

Huijuan Wang · Hongwei Xu · Entao Zhao

Submanifolds with parallel Gaussian mean curvature vector in Euclidean spaces

Received: 6 October 2017 / Accepted: 9 January 2019 / Published online: 21 January 2019

Abstract. In the present paper, we prove a rigidity theorem for complete submanifolds with parallel Gaussian mean curvature vector in the Euclidean space \mathbb{R}^{n+p} under an integral curvature pinching condition, which is a unified generalization of some rigidity results for self-shrinkers and the λ -hypersurfaces in Euclidean spaces.

1. Introduction

Let $X: M^n \to \mathbb{R}^{n+p}$ be an *n*-dimensional smooth immersed submanifold in the (n+p)-dimensional Euclidean space \mathbb{R}^{n+p} . Define the Gaussian mean curvature vector ξ of M by

$$\xi = H + \frac{X^N}{2},\tag{1}$$

where H is the mean curvature vector of M and () N denotes the normal part of a vector field on \mathbb{R}^{n+p} . We call ξ the Gaussian mean curvature vector since it is related to the mean curvature vector \tilde{H} of M when it is considered as a submanifold of the Gaussian space $(\mathbb{R}^{n+p}, e^{-\frac{|x|^2}{2n}}\delta)$ by $\xi = e^{-\frac{|X|^2}{2n}}\tilde{H}$, where δ denotes the Euclidean metric on \mathbb{R}^{n+p} . *M* is called a submanifold with parallel Gaussian mean curvature vector if ξ is parallel in the normal bundle. Submanifolds of this type were first investigated by Li and Chang [20].

Let $X: M \to \mathbb{R}^{n+p}$ be a submanifold with parallel Gaussian mean curvature vector. Obviously, when $\xi = 0$, M is a self-shrinker of the mean curvature flow, which plays a very important role in the study of the mean curvature flow [10,15,16,27]. The pinching problems of self-shrinkers have been studied extensively. For example, Le and Sesum [17] proved that any smooth self-shrinker with polynomial volume growth and satisfying $|A|^2 < \frac{1}{2}$ is a hyperplane. Here A denote the second fundamental form of an immersion. Cao and Li [1] generalized this

Research supported by the National Natural Science Foundation of China, Grant Nos. 11531012, 11371315, 11201416.

H. Wang · H. Xu · E. Zhao (⋈): Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, People's Republic of China. e-mail: zhaoet@zju.edu.cn

H. Wang: e-mail: whjuan@zju.edu.cn

H. Xu: e-mail: xuhw@zju.edu.cn

Mathematics Subject Classification: 53C44 · 53C42

result to arbitrary codimension and proved that any smooth complete self-shrinker with polynomial volume growth and $|A|^2 \leq \frac{1}{2}$ is one of generalized cylinders. On the other hand, Ding and Xin [11] showed that any immersed self-shrinker satisfying $\left(\int_M |A|^n \mathrm{d}\mu\right)^{1/n} < C$ for certain positive constant sufficiently small is a linear space. For more curvature pinching theorems for self-shrinkers, see [1,2,4,5,11,12,17,19,21] and references therein.

If p = 1, (1) is reduced to

$$H_0 + \frac{\langle X, N \rangle}{2} = \lambda,\tag{2}$$

where H_0 is the mean curvature function, N is the inward pointing unit normal and λ is a constant. A hypersurface satisfying (2) is called a λ -hypersurface, which was introduced by Cheng–Wei [7] and McGonagle–Ross [23]. The geometric properties of λ -hypersurfaces are recently investigated by Cheng, Guang, Ogata, Wang, Wei, Xu, Zhao [3,7,13,26], etc. As generalizations of self-shrinkers of the mean curvature flow, Cheng and Wei [7] classified complete λ -hypersurfaces with polynomial area growth and $H-\lambda \geq 0$. They also defined an \mathcal{F} -functional and studied \mathcal{F} -stability of λ -hypersurfaces. Cheng, Ogata and Wei [3] proved some gap and rigidity theorems for complete λ -hypersurfaces. Wang, Xu and Zhao [26] investigate the integral curvature pinching theorems for λ -hypersurfaces. See [6,13,24], etc. for more results on the rigidity of λ -hypersurfaces.

In this paper, we study the integral curvature pinching theorems for submanifolds with parallel Gaussian mean curvature vector. We firstly prove the following L^n -pinching theorem of the second fundamental form.

Theorem 1. Let $X: M^n \to \mathbb{R}^{n+p} (n \geq 3)$ be a complete submanifold with parallel Gaussian mean curvature vector in the Euclidean space \mathbb{R}^{n+p} . If

$$\left(\int_{M} |A|^{n} \mathrm{d}\mu\right)^{1/n} < K(n, |\xi|),$$

where $K(n, |\xi|)$ is an explicit positive expression of n and $|\xi|$, then M is isometric to \mathbb{R}^n .

Remark 1. If $\xi = 0$, then M is a self-shrinker. Hence our theorem is a generalization of the L^n -pinching theorem proved by Ding and Xin [11] to submanifold with parallel Gaussian mean curvature vector in the Euclidean space \mathbb{R}^{n+p} .

Let \mathring{A} denote the tracefree second fundamental form, which is defined by $\mathring{A} = A - \frac{H}{n}g$ with g denoting the induced metric on M. We prove an L^n -pinching theorem of the tracefree second fundamental form for submanifolds with parallel Gaussian mean curvature vector in the Euclidean space \mathbb{R}^{n+p} provided that the mean curvature vector is suitably bounded.

Theorem 2. Let $X: M^n \to \mathbb{R}^{n+p} (n \geq 3)$ be a complete submanifold with parallel Gaussian mean curvature vector in the Euclidean space \mathbb{R}^{n+p} . Suppose the mean curvature vector satisfies $\sup_M |H| < \sqrt{\frac{n}{2} + |\xi|^2} - |\xi|$. If

$$\left(\int_{M} |\mathring{A}|^{n} \mathrm{d}\mu\right)^{1/n} < D(n, |\xi|, \sup_{M} |H|),$$

where $D(n, |\xi|, \sup_M |H|)$ is an explicit positive expression of $n, |\xi|$ and $\sup_M |H|$, then M is isometric to \mathbb{R}^n .

When $\xi = 0$, we have the following corollary, which is obtained by [2].

Corollary 1. Let $X: M^n \to \mathbb{R}^{n+p} (n \geq 3)$ be a complete self-shrinker in the Euclidean space \mathbb{R}^{n+p} . Suppose the mean curvature vector satisfies $\sup_M |H| < \sqrt{\frac{n}{2}}$. If

$$\left(\int_{M} |\mathring{A}|^{n} \mathrm{d}\mu\right)^{1/n} < D(n, \sup_{M} |H|),$$

where $D(n, \sup_M |H|)$ is an explicit positive expression of n and $\sup_M |H|$, then M is isometric to \mathbb{R}^n .

For the case n = 2, we obtain the following results.

Theorem 3. Let $X: M^2 \to \mathbb{R}^{2+p}$ be a complete surface with parallel Gaussian mean curvature vector in the Euclidean space \mathbb{R}^{2+p} . If

$$\left(\int_M |A|^4 \mathrm{d}\mu\right)^{1/2} < K(|\xi|),$$

where $K(|\xi|)$ is an explicit positive expression of $|\xi|$, then M is isometric to \mathbb{R}^2 .

