
manuscripta math. 159, 379–396 (2019) © Springer-Verlag GmbH Germany, part of Springer Nature 2019

Béchir Amri · Mohamed Gaidi

L p − Lq estimates for the solution of the Dunkl wave
equation

Received: 21 July 2017 / Accepted: 2 February 2019 / Published online: 8 February 2019

Abstract. In this paper, our main aim is to derive L p−Lq estimates of the solution uk(x, t)
(t fixed) of the Cauchy problem for the homogeneous linear wave equation associated to the
Dunkl Laplacian �k ,

�kuk(x, t) = ∂2t uk(x, t), ∂t uk(x, 0) = f (x), uk(x, 0) = g(x).

We extend to the Dunkl setting the estimates given by Strichartz (Trans Am Math Soc
148:461–471, 1970) for the ordinary wave equation.

1. Introduction and background

In his seminal paper [5], Dunkl constructed a family of differential-difference oper-
ators associated to a finite reflection group on a Euclidean space, which are known
as Dunkl operators in the literature. He introduced in [6] an integral transform
associated with the eigenfunctions of the Dunkl operators for a root system which
generalises the classical Fourier transform and is now called the Dunkl transform.
By means of this transform several important results of the classical Fourier analy-
sis have been generalized to Dunkl analysis, giving us new perspectives on familiar
topics from Harmonic Analysis and Partial Differential Equations.

In this paper, we are interested in the L p − Lq estimates of the solutions of
wave equations associated to Dunkl Laplace operator, in particular we generalize
the estimates for ordinarywave equation due to Strichartz [17]. The techniques used
involve interpolation of an appropriate analytic family of operators in a way similar
to that used in the classical case. To illustrate our method and collect the results we
need, we begin by recalling some preliminary definitions and backgroundmaterials
for the Dunkl analysis. References are [4–6,11,12,18].

LetG⊂O(Rn) be a finite reflection group associated to a reduced root system R
and k : R → [0,+∞) be a G–invariant function (called multiplicity function). Let
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R+ be a positive root subsystem. The Dunkl operators Dk
ξ on Rn are the following

k-deformations of directional derivatives ∂ξ by difference operators:

Dk
ξ f (x) = ∂ξ f (x) +

∑

υ∈R+
k(υ) 〈υ, ξ 〉 f (x) − f (συ. x)

〈υ, x〉 , (1.1)

where here συ is the reflection with respect to the hyperplane orthogonal to υ and
〈., .〉 is the usual Euclidean inner product, we denote | . | its induced norm. If (e j ) j
is the canonical basis of Rn we simply write Dk

j instead of Dk
e j . In analogy to the

ordinary Laplacian we define the Dunkl Laplace operator by

�k =
n∑

j=1

(Dk
j )
2.

The Dunkl operators are antisymmetric with respect to the measure wk(x) dx with
density

wk(x) =
∏

υ∈R+
| 〈υ, x〉 | 2 k(υ).

The operators ∂ξ and Dk
ξ are intertwined by a Laplace–type operator

Vk f (x) =
∫

Rn
f (y) dνx (y)

associated to a family of compactly supported probability measures { νx | x ∈R
n }.

Specifically, νx is supported in the convex hull co(G.x).
For every y∈C

n, the simultaneous eigenfunction problem

Dk
ξ f = 〈y, ξ 〉 f, ∀ ξ ∈R

n,

has a unique solution f (x) = Ek(x, y) such that Ek(0, y) = 1, called the Dunkl
kernel and is given by

Ek(x, y) = Vk(e
〈., y 〉)(x) =

∫

Rn
e 〈z,y〉 dνx (z) ∀ x ∈R

n .

When k = 0 the Dunkl kernel Ek(x, y) reduces to the exponential e〈x,y〉.
The Dunkl transform is defined on L1(Rn, wk(x)dx) by

Fk f (ξ) = c−1
k

∫

Rn
f (x) Ek(x,−i ξ)wk(x) dx,

where

ck =
∫

Rn
e− |x |2

2 wk(x) dx .

If k = 0 then Dunkl transform coincides with the usual Fourier transform. In the
sequel, we denote by ‖ . ‖p,k the norm of L p(Rn, wk(x)dx), 1 ≤ p < ∞. Below
we summarize some of the useful properties of the Dunkl transform.
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(i) For f ∈ S(Rn) (the Schwartz space)we haveFk(Dk
ξ f )(x)=i〈ξ, x〉Fk( f )(x).

In particular

Fk(�k f )(x) = −|x |2Fk( f )(x).

(ii) The Dunkl transform is a topological automorphism of the Schwartz space
S(Rn).

(iii) (Plancherel Theorem) The Dunkl transform extends to an isometric automor-
phism of L2(Rn, wk(x)dx).

(iv) (Inversion formula) For every f ∈S(Rn), and more generally for every f ∈
L1(Rn, wk(x)dx) such that Fk f ∈ L1(Rn, wk(x)dx), we have

f (x) = F2
k f (−x) ∀ x ∈R

n .

