v of C[Sσ ], where av ∈ C.

Definition 2.7. Let f = ∑
v∈Sσ

av · v be a polynomial function on Xσ .

(a) The set {v ∈ Sσ ; av �= 0} ⊂ Sσ is called the support of f and we denote it by
supp f ;

(b) The Newton polygon 
+( f ) of f is the convex hull of
⋃

v∈supp f

(v + σ̌ ) ⊂ σ̌ .

Now let us fix a function f ∈ C[Sσ ] such that 0 /∈ supp f , i.e., f : Xσ → C

vanishes at the T -fixed point 0. Considering M(Sσ ) the Z-sublattice of rank d in
M generated by Sσ , we have that each element v of Sσ ⊂ M(Sσ ) is identified
with a Z-vector v = (v1, . . . , vd). Then for g = ∑

v∈Sσ
bv · v ∈ C[Sσ ] we can

associate a Laurent polynomial L(g) = ∑
v∈Sσ

bv · xv on T = (C∗)d , where
xv := xv1

1 · xv2
2 . . . xvd

d .

Definition 2.8. We say that f = ∑
v∈Sσ

av · v ∈ C[Sσ ] is non-degenerate if for
any compact face γ of 
+( f ) the complex hypersurface

{
x = (x1, . . . , xd) ∈ (C∗)d

∣∣ L( fγ )(x) = 0
}

in (C∗)d is smooth and reduced, where fγ := ∑
v∈γ∩Sσ

av · v.

We can also study non-degeneracy in case of complete intersections defined
on Xσ . Let f1, f2, . . . , fk ∈ C[Sσ ] (1 ≤ k ≤ d = dim Xσ ) and consider the
following subvarieties of Xσ :

V := { f1 = . . . = fk−1 = fk = 0} ⊂ W := { f1 = . . . = fk−1 = 0} .

Assume that 0 ∈ V . For each face 	 ≺ σ̌ such that 
+( fk) ∩ 	 �= ∅, we set
I (	) = {

j = 1, 2, . . . , k − 1
∣∣ 
+( f j ) ∩ 	 �= ∅} ⊂ {1, 2, . . . , k − 1}

and m(	) = #I (	) + 1.
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Let L(	) and M(Sσ ∩ 	) be as before and L(	)∗ the dual vector space of
L(	). Then M(Sσ ∩ 	)∗ is naturally identified with a subset of L(	)∗ and the
polar cone 	̌ = {

u ∈ L(	)∗
∣∣ 〈u, v〉 ≥ 0 for any v ∈ 	

}
of 	 in L(	)∗ is a

rational polyhedral convex cone with respect to the lattice M(Sσ ∩ 	)∗ in L(	)∗.

Definition 2.9. (i) For a function f = ∑
v∈
+( f )av · v ∈ C[Sσ ] on Xσ and u ∈ 	̌,

we set f |	 = ∑
v∈
+( f )∩	 av · v ∈ C[Sσ ∩ 	] and


( f |	; u) = {
v ∈ 
+( f ) ∩ 	

∣∣ 〈u, v〉 = min 〈u, w〉 , for w ∈ 
+( f ) ∩ 	
}
.

We call 
( f |	; u) the supporting face of u in 
+( f ) ∩ 	.
(ii) For j ∈ I (	) ∪ {k} and u ∈ 	̌, we define the u-part f uj ∈ C[Sσ ∩ 	] of f j

by

f uj =
∑

v∈
( f j |	;u)

av · v ∈ C[Sσ ∩ 	],

where f j =
∑

v∈
+( f j )

av · v ∈ C[Sσ ].

By taking a Z-basis of M(Sσ ) and identifying the u-parts f uj with Laurent

polynomials L( f uj ) on T = (C∗)d as before, we have that the following definition
does not depend on the choice of the Z-basis of M(Sσ ).

Definition 2.10. We say that ( f1, . . . , fk) is non-degenerate if for any face 	 ≺ σ̌

such that 
+( fk) ∩ 	 �= ∅ (including the case where 	 = σ̌ ) and any u ∈
Int(	̌) ∩ M(Sσ ∩ 	)∗ the following two subvarieties of (C∗)d are non-degenerate
complete intersections

{
x ∈ (C∗)d

∣∣ L( f uj )(x) = 0, ∀ j ∈ I (	)
};

{
x ∈ (C∗)d

∣∣ L( f uj )(x) = 0,∀ j ∈ I (	) ∪ {k}},
i.e., if they are reduced smooth complete intersections varieties in the torus (C∗)d .

This last definition is presented in [27] and it is a generalization of the one in [34].
For these non-degenerate singularities, it is possible to describe their geomet-

rical and topological properties using the combinatorics of the Newton polygon.
This is done in [27] using mixed volume as follows. For each face 	 ≺ σ̌ of σ̌

such that 
+( fk) ∩ 	 �= ∅, we set
f	 =

( ∏

j∈I (	)

f j
)

· fk ∈ C[Sσ ]

and consider its Newton polygon 
+( f	) =
{∑

j∈I (	) 
+( f j )
}

+ 
+( fk) ⊂ σ̌ .

Let γ 	
1 , . . . , γ 	

ν(	) be the compact faces of 
+( f	) ∩ 	( �= ∅) such that dim γ 	
i =

dim	 − 1. Then for each 1 ≤ i ≤ ν(	) there exists a unique primitive vector
u	
i ∈ Int(	̌) ∩ M(Sσ ∩ 	)∗ which takes its minimal value in 
+( f	) ∩ 	 exactly

on γ 	
i .
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For j ∈ I (	) ∪ {k}, set γ ( f j )	i := 
( f j |	; u	
i ) and d	

i := minw∈
+( fk)∩	〈
u	
i , w

〉
. Note that we have

γ 	
i =

∑

j∈I (	)∪{k}
γ ( f j )

	
i

for any face 	 ≺ σ̌ such that 
+( fk) ∩ 	 �= ∅ and 1 ≤ i ≤ ν(	). For each face
	 ≺ σ̌ such that 
+( fk) ∩ 	 �= ∅, dim	 ≥ m(	) and 1 ≤ i ≤ ν(	), we set
I (	) ∪ {k} = {

j1, j2, . . . , jm(	)−1, k = jm(	)

}
and

K	
i :=

∑

α1+...+αm(	)=dim	−1
αq≥1 for q≤m(	)−1

αm(	)≥0

VolZ(γ ( f j1)
	
i , . . . , γ ( f j1)

	
i︸ ︷︷ ︸

α1−times

, . . . , γ ( f jm(	)
)	i , . . . , γ ( f jm(	)

)	i︸ ︷︷ ︸
αm(	)−times

).

Here

VolZ(γ ( f j1)
	
i , . . . , γ ( f j1)

	
i︸ ︷︷ ︸

α1−times

, . . . , γ ( f jm(	)
)	i , . . . , γ ( f jm(	)

)	i︸ ︷︷ ︸
αm(	)−times

)

is the normalized (dim	−1)-dimensional mixed volumewith respect to the lattice
M(Sσ ∩ 	) ∩ L(γ 	

i ) (see Definition 2.6, pg 205 from [16]). For 	 such that
dim	 − 1 = 0, we set

K	
i = VolZ(γ ( fk)

	
i , . . . , γ ( fk)

	
i︸ ︷︷ ︸

0−times

) := 1

(in this case γ ( fk)	i is a point).