Theorem 4. Let $X: M^2 \to \mathbb{R}^{2+p}$ be a complete surface with parallel Gaussian mean curvature vector in the Euclidean space \mathbb{R}^{2+p} . Suppose the mean curvature vector satisfies $\sup_{M} |H| \le \sqrt{|\xi|^2 + 1} - |\xi|$. If

$$\left(\int_M |\mathring{A}|^4 \mathrm{d}\mu\right)^{1/2} < D(|\xi|, \sup_M |H|),$$

where $D(|\xi|, \sup_M |H|)$ is an explicit positive expression of $|\xi|$ and $\sup_M |H|$, then M is isometric to \mathbb{R}^2 .

Our global pinching theorems for submanifolds with parallel Gaussian mean curvature vector in the Euclidean space \mathbb{R}^{n+p} are originally motivated by the global pinching theorems for submanifolds with parallel mean curvature vector in space forms, see [30,31], etc. Please refer to [22,25,28–33] for more rigidity theorems for submanifolds with parallel mean curvature vector. For another generalization of self-shrinkers please see [8,9], etc.

The rest of our paper is organized as follows. Some notations and several lemmas are prepared in Sect. 2. In Sect. 3, we prove Theorems 1 and 2. Theorems 3 and 4 will be proved in Sect. 4.

2. Preliminaries

Let $X: M^n \to \mathbb{R}^{n+p}$ be an *n*-dimensional immersed submanifold. Denote by *g* the induced metric on *M*. We shall make use of the following convention on the range of indices:

$$1 < A, B, \ldots < n + p, 1 < i, j, \ldots < n, n + 1 < \alpha, \beta, \gamma, \ldots < n + p.$$

Choose a local field of orthonormal frame field $\{e_A\}$ in \mathbb{R}^{n+p} such that, restricted to M, the e_i 's are tangent to M^n . Let $\{\omega_A\}$ and $\{\omega_{AB}\}$ be the dual frame field and the connection 1-forms of \mathbb{R}^{n+p} , respectively. Restricting these forms to M, we have

$$\begin{split} \omega_{\alpha i} &= \sum_{j} h^{\alpha}_{ij} \omega_{j}, \quad h^{\alpha}_{ij} = h^{\alpha}_{ji}, \\ A &= \sum_{\alpha, i, j} h^{\alpha}_{ij} \omega_{i} \otimes \omega_{j} \otimes e_{\alpha} = \sum_{ij} h_{ij} \omega_{i} \otimes \omega_{j}, \\ H &= \sum_{\alpha, i} h^{\alpha}_{ii} e_{\alpha} = \sum_{\alpha} H^{\alpha} e_{\alpha}, \\ R_{ijkl} &= \sum_{\alpha} \left(h^{\alpha}_{ik} h^{\alpha}_{jl} - h^{\alpha}_{il} h^{\alpha}_{jk} \right), \\ R_{\alpha \beta kl} &= \sum_{i} \left(h^{\alpha}_{ik} h^{\beta}_{il} - h^{\alpha}_{il} h^{\beta}_{ik} \right), \end{split}$$

where A, H, R_{ijkl} , $R_{\alpha\beta kl}$ are the second fundamental form, the mean curvature vector, the Riemannian curvature tensor, the normal curvature tensor of M, respectively. The tracefree second fundamental form is defined by $\mathring{A} = A - \frac{1}{n}g \otimes H$.

Denoting the first and second covariant derivatives of h_{ij}^{α} by h_{ijk}^{α} and h_{ijkl}^{α} respectively, we have

$$\begin{split} \sum_{k} h_{ijk}^{\alpha} \omega_{k} &= dh_{ij}^{\alpha} - \sum_{k} h_{ik}^{\alpha} \omega_{kj} - \sum_{k} h_{kj}^{\alpha} \omega_{ki} - \sum_{\beta} h_{ij}^{\beta} \omega_{\beta\alpha}, \\ \sum_{l} h_{ijkl}^{\alpha} \omega_{l} &= dh_{ijk}^{\alpha} - \sum_{l} h_{ijl}^{\alpha} \omega_{lk} - \sum_{l} h_{ilk}^{\alpha} \omega_{lj} - \sum_{l} h_{ljk}^{\alpha} \omega_{li} - \sum_{\beta} h_{ijk}^{\beta} \omega_{\beta\alpha}, \end{split}$$

Then we have

$$h_{ijk}^{\alpha} = h_{ikj}^{\alpha},$$

$$h_{ijkl}^{\alpha} - h_{ijlk}^{\alpha} = \sum_{m} h_{im}^{\alpha} R_{mjkl} + \sum_{m} h_{mj}^{\alpha} R_{mikl} - \sum_{\beta} h_{ij}^{\beta} R_{\alpha\beta kl}.$$

The Laplacian of the second fundamental form is given by

$$\Delta h_{ij}^{\alpha} = \sum_{k} h_{ijkk}^{\alpha} = \sum_{k} h_{kkij}^{\alpha} + \sum_{k} \left(\sum_{m} h_{km}^{\alpha} R_{mijk} + \sum_{m} h_{mi}^{\alpha} R_{mkjk} - \sum_{\beta} h_{ki}^{\beta} R_{\alpha\beta jk} \right). \tag{3}$$

For an Euclidean submanifold M, an elliptic operator \mathcal{L} is given by

$$\mathcal{L} = \Delta - \frac{1}{2} \langle X, \nabla(\cdot) \rangle = e^{\frac{|X|^2}{4}} \operatorname{div} \left(e^{-\frac{|X|^2}{4}} \nabla(\cdot) \right),$$

where Δ , div and ∇ denote the Laplacian, divergence and the gradient operator on M, respectively. The $\mathcal L$ operator was introduced by Colding and Minicozzi [10] when they investigated self-shrinkers. They showed that $\mathcal L$ is self-adjoint respect to the measure $e^{-\frac{|X|^2}{4}} \, \mathrm{d}\mu$, where $\mathrm{d}\mu$ is the volume form on M. We denote $\rho = e^{-\frac{|X|^2}{4}} \, \mathrm{d}\mu$ and $\mathrm{d}\mu$ might be omitted in the integrations for notational simplicity.

In order to prove our results, we give the following lemma first.

Lemma 1. Let M^n be a submanifold with parallel Gaussian mean curvature vector in the Euclidean space \mathbb{R}^{n+p} . Then we have

$$\mathcal{L}|A|^{2} = 2|\nabla A|^{2} + |A|^{2} + 2\sum_{i,j,k,\alpha,\beta} \xi^{\beta} h_{jk}^{\beta} h_{ij}^{\alpha} h_{ik}^{\alpha} - 2\sum_{\alpha,\beta} \left(\sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta} \right)^{2}$$

$$- 2\sum_{i,j,\alpha,\beta} \left(\sum_{p} (h_{ip}^{\alpha} h_{pj}^{\beta} - h_{jp}^{\alpha} h_{pi}^{\beta}) \right)^{2},$$

$$\mathcal{L}|H|^{2} = 2|\nabla H|^{2} + |H|^{2} + 2\sum_{\alpha,\beta,i,j} H^{\alpha} \xi^{\beta} h_{ij}^{\alpha} h_{ij}^{\beta} - 2\sum_{i,j} \left(\sum_{\alpha} H^{\alpha} h_{ij}^{\alpha} \right)^{2},$$
(5)

where $\xi^{\alpha} = H^{\alpha} + \frac{1}{2}\langle X, e_{\alpha} \rangle$ and $H^{\alpha} = \sum_{i} h_{ii}^{\alpha}$.

