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Abstract. In the present paper, we prove a rigidity theorem for complete submanifolds with
parallel Gaussian mean curvature vector in the Euclidean space R”*? under an integral
curvature pinching condition, which is a unified generalization of some rigidity results for
self-shrinkers and the A-hypersurfaces in Euclidean spaces.

1. Introduction

Let X : M" — R"™P be an n-dimensional smooth immersed submanifold in the
(n + p)-dimensional Euclidean space R"7. Define the Gaussian mean curvature

vector & of M by
N

X
§:H+T’ ey

where H is the mean curvature vector of M and ()" denotes the normal part of a
vector field on R" 7. We call £ the Gaussian mean curvature vector since it is related
to the mean curvature vector H of M when it is considered as a submanifold of the

Gaussian space (R**7, e’%(S) by & = e’%l:l , where § denotes the Euclidean
metric on R"*P. M is called a submanifold with parallel Gaussian mean curvature
vector if £ is parallel in the normal bundle. Submanifolds of this type were first
investigated by Li and Chang [20].

Let X : M — R"P be a submanifold with parallel Gaussian mean curva-
ture vector. Obviously, when £ = 0, M is a self-shrinker of the mean curvature
flow, which plays a very important role in the study of the mean curvature flow
[10,15,16,27]. The pinching problems of self-shrinkers have been studied exten-
sively. For example, Le and Sesum [17] proved that any smooth self-shrinker with
polynomial volume growth and satisfying |A|> < % is a hyperplane. Here A denote
the second fundamental form of an immersion. Cao and Li [1] generalized this
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result to arbitrary codimension and proved that any smooth complete self-shrinker
with polynomial volume growth and |A|> < % is one of generalized cylinders.
On the other hand, Ding and Xin [11] showed that any immersed self-shrinker
satisfying ( f I, |A|"d,u)1/ " < (C for certain positive constant sufficiently small
is a linear space. For more curvature pinching theorems for self-shrinkers, see
[1,2,4,5,11,12,17,19,21] and references therein.

If p =1, (1) is reduced to

(X, N)
2

where H is the mean curvature function, N is the inward pointing unit normal and
A is a constant. A hypersurface satisfying (2) is called a A-hypersurface, which was
introduced by Cheng—Wei [7] and McGonagle—Ross [23]. The geometric proper-
ties of A-hypersurfaces are recently investigated by Cheng, Guang, Ogata, Wang,
Wei, Xu, Zhao [3,7,13,26], etc. As generalizations of self-shrinkers of the mean
curvature flow, Cheng and Wei [7] classified complete A-hypersurfaces with poly-
nomial area growth and H — A > 0. They also defined an F-functional and studied
F-stability of A-hypersurfaces. Cheng, Ogata and Wei [3] proved some gap and
rigidity theorems for complete A-hypersurfaces. Wang, Xu and Zhao [26] investi-
gate the integral curvature pinching theorems for A-hypersurfaces. See [6,13,24],
etc. for more results on the rigidity of A-hypersurfaces.

In this paper, we study the integral curvature pinching theorems for submani-
folds with parallel Gaussian mean curvature vector. We firstly prove the following
L"™-pinching theorem of the second fundamental form.

Theorem 1. Let X : M" — R" P (n > 3) be a complete submanifold with parallel
Gaussian mean curvature vector in the Euclidean space R"*P. If

1/n
(/ IAI"dM> < K(n, [£].
M

where K (n, |€]) is an explicit positive expression of n and |&|, then M is isometric
to R".

Hy +

=X, 2

Remark 1. It &€ = 0, then M is a self-shrinker. Hence our theorem is a generalization
of the L"-pinching theorem proved by Ding and Xin [11] to submanifold with
parallel Gaussian mean curvature vector in the Euclidean space R"*7.

Let A denote the tracefree second fundamental form, which is defined by A=
A — % g with g denoting the induced metric on M. We prove an L"-pinching
theorem of the tracefree second fundamental form for submanifolds with parallel
Gaussian mean curvature vector in the Euclidean space R"*7 provided that the
mean curvature vector is suitably bounded.

Theorem 2.. Let X : M" — R"*"P(n > 3) be a complete submanifold with
parallel Gaussian mean curvature vector in the Euclidean space R"™P. Suppose

the mean curvature vector satisfies supy |H| < /5 + €12 — |E|. If

1/n
(/MIAI"dM> < D(n, |§|, supy [HI),
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where D(n, |&|, supy,|H|) is an explicit positive expression of n, || and supy,|H|,
then M is isometric to R".

When & = 0, we have the following corollary, which is obtained by [2].

Corollary 1. Let X : M" — R*™P(n > 3) be a complete self-shrinker in the
Euclidean space R"*P. Suppose the mean curvature vector satisfies sup|H| <

1/n
(f IAI”du> < D(n. supy, | H).
M

where D(n, sup,,|H|) is an explicit positive expression of n and sup,|H|, then M
is isometric to R".

For the case n = 2, we obtain the following results.

Theorem 3. Let X : M? — R**P be a complete surface with parallel Gaussian
mean curvature vector in the Euclidean space R**P. If

1/2
(/ |A|4du> < K (&),
M

where K (|&|) is an explicit positive expression of |&|, then M is isometric to R,

Theorem 4. Let X : M? — R**P be a complete surface with parallel Gaussian
mean curvature vector in the Euclidean space R**P. Suppose the mean curvature

vector satisfies supy |H| < /|12 + 1 — [E]. If

1/2
(/M|A|“du) < D(|&|, supy |H|),

where D(|&|, supy,|H|) is an explicit positive expression of |§| and sup,,|H|, then
M is isometric to R2.

