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Abstract. For n ≥ 1, we exhibit a lower bound for the volume of a unit vector field
on S

2n+1\{±p} depending on the absolute values of its Poincaré indices around ±p. We
determine which vector fields achieve this volume, and discuss the idea of having multiple
isolated singularities of arbitrary configurations.

1. Introduction and statement of the results

Let Mm be a closed oriented Riemannian manifold and v a unit vector field on
M . If T 1M denotes the unit tangent bundle, endowed with the Sasaki metric, and
regarding v : M → T 1M as a smooth section, the volume of v is defined as the
volume of the submanifold v(M) ⊂ T 1M ,

vol(v) = vol(v(M)).

On a given orthonormal local frame {e1, . . . em}, there exists a formula (see
[9,10]) in terms of the Riemannian metric of M . It reads

vol(v) =
∫
M

√
det(Id + (∇v)∗(∇v))ν

=
∫
M

(
1 +

∑
A

‖∇eAv‖2 +
∑
A<B

‖∇eAv ∧ ∇eB v‖2 + · · ·

· · · +
∑

A1<···<Am−1

‖∇eA1
v ∧ · · · ∧ ∇eAm−1

v‖2
) 1

2
ν, (1)

Icaro Gonçalves: Supported by a scholarship from the National Postdoctoral Program,
PNPD-CAPES. This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

F.G.B. Brito · I. Gonçalves (B): Centro de Matemática, Computação e Cognição,
Universidade Federal do ABC, Santo André 09.210-170, Brazil.
e-mail: icaro.goncalves@ufabc.edu.br
F.G.B. Brito e-mail: fabiano.brito@ufabc.edu.br

A.O. Gomes: Dpto. de Matemática, Instituto de Matemática e Estatística, Universidade de
São Paulo, R. do Matão 1010, São Paulo, SP, Brazil.
e-mail: gomes@ime.usp.br

Mathematics Subject Classification: 53C20 · 57R25 · 53C12

https://doi.org/10.1007/s00229-019-01107-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s00229-019-01107-y&domain=pdf
http://orcid.org/0000-0002-4381-451X


488 F. G. B. Brito et al.

where∇v is an endomorphism of the tangent space at a given point, ν is the volume
form of M and (∇v)∗ is denotes adjoint operator. Intuitively speaking, the idea
behind this functional is to measure which unit vectors are visually best organized,
in the sense that those vectors would attain the minimum possible value, [9]. It is
always true that vol(v) ≥ vol(M), and equality holds if and only if v is parallel with
respect to ∇. What makes it worth looking for a minimum (or an infimum) for the
volume is that only rarely does a Riemannian manifold admit a globally-defined
parallel vector field, so in most cases the most symmetric organized unit vector
field is not a trivial one, but rather a distinguished vector field.

When Gluck and Ziller defined the volume functional, they proved that

Theorem 1. [9] The unit vector fields of minimum volume on S
3 are precisely the

Hopf vector fields, and no others.

Contrary to what the reader might expect, Hopf vector fields fail to minimize
the volume functional in higher dimensional spheres,

Theorem 2. [10] Hopf fibrations on the round sphere S5 are not local minima of
the volume functional.

In pursuit of unit vector fields of minimum volume, several constructions stum-
bled on spheres minus one or minus a couple of points. One must keep in mind the
following two examples, both of them defined on punctured spheres.

The first example was given by Pedersen in [11], defined on a sphere minus one
point. We denote it by VP . It was shown in [11] that its volume is

vol(VP ) = √
2πn vol(S2n+1),

for n ≥ 1. The second example is a radial vector field on S2n+1\{±p}. This vector
field, denoted by VR , is a geodesic vector field coming from the exponential map
of the sphere at p. Brito et al proved the following

Theorem 3. [5] Let v be a unit vector field on a compact Riemannian and oriented
manifold M2n+1. Then

vol(v) ≥
∫
M

(
n∑

k=0

(
n

k

)(
2n

2k

)−1

|σ2k(v⊥)|
)

ν,

where σ2k(v⊥) is the 2k-th elementary symmetric function of the second fundamen-
tal form of the distribution orthogonal to v (that is not necessarily integrable), with
σ0 = 1. When n ≥ 2, equality holds if and only if v is totally geodesic and v⊥ is
integrable and umbilic. Furthermore, the following holds,

(a) For every unit vector field v on S
2n+1,

vol(v) ≥
n∑

k=0

(
n

k

)2(2n
2k

)−1

vol(S2n+1),

and for n ≥ 2 none of them achieves equality.
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(b) Let v be any non-singular unit vector field on vol(S2n+1), then vol(VR) ≤
vol(v).