3. The Brasselet number and torus actions

We present formulas for the computation of the Brasselet number of a function
defined on a non-degenerate complete intersection contained in a toric variety
using Newton polygons. As applications we establish several results concerning
its invariance for families of non-degenerate complete intersections.

Let Xσ ⊂ C
n be a d-dimensional toric variety and ( f1, . . . , fk) : (Xσ , 0) →

(Ck, 0) a non-degenerate complete intersection, with 1 ≤ k ≤ d. From now on we
will denote by g the complete intersection ( f1, . . . , fk−1) and by f the function
fk . Let T be the decomposition of Xσ = ⊔

	≺σ̌ T	 into T -orbits, and Tg the
decomposition of Xg

σ = ⊔
	≺σ̌ T	 ∩ Xg

σ . Since g is a non-degenerate complete
intersection, Tg is a decomposition of Xg

σ into smooth subvarieties [27, Lemma
4.1]. We are interested in the situation where Tg is a Whitney stratification.

Example 3.1. Let Sσ = Z
3+ and let Xσ = C

3 be the smooth 3-dimensional toric
variety. Consider (g, f ) : (Xσ , 0) → (C2, 0) a non-degenerate complete intersec-
tion, where

g(z1, z2, z3) = z22 − z31 − z21z
2
3.
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Fig. 1. Real illustration to Xg
σ

The decomposition V = {V0 = {0}, V1 = {axis − z3} \ {0}, V2 = (Xg
σ )reg}

is a Whitney stratification of the non-degenerate complete intersection Xg
σ , where

(Xg
σ )reg is the regular part of X

g
σ (see Fig. 1). For a subset I ⊂ {1, 2, 3} we denote

the face
∑

i∈I R+ei ∗ of σ̌ = (R3+)∗ by 	I and by 	0 the face {0}, where ei ∗
denotes the elements of the canonical basis of (R3)∗. The Whitney stratification
T of Xσ is given by the following T -orbits: T	0 = {0}, T	1 = C

∗ × {0} × {0},
T	2 = {0} × C

∗ × {0}, T	3 = {0} × {0} × C
∗, T	12 = C

∗ × C
∗ × {0}, T	13 =

C
∗ × {0} × C

∗, T	23 = {0} × C
∗ × C

∗, T	123 = C
∗ × C

∗ × C
∗. Now, observe that

T	3 ∩ Xg
σ = T	3 = V1, then the stratification

Tg = {
T	I ∩ Xg

σ , 	0
}
	I≺σ̌

is a Whitney stratification of Xg
σ .

In Sect. 5wewill provide others exampleswhere the stratification Tg isWhitney
(see [33, Section 9] for more examples). We observe that in general Tg is not a
Whitney stratification (see [33, Example 9.5]).

Theorem 3.2. Let Xσ ⊂ C
n be a d-dimensional toric variety and (g, f ) :

(Xσ , 0) → (Ck, 0) a non-degenerate complete intersection. If Tg is a Whitney
stratification, then

B f,Xg
σ
(0) =

∑


+( f )∩	�=∅
dim	 ≥ m(	)

(−1)dim	 − m(	)

⎛

⎝
ν(	)∑

i=1

d	
i · K	

i

⎞

⎠ · EuXg
σ
(T	 ∩ Xg

σ ).

Proof. Let (Xg
σ ) f := Xg

σ ∩X f
σ be the zero set of f in Xg

σ . By [17, Section 1.7], there
exists a refinement of Tg , denoted by T(g, f ) = {Wi }, such that T(g, f ) is adapted to
(Xg

σ ) f and it is a Whitney stratification. Moreover, this stratification satisfies the
(a f )-Thom condition (see [3,36]), and then it is a good stratification of Xg

σ related
to f . By definition, the Brasselet number reads

B f,Xg
σ
(0) =

∑

i

χ
(
Wi ∩ Bε(0) ∩ f −1(δ)

) · EuXg
σ
(Wi ),

where 0 < |δ| � ε � 1.
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As T(g, f ) is a refinement of Tg , each T	 ∩ Xg
σ is a disjoint union of Wi , i.e.,

T	 ∩ Xg
σ =

⊔

Wi∩T	∩Xg
σ �=∅

Wi ,

and since Tg is a Whitney stratification,

EuXg
σ
(T	 ∩ Xg

σ ) = EuXg
σ
(Wi ),

for any Wi that meets T	 ∩ Xg
σ . Then

B f,Xg
σ
(0) =

∑

	

χ
(
T	 ∩ Xg

σ ∩ Bε ∩ f −1(δ)
) · EuXg

σ
(T	 ∩ Xg

σ ). (3.1)

Note that f : Xσ → C has an isolated stratified critical value at 0 ∈ C by [24,
Proposition 1.3]. Thus the integers χ(T	 ∩ Xg

σ ∩ Bε ∩ f −1(δ)
)
can be calculated

by the nearby cycle functor ψ f [26, Eq. (4.2)], i.e.,

χ
(
T	 ∩ Xg

σ ∩ Bε ∩ f −1(δ)
) = χ(ψ f (CT	∩Xg

σ
)0), (3.2)

since Xg
σ ∩Bε ∩ f −1(δ) = ⊔

	≺σ̌ T	∩Bε ∩Xg
σ ∩ f −1(δ) is aWhitney stratification

of the Milnor fiber Xg
σ ∩ Bε ∩ f −1(δ). By the proof of Theorem 3.12 in [27] and

by equations (52), (77), (78), we have that

χ(ψ f (CT	∩Xg
σ
)0) = (−1)dim	 − m(	)

⎛

⎝
ν(	)∑

i=1

d	
i · K	

i

⎞

⎠ . (3.3)

To complete the proof, we observe that f ≡ 0 on T	 for any face 	 such that

+( f ) ∩ 	 = ∅, then we can neglect those faces. ��

If f : Xg
σ → C has a stratified isolated critical point, then Eq. (2.1) holds.

Altogether, we have:

Corollary 3.3. Let Xσ ⊂ C
n be a d-dimensional toric variety and (g, f ) :

(Xσ , 0) → (Ck, 0) a non-degenerate complete intersection. If Tg is a Whitney
stratification and f : Xg

σ → C has an isolated singularity at the origin, then the
difference EuXg

σ
(0) − Eu f,Xg

σ
(0) is equal to

∑


+( f )∩	�=∅
dim	 ≥ m(	)

(−1)dim	 − m(	)

⎛

⎝
ν(	)∑

i=1

d	
i · K	

i

⎞

⎠ · EuXg
σ
(T	 ∩ Xg

σ ).