(v) The Hausdorff-Young inequality: for 1 < p ≤ 2

‖Fk( f )‖p′,k ≤ c‖ f ‖p,k (1.2)

where c is a positive constant and p′ is the conjugate exponent of p. This
follows from the Riesz-Thorin Interpolation Theorem for the special cases
p = 1 and p = 2. We refer to [2], where more details on L p − Lq norm for
the Dunkl transform can be found.

(vi) If f is a radial function in L1(Rn, wk(x)dx) such that f (x) = f̃ (|x |), then
Fk( f ) is also radial and

Fk( f )(x) = 1

|x |γk+n/2−1

∫ ∞

0
f̃ (s)Jγk+n/2−1(s|x |) sγk+n/2ds; x ∈ R

n .

(1.3)
where

γk =
∑

υ∈R+
k(υ) (1.4)

and Jν is the Bessel function,

Jν(z) =
∞∑

n=0

(−1)n(z/2)2n+ν

n!	(n + ν + 1)
.

Let x ∈ R
n , the Dunkl translation operator f → τx ( f ) is defined on

L2
k(R

n, wk(x)dx) by

Fk(τx ( f ))(y) = Fk f (y) Ek(x, iy), y ∈ R
n .

In particular, when f ∈ S(Rn) we have

τx ( f )(y) =
∫

Rn
Fk( f )(ξ)Ek(x, iξ)Ek(y,−iξ)wk(ξ)dξ

and since Dunkl kernel satisfies |Ek(x, iy)| ≤ 1 (see, e.g. [11, Corollary 5.4]), then
we note the following

‖τx ( f )‖∞,k ≤ ‖Fk( f )‖1,k . (1.5)
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In the case when f (x) = f̃ (|x |) is a continuous radial function that belongs to
L2(Rn, wk(x)dx), the Dunkl translation is represented by the following integral,

τx ( f )(y) =
∫

Rn
f̃

(√
|y|2 + |x |2 + 2〈y, η〉

)
dνx (η), (1.6)

This formula has been first obtained by M. Rösler [13] when f is a smooth radial
function and extended to the mentioned case of functions by F. Dai and H. Wang,
[3, Lemma 3.4].

The Dunkl translation operators can be extended to all radial functions f in
L p(Rn, wk(x)dx), 1 ≤ p ≤ ∞ and the following holds

‖τx ( f )‖p,k ≤ ‖ f ‖p,k . (1.7)

It should be mentioned here that (1.7) was justified in [18, Theorem 3.7] for 1 ≤
p ≤ 2 and recently in [7, Theorem 3.7] for p ≥ 2.

We define the Dunkl convolution product for suitable functions f and g by

f ∗k g(x) =
∫

RN
τx ( f )(−y)g(y)wk(y)dy, x ∈ R

n .

We note that it is commutative and satisfies the following property,

Fk( f ∗k g) = Fk( f )Fk(g). (1.8)

Moreover, the operator f → f ∗k g is bounded on L p(Rn, wk(x)dx) provide g
is a bounded radial function in L1(Rn, wk(x)dx). In particular we have the the
following Young’s inequality ( [18, Theorem 4.1]),

‖ f ∗k g‖p,k ≤ ‖g‖1,k‖ f ‖p,k . (1.9)

We now come to the main subject. We consider the following Cauchy problem
for the Dunkl wave equation

�kuk(x, t) = ∂2t uk(x, t), ∂t uk(x, 0) = f (x), uk(x, 0) = g(x); (x, t) ∈ R
n × R

where the functions f and g belong to S(Rn). The solution is given in term of
Dunkl transform by

uk(x, t) = F−1
k

(
sin t |ξ |

|ξ | Fk f (ξ) + cos(t |ξ |)Fk(g)(ξ)

)
(x). (1.10)

The study of the Dunkl wave equation was initiated by Ben Saïd and Ørsted [14,
15] where they computed the solution uk and established validity of Huygens’
Principles. Also in this context Mejjaoli [9,10] studied the mixed-norm Strichartz
type estimates for uk . The main contribution of our work is the following theorem.
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Theorem 1.1. For t �= 0 there exists C(t) > 0 such that

‖u(., t)‖q,k ≤ C(t)

⎛

⎝‖ f ‖p,k +
∥∥∥∥∥∥

n∑

j=1

|Dk
j g|

∥∥∥∥∥∥
p,k

⎞

⎠ , (1.11)

provided that

2
n + 2γk + 1

n + 2γk + 3
≤ p ≤ 2; n + 2γk

q
= 2γk + n − 1

2
− 1

p′ (1.12)

and

2
n + 2γk

n + 2γk + 2
≤ p ≤ 2

n + 2γk + 1

n + 2γk + 3
; 1

q
= n + 2γk − 1

2
− n + 2γk

p′ , (1.13)

where γk is given by (1.4) and p′ is the conjugate exponent of p.
The Proof is based on complex interpolation method much like the proof given in
[17]. For the reader’s convenience we recall the Stein’s Interpolation Theorem [16].

Let (M, μ) and (N , ν) be σ -finite measure spaces and

S = {z ∈ C; a ≤ Re(z) ≤ b}, a < b.