In addition, singular unit vector fields on S
2 and the influence of the radius of

a given sphere on the volume of Hopf vector fields have also been studied, [1] and
[2].

It can be shown that vol(VR) = 4n

(2nn )
vol(S2n+1) (for example, see [5]). Together

with the value computed in [9] for Hopf vector fields, vol(VH ) = 2nvol(S2n+1),
one is able to summarize some inequalities

vol(S2n+1) < vol(VR) < vol(VP ) � vol(VH ),

whenever n ≥ 2.
In addition, there are examples of how the topology of a vector field and the

topology of the ambient space influence the volume. For Riemannian manifolds of
dimension 5, Brito and Chacón [3] exhibited an inequality comparing the volume
of a vector field to the Euler class of its orthogonal distribution. For Euclidean
hypersurfaces, Reznikov [12] deduced an inequality taking into account the degree
of the Gauss map of the hypersurface.

On the other hand, for antipodally punctured spheres of low dimensions, there
is a relation regarding the index of the vector at the points N = p and S = −p,

Theorem 4. [4] Let v be a unit smooth vector field defined on S
m\{N , S}. Then

(a) for m = 2, vol(v) ≥ 1
2 (π + |Iv(N )| + |Iv(S)| − 2)vol(S2),

(b) for m = 3, vol(v) ≥ (|Iv(N )| + |Iv(S)|)vol(S3),
where Iv(P) stands for the Poincaré index of v around P.

Our main goal is to extend the above result to higher odd dimensional spheres.
The main theorem asserts

Theorem A. If v is a unit vector field on S2n+1\{±p}, then
vol(v) ≥ π

4
vol(S2n) (|Iv(p)| + |Iv(−p)|) . (2)

In comparing the above estimate to the value achieved by radial vector fields,
the following consequence is deduced.

Corollary 1. For any unitary vector field v on S2n+1\{±p},

vol(v) ≥ vol(VR)

2
(|Iv(p)| + |Iv(−p)|) ,

where VR denotes the north-south vector field.

The technique presented here can be exploited to obtain a straightforward exten-
sion to arbitrary isolated singularities, in a general Riemannian compact manifold

Theorem B. Let v be a unit vector field defined on M2n+1\{∪m
i=1 pi }, where M is

a compact Riemannian manifold and {pi } is a subset of isolated points. Then
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vol(v) ≥ vol(S2n)

2

m∑
i=1

|Iv(pi )| (3)

This paper is organized as follows. We start Sect. 2 by introducing the Euler
class of the normal bundle of v, and then we define a list of functions depending
on the vector field. We finish this Section by exhibiting an explicit representative
of the Euler class. Section 3 is divided in five subsections, and in the last two of
them we prove theorems A and B, respectively. Section 3.1 is devoted to show
how the indices of the vector field arise when the Euler class is restricted to small
neighborhoods around its singularities. In Sect. 3.2 we briefly review some results
from [5] and use them to establish a comparison between the integrand in (1)
and a function determined by the restriction of the Euler class. The last section is
dedicated to discuss the main theorems and future developments.

2. Preliminaries and the Euler class

Let n ≥ 1 and set M := S
2n+1\{±p}, endowed with the standard Riemannian

metric 〈·, ·〉 induced from Euclidean space. Let v be a unit vector field v : M →
T 1M , and take {e1, . . . , e2n, e2n+1 = v} as an orthonormal local frame. We fix the
following notation: 1 ≤ i, j, k, l, . . . ≤ 2n and 1 ≤ A, B,C, D, . . . ≤ 2n + 1. If
{ωA} is the associated local coframe, then the curvature and connection forms are
related by the structure equations of M,

ωA(eB) = δAB, δAB = 0 if A �= B, δAA = 1,

∇eA =
∑
B

ωABeB, ωAB + ωBA = 0,

dωA =
∑
B

ωAB ∧ ωB, dωAB =
∑
C

ωAC ∧ ωCB − �AB,

�AB = 1

2

∑
C,D

RABCDωC ∧ ωD, RABCD + RABDC = 0.