When k = 1, using an argument similar to the one used in Theorem 3.2, we
obtain B f,Xσ (0). In fact, using again [3,17,36] we can pass to a refinement of T to
obtain a good stratification of Xσ relative to f . Thus we can use the same argument
as in the proof of Theorem 3.2 to obtain

B f,Xσ (0) =
∑

	

χ
(
T	 ∩ Bε(0) ∩ f −1(δ)

) · EuXσ (T	).
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Now for each face 	 ≺ σ̌ such that 
+( f ) ∩ 	 �= ∅, let β	
1 , β	

2 , . . . , β	
μ(	) be the

compact faces of 
+( f )∩	 such that dimβ	
i = dim	−1. Let 
	

i be the convex
hull of β	

i �{0} inL(	) and consider the normalized (dim	)-dimensional volume
of 
	

i , VolZ(
	
i ) ∈ Z, with respect to the lattice M(Sσ ∩ 	). Here M(Sσ ∩ 	)

denotes the sublattice of M(Sσ ) generated by Sσ ∩ 	. Then we have the following
result.

Proposition 3.4. Assume that f = ∑
v∈Sσ

av ·v ∈ C[Sσ ] is non-degenerate. Then

B f,Xσ (0) =
∑


+( f )∩	�=∅
(−1)dim	−1(

μ(	)∑

i=1

VolZ(
	
i )
) · EuXσ (T	).

Proof. For each (dim	 − 1)-compact face β	
i of 
+( f ) ∩ 	 �= ∅, with 1 ≤ i ≤

μ(	) we have

K	
i := VolZ( β	

i , . . . , β	
i︸ ︷︷ ︸

(dim	−1)−times

),

and from [16, Proposition 2.7] we now that

VolZ( β	
i , . . . , β	

i︸ ︷︷ ︸
(dim	 − 1)−times

) = VolZ(β	
i ).

Therefore, the result follows from the fact that

VolZ(
	
i ) = d	

i · K	
i , (3.4)

for 1 ≤ i ≤ μ(	). ��
Wewill apply Theorem 3.2 in order to show that the Brasselet number is invari-

ant for some families of complete intersections. We need some new concepts and
notations.

Definition 3.5. A deformation of a map germ f : (X, 0) → (Ck, 0) is another map
germ F : (C × X) → (Ck, 0) such that F(0, x) = f (x), for all x ∈ X .

We assume that F is origin preserving, that is, F(t, 0) = 0 for all t ∈ C,
so we have a 1-parameter family of map germs ft : (X, 0) → (Ck, 0) given by
ft (x) = F(t, x). Moreover, associated to the family ft : (X, 0) → (Ck, 0) we
have the family X ft = X ∩ f −1

t (0) of subvarieties of X . In the particular case of a
polynomial function f : (X, 0) → (C, 0), any polynomial deformation ft can be
written as:

ft (x) = f (x) +
r∑

i=1

θi (t) · hi (x) (3.5)

for some polynomials hi : (X, 0) → (C, 0) and θi : (C, 0) → (C, 0), where
θi (0) = 0, for all i = 1, . . . , r .
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Suppose that f : Xσ → C is a polynomial function defined on a toric variety
Xσ . Consider a family as in Eq. (3.5) with 
+(hi ) ⊂ 
+( f ), for all i = 1, . . . , r .
Let γ 	

i1
, γ 	

i2
, . . . , γ 	

iν(	)
and β	

1 , β	
2 , . . . , β	

μ(	) be the compact faces of
+(hi )∩	

and of 
+( f ) ∩ 	, respectively, such that dim γ 	
l = dim β	

j = dim	 − 1. If for

each face 	 ≺ σ̌ , with 
+(hi ) ∩ 	 �= ∅, we have that γ 	
il

∩ β	
j = ∅, for all

l = 1, . . . , iν(	) and j = 1, . . . , μ(	), then


+( ft ) = 
+( f ), for all t ∈ C.

In this case, we fix the notation


+(hi ) � 
+( f ), (3.6)

for all i = 1, . . . , r .
In the sequel, we present some applications of Theorem 3.2.

Corollary 3.6. Let Xσ ⊂ C
n be a d-dimensional toric variety. Suppose that

(g, ft ) : (Xσ , 0) → (Ck, 0) is a non-degenerate complete intersection for each
t ∈ C with

ft (x) = f (x) +
r∑

i=1

θi (t) · hi (x)

being a polynomial function on Xσ with hi satisfying the condition (3.6) for all
i = 1, . . . , r . If Tg is a Whitney stratification and (g, ft ) is a family of non-
degenerate complete intersections, then B ft ,X

g
σ
(0) is constant for the family.

Proof. As we have already noted, for each face 	 ≺ σ̌ such that 
+( f ) ∩ 	 �= ∅,
the Newton polygon 
+( f	) of the function

f	 =
( ∏

j∈I (	)

f j
)

· f ∈ C[Sσ ]

is
{∑

j∈I (	) 
+( f j )
}

+ 
+( f ) ⊂ σ̌ . Therefore, 
+( f	) = 
+(( ft )	), for all

t ∈ C, where

( ft )	 =
( ∏

j∈I (	)

f j
)

· ft ,

since 
+( f ) = 
+( ft ). Then the result follows by Theorem 3.2. ��
Roughly speaking the Brasselet number depends only on the monomials of

smallest degree in each variable.
Given f : (Xσ , 0) → (C, 0) a non-degenerate function, as before, we denote

by T f the decomposition

X f
σ =

⊔

	≺σ̌

T	 ∩ X f
σ
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of X f
σ , and by T f the decomposition

{
T	 ∩ X f

σ , T	 \ X f
σ , {0}

}

	≺σ̌
of Xσ . If

T f is a Whitney stratification of X f
σ , then T f is a Whitney stratification of Xσ

which is adapted to X f
σ . In fact, this follows from the fact that T is a Whitney

stratification of Xσ . Consequently, T f is a good stratification of Xσ relative to f .
Let g and f be non-degenerate polynomial functions on Xσ . In general we

have no way to relate the local Euler obstructions EuXg
σ
(T	 ∩ Xg

σ ) to EuXσ (T	).
However, if we assume the additional hypothesis that g has an isolated critical point
at 0 both in Xσ and in X f

σ (in stratified sense), the following result holds.

Theorem 3.7. Let Xσ ⊂ C
n be a d-dimensional toric variety and (g, f ) :

(Xσ , 0) → (C2, 0) a non-degenerate complete intersection. Suppose that T f is a
good stratification of Xσ relative to f and that g is prepolar with respect to T f ,
then

B f,Xg
σ
(0) =

∑


+( f )∩	�=∅
dim	 ≥ 2

(−1)dim	 − 2

⎛

⎝
ν(	)∑

i=1

d	
i · K	

i

⎞

⎠ · EuXσ (T	).

Proof. Consider Tg = {
T	 ∩ Xg

σ

}
	≺σ̌

the stratification of Xg
σ . Using the same

argument as in the proof of Theorem 3.2 we can pass to a refinement T(g, f ) and we
obtain a good stratification of Xg

σ relative to f . Then

B f,Xg
σ
(0) =

∑


+( f )∩	�=∅
χ
(
W	 ∩ Bε ∩ f −1(δ)

) · EuXg
σ
(W	),

where W	 are the strata of T(g, f ) which are not contained in { f = 0}, and 0 <

|δ| � ε � 1. Moreover, for 	 ≺ σ̌ , we have EuXσ (T	) = EuXg
σ
(W	), since Xg

σ

intersects the strata of T f transversally (see [11, Proposition I V . 4.1.1]). Hence,

B f,Xg
σ
(0) =

∑


+( f )∩	�=∅
χ
(
Xg

σ ∩ T	 ∩ Bε ∩ f −1(δ)
) · EuXσ (T	).