Proof. Since the Gaussian mean curvature vector is parallel in the normal bundle, we have

$$\nabla_{e_i} \left(H^{\alpha} + \frac{\langle X, e_{\alpha} \rangle}{2} \right) = 0.$$

Then we obtain

$$\nabla_i H^{\alpha} = \frac{1}{2} \sum_k h_{ik}^{\alpha} \langle X, e_k \rangle,$$

and

$$\nabla_j \nabla_i H^{\alpha} = \frac{1}{2} h_{ij}^{\alpha} + \frac{1}{2} \sum_{\beta,k} \langle X, e_{\beta} \rangle h_{jk}^{\beta} h_{ik}^{\alpha} + \frac{1}{2} \sum_k h_{kij}^{\alpha} \langle X, e_k \rangle. \tag{6}$$

Combining (3) and (6), we get

$$\begin{split} \sum_{i,j,\alpha} h_{ij}^{\alpha} \Delta h_{ij}^{\alpha} &= \sum_{i,j,\alpha} h_{ij}^{\alpha} \nabla_{j} \nabla_{i} H^{\alpha} \\ &+ \sum_{i,j,k,\alpha} h_{ij}^{\alpha} \left(\sum_{m} h_{km}^{\alpha} R_{mijk} + \sum_{m} h_{mi}^{\alpha} R_{mkjk} - \sum_{\beta} h_{ki}^{\beta} R_{\alpha\beta jk} \right) \\ &= \frac{1}{2} |A|^{2} + \frac{1}{2} \sum_{i,j,k,\alpha,\beta} \langle X, e_{\beta} \rangle h_{jk}^{\beta} h_{ij}^{\alpha} h_{ik}^{\alpha} + \frac{1}{4} \langle X, \nabla |A|^{2} \rangle \\ &+ \sum_{i,j,k,\alpha,\beta} H^{\beta} h_{jk}^{\beta} h_{ij}^{\alpha} h_{ik}^{\alpha} - \sum_{\alpha,\beta} \left(\sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta} \right)^{2} \\ &- \sum_{i,i,\alpha,\beta} \left(\sum_{p} (h_{ip}^{\alpha} h_{pj}^{\beta} - h_{jp}^{\alpha} h_{pi}^{\beta}) \right)^{2}. \end{split}$$

Therefore,

$$\begin{split} \mathcal{L}|A|^2 &= \Delta |A|^2 - \frac{1}{2} \langle X, \nabla |A|^2 \rangle \\ &= 2 \sum_{i,j,\alpha} h_{ij}^{\alpha} \Delta h_{ij}^{\alpha} + 2 |\nabla A|^2 - \frac{1}{2} \langle X, \nabla |A|^2 \rangle \\ &= 2 |\nabla A|^2 + |A|^2 + 2 \sum_{i,j,k,\alpha,\beta} \xi^{\beta} h_{jk}^{\beta} h_{ij}^{\alpha} h_{ik}^{\alpha} \\ &- 2 \sum_{\alpha,\beta} \left(\sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta} \right)^2 - 2 \sum_{i,j,\alpha,\beta} \left(\sum_{p} (h_{ip}^{\alpha} h_{pj}^{\beta} - h_{jp}^{\alpha} h_{pi}^{\beta}) \right)^2, \end{split}$$

where $\xi^{\alpha} = H^{\alpha} + \frac{1}{2} \langle X, e_{\alpha} \rangle$.

From (6) one has

$$\Delta |H|^2 = 2|\nabla H|^2 + |H|^2 + \sum_{\alpha,\beta,i,j} H^{\alpha} h_{ij}^{\alpha} \langle X, e_{\beta} \rangle h_{ij}^{\beta} + \frac{1}{2} \langle X, \nabla |H|^2 \rangle,$$

where $H^{\alpha} = \sum_{i} h_{ii}^{\alpha}$.

Then it follows that

$$\begin{split} \mathcal{L}|H|^2 &= \Delta |H|^2 - \frac{1}{2} \langle X, \nabla |H|^2 \rangle \\ &= 2|\nabla H|^2 + |H|^2 + \sum_{\alpha,\beta,i,j} H^{\alpha} h^{\alpha}_{ij} \langle X, e_{\beta} \rangle h^{\beta}_{ij} \\ &= 2|\nabla H|^2 + |H|^2 + 2 \sum_{\alpha,\beta,i,j} H^{\alpha} \xi^{\beta} h^{\alpha}_{ij} h^{\beta}_{ij} - 2 \sum_{i,j} \left(\sum_{\alpha} H^{\alpha} h^{\alpha}_{ij} \right)^2. \end{split}$$

The following two lemmas will be used in the proof of our theorems.

Lemma 2. ([14,30]) Let $M^n (n \ge 3)$ be a complete submanifold in the Euclidean space \mathbb{R}^{n+p} . Let f be a nonnegative C^1 function with compact support. Then we have

$$\|f\|_{\frac{2n}{n-2}}^2 \leq D^2(n) \left[\frac{4(n-1)^2(1+t)}{(n-2)^2} \|\nabla f\|_2^2 + \left(1+\frac{1}{t}\right) \frac{1}{n^2} \||H|f\|_2^2 \right],$$

where $D(n) = 2^n (1+n)^{\frac{n+1}{n}} (n-1)^{-1} \sigma_n^{-\frac{1}{n}}$, and σ_n denotes the volume of the unit ball in \mathbb{R}^n .

Lemma 3. ([25])

Let a_1, \ldots, a_n and b_1, \ldots, b_n be real numbers satisfying $\sum_i a_i = \sum_i b_i = 0$, $\sum_i a_i^2 = a$ and $\sum_i b_i^2 = b$. Then

$$\left| \sum_{i} a_{i} b_{i}^{2} \right| \leq \frac{n-2}{\sqrt{n(n-1)}} \sqrt{ab},$$

and the equality holds if and only if either ab = 0, or at least n - 1 pairs of numbers of (a_i, b_i) 's are the same.

3. Gap Theorems for $n \geq 3$

In this section, we assume that the Gaussian mean curvature vector of M is parallel in the normal bundle.

In general, when the codimension $p \ge 2$, we know from [18] that

$$\sum_{\alpha,\beta} \left(\sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta} \right)^2 + \sum_{i,j,\alpha,\beta} \left(\sum_{p} (h_{ip}^{\alpha} h_{pj}^{\beta} - h_{jp}^{\alpha} h_{pi}^{\beta}) \right)^2 \leq \frac{3}{2} |A|^4.$$

Combining (4) and the above inequality, we have

$$\mathcal{L}|A|^{2} \ge 2|\nabla A|^{2} + |A|^{2} + 2\sum_{i,j,k,\alpha,\beta} \xi^{\beta} h_{jk}^{\beta} h_{ij}^{\alpha} h_{ik}^{\alpha} - 3|A|^{4}$$

$$\ge 2|\nabla A|^{2} + |A|^{2} - 2|\xi||A|^{3} - 3|A|^{4}.$$
(7)

Firstly, we give the proof of Theorem 1.

Proof. If $\xi = 0$, then M is a self-shrinker of the mean curvature flow, and Theorem 1 follows by [11]. Now we assume $\xi \neq 0$. We aim to show that this is impossible for submanifolds satisfying an suitable integral inequality.