Our global pinching theorems for submanifolds with parallel Gaussian mean
curvature vector in the Euclidean space R" 7 are originally motivated by the global
pinching theorems for submanifolds with parallel mean curvature vector in space
forms, see [30,31], etc. Please refer to [22,25,28-33] for more rigidity theorems
for submanifolds with parallel mean curvature vector. For another generalization
of self-shrinkers please see [8,9], etc.

The rest of our paper is organized as follows. Some notations and several lemmas
are prepared in Sect. 2. In Sect. 3, we prove Theorems 1 and 2. Theorems 3 and 4
will be proved in Sect. 4.
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2. Preliminaries

Let X : M" — R"*P be an n-dimensional immersed submanifold. Denote by g
the induced metric on M. We shall make use of the following convention on the
range of indices:

1<AB,...<n+p, 1<i,j,...<n, n+1<a,8,y,...<n+p.

Choose a local field of orthonormal frame field {e4} in R* 7 such that, restricted to
M, the ¢;’s are tangent to M". Let {ws} and {w4p} be the dual frame field and the
connection 1-forms of R"*7 respectively. Restricting these forms to M, we have

2 : o o o
Wy = hl-ja)j, hij zhji’
J

A= Zhgjwi Qwj®ey = Zhl’jw,’ Q wj,

a,i,j ij
H = Zh?‘iea = ZH"‘ea,
o, o
_ a o o0
Riju = Z( ikt j1r = jk)v
[04

p p
Rap = Z( ikhiy = quhik)’

l

where A, H, R;ji;, Ropki are the second fundamental form, the mean curvature
vector, the Riemannian curvature tensor, the normal curvature tensor of M, respec-
tively. The tracefree second fundamental form is defined by A=A- %g ® H.

Denoting the first and second covariant derivatives of hf‘] by h;"jk and h;"jkl
respectively, we have

> hpen = dhf =Y~ hor = 3 o — ) oo,
k k k B
B
> hfer = dhy = Y hon = Y ko = Y hfen = ) hijop.
! ! ! ! B
Then we have

o — o

ijk = Mk

hii — hiw = Zh?mijkz + Zhﬂ,j Rkt — Zh?jRaﬂkl-
m m B

The Laplacian of the second fundamental form is given by

g
AR =Y hf =D h + ) (Z W Runijic + ) iy Rk = Y iy Raﬁjk) - )
k k k m m B
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For an Euclidean submanifold M, an elliptic operator L is given by

1 X2 _1x2
L=A- X V() =e1 d1V<e 7 V(~)),

where A, div and V denote the Laplacian, divergence and the gradient operator
on M, respectively. The £ operator was introduced by Colding and Minicozzi [10]

when they investigated self-shrinkers. They showed that £ is self-adjoint respect to

x| x|
the measure e == du, where du is the volume form on M. We denote p = ¢~ 4~
and du might be omitted in the integrations for notational simplicity.

In order to prove our results, we give the following lemma first.

Lemma 1. Let M" be a submanifold with parallel Gaussian mean curvature vector
in the Euclidean space R"*P. Then we have

2
LIAP =2)VAP + (AP +2 Y &Pnlingng 23" | > ninl,
i,j,k,cc,ﬁ (xﬁ lj
) 4
p p
-2 Z (Z(hfphm_h?ﬁhw)) ’
l.,j,Ol,ﬂ

2
LIHP =2|VHP +|H +2 ) H“sﬁh;’;h{‘;—zz(zH%g) (5)

o, B0, ]
where £ = H* + %(X, eq) and H* =), h¥,.

Proof. Since the Gaussian mean curvature vector is parallel in the normal bundle,

we have
X
v,, (H"‘ + <2—e“>> —0.
Then we obtain
1
=5 2 X e,
k
and

V,ViH* = —h"‘ + = Z X, ep hjkh,,{ju th,] X, ex). (6)
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Combining (3) and (6), we get

Zho‘Ah“ Zh“V V,HY

i,j,o i,j,o
+ 3 RSB R+ > B Rk — > iy Rk
i,j.k,a m m B
1 2 1 B 1 2
= SIAP+ 5 D0 (X ep)hfhfih + (X, VIAP)
i,j.k,o,p
2
B
+ 3 HPWhGhG = Y hghl
i,j.k,o,B a,B i,j
2
B B
- Z (Z(h?phm _h?phpl)> )
i,j,o,pB
Therefore,
1
LIAP? = AIAP = (X, VIAP)
=2 h& A% +2|VA] — —(X VIA)?)
i,j,a
=2VAP + (AP +2 Y &Pnlntn
i,j.k,a,pB
2 2
B B B
X (S| -2 & (St )
o,f i,j i,j,o,B

where £% = HY + 1(X, e,).
From (6) one has

.
AlHP? =2|VHP + |HP? + Y H"h$(X, elg)h X, VIH|?),
wpij
where H* =), h¥;.
Then it follows that
1
LIH|* = AlHP = S(X, VIH])

=2VHP + [HP+ Y HhY(X. ep)hl;
o, B0, ]

2
=2VHP +H?+2 ) H“gﬂhghﬁ—zz<ZH“h§;) .
i,j o

o,Bi,J
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The following two lemmas will be used in the proof of our theorems.

Lemma 2. ([14,30]) Let M"(n > 3) be a complete submanifold in the Euclidean
space R"TP_ Let f be a nonnegative C' function with compact support. Then we
have

2 2[4 =1+ 1) 1\ 1 )
117 = D*(m) [anf”z + (1 + ;) n—2|||H|f||2] :

n -1
where D(n) = 2"(1 + n)%] (n— 1Yo, ", and o, denotes the volume of the unit

ball in R".