Finally, as 
+(g) ∩ 	 �= ∅ for any face 0 � 	 ≺ σ̌ , then m(	) = 2, for all face
	 ≺ σ̌ such that 
+( f ) ∩ 	 �= ∅. Since g is prepolar,

Xg
σ ∩ Bε ∩ f −1(δ) =

⊔

	≺σ̌

T	 ∩ Bε ∩ Xg
σ ∩ f −1(δ)

is a Whitney stratification of the Milnor fiber Xg
σ ∩ Bε ∩ f −1(δ). Therefore, we

obtain the result by Eqs. (3.2) and (3.3). ��
Therefore, ifT f is a good stratification of Xσ relative to f and g is prepolarwith

respect to T f , we can obtain a more general version of Corollary 3.6, since we can
relate the local Euler obstructions EuXg

σ
(T	 ∩ Xg

σ ) to the Euler local obstructions
EuXσ (T	).
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Corollary 3.8. Let Xσ ⊂ C
n be a d-dimensional toric variety and (g, f ) :

(Xσ , 0) → (C2, 0) a non-degenerate complete intersection. Suppose that

(
gs(x), ft (x)

)
=
(
g(x) +

m∑

i=1

ξi (s) · li (x), f (x) +
r∑

j=1

θ j (t) · h j (x)
)

is a family of non-degenerate complete intersections with li and h j satisfying the
condition (3.6) for all i = 1, . . . ,m and j = 1, . . . , r . If T ft is a good stratification
of Xσ relative to ft and gs is prepolar with respect to T ft at the origin, for all
s, t ∈ C, then, B ft ,X

gs
σ

(0) is constant for all t, s ∈ C.

Proof. Since 
+(li ) ⊂ 
+(g) and 
+(h j ) ⊂ 
+( f ), for each face 	 ≺ σ̌ such
that 
+( f ) ∩ 	 �= ∅, the Newton polygon 
+( f	) of the function

f	 =
( ∏


+( f )∩	�=∅
g
)

· f ∈ C[Sσ ]

is equal to 
+(( ft )s	), where

( ft )
s
	 =

( ∏


+( ft )∩	�=∅
gs
)

· ft ∈ C[Sσ ].

Then by Eqs. (3.2) and (3.3), we can conclude that the Euler characteristic

χ
(
Xgs

σ ∩ T	 ∩ Bε ∩ f −1
t (δ)

)

is constant for all s, t ∈ C. Moreover, as gs is prepolar with respect to T ft , then
we can proceed exactly in the same way as in Theorem 3.7 to obtain

EuXσ (T	) = EuXgs
σ

(T	 ∩ Xgs
σ ),

and this concludes the proof. ��
As a consequence of Proposition 3.4 and Theorem 3.7, we have that if T f is a

good stratification of Xσ relative to f and if g : Xσ → C is prepolar with respect
to T f , we can express the number of stratified Morse critical points on the stratum
of maximal dimension appearing in a morsefication of g : Xσ ∩ f −1(δ)∩ Bε → C

in terms of volumes of convex polytopes. More precisely, by Theorem 2.5, we have

(−1)d−1nd =
∑


+( f )∩	�=∅
(−1)dim	−1(

μ(	)∑

i=1

VolZ(
	
i )
) · EuXσ (T	)

−
∑


+( f )∩	�=∅
dim	≥2

(−1)dim	−2(
ν(	)∑

i=1

d	
i · K	

i

) · EuXσ (T	)

where nd is the number of stratified Morse critical points on the top stratum T	d ∩
f −1(δ)∩Bε appearing in amorsefication of g : Xσ ∩ f −1(δ)∩Bε → C. Therefore,
if ft (x) = f (x) +∑r

j=1 θ j (t) · h j (x) is a family of non-degenerate polynomial
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functions on Xσ and if (gs, ft ) : (Xσ , 0) → (C2, 0) is a family of non-degenerate
complete intersections which satisfy the same hypotheses as Corollary 3.8, then

(−1)d−1nd = B ft ,Xσ (0) − B ft ,X
gs
σ

(0)

is constant for all s, t ∈ C. More precisely, we can state the following result.

Corollary 3.9. Let Xσ ⊂ C
n be a d-dimensional toric variety and (g, f ) :

(Xσ , 0) → (C2, 0) a non-degenerate complete intersection. Suppose that

(
gs(x), ft (x)

)
=
(
g(x) +

m∑

i=1

ξi (s) · li (x), f (x) +
r∑

j=1

θ j (t) · h j (x)
)

is a family of non-degenerate complete intersections with li and h j satisfying the
condition (3.6) for all i = 1, . . . ,m and j = 1, . . . , r . If T ft is a good stratification
of Xσ relative to ft and gs is prepolar with respect to T ft at the origin, for all
s, t ∈ C, then (−1)d−1nd is constant for all s, t ∈ C.

We will present some applications of the results presented before in the next
section and some examples in Sect. 5.

4. The local Euler obstruction and Bruce–Roberts’ Milnor number

In this section, we derive sufficient conditions to obtain the invariance of the local
Euler obstruction for families of complete intersections which are contained in
Xσ ⊂ C

n . As an application, we study the invariance of the Bruce–Roberts’ Milnor
number for families of functions defined on hypersurfaces.

4.1. Local Euler obstruction of non-degenerate complete intersections

As observed in [5, Remark 2.5] the local Euler obstruction is not a topological
invariant. However, for non-degenerate complete intersections we have the follow-
ing result.

Theorem 4.1. Let Xσ ⊂ C
n be a d-dimensional toric variety and k a positive

integer in {2, . . . , d}. Consider g = ( f1, . . . , fk−1) : (Xσ , 0) → (Ck−1, 0) a non-
degenerate complete intersection, such that Tg is a Whitney stratification. Suppose
that

gs(x) =
(
f1(x) +

m1∑

i1=1

θi1(s) · hi1(x), . . . , fk−1(x) +
mk−1∑

ik−1=1

θik−1(s) · hik−1(x)
)

is a family of non-degenerate complete intersections, such that Tgs is a Whitney
stratification and hip satisfies the condition (3.6) for all p ∈ {1, . . . , k − 1} and
i p ∈ {1, . . . ,mp

}
. If there exists L : C

n → C a linear form which is generic with
respect to Xgs

σ for all s ∈ C and such that (gs, L) is a non-degenerate complete
intersection, then EuXgs

σ
(0) is invariant for the family {gs}s∈C.
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Proof. As L : C
n → C is a linear form which is generic with respect to Xgs

σ , for
all s ∈ C,

EuXgs
σ

(0) = BL ,Xgs
σ

(0).