It follows from (7) and the inequality $|\nabla A|^2 \ge |\nabla |A||^2$ at all points where $A \ne 0$, which is an easy consequence of the Schwartz inequality, that the inequality

$$\mathcal{L}|A|^2 \ge 2|\nabla|A||^2 + |A|^2 - 2|\xi||A|^3 - 3|A|^4 \tag{8}$$

holds on M in the sense of distribution. For a fixed point $x_0 \in M$ and every r > 0, define a smooth cut-off function ϕ_r by

$$\phi_r(x) = \begin{cases} 1, & x \in B_r(x_0), \\ \phi_r(x) \in [0, 1] \text{ and } |\nabla \phi_r| \le \frac{2}{r}, & x \in B_{2r}(x_0) \setminus B_r(x_0), \\ 0, & x \in M \setminus B_{2r}(x_0), \end{cases}$$

where $B_r(x_0)$ is the geodesic ball in M with radius r centered at $x_0 \in M$. Multiplying both side of (8) by $|A|^{n-2}\phi_r^2$ and integrating by parts with respect to the measure $\rho d\mu$ on M yield

$$0 \geq 2 \int_{M} |\nabla |A||^{2} |A|^{n-2} \phi_{r}^{2} \rho + \int_{M} |A|^{n} \phi_{r}^{2} \rho - 2 \int_{M} |\xi| |A|^{n+1} \phi_{r}^{2} \rho$$

$$- 3 \int_{M} |A|^{n+2} \phi_{r}^{2} \rho - \int_{M} |A|^{n-2} \phi_{r}^{2} \mathcal{L} |A|^{2} \rho$$

$$= 2(n-1) \int_{M} |\nabla |A||^{2} |A|^{n-2} \phi_{r}^{2} \rho + \int_{M} |A|^{n} \phi_{r}^{2} \rho - 2 \int_{M} |\xi| |A|^{n+1} \phi_{r}^{2} \rho$$

$$- 3 \int_{M} |A|^{n+2} \phi_{r}^{2} \rho + 4 \int_{M} \phi_{r} |A|^{n-1} \langle \nabla |A|, \nabla \phi_{r} \rangle \rho$$

$$\geq 2(n-1) \int_{M} |\nabla |A||^{2} |A|^{n-2} \phi_{r}^{2} \rho + \int_{M} |A|^{n} \phi_{r}^{2} \rho$$

$$- 2|\xi| \left(\frac{\tau}{2} \int_{M} |A|^{n} \phi_{r}^{2} \rho + \frac{1}{2\tau} \int_{M} |A|^{n+2} \phi_{r}^{2} \rho\right)$$

$$- 3 \int_{M} |A|^{n+2} \phi_{r}^{2} \rho + 4 \int_{M} \phi_{r} |A|^{n-1} \langle \nabla |A|, \nabla \phi_{r} \rangle \rho$$

$$\geq \left(2(n-1) - \frac{(4-\sigma)\varrho}{2}\right) \int_{M} |\nabla |A||^{2} |A|^{n-2} \phi_{r}^{2} \rho$$

$$+ (1-|\xi|\tau) \int_{M} |A|^{n} \phi_{r}^{2} \rho - \left(3 + \frac{|\xi|}{\tau}\right) \int_{M} |A|^{n+2} \phi_{r}^{2} \rho$$

$$+ \sigma \int_{M} \phi_{r} |A|^{n-1} \langle \nabla |A|, \nabla \phi_{r} \rangle \rho - \frac{4-\sigma}{2\varrho} \int_{M} |A|^{n} |\nabla \phi_{r}|^{2} \rho,$$

where $\tau, \varrho \in \mathbb{R}^+$ and $\sigma \in (0, 4)$. For the last inequality of (9), we have used

$$\begin{split} &4\int_{M}\phi_{r}|A|^{n-1}\langle\nabla|A|,\nabla\phi_{r}\rangle\rho\\ &=\sigma\int_{M}\phi_{r}|A|^{n-1}\langle\nabla|A|,\nabla\phi_{r}\rangle\rho+(4-\sigma)\int_{M}\phi_{r}|A|^{n-1}\langle\nabla|A|,\nabla\phi_{r}\rangle\rho\\ &\geq\sigma\int_{M}\phi_{r}|A|^{n-1}\langle\nabla|A|,\nabla\phi_{r}\rangle\rho-\frac{(4-\sigma)\varrho}{2}\int_{M}|\nabla|A||^{2}|A|^{n-2}\phi_{r}^{2}\rho\\ &-\frac{4-\sigma}{2\varrho}\int_{M}|A|^{n}|\nabla\phi_{r}|^{2}\rho\,. \end{split}$$

By a direct computation, we have

$$|\nabla(|A|^{\frac{n}{2}}\phi_r)|^2 = |A|^n |\nabla\phi_r|^2 + n\phi_r |A|^{n-1} \langle \nabla\phi_r, \nabla|A| \rangle + \frac{n^2}{4} |A|^{n-2} |\nabla|A||^2 \phi_r^2.$$
(10)

Pick σ , $\varrho > 0$ such that $2(n-1) - \frac{(4-\sigma)\varrho}{2} = \frac{n\sigma}{4}$. Then we get from (9) that

$$0 \geq \frac{n\sigma}{4} \left(\frac{4}{n^{2}} \int_{M} |\nabla(|A|^{\frac{n}{2}} \phi_{r})|^{2} \rho - \frac{4}{n^{2}} \int_{M} |A|^{n} |\nabla \phi_{r}|^{2} \rho \right)$$

$$- \frac{4}{n} \int_{M} \phi_{r} |A|^{n-1} \langle \nabla \phi_{r}, \nabla |A| \rangle \rho$$

$$+ (1 - |\xi|\tau) \int_{M} |A|^{n} \phi_{r}^{2} \rho - \left(3 + \frac{|\xi|}{\tau} \right) \int_{M} |A|^{n+2} \phi_{r}^{2} \rho$$

$$+ \sigma \int_{M} \phi_{r} |A|^{n-1} \langle \nabla |A|, \nabla \phi_{r} \rangle \rho - \frac{4 - \sigma}{2\varrho} \int_{M} |A|^{n} |\nabla \phi_{r}|^{2} \rho$$

$$= \frac{\sigma}{n} \int_{M} |\nabla(|A|^{\frac{n}{2}} \phi_{r})|^{2} \rho + (1 - |\xi|\tau) \int_{M} |A|^{n} \phi_{r}^{2} \rho$$

$$- \left(3 + \frac{|\xi|}{\tau} \right) \int_{M} |A|^{n+2} \phi_{r}^{2} \rho - \left(\frac{\sigma}{n} + \frac{4 - \sigma}{2\varrho} \right) \int_{M} |A|^{n} |\nabla \phi_{r}|^{2} \rho.$$

$$(11)$$

Set $f = |A|^{\frac{n}{2}} \rho^{\frac{1}{2}} \phi_r$. Integrating by parts, we obtain

$$\int_{M} |\nabla f|^{2} = \int_{M} |\nabla (|A|^{\frac{n}{2}} \phi_{r})|^{2} \rho + \frac{1}{2} \int_{M} \nabla (|A|^{n} \phi_{r}^{2}) \nabla \rho
+ \int_{M} |A|^{n} \phi_{r}^{2} |\nabla \rho^{\frac{1}{2}}|^{2}
= \int_{M} |\nabla (|A|^{\frac{n}{2}} \phi_{r})|^{2} \rho - \frac{1}{2} \int_{M} |A|^{n} \phi_{r}^{2} \Delta \rho
+ \frac{1}{16} \int_{M} |A|^{n} \phi_{r}^{2} |X^{T}|^{2} \rho.$$
(12)