The normal bundle v⊥ is a subbundle of T M , and it admits a natural second
fundamental form given locally by the matrix (ai j ), constructed with respect to the
aforementioned local frame, aAB = 〈∇eB v, eA〉. The curvature form of v⊥, �⊥

AB ,
is related to �AB by means of the structure equations,

�⊥
AB = �AB + ωA 2n+1 ∧ ωB 2n+1. (4)

We recall the definition of the Euler form in terms of the Pfaffian of �⊥
AB ,

E(v⊥) = 2

(2n)!vol(S2n)
∑

σ∈S2n

sgn(σ )�⊥
σ(1)σ (2) ∧ · · · ∧ �⊥

σ(2n−1)σ (2n), (5)

where S2n stands for the permutation group of 2n elements while sgn(σ ) equals
the sign of σ .
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Before computing E(v⊥) we need to settle our notation. For each 1 ≤ i ≤ 2n,
we say that σi is the i-th elementary symmetric function of the matrix (ai j ). The
function σi is the sum of all i × i minors from (ai j ).

The last columnof (aAB) has some specialmeaning. It is formed by the elements
ai 2n+1 = 〈∇vv, ei 〉, which are components of the acceleration of v. We employ
these components in the next definition.

Definition 1. Let (ai j (l))denote the 2n×2nmatrix obtained from (ai j )by changing
its l-th column with the components of ∇vv,

(ai j (l)) =
⎛
⎜⎝

a11 · · · a1 l−1 a1 2n+1 a1 l+1 · · · a1 2n
...

...
...

...
...

a2n 1 · · · a2n l−1 a2n 2n+1 a2n l+1 · · · a2n 2n

⎞
⎟⎠ .

We say that σ⊥
i (l) is the sum of all i × i minors of the matrix (ai j (l)) having

at least one element depending on ∇vv.

For example, σ⊥
2 (2n) is the sum of all 2 × 2 minors of ai j (2n) such that at least

one of their columns is made of components of ∇vv,

σ⊥
2 (2n) =

2n∑
j=1

1≤i<k≤2n−1

det

[
ai j ai 2n+1
akj ak 2n+1

]
.

It is important that we distinguish the functions σ⊥
i (l) from the symmetric elemen-

tary functions of (ai j (l)), say σi (l). The former is just a part of the latter, and they
naturally appear when computing the Euler class of v⊥.

Lemma 1. The Euler class E(v⊥) ∈ H2n(M,R) = H2n(S2n+1\{±p},R) ∼= R

can be represented by the following element

E(v⊥) = 2

vol(S2n)

n∑
k=0

(
n

k

)(
2n

2k

)−1

W (k), (6)

where, denoting ω̂ the omitted term,

W (k)=
∑
C

σ⊥
2k(C)ω1 ∧ · · · ∧ ω̂C ∧ · · · ∧ ω2n+1

=
∑
l

σ⊥
2k(l)ω1 ∧ · · · ∧ ω̂l ∧ · · · ∧ ω2n+1 + σ2kω1 ∧ · · · ∧ ω2n .

Proof. The fact that �AB = ωA ∧ωB (the metric on M is just the restriction of the
round Riemannian metric of S2n+1) together with a nice rearrangement of terms
imply
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E(v⊥) = 2

(2n)!vol(S2n)
∑

σ∈S2n

sgn(σ )

n∑
k=0

(
n

k

)

ωσ(1) ∧ · · · ∧ ωσ(2k) ∧ ωσ(2k+1) 2n+1 ∧ · · · ∧ ωσ(2n) 2n+1.

Taking the second fundamental form of v⊥ into account, we write ωA 2n+1 =
−∑

B aABωB , and consequently ωA 2n+1 ∧ ωB 2n+1 = ∑
C,D aACaBDωC ∧ ωD .

Hence

E(v⊥) = 2

(2n)!vol(S2n)
∑

σ∈S2n

sgn(σ )

n∑
k=0

(
n

k

)
ωσ(1) ∧ · · · ∧ ωσ(2k)

∧
⎛
⎝∑

B1

aσ(2k+1)B1ωB1

⎞
⎠ ∧ · · · ∧

⎛
⎝ ∑

B2(n−k)

aσ(2n)B2(n−k)ωB2(n−k)

⎞
⎠.