Lemma 3. ([25])
Letay,...,a, and by, ..., b, be real numbers satisfying y ;a; =Y, b =0,
Y a? =aandy; b} = b. Then

'Zalbz

and the equality holds if and only if either ab = 0, or at least n — 1 pairs of numbers
of (a;, b;)’s are the same.

3. Gap Theorems for n > 3

In this section, we assume that the Gaussian mean curvature vector of M is parallel
in the normal bundle.
In general, when the codimension p > 2, we know from [18] that

2 2
> (S| + T (St i) =3

o,pB i,j i,j,o,pB

Combining (4) and the above inequality, we have

LIAP 2 2[VAP + AP +2 ) Eﬁhjk “hg —31A
i,j.k,aB @)
> 2|VA? + |A]> - 20]|AP — 3|A1%.

Firstly, we give the proof of Theorem 1.

Proof. If& = 0, then M is a self-shrinker of the mean curvature flow, and Theorem
1 follows by [11]. Now we assume & # 0. We aim to show that this is impossible
for submanifolds satisfying an suitable integral inequality.

It follows from (7) and the inequality [VA|> > |V|A||* at all points where
A # 0, which is an easy consequence of the Schwartz inequality, that the inequality

LIAP = 2|VIA|> + A = 20&||AP —3|A* (8)
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holds on M in the sense of distribution. For a fixed point xo € M and every r > 0,
define a smooth cut-off function ¢, by

1, x € By(xp),
¢ (x) = ¢-(x) €[0,1]and |[Ve,| < 2, x € Bar(x0) \ Br(x0),
0, x € M\ By (xo0),

where B, (x¢) is the geodesic ball in M with radius » centered at xo € M. Mul-
tiplying both side of (8) by |A|"_2¢r2 and integrating by parts with respect to the
measure pdu on M yield

022/ |V|A||2|A|"‘2¢3p+/ |A|"¢>3p—2f E[|AI" 2 p
M M M
=3 [ 1A - [ 1areiciar,
M M
=2(n—1)/ |V|A||2|A|”‘2¢3p+/ |A|"¢3p—2f EIIAI" T 92 p
M M M
—3/ |A|”+2¢%p+4f S/ 1A (VIAL Ve, )p
M M
zz(n—n/ |V|A||2|A|"*2¢3p+f |AI"$2 0
M M
T 1
_2 _ Al’l 2 _/ An+2 2
|§|(2/M| "erp+ 57 | 14177670
—3/ |A|"+2¢3p+4/ S/ 1Al (VAL Y, )p
M M

> (2(n—1>—w>f IVIAIPIAP 2620
M

€))

2
|&
+<1—|5|r>/ |A|"¢3p—<3+— /|A|"+2¢3p
M T M
n—1 4—0o n 2
+o | oAl HVIAL Ve p = —= | A"V Ip,
M o M
where 7, 0 € R* and o € (0, 4). For the last inequality of (9), we have used
4/ 1A (VAL Y, )p
M
=a/ ¢r|A|"*‘<V|A|,V¢r>p+(4—o)/ o |AI" (VAL V) p
M M
_ (4—-o0)o _
zo/ or|A" 1<V|A|,V¢r>p—T/ IVIA|*|AI" g7 p
M M

4—0o
> / A"V, % p.
o M

By a direct computation, we have

2
n n
IV(IAI2¢) 1> = |AI"|V, > + nde A" (V. VIA]) + Z|A|”—2|V|A||2¢E.
(10)
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Pick o, 0 > 0 such that 2(n — 1) — @ = 2 Then we get from (9) that

no (4 n 4
0> - (—2f |V(|A|z¢r>|2p——2/ |AI" Ve, 1*p
n=Jm n=Jm

4
——/ ¢r|A|"‘<V¢r,V|A|>p)
nJm

+(1—|5|z)[ |A|"¢3p—(3+@>/ AP262)
M T M

11
n—1 4—o n 2 ( )
+o [ ¢rlA] (V|A|»V¢r))0_2— A" V0
M o M
g n 2 n .2
= —/ IV(JAIZ¢) |70+ (1 — Iélt)[ |Al" &y p
nJm M
€] o 4—o0
-~ (3+i>/ |AI" g2 p — (—+—)/ A"V, *p.
T M n 2Q M
n 1 . .
Set f = |A|2 p2¢,. Integrating by parts, we obtain
2 A 2 1 n 2
IVIIZ= | IV(A|2¢p)] pts V(Al"$;)Vp
M M M
1
+f A2V o} 2
. | (12)
=/ |V<|A|f¢r>|2p—§/ A" $2 Ap
M M
1
_ An 2 XT2 .
+ 16 [ 1A GXTE
Since
AIX)? =2|VX]? +2(X, AX)
=2n+2(x"N, H)
=2n+4(, H) —4|H|%,
we have
ap = -AIXP + %'V'X'z'z
(13)

n P
=—5p—plEH) + plHI* + Z|XT|2.
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Substituting (13) into (12) yields

/IVfI2=/ |V<|A|%¢r>|2p+§/ Al"$20
M M M
1 n 2 1 n 42 2
+5/ Al ¢,<5,H>p—§/ APG2 H 2
M M
1 n 2T 2
— 15 | 1argxT e, (14
5/ |V(|A|%¢r>|2p+%/ Al"¢2p
M M

1 1
5 [1arede mo -5 [ 1argii.
2 Ju 2 Ju
Combining the Sobolev inequality in Lemma 2, (11) and (14), we have