We suppose that we are given a linear operator Tz , for each z ∈ S, on the space
of simple functions in L1(M, μ) into the space of measurable functions on N .
If f is a simple function in L1(M, μ) and g a simple function in L1(N , ν), we
assume furthermore that gTz( f ) ∈ L1(N , ν). The family of operators {Tz} is called
admissible if the mapping

F : z →
∫

N
g Tz( f )dν

is holomorphic in the interior of S and continuous on S, and there exists a constant
c < π(b − a) such that

sup
z∈S

e−c|Im(z)| log |F(z)| < ∞. (1.14)

Theorem 1.2. (Stein [16]) Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and {Tz}, z ∈ S , be an
admissible family of linear operators such that

‖Ta+iy( f )‖q0 ≤ M0(y)‖ f ‖p0 and ‖Tb+iy( f )‖q1 ≤ M1(y)‖ f ‖p1

for each real number y and each simple function f ∈ L1(M, μ). If, in addition, the
constants M j (y), j = 0, 1, satisfy

sup
y∈R

e−c|y| log(Mj (y)) < ∞

for some c < π(b − a), then for all t ∈ [0, 1] there exists a constant Mt such that

‖Tθt ( f )‖qt ≤ Mt‖ f ‖pt

for all simple functions f provided

θt = (1 − t)a + tb,
1

pt
= (1 − t)

p0
+ t

p1
and

1

qt
= (1 − t)

q0
+ t

q1
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2. Interpolation of analytic family of operators

The idea now is to consider the following family of operators f → Sz( f ) given on
L2(Rn, wk(x)dx) by

Sz( f )(x) = F−1
k

(
|ξ |γk+n/2−z Jγk+n/2−z(|ξ |)Fk( f )(ξ)

)
(x)

where z can be taken to be complex. Hence in view of (1.10) and by the fact that

J1/2(t) =
(
2

π

)1/2 sin t√
t

and J−1/2(t) =
(
2

π

)1/2 cos t√
t

one can write

uk(x, t) =
(π

2

)1/2
tδ(t)Sγk+(n+1)/2δ(t

−1) f (x)

+
(π

2

)1/2
δ(t)Sγk+(n−1)/2δ(t

−1)g(x) (2.1)

where δ(t) is the dilation operator δ(t) f (x) = f (t x).
The operator Sz turns out to be the analytic continuation in the parameters z of

the convolution operator

Tz( f ) = �z ∗k f, 0 ≤ Re(z) < 1

where

�z(x) =
{ 2z

	(1−z) (1 − |x |2)−z, if |x | ≤ 1,
0, if |x | > 1.

This is a consequence of the following proposition.

Proposition 2.1. The Dunkl transform of �z, 0 ≤ Re(z) < 1, is given by

Fk(�z)(ξ) = |ξ |z−γk−n/2 Jγk+n/2−z(|ξ |). (2.2)

Proof. Since �z is a radial function that belongs to L1(Rn, wk(x)dx) then from
(1.3) we have

Fk(�z)(ξ) = 2z

	(1 − z)|ξ |γk+n/2−1

∫ 1

0
(1 − s2)−z Jγk+n/2−1(s|ξ |) sγk+n/2ds.

We obtain (2.2) by applying the well known relationship between Bessel functions
(Sonine’s first finite integral)

Jμ+ν+1(t) = tν+1

2ν	(ν + 1)

∫ 1

0
Jμ(st)sμ+1(1 − s2)νds,

for Re(μ) > −1, Re(ν) > −1 and t > 0 ( see for example 12.11 of [19] ). ��
We now apply Stein’s Interpolation Theorem to the family {Sz}. The following

theorem is the main result of this section.
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Theorem 2.2. Suppose that 0 ≤ α ≤ γk + (n + 1)/2. Then with a constant C

‖Sα( f )‖q,k ≤ C ‖ f ‖p,k, for all f ∈ S(Rn)

in each of the following cases :

(a) For 1 < p ≤ 2 ≤ q < ∞ and 1/p − 1/q ≤ (2γk + n + 1 − 2α)/2(n + 2γk).
(b) For p = (n + 1 + 2γk)/(n + 1 + 2γk − α) and q = p′
(c) For 1/2 ≤ α ≤ (n + 1)/2 + γk , in the following cases:

(i) (n + 1 + 2γk)/(n + 1 + 2γk − α) ≤ p ≤ 2 and (n + 2γk)/q = α − 1/p′.
(ii) (n + 2γk)/(n + 2γk − α + 1/2) ≤ p ≤ (n + 1 + 2γk)/(n + 1 + 2γk − α)

and 1/q = α − (n + 2γk)/p′.
Remark 2.3. We see that condition c)-(ii) can be reduced to c)-(i) by duality.

The argument proceeds similarly to the proof of Theorem 1 of [17]. First, we state
the following generalization of the Hardy-Littlewood multiplier theorem

Theorem 2.4. Let 0 < t < 2γk + n and m be a measurable function such that
some constant c > 0

|m(ξ)| ≤ c

|ξ |t . (2.3)

Then the operator Tm = F−1
k (mFk) is bounded from L p(Rn, wk(x)dx) to

Lq(Rn, wk(x)dx), provided

1 < p ≤ 2 ≤ q < ∞ ,
1

p
− 1

q
= t

2γk + n
.

In the case k = 0 this result is contained in Theorem 1.11 of [8]. In the same way
we obtain Theorem 2.4 directly from the following lemmas.