Moreover, T	 ∩ Xgs
σ ∩ Bε ∩ L−1(δ) induces a Whitney stratification on the Milnor

fiber Xgs
σ ∩ Bε ∩ L−1(δ). Therefore, the result follows from Theorem 3.2, and from

the fact that for all face	 �= {0} of σ̌ , the Newton polygon 
+(L	) of the function

L	 =
( ∏

j∈I (	)

f j
)

· L ∈ C[Sσ ]

is equal to 
+(Ls
	). Here,

Ls
	 =

( ∏

p∈I (	)

f p +
mp∑

i p=1

θi p · hip
)

· L ∈ C[Sσ ].

��
Corollary 4.2. Let Sσ = Z

n+ and let Xσ = C
n be the smooth n-dimensional toric

variety. Consider g = ( f1, . . . , fk−1) : C
n → C

k−1 a non-degenerate complete
intersection with an isolated singularity at 0, where 2 ≤ k ≤ n. Suppose that

gs(x) =
(
f1(x) +

m1∑

i1=1

θi1(s) · hi1(x), . . . , fk−1(x) +
mk−1∑

ik−1=1

θik−1(s) · hik−1(x)
)

is a family of non-degenerate complete intersections with an isolated singularity
at 0, where hi p satisfies the condition (3.6) for all p ∈ {1, . . . , k − 1} and i p ∈{
1, . . . ,mp

}
. If there exists L : C

n → C a linear form which is generic with
respect to Xgs

σ , for all s ∈ C and such that (gs, L) is a non-degenerate complete
intersection, then EuXgs

σ
(0) is invariant for the family {gs}s∈C.

Proof. As gs is a family of complete intersections with an isolated singularity at 0,
the decomposition Tgs of X

gs
σ = ⊔

	≺σ̌ T	 ∩ Xgs
σ is a Whitney stratification, once

T is a Whitney stratification of Xσ . Therefore, the result follows from Theorem
4.1. ��

With the same assumptions as in Theorem 4.1, suppose that ft (x) = fk(x) +∑mk
ik=1 θik (t) · hik (x) is a family of polynomial functions such that (gs, ft ) is a

family of non-degenerate complete intersections where hik satisfies the condition
(3.6), i.e.,


+(hik ) � 
+( fk), for all ik = 1, . . . ,mk .

Moreover, assume that ft : Xgs
σ → C has a stratified isolated critical point at 0.

For each face 	 ≺ σ̌ satisfying 
+( fk) ∩ 	 �= ∅, the Newton polygon 
+( f	) of
the function

f	 = ( ∏

j∈I (	)

f j
) · fk ∈ C[Sσ ]
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is equals to 
+(( ft )s	), where

( ft )
s
	 =

( ∏

p∈I (	)

f p +
mp∑

i p=1

θi p · hip
)

·
(
ft = fk +

mk∑

ik=1

θik · hik
)

∈ C[Sσ ].

By Theorem 3.2 we conclude that the Euler characteristic of the Milnor fiber of
ft : Xgs

σ → C is invariant for all s, t ∈ C. Therefore, Eu ft ,X
gs
σ

(0) is invariant for
the family.

4.2. Bruce–Roberts’ Milnor number

In [6], Bruce and Roberts introduced a Milnor number for functions germs on
singular varieties.

Let X be a sufficiently small representative of the germ (X, 0) and let I (X)

denote the ideal in On,0 consisting of the germs of functions vanishing on X . We
say that two germs f and g in On,0 are RX - equivalent if there exists a germ of
diffeomorphism φ : (Cn, 0) → (Cn, 0) such that φ(X) = X and f ◦ φ = g. Let
θn denote the On,0- module of germs of vector fields on (Cn, 0). Each vector field
ξ ∈ θn can be seen as a derivation ξ : On,0 → On,0. We denote by θX those vector
fields that are tangent to X , i.e.,

θX := {
ξ ∈ θn

∣∣ dg(ξ) = ξg ∈ I (X),∀g ∈ I (X)
}
.

Definition 4.3. Let f be a function inOn,0 and letd f (θX )be the ideal {ξ f : ξ ∈ θX }
in On,0. The number

μBR(X, f ) = dimC

On,0

d f (θX )

is called the Bruce–Roberts number of f with respect to X .

We refer to [6] for more details about μBR(X, f ). In particular, μBR(X, f ) is
finite if and only if f isRX -finitely determined.

An interesting open problem is to knowwhether the Bruce–Roberts number is a
topological invariant or not. In [18,19, Corollary 5.19]Grulha gave a partial answer.
The author proved that, if (X, 0) is a hypersurface whose logarithmic characteristic
variety LC(X) [6, Definition 1.13], is Cohen-Macaulay and if ft is aC0- RX -trivial
deformation of f , then μBR( ft , X) is constant.

For any hypersurface X the problem of LC(X) being Cohen-Macaulay remains
open.When X is aweightedhomogeneous hypersurfacewith an isolated singularity,
LC(X) is Cohen-Macaulay by [31, Theorem 4.2].

Let us recall thatμ( f ) denotes the Milnor number [28] of a germ of an analytic
function f : (Cn, 0) → (C, 0) with an isolated critical point at the origin and it is
defined as

μ( f ) = dimC

On,0

J ( f )
,
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where On,0 is the ring of germs of analytic functions at the origin, and J ( f ) is the
Jacobian ideal of f .

Using [31, Theorem 4.2], and assuming that there exists L satisfying the
hypotheses of Corollary 4.2 we prove the following result.

Proposition 4.4. Let Sσ = Z
n+ and let Xσ = C

n be the smooth n-dimensional
toric variety. Consider (g, f ) : (Xσ , 0) → (C2, 0) a non-degenerate complete
intersection, and

(
gs(x), ft (x)

)
=
(
g(x) +

m∑

i=1

ξi (s) · li (x), f (x) +
r∑

j=1

θ j (t) · h j (x)
)

a family of non-degenerate complete intersections with h j and li satisfying the
condition (3.6). Suppose that, for all s, t ∈ C, Xgs

σ ⊂ C
n is aweighted homogeneous

hypersurface with an isolated singularity at the origin. If ft : C
n → C is a

polynomial function with an isolated singularity at the origin such that ft : Xgs
σ →

C has also a stratified isolated singularity at the origin, then μBR( ft , X
gs
σ ) is

constant to all s, t ∈ C.

Proof. From [35, Corollary 2.38] we have

μBR( ft , X
gs
σ ) = μ( ft ) + EuXgs

σ
(0) + (−1)n−1(Eu ft ,Xσ

gs (0) + 1).

By the hypothesis Xσ = C
n , then L(gμ)(x) = gμ(x), for allμ ∈ Int(	̌)∩M(Sσ ∩

	)∗. From Definitions 2.8 and 2.10, we can conclude that ft : C
n → C is a family

of non-degenerate polynomial functions. Furthermore,


+( f ) = 
+( ft ), for all t ∈ C,

since h j satisfies the condition (3.6). Then, by [27, Corollary 3.5]

χ( f −1(δ) ∩ Bε) = χ( f −1
t (δ) ∩ Bε), for all t ∈ C,

where 0 < |δ| � ε � 1. Consequently, μ( ft ) is constant, once χ( f −1(δ)∩ Bε) =
1+ (−1)n−1μ( f ). Therefore the result follows from Corollary 4.2 and the remark
that follows Corollary 4.2. ��

We observe that this result is a kind of generalization of [30, Theorem 3.6].