Since

$$\Delta |X|^2 = 2|\nabla X|^2 + 2\langle X, \Delta X \rangle$$
$$= 2n + 2\langle X^N, H \rangle$$
$$= 2n + 4\langle \xi, H \rangle - 4|H|^2,$$

we have

$$\Delta \rho = -\frac{\rho}{4} \Delta |X|^2 + \frac{\rho}{16} |\nabla |X|^2|^2$$

= $-\frac{n}{2} \rho - \rho \langle \xi, H \rangle + \rho |H|^2 + \frac{\rho}{4} |X^T|^2.$ (13)

Substituting (13) into (12) yields

$$\int_{M} |\nabla f|^{2} = \int_{M} |\nabla (|A|^{\frac{n}{2}} \phi_{r})|^{2} \rho + \frac{n}{4} \int_{M} |A|^{n} \phi_{r}^{2} \rho
+ \frac{1}{2} \int_{M} |A|^{n} \phi_{r}^{2} \langle \xi, H \rangle \rho - \frac{1}{2} \int_{M} |A|^{n} \phi_{r}^{2} |H|^{2} \rho
- \frac{1}{16} \int_{M} |A|^{n} \phi_{r}^{2} |X^{T}|^{2} \rho$$

$$\leq \int_{M} |\nabla (|A|^{\frac{n}{2}} \phi_{r})|^{2} \rho + \frac{n}{4} \int_{M} |A|^{n} \phi_{r}^{2} \rho
+ \frac{1}{2} \int_{M} |A|^{n} \phi_{r}^{2} \langle \xi, H \rangle \rho - \frac{1}{2} \int_{M} |A|^{n} \phi_{r}^{2} |H|^{2} \rho.$$
(14)

Combining the Sobolev inequality in Lemma 2, (11) and (14), we have

$$0 \geq \frac{\sigma}{n} \int_{M} |\nabla f|^{2} + \frac{\sigma}{2n} \int_{M} |A|^{n} \phi_{r}^{2} |H|^{2} \rho - \frac{\sigma}{2n} \int_{M} |A|^{n} \phi_{r}^{2} \langle \xi, H \rangle \rho$$

$$+ \left(1 - |\xi|\tau - \frac{\sigma}{4}\right) \int_{M} |A|^{n} \phi_{r}^{2} \rho - \left(3 + \frac{|\xi|}{\tau}\right) \int_{M} |A|^{n+2} \phi_{r}^{2} \rho$$

$$- \left(\frac{\sigma}{n} + \frac{4 - \sigma}{2\varrho}\right) \int_{M} |A|^{n} |\nabla \phi_{r}|^{2} \rho$$

$$\geq \frac{(n - 2)^{2} \sigma}{4n(n - 1)^{2} D^{2}(n)(1 + t)} |||A|^{n} \phi_{r}^{2} \rho||_{\frac{n}{n-2}}$$

$$+ \left(\frac{\sigma}{2n} - \frac{(n - 2)^{2} \sigma}{4n^{3}(n - 1)^{2} t}\right) \int_{M} |A|^{n} \phi_{r}^{2} |H|^{2} \rho - \frac{\sigma}{2n} \int_{M} |A|^{n} \phi_{r}^{2} \langle \xi, H \rangle \rho$$

$$+ \left(1 - |\xi|\tau - \frac{\sigma}{4}\right) \int_{M} |A|^{n} \phi_{r}^{2} \rho - \left(3 + \frac{|\xi|}{\tau}\right) \int_{M} |A|^{n+2} \phi_{r}^{2} \rho$$

$$- \left(\frac{\sigma}{n} + \frac{4 - \sigma}{2\varrho}\right) \int_{M} |A|^{n} |\nabla \phi_{r}|^{2} \rho.$$
(15)

Choose $t = \frac{(n-2)^2}{2n^2(n-1)^2} \in \mathbb{R}^+$ such that $\frac{\sigma}{2n} = \frac{(n-2)^2\sigma}{4n^3(n-1)^2t}$. Then (15) becomes

$$0 \geq \frac{n(n-2)^{2}\sigma}{2D^{2}(n)[2n^{2}(n-1)^{2} + (n-2)^{2}]} |||A|^{n}\phi_{r}^{2}\rho||_{\frac{n}{n-2}}$$

$$-\frac{\sigma}{2n}\int_{M}|A|^{n}\phi_{r}^{2}\langle\xi,H\rangle\rho + \left(1 - |\xi|\tau - \frac{\sigma}{4}\right)\int_{M}|A|^{n}\phi_{r}^{2}\rho$$

$$-\left(3 + \frac{|\xi|}{\tau}\right)\int_{M}|A|^{n+2}\phi_{r}^{2}\rho$$

$$-\left(\frac{\sigma}{n} + \frac{4 - \sigma}{2\varrho}\right)\int_{M}|A|^{n}|\nabla\phi_{r}|^{2}\rho.$$
(16)

On the other hand, for any $\theta > 0$, we have

$$-\frac{\sigma}{2n} \int_{M} |A|^{n} \phi_{r}^{2} \langle \xi, H \rangle \rho \geq -\frac{\sigma}{2n} \int_{M} |A|^{n} \phi_{r}^{2} |\xi| |H| \rho$$

$$\geq -\frac{\sigma |\xi|}{2n} \int_{M} |A|^{n} \phi_{r}^{2} \left(\frac{1}{2\theta} + \frac{\theta}{2} |H|^{2} \right) \rho$$

$$= -\frac{\sigma |\xi|}{4n\theta} \int_{M} |A|^{n} \phi_{r}^{2} \rho - \frac{\sigma \theta |\xi|}{4n} \int_{M} |A|^{n} \phi_{r}^{2} |H|^{2} \rho$$

$$\geq -\frac{\sigma |\xi|}{4n\theta} \int_{M} |A|^{n} \phi_{r}^{2} \rho - \frac{\sigma \theta |\xi|}{4} \int_{M} |A|^{n+2} \phi_{r}^{2} \rho.$$

$$(17)$$

Combing (16) and (17), we get

$$0 \ge \frac{n(n-2)^{2}\sigma}{2D^{2}(n)[2n^{2}(n-1)^{2} + (n-2)^{2}]} |||A|^{n}\phi_{r}^{2}\rho||_{\frac{n}{n-2}} + \left(1 - |\xi|\tau - \frac{\sigma}{4} - \frac{\sigma|\xi|}{4n\theta}\right) \int_{M} |A|^{n}\phi_{r}^{2}\rho$$
$$- \left(3 + \frac{|\xi|}{\tau} + \frac{\sigma\theta|\xi|}{4}\right) \int_{M} |A|^{n+2}\phi_{r}^{2}\rho$$
$$- \left(\frac{\sigma}{n} + \frac{4-\sigma}{2\varrho}\right) \int_{M} |A|^{n} |\nabla\phi_{r}|^{2}\rho.$$

Now we let τ satisfy $\tau < \frac{1}{|\xi|}$. Then

$$0 < \frac{4n\theta \left(1 - |\xi|\tau\right)}{n\theta + |\xi|} < \frac{4n\theta}{n\theta + |\xi|} < \frac{4n\theta}{n\theta} = 4.$$