Now it is a matter of separating the coefficients of 2n-forms ωA1 ∧ · · · ∧ ωA2n .
When we fix those 2n-forms, we have to count them within all permutations in

S2n . For example, k = 1 gives us the following summand

∑
σ∈S2n

sgn(σ )ωσ(1) ∧ ωσ(2) ∧
⎛
⎝∑

B1

aσ(3)B1ωB1

⎞
⎠ ∧ · · · ∧

⎛
⎝ ∑

B2(n−1)

aσ(2n)B2(n−1)ωB2(n−1)

⎞
⎠.

Consequently, we end up with a number, (2n−2k)!(2k)!, and since the Pfaffian
is divided by (2n)! we have that (2n−2k)!(2k)!

(2n)! = (2n
2k

)−1
.

On the other hand, the products aσ(2k+1)B1 · · · aσ(2n)B2(n−k) from

⎛
⎝∑

B1

aσ(2k+1)B1ωB1

⎞
⎠ ∧ · · · ∧

⎛
⎝ ∑

B2(n−k)

aσ(2n)B2(n−k)ωB2(n−k)

⎞
⎠

determine some minors coming from the matrix (aAB). Functions like σ⊥
i (·) from

Definition 1 appear every time Bi = 2n + 1, for some i , and this happens in all
terms except in the coefficient of ω1 ∧ · · · ∧ ω2n , which is accompanied by the
elementary symmetric functions of (ai j ). Finally, it is a matter of separating those
minors according to the 2n-form which multiplies them. ��

3. Development towards demonstrating theorems A and B

3.1. Poincaré index

Let S2nθ be a parallel of latitude θ ∈ (−π
2 , π

2 ) and let ι = ιθ : S2nθ → M be its
natural embedding. We may assume that p belongs to the northern hemisphere of
S
2n+1, while −p is in the southern hemisphere. Given ε > 0, S2nπ

2 −ε
is a small

parallel near p, and together with S
2n
θ we have an associated annulus region A2n

θ, ε

of dimension 2n, with boundary S
2n
π
2 −ε

∪ S
2n
θ ; see Fig. 1.
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Fig. 1. S2n+1 with an annulus region near north pole

By Stokes’ theorem,∫
A2n

θ, ε

d ι∗(E(v⊥)) =
∫
S
2n
π
2 −ε

∪ S
2n
θ

ι∗(E(v⊥)).

However, E(v⊥) is closed, so d ι∗(E(v⊥)) = 0 and we conclude that the integrals
of its restrictions to both spheres are equal,∫

S
2n
π
2 −ε

ι∗(E(v⊥)) =
∫
S
2n
θ

ι∗(E(v⊥)). (7)

Next we compute the restriction of ι∗(E(v⊥)) on S
2n
θ .

Wemay suppose that e1, . . . , e2n−1 are all tangent to S2nθ . Let α ∈ [0, 2π ] be the
oriented angle from the tangent space of S2nθ to v. In this case, {e1, . . . , e2n−1, u :=
sin αe2n + cosαv} is an orthonormal positively oriented local frame on S

2n
θ .

Fix 0 ≤ k ≤ n. Following Eq. (6) of Lemma 1, we decomposeW (k) as follows

W (k) =
2n−1∑
l=1

σ⊥
2k(l)ω1 ∧ · · · ∧ ω̂l ∧ · · · ∧ ω2n+1

+σ⊥
2k(2n)ω1 ∧ · · · ∧ ω2n−1 ∧ ω2n+1 + σ2kω1 ∧ · · · ∧ ω2n .
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By applying W (k) on (e1, . . . , e2n−1, u), we see that

ω1 ∧ · · · ∧ ω̂l ∧ · · · ∧ ω2n+1(e1, . . . , e2n−1, u) = 0,

when 1 ≤ l ≤ 2n − 1, because el is in (e1, . . . , e2n−1, u) but ωl is omitted. Thus,
just the last two terms remain, i.e.,

W (k)(e1, . . . , e2n−1, u) = sin α σ2k + cosα σ⊥
2k(2n).