5. Toric surfaces

Let f be a polynomial function defined on a 2-dimensional toric variety Xσ ⊂ C
n .

In this section, we present a characterization of the polynomial functions g : Xσ →
C which are prepolar with respect to T f at the origin. Using this characterization
and the results of the last sections we present some examples of computation of the
Brasselet number B f,Xσ (0), for a class of toric surfaces Xσ that are also determi-
nantal.

Let us remember that a strongly convex cone in R
2 has the following normal

form.
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Proposition 5.1. ([14]) Let σ ⊂ R
2 be a strongly convex cone, then σ is isomorphic

to the cone generated by the vectors v1 = pe1−qe2 and v2 = e2, for some integers
p, q ∈ Z>0 such that 0 < q < p and p, q are coprime.

Given a cone σ ⊂ R
2, Riemenschneider [37,38] proved that the binomials

which generate the ideal Iσ are given by the quasiminors of a quasimatrix, where
Xσ = V (Iσ ). In the following we recall the definition of quasimatrix.

Definition 5.2. Given Ai , Bi ,Cl,l+1 ∈ C with i = 1, . . . , n and l = 1, . . . , n − 1,
a quasimatrix with entries Ai , Bi ,Cl,l+1 is written as

A =
⎛

⎝
A1 A2 · · · An−1 An

B1 B2 · · · Bn−1 Bn

C1,2 · · · Cn−1,n

⎞

⎠ .

The quasiminors of the quasimatrix A are defined by

Ai · Bj − Bi · (Ci,i+1 · Ci+1,i2 · · ·C j−1, j ) · A j

for 1 ≤ i < j ≤ n.

Given σ ⊂ R
2 generated by v1 = pe1 − qe2 and v2 = e2, with p and q as

above, let us consider the Hirzebruch–Jung continued fraction

p

p − q
= a2 − 1

a3 − 1
...− 1

an−1

= [[a2, a3, . . . , an−1]]

where the integers a2, . . . , an−1 satisfies ai ≥ 2, for i = 2, . . . , n − 1. By [38] we
have:

Proposition 5.3. The ideal Iσ is generated by the quasiminors of the quasimatrix
⎛

⎝
z1 z2 z3 · · · zn−2 zn−1
z2 z3 z4 · · · zn−1 zn

za2−2
2 za3−2

3 · · · zan−1−2
n−1

⎞

⎠ ,

where the ai are given by theHirzebruch–Jung continued fraction of
p

p−q .Moreover,
this set of generators is minimal.

Then, if ai = 2 for i = 3, . . . , n−2, we have that Xσ is a determinantal surface
[15,29,39], in particular if the minimal dimension of embedding of Xσ is 4, i.e., if

p

p − q
= a2 − 1

a3

then Xσ is always determinantal and the ideal Iσ is generated by the 2 × 2 minors
of the matrix

(
z1 z2 za3−1

3
za2−1
2 z3 z4

)
.



Brasselet number and Newton polygons 261

We will consider σ as in Proposition 5.1. Taking a2, . . . , an−1 the integers
coming from the Hirzebruch–Jung continued fraction of p

p−q , we will denote by

μ1 = (μ1
1, μ

2
1) = (1, 0), μ2 = (μ1

2, μ
2
2) = (1, 1), μ

j
i+1 = ai · μ

j
i − μ

j
i−1,

the minimal set of generators of Sσ , with i = 2, . . . , n − 1; j = 1, 2. We note
that it is possible to show that μn = (μ1

n, μ
2
n) = (q, p) (see [37,38]). Thus ϕ :

(C∗)2 × Xσ → Xσ given by

ϕ((t1, t2), (z1, . . . , zn)) = (t1 · z1, t1 · t2 · z2, tμ
1
3

1 · tμ2
3

2 · z3, . . . , tq1 · t p2 · zn)
is an action of (C∗)2 in Xσ . Each orbit of ϕ is an embedding of a d-dimensional
torus, 0 ≤ d ≤ 2, in Xσ . The action ϕ has 4 orbits, that are

T	0 = {(0, . . . , 0)}
T	1 = {

(t1, 0, . . . , 0)
∣∣ t1 ∈ C

∗} ∼= C
∗

T	2 = {
(0, . . . , 0, tq1 · t p2 )

∣∣ t1, t2 ∈ C
∗} ∼= C

∗

T	3 = {
(t1, t1 · t2, tμ

1
3

1 · tμ2
3

2 , . . . , tq1 · t p2 )
∣∣ t1, t2 ∈ C

∗} ∼= (C∗)2
.

Moreover, as in Sect. 3,

Xσ =
⊔

	i≺σ̌

T	i ,

with i = 0, 1, 2, 3, is a decomposition of Xσ in strata satisfying the Whitney
conditions.

The toric surfaces obtained in Proposition 5.3 are normal toric surfaces, then
they are smooth or they have isolated singularity at the origin. Therefore, if f =∑

v∈Sσ
av · v ∈ C[Sσ ] is a non-degenerate polynomial function on Xσ , then

T f = {
T	i ∩ X f

σ

∣∣ i = 0, 1, 2, 3
}
,

is a Whitney stratification of X f
σ , since T	1 and T	2 are smooth subvarieties of

T	3 = Xσ which satisfy T	1 ∩ T	2 = {(0, . . . , 0)}. As a consequence,
T f = {

T	i \ X f
σ , T	i ∩ X f

σ , {0} ∣∣ i = 0, 1, 2, 3
}
,

is a good stratification of Xσ relative to f .
Next, we characterize the polynomial functions which have a stratified isolated

singularity at the origin.

Lemma 5.4. Let σ ⊂ R
2 be a strongly convex cone andT theWhitney stratification

of Xσ ⊂ C
n whose strata are T	0 , T	1 , T	2 and T	3 . Then, a non-degenerate

polynomial function g : (Xσ , 0) → (C, 0) has an isolated singularity at the origin
(in the stratified sense) if, and only if,

g(z1, . . . , zn) = c1z
p1
1 + h(z1, . . . , zn) + cnz

pn
n ,

where h is a polynomial function on Xσ , c1, cn ∈ C
∗ and p1, pn ∈ Z

∗+.
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Proof. Let us write g as follows

g(z1, . . . , zn) =
m∑

l=1

cl z
pl1
1 z

pl2
2 . . . z

pln
n ,

where l = 1, . . . ,m, pli ∈ Z
∗+ and cl ∈ C.

Suppose that g has a stratified isolated singularity at the origin 0 ∈ C
n , with

respect to the stratification T , then there must be l1, ln ∈ {1, . . . ,m} such that

cl1 ∈ C
∗, pl11 �= 0 and pl1i = 0, for i ∈ {2, . . . , n}

cln ∈ C
∗, plnn �= 0 and plni = 0, for i ∈ {1, . . . , n − 1} ,

otherwise T	1 , T	2 ⊂ �T g, since

T	1 = {
(t1, 0, . . . , 0)

∣∣ t1 ∈ C
∗}, and T	2 = {

(0, . . . , 0, tq1 · t p2 )
∣∣ t1, t2 ∈ C

∗}.