We choose $\sigma = \frac{4n\theta(1-|\xi|\tau)}{n\theta+|\xi|} \in (0,4)$ such that

$$|\xi|\tau + \frac{\sigma}{4} + \frac{\sigma|\xi|}{4n\theta} = 1.$$

Hence

$$0 \ge \frac{n(n-2)^{2}}{2D^{2}(n)[2n^{2}(n-1)^{2} + (n-2)^{2}]} \cdot \frac{4n\theta(1-|\xi|\tau)}{n\theta+|\xi|} |||A|^{n}\phi_{r}^{2}\rho||_{\frac{n}{n-2}}$$

$$-\left[\frac{n|\xi|\theta^{2}(1-|\xi|\tau)}{n\theta+|\xi|} + 3 + \frac{\xi}{\tau}\right] \int_{M} |A|^{n+2}\phi_{r}^{2}\rho$$

$$-\left(\frac{\sigma}{n} + \frac{4-\sigma}{2\varrho}\right) \int_{M} |A|^{n} |\nabla\phi_{r}|^{2}\rho.$$
(18)

By the Hölder inequality, we have

$$\int_{M} |A|^{n+2} \phi_r^2 \rho \le |||A|^n \phi_r^2 \rho||_{\frac{n}{n-2}} \cdot |||A|^2||_{\frac{n}{2}}.$$

Hence it follows from (18) that

$$0 \ge \left[\frac{4\theta (1 - |\xi|\tau)}{\kappa(n)(n\theta + |\xi|)} - \left(\frac{n|\xi|\theta^{2}(1 - |\xi|\tau)}{n\theta + |\xi|} + 3 + \frac{|\xi|}{\tau} \right) ||A||_{n}^{2} \right] ||A|^{n} \phi_{r}^{2} \rho ||_{\frac{n}{n-2}} - \left(\frac{\sigma}{n} + \frac{4 - \sigma}{2\varrho} \right) \int_{M} |A|^{n} |\nabla \phi_{r}|^{2} \rho,$$
(19)

where

$$\kappa(n) = \frac{2D^2(n)[2n^2(n-1)^2 + (n-2)^2]}{n^2(n-2)^2}.$$

Set

$$K(n,|\xi|,\tau,\theta) = \sqrt{\frac{4\theta\tau(1-|\xi|\tau)}{[n\tau|\xi|\theta^2(1-|\xi|\tau)+(3\tau+|\xi|)(n\theta+|\xi|)]\kappa(n)}}.$$

By direct computations, one has

$$\frac{\partial}{\partial \tau} K^{2}(n, |\xi|, \tau, \theta) = \frac{4\theta |\xi| (n\theta + |\xi|) (-3\tau^{2} - 2|\xi|\tau + 1)}{\kappa(n) [n\tau |\xi|\theta^{2} (1 - |\xi|\tau) + (3\tau + |\xi|) (n\theta + |\xi|)]^{2}},$$

$$\frac{\partial}{\partial \theta} K^{2}(n, |\xi|, \tau, \theta) = \frac{4\tau |\xi| (1 - |\xi|\tau) [-n\tau\theta^{2} (1 - |\xi|\tau) + (3\tau + |\xi|)]}{\kappa(n) [n\tau |\xi|\theta^{2} (1 - |\xi|\tau) + (3\tau + |\xi|) (n\theta + |\xi|)]^{2}}.$$

It is easy to see that, when restricted in $(0, \frac{1}{|\xi|}) \times (0, \infty)$, the system

$$\begin{cases} -3\tau^2 - 2|\xi|\tau + 1 = 0\\ -n\tau\theta^2(1 - |\xi|\tau) + (3\tau + |\xi|) = 0 \end{cases}$$

has only one solution

$$\tau = \tau_0 := \frac{\sqrt{|\xi|^2 + 3} - |\xi|}{3}, \ \theta = \theta_0 := \frac{3}{\sqrt{n}(\sqrt{|\xi|^2 + 3} - |\xi|)}.$$

By the monotonicity of $K(n, |\xi|, \tau, \theta)$ as a function of τ and θ in $(0, \frac{1}{|\xi|}) \times (0, \infty)$, we see that $K(n, |\xi|, \tau, \theta)$ achieves its maximum

$$K(n, |\xi|) = K_{\max}(n, |\xi|, \tau, \theta) = \sqrt{\frac{4(\sqrt{|\xi|^2 + 3} - |\xi|)}{[3(n|\xi| + 2\sqrt{n}|\xi| + n\sqrt{|\xi|^2 + 3})]\kappa(n)}}$$

when $\tau = \tau_0$, $\theta = \theta_0$.

Since we have picked σ and ϱ such that $2(n-1) - \frac{(4-\sigma)\varrho}{2} = \frac{n\sigma}{4}$ and $\sigma \in (0,4)$, one has

$$0 < \frac{\sigma}{n} + \frac{4 - \sigma}{2\rho} = \frac{\sigma}{n} + \frac{(4 - \sigma)^2}{8(n - 1) - n\sigma} < \frac{4}{n} + \frac{4}{n - 2}.$$

Since $|\nabla \phi_r| \leq \frac{2}{r}$ and $\int_M |A|^n d\mu < \infty$, we have

$$\lim_{r \to \infty} \int_{M} |A|^{n} |\nabla \phi_{r}|^{2} \rho = 0.$$

Since $||A||_n < K(n, |\xi|)$, (19) imples

$$0 \ge \left(K(n, |\xi|)^2 - ||A||_n^2 \right) \lim_{r \to \infty} ||A|^r \phi_r^2 \rho||_{\frac{n}{n-2}} \ge 0.$$

Hence $||A|^n e^{-\frac{|X|^2}{4}}||_{\frac{n}{n-2}} = 0$, which implies that |A| = 0. Hence M is a linear subspace of \mathbb{R}^{n+p} . This implies $\xi = 0$, which is a contradiction. This completes the proof of Theorem 1.

Combining (4) and (5), we have

$$\mathcal{L}|\mathring{A}|^{2} = \mathcal{L}|A|^{2} - \frac{1}{n}\mathcal{L}|H|^{2}$$

$$= 2|\nabla\mathring{A}|^{2} + |\mathring{A}|^{2} - 2\sum_{\alpha,\beta} \left(\sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta}\right)^{2}$$

$$- 2\sum_{i,j,\alpha,\beta} \left(\sum_{p} (h_{ip}^{\alpha} h_{pj}^{\beta} - h_{jp}^{\alpha} h_{pi}^{\beta})\right)^{2} + \frac{2}{n} \sum_{i,j} \left(\sum_{\alpha} H^{\alpha} h_{ij}^{\alpha}\right)^{2}$$

$$+ 2\sum_{i,j,k,\alpha,\beta} \xi^{\beta} h_{jk}^{\beta} h_{ij}^{\alpha} h_{ik}^{\alpha} - \frac{2}{n} \sum_{\alpha,\beta,i,j} H^{\alpha} \xi^{\beta} h_{ij}^{\alpha} h_{ij}^{\beta}.$$
(20)