Therefore,

ι∗(E(v⊥)) = 2

vol(S2n)

n∑
k=0

(
n

k

)(
2n

2k

)−1 (
sin α σ2k + cosα σ⊥

2k(2n)
)

ν
S
2n
θ

. (8)

Going back to Eq. (7), its right hand side remains unchanged when we take the
limit as ε goes to zero. Nevertheless, its left hand side is an integral of a function
similar to the one appearing in Eq. (8), but for a different angle, since this angle
depends on latitude of the parallel S2nπ

2 −ε
, and of course on the vector v. Thus, as ε

goes to zero the only non-vanishing term comes from the restriction of v to S2nπ
2 −ε

,

which is the degree of v : S2nπ
2 −ε

→ S
2n , and this degree equals the Poncaré index

around p (we refer to [7,8] for further details). Therefore,

lim
ε→0

∫
S
2n
π
2 −ε

ι∗(E(v⊥)) = Iv(p). (9)

Following a similar argument,

lim
ε→0

∫
S
2n
− π

2 +ε

ι∗(E(v⊥)) = Iv(−p). (10)

3.2. Inequalities: volume of a matrix

Our previous discussion determines how the Euler form relates to the volume form
of S2nθ , and when the Poincaré indices of v arise when a representative of the Euler
class of v⊥ restricts to small neighborhoods around ±p. Now we compare the
function on Eq. (8) to

√
det(Id + (∇v)∗(∇v)).

Following [5], the volume of a linear transformation T : Vm → Vm is the
volume of the graph of the cube under T . Equivalently,

Proposition 1. [5] Let T be an endomorphism and B = (bi j ) the matrix of T
associated to some orthonormal basis. Then
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vol(T ) =
(
1 +

∑
1≤i, j≤m

b2i j +
∑
i1<i2
j1< j2

(
det Bi1i2

j1 j2

)2

+ · · · +
∑

i1<···<im−1
j1<···< jm−1

(
det Bi1...im−1

j1... jm−1

)2 + (det B)2
) 1

2

,

where Bi1...ik
j1... jk

is the submatrix of B corresponding to the rows i1 . . . ik and columns
j1 . . . jk .

In order to prove theorem3, the authors compared the volumeof a given 2m×2m
diagonal matrix D (with nonnegative entries) to the sum of its elementary symmet-
ric functions. They proved an algebraic inequality (it comes from “Fundamental
Lemma", Sect. 3 of [5])

vol(D) ≥
(

m∑
k=0

(
m

k

)(
2m

2k

)−1

σ2k(D)

)
. (11)

Our goal is to exhibit a matrix of even dimension such that its volume coincides
with

√
det(Id + (∇v)∗(∇v)) and its elementary symmetric functions are directly

related (or can be compared) to the sum σ2k + σ⊥
2k(2n).

Whenwe fix an orthonormal local frame {e1, . . . , e2n, v}, we have an associated
(2n + 1) × (2n + 1) matrix (aAB) = (〈∇eBv, eA〉),

(aAB) =

⎛
⎜⎜⎜⎝

(ai j )
a1 2n+1

...

a2n 2n+1

0 · · · 0 0

⎞
⎟⎟⎟⎠.

Notice that the last row is zero since v is a unit vector field.

Lemma 2. According to the notation settled above,

√
det(Id + (∇v)∗(∇v)) ≥

n∑
k=0

(
n

k

)(
2n

2k

)−1 (
|σ2k | + |σ⊥

2k(2n)|
)
. (12)

Proof. We define a (2n+2)× (2n+2) matrix (bAB) by adding to (aAB) a column
and a row of zeros,

(bAB) =

⎛
⎜⎜⎜⎜⎜⎝

(ai j )
a1 2n+1 0

...
...

a2n 2n+1 0
0 · · · 0 0 0
0 · · · 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

so

vol(bAB) = vol(aAB) = √
det(Id + (∇v)∗(∇v)).

By changing the basis, we can write (bAB) as a upper triangular matrix, having
its eigenvalues in the main diagonal (some of them possibly complex)
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(bAB) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 ∗ · · · · · · ∗
0

. . .
...

... λr ∗ · · ·
0
... x1 −y1 ∗ · · ·

y1 x1

0
. . .

...
...

. . . ∗
... xs −ys
0 · · · · · · 0 ys xs

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In general, (ai j ) is not a symmetric matrix, since v⊥ is not necessar-
ily integrable. Thus, even though (bAB) is possibly a non-diagonal matrix,
it has at least two zero eigenvalues, say λ1 and λ2, and this fact plays a
role when counting its elementary symmetric functions. If we define D =
diagonal(0, 0, |λ3|, . . . , |λr |,

√
x21 + y21 ,

√
x21 + y21 , . . . ,

√
x2s + y2s ,

√
x2s + y2s ),

then inequality (11) holds for this diagonal matrix. Summation goes up to n instead
of n + 1 simply because D is equivalent to a 2n × 2n matrix. The fact that (bAB)

has elements above its main diagonal implies that vol(bAB) ≥ vol(D). Since D
has nonnegative entries, σ2k(D) ≥ σ2k((bAB)) (cf. [5], Sects. 3 and 4). Therefore
omitting the symmetric functions σ⊥

2k(l), for 1 ≤ l ≤ 2n − 1 produces the desired
inequality

vol(bAB) ≥
n∑

k=0

(
n

k

)(
2n

2k

)−1

σ2k(bAB) ≥
n∑

k=0

(
n

k

)(
2n

2k

)−1 (
σ2k + σ⊥

2k(2n)
)
.