In other words, g must contain monomials of the form c1z
p1
1 and cnz

pn
n .

Now, suppose that g has the form mentioned above, then 
+(g) ∩ 	1 �= ∅,

+(g) ∩ 	2 �= ∅ and 
+(g) ∩ 	3 �= ∅. By the proof of [27, Lemma 4.1] we
can conclude that g|T	1

: T	1 → C and g|T	2
: T	2 → C are non-degenerate

polynomial functions. Moreover,

T	1 = {
(t1, 0, . . . , 0)

∣∣ t1 ∈ C
∗} ∼= C

∗,
T	2 = {

(0, . . . , 0, tq1 · t p2 )
∣∣ t1, t2 ∈ C

∗} ∼= C
∗,

T	3 = {
(t1, t1 · t2, tμ

1
3

1 · tμ2
3

2 , . . . , tq1 · t p2 )
∣∣ t1, t2 ∈ C

∗} ∼= (C∗)2.

Then by [34, Lemma 78] there exists an ε > 0 such that g|T	1
, g|T	2

and g|T	3
have no singularities in T	1 ∩ Bε, T	2 ∩ Bε and T	3 ∩ Bε, respectively. ��

As a consequence of Lemma 5.4 we obtain information about the singular set of
g just by looking at its Newton polygon 
+(g). More precisely, a non-degenerate
polynomial function g : (Xσ , 0) → (C, 0) has an isolated singularity at the origin
(in the stratified sense) if, and only if, 
+(g) intersects 	1 and 	2, exactly in the
same way as the classic case, i.e., in the case where Xσ = C

2.

Proposition 5.5. Let (g, f ) : (Xσ , 0) → (C2, 0) be a non-degenerate complete
intersection, such that f and g have no irreducible components in common. The
polynomial function g is prepolar with respect to T f if, and only if,

g(z1, . . . , zn) = c1z
p1
1 + h(z1, . . . , zn) + cnz

pn
n ,

where h is a polynomial function on Xσ , c1, cn ∈ C
∗ and p1, pn ∈ Z

∗+.

Proof. Consider the good stratification

T f = {
T	i \ X f

σ , T	i ∩ X f
σ , {0} ∣∣ i = 0, 1, 2, 3

}
,

of Xσ relative to f . The sets T	1 and T	2 are given by

T	1 = {
(t1, 0, . . . , 0)

∣∣ t1 ∈ C
∗} and T	2 = {

(0, . . . , 0, tq1 · t p2 )
∣∣ t1, t2 ∈ C

∗}.
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From the fact that f is a non-degenerate polynomial function, there are only two
possibilities for each stratum T	i ∩X f

σ . Either T	i ∩X f
σ is a finite set or T	i ∩X f

σ =
T	i . Therefore, if g is prepolar with respect to T f , then 
+(g) ∩ 	1 �= ∅ and


+(g)∩	2 �= ∅, otherwise T	i ∩ X f
σ ⊂ �T f g or T	i \ X f

σ ⊂ �T f g, for i = 1, 2.
Now, suppose that g have the form mentioned above, then the result follows

from Lemma 5.4 and from the fact that, as f and g have no irreducible components
in common, i.e., Xg

σ ∩ X f
σ is a finite set. ��

Example 5.6. Let σ ⊂ R
2 be the cone generated by the vectors v1 = e2 and

v2 = ne1 − e2. The toric surface associated to σ is Xσ = V (Iσ ) ⊂ C
n+1, where

Iσ is the ideal generated by the 2 × 2 minors of the matrix
(
z1 z2 z3 . . . zn−1 zn
z2 z3 z4 . . . zn zn+1

)
,

i.e., Xσ is a determinantal surface with codimension n − 1. Consider f : Xσ → C

the function given by f (z1, . . . , zn+1) = zd1 + zdn+1 + tg(z1, . . . , zn+1), where

g(z1, . . . , zn+1) =
m∑

l=1

z
pl1
1 z

pl2
2 . . . z

pln+1
n+1

is a polynomial function on Xσ satisfying pl1 + pl2 + . . . + pln+1 > d for every
l = 1, . . . ,m. If f is a non-degenerate polynomial function then

B f,Xσ (0) = 2d − nd2.

Indeed, consider h : Xσ → C the function given by h(z1, . . . , zn+1) = zd1 + zdn+1.
The Newton polygon 
+(h) has a unique 1-dimensional compact face β1, that is
the straight line segment connecting the points (d, 0) and (d, nd) in σ̌ . Using the
notation of Proposition 3.4, we have that
	1

1 is the straight line segment connecting

the points (0, 0) and (d, 0), 
	2
1 is the straight line segment connecting the points

(0, 0) and (d, nd) and 

	3
1 is the triangle with vertices (0, 0), (d, 0) and (d, nd).

Therefore,

VolZ(

	1
1 ) = VolZ(


	2
1 ) = d and VolZ(


	3
1 ) = nd2.

By Proposition 3.4,

Bh,Xσ (0) = 2d − nd2,

since Xσ has an isolated singularity at the origin, and consequently EuXσ (T	1) =
EuXσ (T	2) = EuXσ (T	3) = 1. Now, Sσ is the semigroup generated by

{(1, 0), (1, 1), (1, 2) . . . , (1, n)} ,

and then 
+(g) ⊂ 
+(h). Moreover, by Lemma 5.4, f has an isolated singularity
at the origin, thus

B f,Xσ (0) = EuXσ (0) − Eu f,Xσ (0).
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However, González-Sprinberg [20] proved that EuXσ (0) = 3 − (n + 1). Hence,

Eu f,Xσ (0) = 3 − (n + 1) − 2d + nd2.

Therefore, a morsefication of f has 3 − (n + 1) − 2d + nd2 Morse points on the
regular part of Xσ .

Example 5.7. Let σ ⊂ R
2 be the cone generated by the vectors v1 = e2 and

v2 = 2e1 − e2. The toric surface associated to σ is Xσ = V (Iσ ) ⊂ C
3, with Iσ

the ideal generated by z1z3 − z22. Consider f : Xσ → C the function given by
f (z1, z2, z3) = z22 − z31, which is a non-degenerate polynomial function, whose
singular set is

� f = {
(0, 0, z3)

∣∣ z3 ∈ C
} ⊂ Xσ .

Moreover,
+( f ) has a unique 1-dimensional compact faceβ1, which is the straight
line segment connecting the points (3, 0) and (2, 2) in σ̌ . Thus, 
	1

1 is the straight

line segment connecting the points (0, 0) and (3, 0),
	3
1 is the trianglewith vertices

(0, 0), (3, 0) and (2, 2), and 

	2
1 = ∅. Therefore, by Proposition 3.4,

B f,Xσ (0) = 3 − 6 = −3

since Xσ has an isolated singularity at the origin, and consequently

EuXσ (T	1) = EuXσ (T	2) = EuXσ (T	3) = 1.