At the point where the mean curvature vector is zero, we have

$$-2\sum_{\alpha,\beta} \left(\sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta} \right)^{2} - 2\sum_{i,j,\alpha,\beta} \left(\sum_{p} (h_{ip}^{\alpha} h_{pj}^{\beta} - h_{jp}^{\alpha} h_{pi}^{\beta}) \right)^{2} + \frac{2}{n} \sum_{i,j} \left(\sum_{\alpha} H^{\alpha} h_{ij}^{\alpha} \right)^{2}$$

$$= -2\sum_{\alpha,\beta} N(A^{\alpha} A^{\beta} - A^{\beta} A^{\alpha}) - 2\sum_{\alpha,\beta} [\operatorname{tr}(A^{\alpha} A^{\beta})]^{2}$$

$$\geqslant -3|A|^{4}.$$
(21)

where $A^{\alpha}=(h_{ij}^{\alpha})_{n\times n}$ and we have used Theorem 1 in [18] to get the inequality. For a fixed α , choose a local orthonormal frame field $\{e_i\}$ such that $h_{ij}^{\alpha}=\lambda_i^{\alpha}\delta_{ij}$. Then by Lemma 3 we have the following

$$\begin{split} 2 \sum_{i,j,k,\beta} \xi^{\beta} h_{jk}^{\beta} h_{ij}^{\alpha} h_{ik}^{\alpha} &= 2 \sum_{i,\beta} \left(\lambda_{i}^{\alpha} \right)^{2} h_{ii}^{\beta} \xi^{\beta} \\ &\geq -\frac{2(n-2)}{\sqrt{n(n-1)}} \sum_{\beta} \left(\sum_{i} \left(\lambda_{i}^{\alpha} \right)^{2} \left(\sum_{i} \left(h_{ii}^{\beta} \right)^{2} \right)^{\frac{1}{2}} |\xi^{\beta}| \right) \\ &= -\frac{2(n-2)}{\sqrt{n(n-1)}} \sum_{i,j} \left(h_{ij}^{\alpha} \right)^{2} \sum_{\beta} \left(\sum_{i,j} \left(h_{ij}^{\beta} \right)^{2} \right)^{\frac{1}{2}} |\xi^{\beta}|. \end{split}$$

Hence we get that for any $\eta > 0$

$$2\sum_{i,j,k,\alpha,\beta} \xi^{\beta} h_{jk}^{\beta} h_{ij}^{\alpha} h_{ik}^{\alpha} \ge -\frac{2(n-2)}{\sqrt{n(n-1)}} \sum_{i,j,\alpha} \left(h_{ij}^{\alpha} \right)^{2} \sum_{\beta} \left(\frac{1}{2\eta} \sum_{i,j} \left(h_{ij}^{\beta} \right)^{2} + \frac{\eta}{2} |\xi^{\beta}|^{2} \right)$$

$$= -\frac{n-2}{\sqrt{n(n-1)}} \left(\frac{1}{\eta} |A|^{4} + \eta |\xi|^{2} |A|^{2} \right). \tag{22}$$

At the point where the mean curvature vector is nonzero, we choose $e_{n+1} = \frac{H}{|H|}$. The second fundamental form can be written as $A = \sum_{\alpha} h^{\alpha} e_{\alpha}$, where h^{α} , $n+1 \leq \alpha \leq n+p$, are symmetric 2-tensors. By the choice of e_{n+1} , we see that $\operatorname{tr} h^{n+1} = |H|$ and $\operatorname{tr} h^{\alpha} = 0$ for $\alpha \geq n+2$. The traceless second fundamental form may be rewritten as $\mathring{A} = \sum_{\alpha} \mathring{h}^{\alpha} e_{\alpha}$, where $\mathring{h}^{n+1} = h^{n+1} - \frac{|H|}{n} \operatorname{Id}$ and $\mathring{h}^{\alpha} = h^{\alpha}$ for $\alpha \geq n+2$. We set $A_H = h^{n+1} e_{n+1}$, $A_I = \sum_{\alpha \geq n+2} h^{\alpha} e_{\alpha}$, $\mathring{A}_H = \mathring{h}^{n+1} e_{n+1}$ and $\mathring{A}_I = \sum_{\alpha \geq n+2} \mathring{h}^{\alpha} e_{\alpha}$. Then we have

$$|A_I|^2 = \sum_{\alpha \ge n+2} |h^{\alpha}|^2 = |A|^2 - |A_H|^2,$$

$$|\mathring{A}_I|^2 = \sum_{\alpha > n+2} |\mathring{h}^{\alpha}|^2 = |\mathring{A}|^2 - |\mathring{A}_H|^2.$$

Note that $|\mathring{A}_H|^2 = |A_H|^2 - \frac{|H|^2}{n}$ and $|\mathring{A}_I|^2 = |A_I|^2$. Since e_{n+1} is chosen globally, $|A_H|^2$, $|\mathring{A}_H|^2$ and $|A_I|^2$ are defined globally and independent of the choice of e_i .

Then we have

$$\sum_{\alpha,\beta} \left(\sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta} \right)^{2} = |\mathring{A}_{H}|^{4} + \frac{2}{n} |H|^{2} |\mathring{A}_{H}|^{2} + \frac{1}{n^{2}} |H|^{4}$$

$$+ 2 \sum_{\alpha \neq n+1} \left(\sum_{i,j} \mathring{h}_{ij}^{n+1} \mathring{h}_{ij}^{\alpha} \right)^{2} + \sum_{\alpha,\beta \neq n+1} \left(\sum_{i,j} \mathring{h}_{ij}^{\alpha} \mathring{h}_{ij}^{\beta} \right)^{2},$$

$$\sum_{i,j,\alpha,\beta} \left(\sum_{p} (h_{ip}^{\alpha} h_{pj}^{\beta} - h_{jp}^{\alpha} h_{pi}^{\beta}) \right)^{2} = 2 \sum_{\alpha \neq n+1} \sum_{i,j} \left(\sum_{p} \left(h_{ip}^{n+1} \mathring{h}_{pj}^{\alpha} - h_{jp}^{n+1} \mathring{h}_{pi}^{\alpha} \right) \right)^{2}$$

$$+ \sum_{\alpha,\beta \neq n+1} \sum_{i,j} \left(\sum_{p} \left(\mathring{h}_{ip}^{\alpha} \mathring{h}_{pj}^{\beta} - \mathring{h}_{jp}^{\alpha} \mathring{h}_{pi}^{\beta} \right) \right)^{2},$$

$$\sum_{i,j} \left(\sum_{\alpha} H^{\alpha} h_{ij}^{\alpha} \right)^{2} = |H|^{2} |\mathring{A}_{H}|^{2} + \frac{1}{n} |H|^{4}.$$
 (25)

From (23), (24) and (25) we obtain the following

$$\begin{split} &2\sum_{\alpha,\beta} \left(\sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta}\right)^{2} + 2\sum_{i,j,\alpha,\beta} \left(\sum_{p} (h_{ip}^{\alpha} h_{pj}^{\beta} - h_{jp}^{\alpha} h_{pi}^{\beta})\right)^{2} - \frac{2}{n} \sum_{i,j} \left(\sum_{\alpha} H^{\alpha} h_{ij}^{\alpha}\right)^{2} \\ &= 2|\mathring{A}_{H}|^{4} + \frac{2}{n}|H|^{2}|\mathring{A}_{H}|^{2} \\ &+ 4\sum_{\alpha \neq n+1} \left(\sum_{i,j} \mathring{h}_{ij}^{n+1} \mathring{h}_{ij}^{\alpha}\right)^{2} + 4\sum_{\alpha \neq n+1} \sum_{i,j} \left(\sum_{p} (h_{ip}^{n+1} \mathring{h}_{pj}^{\alpha} - h_{jp}^{n+1} \mathring{h}_{pi}^{\alpha})\right)^{2} \\ &+ 2\sum_{\alpha,\beta \neq n+1} \left(\sum_{i,j} \mathring{h}_{ij}^{\alpha} \mathring{h}_{ij}^{\beta}\right)^{2} + 2\sum_{\alpha,\beta \neq n+1} \sum_{i,j} \left(\sum_{p} (\mathring{h}_{ip}^{\alpha} \mathring{h}_{pj}^{\beta} - \mathring{h}_{jp}^{\alpha} \mathring{h}_{pi}^{\beta})\right)^{2}. \end{split}$$