025/ |Vf|2+1/ |A|"¢3|H|2p—3/ Al G2(E. H)p
+(1—|E|r—%>/ |A|”¢r2p—<3+|§—|>/ A" 292
M T M

o 4 —¢o
- (—+ )/ A"V, p
n 20 M

(n—2)%

n 2
ST O s
7 ﬂ "2 2 _i n 2
(50~ a1t £ [ 1arer i o

+ (1l - %) /M|A|”¢3p— (3+'f—')/M|A|"“¢3p

o 4 —0o
- <—+ )/ APV, 2.
n 20 M

_ 72 .
Choose t = % € RT such that 7= = %. Then (15) becomes
n(n —2)%c )
0> " B
= 2DXm)[2n2(n — )2 + (n _2)2]|II "y pll 2

o n 2 z n 2
o [ 1arade mo+ (1-1ele =) [ 1areo
= (3+5) [ 1arzs

T M

o 4 —o
~ <—+ )/ |AI" |V, *p.
n 20 M

(16)
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On the other hand, for any 6 > 0, we have
o o
—2—/ |AI"¢2 (&, H)p > ——/ | A"} IE||1H |p
nJu

IEI 0 2
/|A|¢ <29 §|H|>p

(17)
”'E'/ A i'g'/ AI"$2 | H 2 p
4n0 dn Ju g
ol§| o0l&|
> ——/ |A|”¢>rp——/ |A|" T2}
Combing (16) and (17), we get
0> n(e - 270 1Al @2 ol
= 2D2m2n2(n — 12 + (n — 2)2] rPllit
o ol§]
< I-‘SIT————>/ |AI"$7 o
o0
<3+'€—'+ f')[ A7 p
M
o 4—o0
- <—+ )/ A"V, *p.
Now we let 7 satisfy 7 < %.Then
4n6(1 — |E]1) 4no 4no
< < — =
nd + |&| no +1&  no
We choose o = % € (0, 4) such that
ol§|
— =1.
1§17 +Z +4 7
Hence
n(n —2)* 4n0(1 — |&|7)

02 2 2 2 2 N ||| |¢rp||%
2D*(n)[2n*(n — 1)* + (n — 2)7] né + || n=2
n|g|62(1 — |&|7) E}/ 2.2

—|——F+3+= A"t (18)
[ 0 T | . Ml "¢rp

o 4—o0 n 2
-\ -+t — A" IV |7 p.
n 20 M

By the Holder inequality, we have

f A" 270 < I1AI" @7 oll o, - [IIAPI]y.
M



450 H. Wang et al.

Hence it follows from (18) that

49(1—|El)  (nEl62( - jElD) )
0 — 3
= [K<n><n9+ €D ( o

SOV IAIR L INA" 2 )]
P T)n ||n}||| "$2oll 2

o 4—o0 n 5
-+ —— A"V, p,
n 20 M

(19)
where
_2D*(m2n*(n — 1)? + (n — 2)%]
k@) = n2(n — 2)2 '
Set
497 (1 — |&[7)
K(n,|&],1,0) = 5 .
[nT|€162(1 — |E|T) + BT + |E]) (O + |E)]K (n)
By direct computations, one has
372 _
iKz(n,|§|,r,9)= 49I§|(2n9+|é|)( 3t =25t + 1) .
it k(n)[nt|§10°(1 — [§]r) + Bt + |§))(n6 + |§])]
_ _ 201 —
iKz(n,|é|,r,9)= 4z|&|(1 Iilf)[ nto=(1 |§:|T)+(3‘L'+|§|)]2'
a0 k(m)[nt|§10°(1 — [§]7) + Bt + [E) (0 + [§])]

It is easy to see that, when restricted in (0, \SL\) x (0, 00), the system

—372_2Elt+1=0
—nt0* (1 — |l + BT+ |€) =0

has only one solution

G e el PP 3 .
3 ’ JiER+3 — €]

By the monotonicity of K (n, |£], t, 0) as a function of t and 6 in (0, é) x (0, 00),
we see that K (n, |&], T, #) achieves its maximum

4152 +3 - €D
[Bnlg] +2v/nlE] + ny/IEI* + 3)]k (n)

K(n, &) = Kmax(n, 5], 7,0) = J

when 7 = 19, 6 = 6.
Since we have picked o and ¢ such that2(n — 1) — @ =" ando € (0,4),
one has
c 4—0 o 4 —0)? 4 4

0 —_ = — _— - .
<n+ 20 n+8(n—1)—na<n+n—2
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Since |[V¢,| < % and [, |A|"du < oo, we have
tim_ [ 1A11V9,Pp =0,
r—00 M
Since ||A]|, < K (n, |&]), (19) imples

0= (K(n. [€D* = 1AIL}) tim lIIA"67pll 2, =

2
Hence |||A|”e_%||%2 = 0, which implies that [A| = 0. Hence M is a linear
subspace of R"T7. This implies & = 0, which is a contradiction. This completes
the proof of Theorem 1. O

Combining (4) and (5), we have

. 1
LIA? = LIA]> — —L|H|)?
n

= 2|VA? + |A)? 22 Zh“ nf,

2, 2 (20)
o B a B apa
-2 3 (Dhmhm i) <22 ()
iyj’a’ﬁ .. o
B
v 3 et~ T Y U,
i,j.k,op a,B,i,j
At the point where the mean curvature vector is zero, we have
2 2, 2
o /S o /3 o ﬁ oo
8 (D) 2 (Dot ) 22 (o)
o, i.j.o,B Lj o\«
, @1
=—2) N(A“AP — AP A%) =2 “[ir(A* AP))]
a.p a.p
> -3A1%

where A% = (h"‘ )nxn and we have used Theorem 1 in [18] to get the inequality.
For a fixed o/, choose a local orthonormal frame field {e; } such that h“ AZS;j.
Then by Lemma 3 we have the following