��

3.3. Proof of theorem A

We split the integral (1) on M as an integral on a parallel S2nθ of latitude θ ∈
(−π

2 , π
2 ), and a integral on θ itself,

vol(v) =
∫
M

√
det(Id + (∇v)∗(∇v))νM =

∫ π
2

− π
2

(∫
S
2n
θ

√
det(Id + (∇v)∗(∇v))ν

S
2n
θ

)
dθ.

From Eq. (12),

vol(v) ≥
n∑

k=0

(
n

k

)(
2n

2k

)−1 ∫ π
2

− π
2

(∫
S
2n
θ

(
|σ2k | + |σ⊥

2k(2n)|
)

ν
S
2n
θ

)
dθ
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Since sin and cos are bounded,

n∑
k=0

(n
k

)
(2n
2k

)
(
sin α σ2k + cosα σ⊥

2k(2n)
)

≤
n∑

k=0

(n
k

)
(2n
2k

) |σ2k | +
n∑

k=0

(n
k

)
(2n
2k

)
∣∣∣σ⊥

2k(2n)

∣∣∣ ,

and then, from Eqs. (8) and (7),

vol(v) ≥ vol(S2n)

2

∫ π
2

− π
2

∫
S
2n
θ

ι∗(E(v⊥))

= vol(S2n)

2

⎛
⎝

∫ 0

− π
2

∫
S
2n
− π

2 +ε

ι∗(E(v⊥)) +
∫ π

2

0

∫
S
2n
π
2 −ε

ι∗(E(v⊥))

⎞
⎠

Therefore,

vol(v) ≥ π

4
vol(S2n) (|Iv(p)| + |Iv(−p)|) ,

which proves theorem A.

3.4. A modest extension to arbitrary isolated singularities: proof of theorem B

For every pi , 1 ≤ i ≤ m, we can take the exponential map on Tpi M and find a
real number θi such that a geodesic sphere S2nθi

is the boundary of a geodesic ball

in M2n+1, centered in pi and containing one singularity, namely pi .
Given εi > 0 smaller than θi , we build an annulus region A2n

θi , εi
of dimension

2n, with boundary S2nεi
∪S2nθi

. Figure 2 illustrates the idea whenwe restrict ourselves

to the case M = S
2n+1. We proceed as in Sect. 3.1.

We merely consider that

∫
M

√
det(Id + (∇v)∗(∇v)) ≥

∑
i

∫
S2nθi

√
det(Id + (∇v)∗(∇v))

In this case, inequality (12) still holds. Therefore,

vol(v) ≥ vol(S2n)

2

m∑
i=1

∫
S2nθi

ι∗(E(v⊥)) = vol(S2n)

2

m∑
i=1

|Iv(pi )|
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Fig. 2. A sphere with various isolated points, each one having a small annulus region around
it

4. Concluding remarks

Even though, compared to theoremA, the lower bound found in inequality (3) from
Theorem B is not sharp when m = 2 and M = S

2n+1\{±p}, it presents a lower
value for vector fields having two singularities in a random position, rather than on
antipodal points.

Additionally, as discussed in [6] for the energy functional, given a number
(greater than two) of isolated singularities, it is possible to find a unit vector field
having these singularities and with volume arbitrarily close to the volume of the
radial vector field. This may be done by the following argument: put two singulari-
ties in antipodal points±p and every remain singularity in a neighborhood near the
south pole −p, for example. Outside this neighborhood, take the radial vector field
coming from p and inside it one can take any vector field preserving the indices
that were established in the beginning. By gluing those two parts together, one can
obtain a vector field such that its volume is close to the volume of VR . This is
possible since the smaller the neighborhood, the smaller the volume.

Theorem B represents a fair topological step towards a more general geometric
question: is it possible to determined a unit vector field of minimum volume on a
Riemannian manifold without a subset of singularities in a fixed configuration?
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