Lemma 2.5. Let ϕ ≥ 0 be a measurable function such that for some constant c > 0
∫

ϕ(x)≥s
wk(x)dx ≤ c

s
, ∀ s > 0. (2.4)

Then for all 1 < p ≤ 2 there exists a constant Cp > 0 such that
∫

Rn

∣∣∣∣
Fk( f )(ξ)

ϕ(ξ)

∣∣∣∣
p

ϕ(ξ)2wk(ξ)dξ ≤ Cp‖ f ‖p,k; f ∈ L p(Rn, wk(x)dx). (2.5)

Proof. Put dμk(ξ) = ϕ(ξ)2wk(ξ)dξ and T the operator f → T ( f ) = Fk( f )/ϕ.
We have

μk

{
ξ ; |T ( f )(ξ)| ≥ s

}
≤ μk

{
ξ ; ϕ(ξ) ≤ ‖ f ‖1,k/s

}

=
∫

ϕ(ξ)≤‖ f ‖1,k/s
ϕ(ξ)2wk(ξ)dξ

= 2
∫

0≤ t ≤ϕ(ξ) ≤‖ f ‖1,k/s
wk(ξ)tdtdξ

≤ 2
∫ ‖ f ‖1,k/s

0
t

{∫

ϕ(ξ) ≥ t
wk(ξ)dξ

}
dt

≤ 2c‖ f ‖1,k
s

.



386 B. Amri, M. Gaidi

This means that the operator T is bounded from L1(Rn, wk(x)dx) into weak space
L1,∞(Rn, μk(x)dx). On the other hand from Plancherel Theorem

μk{ξ ; |T ( f )(ξ)| ≥ s} ≤ ‖ f ‖22,k
s2

Then Lemma 2.5 follows from Marcinkiewicz interpolation Theorem. ��
Lemma 2.6. If ϕ satisfies (2.4) and 1 < p < r < p′ < ∞, then we have

(∫

Rn

∣∣∣Fk( f )(ξ)(ϕ(ξ))(1/r−1/p′)
∣∣∣
r
wk(ξ)dξ

)1/r

≤ Cp‖ f ‖p,k; f ∈ L p(Rn, wk(x)dx).

Proof. Put a = (p′ − p)/(p′ − r), and a′ it’s conjugate, we have p/a+ p′/a′ = r ,
(1− r/p′)a = 2− p and (r − p/a)a′ = p′. Then Using Hölder’s inequality, (2.5)
and the Hausdorff-Young inequality (1.2),

(∫

Rn
|Fk( f )(ξ)| r |ϕ(ξ)| (1−r/p′)wk(ξ)dξ

)1/r

≤
(∫

Rn
|Fk( f )(ξ)|p|ϕ(ξ)| 2−pwk(ξ)dξ

)1/ra

×
(∫

Rn
|Fk( f )(ξ)|p′

wk(ξ)dξ

)1/ra′

≤ Cp‖ f ‖p,k,

which is the desired statement. ��
Lemma 2.7. Let m be a measurable function and 1 < b < ∞, such that

∫

|m(x)|≥s
wk(x)dx ≤ c

sb
, ∀ s > 0.

Then the operator Tm = F−1
k (mFk) is bounded from L p(Rn, wk(x)dx) to

Lq(Rn, wk(x)dx), provided

1 < p ≤ 2 ≤ q < ∞ and
1

p
− 1

q
= 1

b
.

Proof. Wemay assume first that p ≤ q ′ andwe letϕ = |m|b. Sinceϕ satisfies (2.4),
then usingLemma2.6with r = q ′ and the fact that 1/p−1/q = 1/q ′−1/p′ = 1/b,
we obtain, for f ∈ L p(Rn, wk(x)dx),

‖mFk( f )‖q ′,k ≤ Cp‖ f ‖p,k .

Therefore Hausdorff-Young inequality implies

‖Tm( f )‖q,k ≤ ‖mFk( f )‖q ′,k ≤ Cp‖ f ‖p,k .
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When q ′ < p = (p′)′, we can apply the similar argument to the adjoint operator
T ∗
m = Tm , since 1 < q ′ ≤ 2 ≤ p′ < ∞ and 1/q ′ − 1/p′ = 1/b. Hence by duality

it follows that

‖Tm( f )‖q,k ≤ Cp‖ f ‖p,k .

This concludes the proof of Lemma 2.7. ��
Remark 2.8. From Lemma 2.7 we obtain the statement of Theorem 2.4, since

∫

|m(x)|≥s
wk(x)dx ≤

∫

|x |≤s−1/t
wk(x)dx ≤ c

s(2γk+n)/t
.

The second fact we shall also require in proving Theorem 2.2 is the following

Lemma 2.9. Let φ ∈ L1(Rn, wk(x)dx) be a radial function. If φ ∈ Lr,∞(Rn,

wk(x)dx) for some 1 < r < ∞ then the Dunkl-convolution operator with φ is of
weak type (1,r).

Proof. Let us recall that φ is in Lr,∞(Rn, wk(x)dx) if there exists a constant c > 0
such that

αφ(t) =
∫

|φ(x)|>t
wk(x)dx ≤ c

tr
.