2 3 e =2 X 04
i,j.k.p
1

mz 2. 0) (Z(hf})z)zmﬁ

1
1

2

- \/72 UzXﬁj P CAN

nn—1)
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Hence we get that for any n > 0

2 S0 M = -2l S () ry o S )+ Tiet

i,j.k,a,pB i,j,o i,j

n—-2 4 2
I—W <—|A| +7l|$| |A] )
(22)

At the point where the mean curvature vector is nonzero, we choose ;1 = %
The second fundamental form can be written as A = Za h%ey, where h*, n+1 <
a < n+ p,are symmetric 2-tensors. By the choice of e, 1, we see that trh"t = |H|
andtrh® = Qfora > n+2. The traceless second fundamental form may be rewritten
as A = > h%e,, where i1 = pntl — 'rlﬂld and A% = h% fora > n +2. We set
Ag =h" ey, Al = Y goninhea Ay = " leprand A; = Y, 00 h%q.
Then we have

AP =Y kP =|AP = |Aul%,

a>n+2
P2 g2 712 P2
AP = ) IR = AP - |Aul*.
a>n+2
o2 2 _ |HP? P2 2 :
Note that |[Ay|” = |Ax]| — and |A;|= = |A/]°. Since e, is chosen

globally, |Ay |2, |A H |2 and |A; |2 are defined globally and independent of the choice
of €;.
Then we have

2
) 2 1
S nenl | =1dn* + S1HP AP + 1B
af \ i.j " "
. , (23)
Pntly B
2 ¥ (Siig) « 2 (i)
a#n+1 \ i,j a,B#En+1 \ i,j
2 2
B ﬂ . n+lp n+1p
> (St i) =2 = T (s i)
i,j,o,pB a#n+1 i,j P
(24)

2
© X T (S -ii)

o, B#En+1 i,j

2
0 1
Z(ZH“h%) = [HPIAu? + —|HI. 25)
ij \ a
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From (23), (24) and (25) we obtain the following

2 2 5
zXﬁ: (Z n hﬂ) +2 ) (Z(hf‘ph';j —h‘}‘ph’;l ) - %Z (Z Hdh%)
ij \«a

i,j,o.p

=2/Ay* + ;|H|2|AH|2

2
ey (z) ey Z(Z(h?ﬁ%j—h?ﬁ%»)

aF#n+1 a#n+1i,j

2

g B B 7B

2 % (i ) 2 = r (s i)
a,B#n+1 o,f#n+1 i,j P

(26)

We choose {e;} such that hf'<+1 = 2;8;j. Then h?;'l = ii(SU, where %; =

A — IH |, We first have the followmg estimate.

2 2
sy (Sieis) —a ¥ (ini;gg)

aF#n+1 i,j a#n+1 i

<4 (Z i?) > (h%)
a#n+l

i i

=4An? Y S (%)’

aF#n+1 i

For any fixedi, j = 1,...,n, i # j, one has

Hence

2
4y Z(Z (VRS — R, ) =4 3 N i —ap2(i%)?

a#ntl ij \ p aFEntlisj

=4 3 > i-i))?

aF#n+1i#j

<8 Y S (R2+i%(he)’

aFn+1i#j

<8lAul? Y Y G§)?

a#En+1i#Ej

=8Ay? (an 3 Z(ﬁ?‘,-)z).

a#n+1 i
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By an inequality in [18], we have

2 2
3D 3 O3 SIS 9l ol UL IEETAS
4

a,f#En+1 \ i,j o,B#En+1 i, j

Hence, we have the following estimate

2 2
2 B B B
25 () % (Sopt ) 2 5 (S om -t
ij \«a ijap \ p
cq 2o e
> —4|A| —;IHI [A]“.
(27)
We also have
3 1 o (3
2 Y ePnlndng — Z H“gﬂh;*jhfj =2 ) & (hik —~H 5,-k> huhfk
i,j.k,apB a,ﬂ,i,j i,j.k,ap
=2 Y &lagnsnh,
i,j.k,a,p

=2 Y i

i,j.k.op

o 1 51
<h§?‘j + ;H“(s,-j) (hjk + ;Hﬂajk>

2 .
=2 Y &Pk S Y HPEP (i)

i,j.k,ap l,j,Ol,/ff
2 agBio B
+=~ > HUEPREAL,
ij.o.B
(28)
where hf‘] = h‘)‘j — —H“S,]
As (22), for any n > 0 we have
n—2 1 .
2 Ph he i? —— [ -A* + 2A2).
> PR =~ n(n—l)(nl * + nlgPIA| (29)
i,j.k,o,pB
On the other hand, we have
2 . 2 .
=) HiEP)? = <H,s>\A|Zz—;|H||5||A|2, (30)

i,j,a,p
2 wrpiaif 2 , . 2 . 2 0o
= Y HOEPhh =~ ) (H. hij) (e, hij) = —~IHIENY lhis P = —~IHIIENAP. (1)
ij.a.p ij ij

Combining (20), (21), (22), (26), (27), (28), (29), (30) and (31) together, we get
that at any point of M, there holds

o o o o 2 o
LIA? > 2|VA? + |A)F — 4]A]* - ;|H|2|A|2
n_2 (32)

-— (1|A|4 + n|s|2|fi|2> - i|H||s||fi|2
Jnn—1) \n n '
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By using (32), we give the proof of Theorem 2 as follows.