Now let g : Xσ → C be the non-degenerate polynomial function given by

g(z1, z2, z3) = z1 − z23,

which is prepolar with respect to T f . Moreover, (g, f ) is a non-degenerated com-
plete intersection. The Newton polygon 
+(g · f ) has two 1-dimensional compact
faces γ1 and γ2, which are the straight line segment connecting the points (4, 0)
and (3, 2) and the straight line segment connecting the points (3, 2) and (4, 6),
respectively. Thus, the primitive vectors

u	3
1 , u	3

2 ∈ Int(	̌3) ∩ M(Sσ ∩ 	3)
∗

which take their minimal value in
+(g · f )∩	3 exactly on γ1 and γ2, respectively,
are u	3

1 = (2, 1) and u	3
2 = (4,−1). Let us observe that

γ (g)	3
1 := 
(g|	3; u	3

1 ) = {(1, 0)}
γ (g)	3

2 := 
(g|	3; u	3
2 ) = α1

d	3
1 := d	3

2 := 6
K	3
1 = K	3

2 = 1

,

where α1 is the 1-dimensional compact face of 
+(g). Applying Theorem 3.7, we
have B f,Xg

σ
(0) = 12. Therefore, we obtain the following equality

B f,Xσ (0) − B f,Xg
σ
(0) = −3 − 12 = −15,
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which means that the number of stratified Morse critical points on the top stratum
T	3∩ f −1(δ)∩Bε(0) appearing in amorsefication of g : Xσ ∩ f −1(δ)∩Bε(0) → C

is 15. Moreover, if we consider h, l : Xσ → C the polynomial functions given by

h(z1, z2, z3) = −z21z
2
3, l(z1, z2, z3) = z33,

and observe that


+(h) � 
+( f ), 
+(l) � 
+(g),

by Corollary 3.6 we have

B ft ,Xσ (0) = B f,Xσ (0) = −3, B ft ,X
gs
σ

(0) = B f,Xg
σ
(0) = 12,

where ft (x) = f (x)+ t ·h(x) is a deformation of the cusp f0(z1, z2, z3) = z22 − z31
(see Fig. 1) and gs(x) = g(x) + s · l(x). Consequently,

B ft ,Xσ (0) − B ft ,X
gs
σ

(0) = −3 − 12 = −15,

for all t, s ∈ C.

6. Indices of vector fields

A toric surface Xσ , which is a cyclic quotient singularity, always possesses a
smoothing [37, Satz 10]. Therefore, when we consider a radial continuous vector
field v on Xσ with an isolated singularity at 0, we can relate the Euler characteristic
of a fiber of this smoothing with the GSV index of v in Xσ . The definition of this
index for smoothable isolated singularity can be found in [8, Section 3].

In particular, for the case of toric surfaces which are also isolated determinantal
singularities, we have the following result concerning GSV index.

Let Xσ ⊂ C
n be a toric surface that is also an isolated determinantal singularity,

i.e., σ is generated by the vectors v1 = pe1 − qe2 and v2 = e2, where 0 < q < p,
p, q are coprime, and whose Hirzebruch–Jung continued fraction is

p

p − q
= [[a2, 2, 2, . . . , 2, an−1]].

Consider ft (x) = f (x)+∑r
j=1 θ j (t)·h j (x) a family of non-degenerate polynomial

functions on Xσ , which satisfies the conditions


+(h j ) � 
+( f ), for all j = 0, . . . , r.

If this family has an isolated singularity at the origin, then the following result
holds.

Proposition 6.1. Let vt be the vector field given by the gradient of the function ft .
Then, the following statements are equivalent:

(a) Eu ft ,Xσ (0) is constant for the family;
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(b) IndGSV (vt , Xσ , F) is constant for the family, where F is the flat map associated
to the smoothing of Xσ .

Proof. By [29] the determinantal Milnor number of the function f on the Isolated
Determinantal Singularity Xσ is

μ( f |Xσ ) = #�( f̃ |Xσ s ),

where Xσ s is a fiber of a smoothing of Xσ , f̃ |Xσ s is a morsefication of f and
#�( f̃ |Xσ s ) denote the number of Morse points of f̃ on Xσ s . From the definition
of the GSV index in the case of smoothable varieties (see [8]) we have

μ( f |Xσ ) = IndGSV (v, Xσ , F).

Then the proof follows by [1], where it is proved that Eu ft ,Xσ (0) is constant for the
family if and only if μ( ft |Xσ ) is constant for the family. ��

In [10, Definition 2.5], the authors extended the concept of GSV index and
proved a Lê-Greuel formula (see [10, Theorem 3.1]) which holds with the hypothe-
ses of Theorem 2.5. However, in [10] the authors worked with the constructible
function given by the characteristic function, while in [12] is considered the local
Euler obstruction. Hence the GSV index and the Brasselet number are not related
in general.

Assuming that ft is generically a submersion, for non-degenerate complete
intersections, we have the following result.

Proposition 6.2. Let Sσ = Z
n+ and Xσ = C

n be the smooth n-dimensional toric
variety. Let (g, f ) : (Xσ , 0) → (C2, 0) be a non-degenerate complete intersection,
such that Tg is a Whitney stratification of Xg

σ . If

(
gs(x), ft (x)

)
=
(
g(x) +

m∑

i=1

ξi (s) · li (x), f (x) +
r∑

j=1

θ j (t) · h j (x)
)

is a family of non-degenerate complete intersections with h j and li satisfying the
condition (3.6) for all i = 1, . . . ,m and j = 1, . . . , r , such that Tgs is a Whitney
stratification of Xgs

σ and gs is prepolar with respect to T ft at the origin. Then,
IndGSV (gs, 0; ft ) is invariant to the family.

Proof. In [10, Section 5.2], the authors used [12, Theorem 4.2] (considering the
Euler characteristic as constructible function) to provide the following interpreta-
tion to the GSV index,

∑

	≺σ̌

(
χ
(
T	 ∩ Xσ ∩ Bε(0) ∩ f −1(δ)

)− χ
(
T	 ∩ Xg

σ ∩ Bε(0) ∩ f −1(δ)
))

= IndGSV (g, 0; f ),

where IndGSV (g, 0; f ) is the GSV-index of g on X f relative to the function f
(see [10, Definition 2.5]). Moreover, ft is a family of non-degenerate polynomial
functions, since (gs, ft ) is non-degenerate complete intersections, for all s, t ∈ C.
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Then, to compute IndGSV (g, 0; f ) above we apply [27, Corollary 3.5] to the first
term of the equality above and to the second term of the equality above we used
Eqs. (3.2), (3.3). Therefore, the result follows from the fact that h j and li satisfy
the condition (3.6) for all i = 1, . . . ,m and j = 1, . . . , r . ��
Example 6.3. Consider the toric surface Xσ = V (Iσ ) ⊂ C

3, with Iσ the ideal
generated by z1z3 − z22. Let ft and gs be the families of functions of Example 5.7,
then

IndGSV (gs, 0; ft ) = −15

for all t, s ∈ C.
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