Let λ > 0, we decompose φ = φ1 + φ2 where

φ1 =
{

φ, if |φ| > λ,
0 if |φ| ≤ λ,

, and φ2 = φ − φ1.

So, we have

αφ1(t) =
{

αφ(t), if t > λ,
αφ(λ) if t ≤ λ,

and
∫

Rn
|φ1(x)|wk(x)dx =

∫ ∞

0
αφ1(t)dt = λαφ(λ) +

∫ ∞

λ

αφ(t)dt ≤ cλ1−r .

Then, using (1.7) we obtain for f ∈ L1(Rn, wk(x)dx),

‖ f ∗k φ1‖1,k ≤ ‖φ1‖1,k‖ f ‖1,k ≤ c0λ
1−r‖ f ‖1,k (2.6)

and

‖ f ∗k φ2‖∞ ≤ ‖φ2‖∞‖ f ‖1,k ≤ λ‖ f ‖1,k (2.7)

Now let s > 0 and λ = s/(2‖ f ‖1,k). In view of (2.7)
∫

{| f ∗kφ2(x)|>s/2}
wk(x)dx = 0
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Thus by Chebyshev inequality and (2.6),
∫

{| f ∗kφ(x)|>s}
wk(x)dx ≤

∫

{| f ∗kφ1(x)|>s/2}
wk(x)dx +

∫

{| f ∗kφ2(x)|>s/2}
wk(x)dx

≤ 2
‖ f ∗k φ1‖1,k

s
≤ c

(‖ f ‖1,k
s

)r

,

which is the desired estimate. ��
We are now in a position to prove Theorem 2.2.

Proof of Theorem 2.2. Concerning Bessel function we have first to note the fol-
lowing facts.

Jν(t) = (t/2)ν√
π 	(ν + 1/2)

∫ 1

−1
(1 − u2)ν−1/2eitudu, Re(ν) > −1/2, t > 0

(2.8)
and

|t−(η+iζ ) Jη+iζ (t)| ≤ cηe
c|ζ |(1 + t)−η− 1

2 , η, ζ ∈ R and t > 0. (2.9)

This behavior of Bessel function was mentioned in [17]. In view of (2.9) we have

||ξ |−(γk+n/2−α) Jγk+n/2−α(|ξ |)| ≤ c

|ξ |d ; ξ �= 0

for all d ≤ γk + (n + 1)/2− α. We thus obtain (a) by applying Theorem 2.4 to the
operator Sα .

To prove (b),Wemay apply Stein’s InterpolationTheorem to the analytic family
of the operators Sz , for 0 ≤ Re(z) ≤ γk + (n+ 1)/2. Indeed, let f and g be simple
functions and

F(z) =
∫

Rn
Sz( f )(x)g(x)wk(x)dx, 0 ≤ Re(z) ≤ γk + (n + 1)/2.

By applying the Cauchy–Schwarz Inequality and Plancherel Theorem the integral
converges absolutely. Moreover F can be written as

F(z) =
∫

Rn
|ξ |−(γk+n/2−z)Jγk+n/2−z(|ξ |)Fk( f )(ξ)Fk(g)(ξ)wk(ξ)dξ.

and so in view of (2.8) and (2.9) we see that F is analytic in {z ∈ C, 0 < Re(z) <

γk + (n + 1)/2} and continuous in {z ∈ C, 0 ≤ Re(z) ≤ γk + (n + 1)/2}. (2.9)
also implies (1.14). Let us now consider the two boundary lines Re(z) = 0 and
Re(z) = γk + (n + 1)/2. Using (1.8) and the fact that

|	(1 − iy)|−1 =
(

π sinh y

y

)1/2

≤ ce|y|/2 (2.10)

we estimate Siy( f ) by

‖Siy( f )‖∞,k ≤ c ec |y|‖ f ‖1,k .
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However, using (2.9) and Plancherel Theorem we have the estimate

‖Sγk+(n+1)/2+iy( f )‖2,k ≤ c ec |y|‖ f ‖2,k .
Therefore the application of Stein’s interpolation theorem yields (b). To establish
estimate (c) we proceed as follows: when α > 1/2 then we obtain (c) from (a)
and (b) by the Riesz-Thorin interpolation theorem to the couples (L p1 , Lq1) and
(L p2 , Lq2) in the two cases:

{
p1 = 2, q1 = (n + 2γk)/(α − 1/2),
p2 = (n + 2γk + 1)/(n + 2γk + 1) − α, q2 = (n + 2γk + 1)/α

and
{
p1 = (n + 2γk)/(n + 2γk + 1/2 − α), q1 = 2
p2 = (n + 2γk + 1)/(n + 2γk + 1) − α, q2 = (n + 2γk + 1)/α.

When α = 1/2, one can see that ϕ1/2 ∈ L2,∞(Rn, wk(x)dx) and by Lemma 2.9
the operator S1/2 is of weak type (1, 2). Thus, according to the estimates of (b)
we obtain (c) by Marcinkiewicz interpolation theorem and duality argument. The
proof of Theorem 2.2 is complete. ��

2.1. Estimates of Dunkl wave equation

In this section we are going to apply Theorem 2.2 to the Dunkl wave equation. Our
goal is to prove Theorem 1.1.