Proof. If & = 0, then M is a self-shrinker of the mean curvature flow, and Theorem

2 follows by [2]. Now we assume & # 0. Similar to Theorem 1, we aim to show

that this is impossible for submanifolds satisfying an suitable integral inequality.
From (32), the following inequality holds on M in the sense of distribution.

. . n—2 . n—2 o
LIA? > 2|V|A 2+<1—— 2) A2—<4+—> APt
A2 = 2|VIA|| Jr—lél ) 14 —— ) Il
2 o 4 o
— Z|HPIAP — —|H|[§]IA]%.
n n
(33)
Let ¢, be a smooth function on M with compact support as in the proof of

Theorem 1. Multiplying both side of (33) by |A|”’2q15,2 and integrating by parts
with respect to the measure pdu on M yield

. . n—2 o
022/ |V|A||2|A|"2¢2p+(1——n|5|2>f |AI"? p
M s Vnn—1) M "
2 o 4 o
——/ |H|2|A|"¢>3p——/ |HIEINAI"¢; p
nJm nJm

n—2 o o o
~(4+ o=y ) J, A die - [ araiains

— 20— 1)/ |V|fi||2|fi|"—2¢2p+(1—ﬁmsﬂ)/ Ale?o
" : NZICED) Ml

2 o 4 o
- —/ |H|2|A|"¢>3p——/ \HIENAP 920
nJm nJm

n—2 R 2 42 Lin=1,v A
- <4+ m)/}wh‘” ¢r/0+4/M¢r|A| (VIA], Vo) p
> (2<n— D - @)AWMHZW%%

+ (1 _ iméﬁ)/ AreZo — %/ HPIAI" 2
Jnn —1) M g nJy "

_i/ |H||$||A|”¢2p_<4+n—_2)/ |A|n+2¢2p
nJm r /Vl(f’l—l)n M r
o . 4 — .
+Gf ¢’|A|n_l(v|A|’V¢r),0—2—af |AI" Ve, *p.
M e Jm
(34)

Here o € R and o € (0, 4).
As in (10), we have

2
o n o o o n o °
IVUAIZ P = [A" IV, + ngr| A"~ (Vesy, VIAD + 1A VIAIPg7.
(35)
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Pick 0, 0 > O such that 2(n — 1) — #52¢ = 29 Combining (34) and (35), we get
0> 3/ IV(AIE )20 + (1 - ﬁmaz)/ 1AI"¢2p
nJuy Jnn —1) M
2 o 4 o
——f |H|2|A|"¢3p——/ \H|EIIAP$20
nJm nJm
- <4+ L)/ AP 292p — (3 4 4;(’)/ AP IVe, o
Vnm="1n) Ju ’ n 20 )Ju o

(36)
Set f = |A°| 3 ,o%qbr. As in the proof of Theorem 1, we have

2 o 2 n 2in 2 1 2in g2
/|Vf| 5/ |V<|A|z¢r>|p+1/ Al ¢,p+§f Alg2 (e, Hyp
1 R
—5/ |H?|A]"$2p.
M

Combining the Sobolev inequality, (36) with (37), we obtain

o o n—2 o
0> — vV £|? (1_7_7 2)/ Al"p?
=2 [ 19rp e (1-5 - A=nie) [ 1Arazs
+(——7)/ @2 H P — /Mvi\"qb%(s,mp
- i/ HIENAI 62 — (4+ ;2)/ AP 2g2p
nJu " nin=Tn) Ju '
o 4 —o - 5
—(—+—)/ APV, 12
VPR + <—5— i 2——H 7H )/A
/| R+ an HllEl - Sianen) [ 1Areze
_ _ = A2 2 s n+2
+(2n n)/MlAl $2IH I <4+ F(n_l)n)/Mw 420

o 4-—o0 - 5
-\ +— [Al"IVer|”p
n 20 M

(=20 | g2

“dn(n — 1)2D2(n)(1+t) "
o n— .
( Z—Wnlél —*|H||§|—*|HH5\>/M|A| rp

2 (n-2% P
+ ‘;‘4<n_1)zsz)/'A"”r'H'p

(&
i
i

44 / n+2 2p
«/n(n—l)n> AI"60
o 4-—o0

-+ ) A"V *p.
n 20 M
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Since |H| < supy/|H| < /1€ + 5 — |&| by the assumption of Theorem 2 and
o € (0,4), we have

0= (n—2)%
“4n(n —1)2D%2(n)(1 +1)

+ (1 O P22 e — Zieisupy H|
e — — — u
4 n(n—l)}7 2n Pm

NAI"g7 pll o,

4 P
—- & lsupy | H]| MIAI érp

o 2 (n—Z)zo' 2/ .
_——— - H Al
+(2n n 4mn— )2n 3t)supM| | MI "¢y 0

n+2
(4+ —n(n—ln>/| 22,
o — °n 2
- (—+—)/ APV, Po.
n 20 M

where 71, o are positive constants such that

(38)

2 (1 O P2 el — Zelsupy HI - i) |H|)+( 4)supy |HI? > 0
n _—_—— _ — Su —_ = su g — Suj > U.
4 n(n—l)77 2n Py n Pm Pu

Set
U=U@,|| supylH| 0,n)
o n—2 o 4
T [ e Y g4 by
n( 4 mnm 2n|$|SUPM| | = —&lsupy| |>

+ (0 — 4)sup,, | H|*.