We will need to consider the Riesz transforms for Dunkl transform R j , j =
1 . . . n which defined on L2(Rn, wk(x)dx) by

Fk(R j ( f ))(ξ) = −i
ξ j

|ξ |Fk( f )(ξ).

We have the following result.

Theorem 2.10. ([1]) The Riesz transforms R j , 1 ≤ j ≤ n are bounded operators
on L p(Rn, wk(x)dx) for 1 < p < ∞.

The second main auxiliary result which will be useful to prove our theorem is the
following

Lemma 2.11. Let ψ be a radial smooth function on R
n such that ψ(ξ) = 0

if |ξ | ≤ 1 and ψ(ξ) = 1 if |ξ | ≥ 2. Then the Dunkl multiplier defined by

Aψ( f ) = F−1
(

ψ(ξ)
|ξ | Fk( f )

)
is a bounded operator from L p(Rn, wk(x)dx) to

L∞(Rn, wk(x)dx) for all p > n + 2γk .

Proof. Let ρ be a C∞ function such that supp(ρ) ⊂ {1/2 ≤ |ξ | ≤ 2} and
∞∑

j=−∞
ρ(2− jξ) = 1, ξ �= 0.
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Decompose,

ψ(ξ)

|ξ | Fk( f )(ξ) =
∞∑

j=0

ρ(2− jξ)
ψ(ξ)

|ξ | Fk( f )(ξ)

=
(

ρ(ξ)+ρ

(
ξ

2

))
ψ(ξ)

|ξ | Fk( f )(ξ)+
∞∑

j=2

2− jρ(2− jξ)

|2− jξ | Fk( f )(ξ)

= ψ1(ξ)Fk( f )(ξ) +
∞∑

j=2

2− jψ2(2
− jξ)Fk( f )(ξ),

we get

Aψ( f ) = F−1
k (ψ1) ∗k f +

∞∑

j=2

2(n+2γk−1) jF−1
k (ψ2)(2

j .) ∗k f.

Using Hölder’s inequality and (1.7) it follows that, for p > n + 2γk

‖Aψ( f )‖∞ ≤ ‖ f ‖p,k

⎧
⎨

⎩‖F−1
k (ψ1)‖p′,k +

∞∑

j=2

2 j (−1+(n+2γk )/p)‖F−1
k (ψ2)‖p′,k

⎫
⎬

⎭

≤ C ‖ f ‖p,k,

which is the desired result. ��
We will also need the following lemma

Lemma 2.12. Let y ∈ R and � j be the function given by � j (x) = x j�iy(x),
x ∈ R

n. Then we can find a constant c > 0 that does not depend on y and such
that

‖τz(� j )‖∞,k ≤ c ec|y|,

for all z ∈ R
n.

Proof. Let ε > 0. Define

hε(x) =
{
e−ε/(1−|x |2), if |x | < 1,
0, if |x | ≥ 1,

It follows that hε φiy and hε φ−1+iy are C∞-functions supported in the unit ball
and

∂

∂x j

(
�−1+iy(x) hε(x)

)
= −� j (x)hε(x) − � j (x)

(1 − iy)

(
ε

1 − |x |2 hε(x)

)
.

Using the dominated convergence theorem we have the following

‖� j hε − � j‖2,k → 0, as ε → 0
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and
∥∥∥∥

(
ε

1 − |.|2 hε

)
� j

∥∥∥∥
2,k

→ 0, as ε → 0

which from the boundedness of the Dunkl translation opertaor τz on L2(Rn, wk(x)
dx) yield that

∥∥∥∥τz

(
∂

∂x j

(
�−1+iy hε

))
+ τz(� j )

∥∥∥∥
2,k

→ 0 as ε → 0. (2.11)

However, since hε �−1+iy is a C∞-radial function we have that

τz

(
∂

∂x j

(
�−1+iy hε

))
= τz

(
Dk

j

(
�−1+iy hε

))
= Dk

j τz

(
�−1+iy hε

)
.

We next compute Dk
j τz

(
�−1+iy hε

)
and its limit when ε → 0. Putting

Az(x, η) =
√

|x |2 + |z|2 − 2〈x, η〉 =
√

|x − η|2 + |z|2 − |η|2,

for x ∈ R
n and η ∈ conv(G.z), and using the formula (1.6) and (1.1) we have that

Dk
j τz

(
�−1+iy hε

)
(x)

= −
∫

Rn
(x j − η j )�̃iy(Az(x, η))h̃ε(Az(x, η))dνz(η)

−
∫

Rn

(
(x j − η j )�̃iy(Az(x, η))

(1 − iy)

) (
ε

1 − Az(x, η)2
h̃ε(Az(x, η))

)
dνz(η)

+
∑

υ∈R+

kυυ j

〈x, υ〉
∫

Rn

(
˜�−1+iy(Az(x, η))h̃ε(Az(x, η))

− ˜�−1+iy(Az(συ.x, η))h̃ε(Az(συ.x, η))
)
dνz(η).

Therefore, from (2.11)and dominated convergence Theorem we obtain for a.e.
x ∈ R

n ,

τz(� j )(x) =
∫

Rn
(x j − η j )�̃iy(Az(x, η))dμz(η)

−
∑

υ∈R+

kυυ j

〈x, υ〉
∫

Rn

(
˜�−1+iy(Az(x, η)) − ˜�−1+iy(Az(συ.x, η))

)
dνz(η).