We choose
_ o(n—2)%supy|HI?
2n%(n — DU
such that
(n —2)%0 HP
- —su

2n%(n — )2t Pm
Hence we get from (38) that

on(n —2)2U

A 2
AP 92l 2,

0= 2D2(n)[o(n — 2)2supy, | H|? + 2n2(n — 1)2U]
—(a+ n-s Alt242
< NaCE 1)n>/M' e

o 4—o0 ¢ 5
|-+ A"V p.
n 20 M
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By the Holder inequality, we have

{ on(n —2)*U
— | 2D2(n)[o (n — 2)2sup,, | H|? + 2n%(n — 1)2U]

n—2 2112 "2 o1l n 39
<4+—mn>nAnn}n|A| 92pll (39)

o 4—o0 - 2
|-+ [AI"Vr|7p.

D= D(l’l, |$|’ SuleHL g, 77)

. onn(n —2)2/nin — HU
N 2D2(m)@n/n(n — 1) +n — 2)[o(n — 2)2supy, | H|? + 2n2(n — 1)2U]

Set

We take
_nlg+ (= 2%EP — (1 = )EWS + (n — 2]
V2(n —2)supy |H|VG +2n(n — 1)é

S c+(n—2)2E2 —(n—2)|
' 4y/n(n — DIE| ’

where 6 = 4 + |&[supy | H| — supy |H|> > 0, ¢ = 4(n — 1)(n — 4[&|supy |H| —
ZSupM|H|2) > 0. One has

nlg + (n— 22 — (n — 2)|E|V s + (n — 2)?[£?]
V2(n —2)supy |H|NG +2n(n — 1)6
ng

< =

2n(n — 1)o
_ 40— 1)(n — 4lE[supy | H| — 2supy |H )
200 — 1)(5 + |§|supy | H| — supy | H|?)

n — 4|€|supy | H| — 2supy | H|?

n +2|€|supy | H| — 2supy |H|?

0<

<4.

Here the second inequality is strict since £ # 0. Hence o € (0, 4). We also have
U = U(n,|&|, supy|HI, 00, n0) > 0. As in the proof of Theorem 1, D achieves
its maximum D (n, |&|, sup,,|H|) with

Jn(n —2)
4/n — 1D(n)
o VA — 1) (n — 4[€[supy, [H| — 2supy [H|?) + (n — 2)%[E]> — (n — 2)[§]
(n = 2)supy | H| + V2n(n = 1),/'s + [€]supyy | H| — supy | H|?

D(n, |&], supy |H|) =
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As in the proof of Theorem 1, % + 42;; has an upper bounded E (n) that depends

only on n. Since |V¢,| < % and [, |A|"dp < 0o, we have

tim_ [ 141190, =0,

r—00 M
Since ||A°||n < D(n, |&|, sup,,|H|), then we get from (39)

0= (D, Igl, supy | HD? = I1AI}) lim 1IIA["@pll 2, = 0.
2

Hence |||A|”e’%||nnTZ = 0, which implies that A = 0. Therefore, M is totally
umbilical, i.e., M is S"(v/|£]% 4+ 2n — |&]) or R". Since we have assumed that

supy | H| < /% + |E|? — |&], the first case is excluded. So, M is R" and £ = 0,

which is a contradiction to the assumption. This completes the proof of Theorem 2.
0

4. Gap Theorems for n = 2

We need another Sobolev type inequality in dimension 2, which was proved by Xu
and Gu in [31].

1
o 4 21 2 2 1 2 00
c ffdu) =< IV lrdu+r | fodu+ |H|f*du,Vf e CX(M)
M tJm M 2Jmu
(40)
forall t € R, where ¢ = %ﬁ Now we give the proof of Theorem 3.

Proof. Set f = |A|p%¢,. As in the proof of Theorem 1, for any 7,0 € R*, 0 €
(0, 4), we have

0> %/ IVfI2+%/ ARG I1HIPp — %f APG7 (€. H)p
M M M
o 2,2 |§| 4,2
+(1—|g|r—z) /M|A| ®2p — <3+7>/M|AI ;o 1)

A /|A|2|V¢ 2
2" 2% ) ), e

Combining the Sobolev inequality (40) and (41), we obtain

1
Oz%[i (/ f4> ¢ [ 1atezo -2 | |H||A|2¢3p}
c\Um M 2Jm
+5 [ 1areinro - 5 [ 1aPode. o
M M
a 2,2 @ 4.2
+(1-te=5) [ 1arazo— (34 51) [ 1areo

o ic /|A|2|V¢ 2
2" 20 ) )y rip

(42)
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By using the Cauchy inequality, for any 6 > 0, we get from (42)

oz;—é(fo“>2—%t M( HP + >|A| 620

+%/ |A|2¢3|H|2p—3/ AP (€, H)p
M

) |A|2|V¢r|2p
M

o 4% o ot

z%</f> +<Z——)/|A|¢,|H|p
o ot ot? 2.2

( |s|r—z—@—7)/M|A|¢rp

=5 [ 1aree (3+E>/M|Al4¢3p

—(5 )/ APV, .

‘We choose t = (;, such that % = %. Hence

1
Oz%</Mf4)2+(1—|s|r—“ 492)/ A2g2p
—%/M|A|Z¢Z<s, Hyp <3+|i_|)/M'A'4"’r2p
o 4 —o 5 5
- (5+—2Q )fM|A| Ve, 2p.

On the other hand, for any w > 0, we have

—%/MlAlztb (§, H)p = —4/ |AP¢7IEIHp

_algl Qo2
/|A|¢ ( 5|H|>p

a|5| ol&lw
——/ AP p — —/ A0
860 M 4 M

Combining (43) and (44), we get

A% o 9 ol ),
0z 7 ([ ) (1t =G - o - %) [ vt

( @+ﬂ)f 41020
( )/M|A|2|V¢r|2p.

qu

o ot? 1§ 4,2
'f'f‘z‘—>/ ARG 0 (3+T>/M'A' 620

(43)