(2.12)

Note that in the integrands, |(x j − η j )| ≤ Az(x, η) ≤ 1 and by using (2.10)

|(x j − η j )�̃iy(Az(x, η))| ≤ c ec|y|.
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Also, if we write

˜�−1+iy(Az(x, η)) − ˜�−1+iy(Az(συ.x, η))

〈x, υ〉
= −

n∑

j=1

∫ 1

0
(x j − t〈x, υ〉υ j − η j )υ j �̃iy(Az(x − t〈x, υ〉υ, η))dt

then we have that
∣∣∣∣

˜�−1+iy(Az(x, η)) − ˜�−1+iy(Az(συ.x, η))

〈x, υ〉
∣∣∣∣ ≤ c ec|y|.

Thus in view of (2.12), we conclude the proof of Lemma 2.12. ��
Proof of Theorem 1.1. Applying Theorem 2.2-(c), yields

‖Sγk+(n−1)/2( f )‖q,k ≤ c‖ f ‖p,k; f ∈ S(Rn)

for all couple (p, q) satisfying (1.12) or (1.13). So in view of (2.1) it will be enough
to prove

‖Sγk+(n+1)/2( f )‖q,k ≤ c

∥∥∥∥∥∥

n∑

j=1

|Dk
j f |

∥∥∥∥∥∥
p,k

; f ∈ S(Rn). (2.13)

We quote the following

cos(ξ)Fk( f )(ξ) =
n∑

j=1

ξ2j

|ξ |2 cos(ξ)Fk( f )(ξ) =
n∑

j=1

cos(ξ)

|ξ | Fk

(
R j (D

k
j f )

)
(ξ).

Hence from Theorem 2.10 one can reduce (2.13) to show that
∥∥∥∥F−1

k

(
cos(ξ)

|ξ | Fk( f )(ξ)

)∥∥∥∥
q,k

≤ c‖ f ‖p,k . (2.14)

Let ψ be a radial smooth function on R
n such that ψ(ξ) = 0 if |ξ | ≤ 1 and

ψ(ξ) = 1 if |ξ | ≥ 2. Then Theorem 2.4 implies
∥∥∥∥F−1

k

(
(1 − ψ(ξ))

cos(ξ)

|ξ | Fk( f )(ξ)

)∥∥∥∥
p,k

≤ c‖ f ‖p,k, (2.15)

provided, 1 < p ≤ 2 ≤ q < ∞ and 1/p − 1/q ≥ 1/(2γk + n). Here clearly
conditions (1.12) and (1.13) are also satisfied. Thus we are reduced to showing that

∥∥∥∥F−1
k

(
ψ(ξ)

cos(ξ)

|ξ | Fk( f )(ξ)

)∥∥∥∥
p,k

≤ c‖ f ‖p,k .

For this purpose we define an analytic family of linear operators U j
z by

U j
z ( f ) = F−1

k

(
ψ(ξ)ξ j |ξ |−n/2−γk+z−1 Jn/2+γk−z−1(|ξ |)Fk( f )(ξ)

)
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for 0 ≤ Re(z) ≤ γk + (n + 1)/2. We now apply Stein’s Interpolation Theorem to
the family U j

z and proceed as in the proof of Theorem 2.2. First on the boundary
Re(z) = γk + (n + 1)/2 we have

‖U j
z ( f )‖2,k ≤ c ec|y| ‖ f ‖2,k

which is a simple consequence of (2.9) and Plancherel Theorem.
For z = iy, in view of (2.9), the function ξ → ψ(ξ)ξ j |ξ |−n/2−γk+iy−1

Jn/2+γk−iy−1(|ξ |) belongs to L2(Rn, wk(x)dx). Then one can write U j
iy as the

convolution operator

U j
iy( f )(x) = F−1

k

(
ψ(ξ)ξ j |ξ |−n/2−γk+z−1 Jn/2+γk−z−1(|ξ |

)
∗k f (x),

f ∈ L2(Rn, wk(x)dx)

and to obtain a desired L1 − L∞ estimate for U j
iy as in Theorem 1.2 it suffices to

estimate
∥∥∥τxF−1

k

(
ψ(ξ)ξ j |ξ |−n/2−γk+z−1 Jn/2+γk−z−1(|ξ |

)∥∥∥∞,k
.

We begin by recalling the two classical identities for Bessel function

d

dt
(t−ν Jν(t)) = −t−ν Jν+1(t) (2.16)

and
Jν+1(t) = 2ν Jν(t)/t − Jν−1(t). (2.17)

Let us observe first that by (2.2) and (2.16)

Fk(x j�iy)(ξ) = i Dk
jFk(�iy)(ξ) = −iξ j |ξ |−γk−n/2+iy−1 Jγk+n/2−iy+1(|ξ |),(2.18)

and by (2.17)

Fk(x j�iy)(ξ) = iξ j |ξ |−γk−n/2+iy−1 Jγk+n/2−iy−1(|ξ |)
−i(n + 2γk − iy)ξ j |ξ |−γk−n/2+iy−2 Jγk+n/2−iy(|ξ |).