(44)
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Let 7 satisfy 1 — [£7| > 0. We take

_ Bwb*(1 — [E|7)
2002 + 18w + |£]62°

which satisfies

8wh?> 8wh?>
0<o < < =4
200% 4+ 18w + |£]602  2w0H?

since w > 0, such that

o 90 ol€]|
1 — gl 222 281y,
T = "2 8w

Hence we obtain

| Bo(l— ) /f4)5

= 22002 + 180 + €160 \ Uy
15l 20%0%€|(1 — |€]7) /|A|4¢2
r T 2007 + 180 + E[02 r

(o

<%+ )/ ARV, 120
[ St(1 - 1)
-
-5+

(45)

v

cQRwh? + 18w + |£162)

|§| 20%0%E|(1 — |€]7) 4 2 4 :
3+ T 2a)92+ 18w + |S|92) (/M|A| > j| </Mf )
d ALV
Y )/| IV 2.

8wl (1 — |&|7)
Fwb? + 18w + |£162) (3 + 'i—') +20202E](1 — |E1D)]

Set

K(§l. 7. 0,0) =

Similar as in the proof of Theorem 1, K (|&], T, w, ) achieves its maximum

2 1
K(&) = ,
3(/IEP +3 + |s|>\/(¢|§|2 134+ EDGIER +3+ (1 +V2)ED)
when
_VEPE3-B 3 _ 1
3 O V2WER 3 —1g) V2T
33

3+ V2EIIEP T3 - 16D
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As in the proof of Theorem 1, % + 42;; is bounded from above. Since | V¢, | <

2
r
and [, |A]*du < oo, we have

lim / |A?|Vé, *p = 0.
r—00 M

Since (fM |A|4du)l/2 < K(|&]), we get from (45) that

0>[K(|§|)—</ IA|4dM> ]hm </ Ao >>0-

Hence f M |A|*p? = 0, which implies that |[A| = 0. Hence M is a linear subspace
of R?>*7. This completes the proof of Theorem 3.

]
Using a similar argument, we give the proof of Theorem 4

Proof. Set f = |/§|p%¢,. For n = 2, we have

o o .

0= [ vt (G -1) [ 1arainis
2 Jm 4 M
o o °9 2
(1= - Jlenmn = 2enm) | 1467 (46)

—a [ VArgto— ( +—)/ ARIVe, 2.
Combining the Sobolev inequality (40) and (46), we obtain

1
to 4\’ L (° 312621 112
022—5</Mf> +<Z‘1>/M'A"”f'H"’

+(1—%—IT"—t—"|H|——|s||H|—2|s||H|)f APg2p (D)

_4/ A e2p ( +—>/|A| Vo, 0.

Since |H| < supy |H| < v/|€|*> + 1 — |€| by the assumption of Theorem 4 and
o € (0,4), (47) becomes

1
to A\ (7 . 2 1242
0225</Mf> + (5= 1) sl [ 1oz
o tzd o (e o
(1= = == = ——supy|H| — —|&|supy | H| — 2| |supy | H| /|A|2¢3p (48)
4 2 4 4 "

o o 4 —o o
—4/ |A|4¢%p—<5+2—)/ ARV *p.
M o M

We take

4 — 8|&|supy | H| — 4sup,, |H|?
1+ 212 + 1supy, | H| + |&|supyy | H| — supy, | H|?
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which satisfies
A(1 — 2[E[supy |H| — supy |H?) _

0<o < 5
1+ [§[supy | H| — supy | H|

since t > 0, such that
2

o toc to o o 2
1= % = = supy | H| = T 1glsupy | H| ~2glsupy | H| = (1= ) supy | H [
Hence we obtain from (48)

1
0> 21 (1 — 2|&|supy |[H| — supy, |H|?) (/ f4)2
T C(1 4212 + 1supy | H| 4 [E|supy, | H| — supy [HI?) \Jy

o o 4 —o o
—4f |A|“¢3p—<5+2—>/ A1V, 120
M o M

- |: 21(1 — 2|&|supy |H| — supy, | HI?)
T L& + 2t2 + tsupy, | H| + |&|supy, | H| — sup,, | H|?)

4 (/M |f‘i|4)1 </M f4>5 - (% + 42%) /M ARIVe, .

t(1 —2|&|supy | H| — supy, |H|?)
2¢(1 + 2t2 + tsupy, | H| + |E|supy, | H| — supy, |H|?)

(49)

Set

D(|‘§|9supM|H|st) =

‘We choose

2 b
such that D(|§[, sup,,|H|, t) achieves its maximum D(|&], sup,,|H|) with
1 — 2|&|supy, | H| — supy |H|?
26Q2V2y/1+ [ Isupy | H| — supy | H > + supy | H|)
4—0c

As in the proof of Theorem 1, % + T is bounded from above. Since |V¢,| <

t = \/1 + 1§ Isupy | H| — supy | H|?

D(|&|, supy |H|) =

2
:

and fM |A|2du < 00, we have
lim / |A|2|V¢,|2p =0.
r—00 M

o 1/2
Since ([M |A|4d,u) < D(|£], supy, | H]). then we get from (49) that

1

1
0> [D(|s|,supM|H|>— (/ |fi|4du)2] lim (/ |fi|4¢;‘p2)2 > 0.
M r—o00 \ J iy

Hence f I |f§|4p2 = 0, which implies that A = 0. Therefore, M is totally
umbilical, i.e., M is S*(v/|€]2 +4 — |€]) or R%. Since we have assumed that

supy | H| < +/1+ |€|>— ||, the first case is excluded. This completes the proof of
Theorem 4. o
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