Hence

F−1
k

(
ψ(ξ)ξ j |ξ |−γk−n/2+iy−1 Jγk+n/2−iy−1(|ξ |)

)
= −iF−1

k

(
ψ(ξ)Fk(x j�iy)(ξ)

)

+(n + 2γk − iy)F−1
k

(
ψ(ξ)ξ j |ξ |−γk−n/2+iy−2 Jγk+n/2−iy(|ξ |)

)
.

Now, write

F−1
k

(
ψ(ξ)Fk(x j�iy)(ξ)

)
= F−1

k

(
(ψ(ξ) − 1)Fk(x j�iy)(ξ)

)
+ x j�iy(x).

The function ξ → (ψ(ξ) − 1)Fk(x j�iy)(ξ) is a C∞ with compact support, so by
using (1.5), (2.9) and (2.18) it follows that

∥∥∥τx

{
F−1
k ((ψ(ξ) − 1)Fk(x j�iy)(ξ))

}∥∥∥∞,k
≤ c ec|y|.
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Thus, in view Lemma 2.12
∥∥∥τxF−1

k

(
ψ(ξ)Fk(x j�iy)(ξ)

)∥∥∥∞,k
≤ c ec|y|. (2.19)

On the other hand, one can write

F−1
k

(
ψ(ξ)ξ j |ξ |−γk−n/2+iy−2 Jγk+n/2−iy(|ξ |)

)
= F−1

k

(
ξ j

|ξ |
(

ψ(ξ)

|ξ | Fk(�iy)(ξ)

))

= iAψ(R j (�iy))

Now for p > n + 2γk the radial function φiy belongs to L p(Rn, wk(x)dx), thus
we can apply Theorem 2.10, Lemma 2.11 and (1.9) to obtain
∥∥∥τxF−1

k

(
ψ(ξ)ξ j |ξ |−γk−n/2+iy−2 Jγk+n/2−iy(|ξ |)

)∥∥∥∞,k
= ‖Aψ(R j (τx (�iy)))‖∞,k

≤ c‖�iy)‖p,k ≤ c ec|y|.

This together with (2.19) yield
∥∥∥τxF−1

k

(
ψ(ξ)ξ j |ξ |−n/2−γk+z−1 Jn/2+γk−z−1(|ξ |

)∥∥∥∞,k
≤ c ec|y|

and therefore

‖U j
iy( f )‖∞,k ≤ c ec|y| ‖ f ‖1,k .

The Stein interpolation theorem now implies the following

‖U j
α ( f )‖p′,k ≤ c ‖ f ‖p,k

for all 0 ≤ α ≤ γk + (n + 1)/2 and p = (n + 1 + 2γk)/(n + 1 + 2γk − α). In
particular for α = γk + (n − 1)/2 and p = 2(n + 2γk + 1)/(n + 2γk + 3)we have
that ∥∥∥∥F−1

k

(
ψ(ξ)ξ j

cos(|ξ |)
|ξ |2 Fk( f )(ξ)

)∥∥∥∥
p′,k

≤ c ‖ f ‖p,k (2.20)

Using the fact that

F−1
k

(
ψ(ξ)

cos(|ξ |)
|ξ | Fk( f )(ξ)

)
=

n∑

j=1

F−1
k

(
ψ(ξ)

ξ2j

|ξ |2
cos(|ξ |)

|ξ | Fk( f )(ξ)

)

=
n∑

j=1

F−1
k

(
ψ(ξ)ξ j

cos(|ξ |)
|ξ |2 Fk(R j ( f ))(ξ)

)

it follows from (2.20) and Theorem 2.10
∥∥∥∥F−1

k

(
ψ(ξ)

cos(|ξ |)
|ξ | Fk( f )(ξ)

)∥∥∥∥
p′,k

≤ c ‖ f ‖p,k

On the other hand by Theorem 2.4 we have
∥∥∥∥F−1

k

(
ψ(ξ)

cos(|ξ |)
|ξ | Fk( f )(ξ)

)∥∥∥∥
q,k

≤ c ‖ f ‖p,k
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for 1 < p ≤ 2 ≤ q < ∞, 1/p− 1/q = 1/(n + 2γk). Therefore with the use of the
Riesz-Thorin interpolation theorem for the couples (L p1, Lq1) and (L p2 , Lq2) for
{
p1 = 2, q1 = 2(n + 2γk)/(n + 2γk − 2),
p2 = 2(n + 2γk + 1)/(n + 2γk + 3), q2 = 2(n + 2γk + 1)/(n + 2γk − 1)

and
{
p1 = 2(n + 2γk)/(n + 2γk + +2), q1 = 2
p2 = 2(n + 2γk + 1)/(n + 2γk + 3), q2 = 2(n + 2γk + 1)/(n + 2γk − 1)

we obtain ∥∥∥∥F−1
k

(
ψ(ξ)

cos(|ξ |)
|ξ | Fk( f )(ξ)

)∥∥∥∥
q,k

≤ c ‖ f ‖p,k

for all p and q satisfying (1.12) or (1.13). This combined with the estimate (2.15)
yields (2.14) and finishes the proof of Theorem 1.1. ��
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