We choose $\{e_i\}$ such that $h_{ij}^{n+1} = \lambda_i \delta_{ij}$. Then $\mathring{h}_{ij}^{n+1} = \mathring{\lambda}_i \delta_{ij}$, where $\mathring{\lambda}_i = \lambda_i - \frac{|H|}{n}$. We first have the following estimate.

$$4\sum_{\alpha \neq n+1} \left(\sum_{i,j} \mathring{h}_{ij}^{n+1} \mathring{h}_{ij}^{\alpha} \right)^{2} = 4\sum_{\alpha \neq n+1} \left(\sum_{i} \mathring{\lambda}_{i} \mathring{h}_{ii}^{\alpha} \right)^{2}$$

$$\leq 4 \left(\sum_{i} \mathring{\lambda}_{i}^{2} \right) \left(\sum_{\alpha \neq n+1} \sum_{i} \left(\mathring{h}_{ii}^{\alpha} \right)^{2} \right)$$

$$= 4 |\mathring{A}_{H}|^{2} \sum_{\alpha \neq n+1} \sum_{i} \left(\mathring{h}_{ii}^{\alpha} \right)^{2}.$$

For any fixed $i, j = 1, ..., n, i \neq j$, one has

$$|\mathring{A}_{H}|^{2} = \sum_{k} \mathring{\lambda}_{k}^{2} = \mathring{\lambda}_{i}^{2} + \mathring{\lambda}_{j}^{2} + \sum_{k \neq i, i} \mathring{\lambda}_{k}^{2} \ge \mathring{\lambda}_{i}^{2} + \mathring{\lambda}_{j}^{2}.$$

Hence

$$4 \sum_{\alpha \neq n+1} \sum_{i,j} \left(\sum_{p} \left(h_{ip}^{n+1} \mathring{h}_{pj}^{\alpha} - h_{jp}^{n+1} \mathring{h}_{pi}^{\alpha} \right) \right)^{2} = 4 \sum_{\alpha \neq n+1} \sum_{i \neq j} (\lambda_{i} - \lambda_{j})^{2} \left(\mathring{h}_{ij}^{\alpha} \right)^{2}$$

$$= 4 \sum_{\alpha \neq n+1} \sum_{i \neq j} (\mathring{\lambda}_{i} - \mathring{\lambda}_{j})^{2} \left(\mathring{h}_{ij}^{\alpha} \right)^{2}$$

$$\leq 8 \sum_{\alpha \neq n+1} \sum_{i \neq j} \left(\mathring{\lambda}_{i}^{2} + \mathring{\lambda}_{j}^{2} \right) \left(\mathring{h}_{ij}^{\alpha} \right)^{2}$$

$$\leq 8 |\mathring{A}_{H}|^{2} \sum_{\alpha \neq n+1} \sum_{i \neq j} \left(\mathring{h}_{ij}^{\alpha} \right)^{2}$$

$$= 8 |\mathring{A}_{H}|^{2} \left(|\mathring{A}_{I}|^{2} - \sum_{\alpha \neq n+1} \sum_{i} \left(\mathring{h}_{ii}^{\alpha} \right)^{2} \right).$$

By an inequality in [18], we have

$$2\sum_{\alpha,\beta\neq n+1} \left(\sum_{i,j} \mathring{h}_{ij}^{\alpha} \mathring{h}_{ij}^{\beta}\right)^{2} + 2\sum_{\alpha,\beta\neq n+1} \sum_{i,j} \left(\sum_{p} \left(\mathring{h}_{ip}^{\alpha} \mathring{h}_{pj}^{\beta} - \mathring{h}_{jp}^{\alpha} \mathring{h}_{pi}^{\beta}\right)\right)^{2} \leq 3|\mathring{A}_{I}|^{4}.$$

Hence, we have the following estimate

$$\frac{2}{n} \sum_{ij} \left(\sum_{\alpha} H^{\alpha} h_{ij}^{\alpha} \right)^{2} - 2 \sum_{\alpha,\beta} \left(\sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta} \right)^{2} - 2 \sum_{i,j,\alpha,\beta} \left(\sum_{p} \left(h_{ip}^{\alpha} h_{pj}^{\beta} - h_{jp}^{\alpha} h_{pi}^{\beta} \right) \right)^{2} \\
\geq -4 |\mathring{A}|^{4} - \frac{2}{n} |H|^{2} |\mathring{A}|^{2}.$$
(27)

We also have

$$\begin{split} 2\sum_{i,j,k,\alpha,\beta}\xi^{\beta}h_{jk}^{\beta}h_{ij}^{\alpha}h_{ik}^{\alpha} - \frac{2}{n}\sum_{\alpha,\beta,i,j}H^{\alpha}\xi^{\beta}h_{ij}^{\alpha}h_{ij}^{\beta} &= 2\sum_{i,j,k,\alpha,\beta}\xi^{\beta}\left(h_{ik}^{\alpha} - \frac{1}{n}H^{\alpha}\delta_{ik}\right)h_{ij}^{\alpha}h_{jk}^{\beta} \\ &= 2\sum_{i,j,k,\alpha,\beta}\xi^{\beta}h_{ik}^{\alpha}h_{ij}^{\alpha}h_{jk}^{\beta} \\ &= 2\sum_{i,j,k,\alpha,\beta}\xi^{\beta}h_{ik}^{\alpha} \\ & \left(\mathring{h}_{ij}^{\alpha} + \frac{1}{n}H^{\alpha}\delta_{ij}\right)\left(\mathring{h}_{jk}^{\beta} + \frac{1}{n}H^{\beta}\delta_{jk}\right) \\ &= 2\sum_{i,j,k,\alpha,\beta}\xi^{\beta}\mathring{h}_{ij}^{\alpha}\mathring{h}_{ik}^{\alpha}h_{jk}^{\beta} + \frac{2}{n}\sum_{i,j,\alpha,\beta}H^{\beta}\xi^{\beta}\left(\mathring{h}_{ij}^{\alpha}\right)^{2} \\ &+ \frac{2}{n}\sum_{i,j,\alpha,\beta}H^{\alpha}\xi^{\beta}\mathring{h}_{ij}^{\alpha}\mathring{h}_{ij}^{\beta}, \end{split}$$

where $\mathring{h}_{ij}^{\alpha} = h_{ij}^{\alpha} - \frac{1}{n} H^{\alpha} \delta_{ij}$. As (22), for any $\eta > 0$ we have

$$2\sum_{i,j,k,\alpha,\beta} \xi^{\beta} \mathring{h}_{ij}^{\alpha} \mathring{h}_{ik}^{\alpha} \mathring{h}_{jk}^{\beta} \ge -\frac{n-2}{\sqrt{n(n-1)}} \left(\frac{1}{\eta} |\mathring{A}|^4 + \eta |\xi|^2 |\mathring{A}|^2 \right). \tag{29}$$

On the other hand, we have

$$\frac{2}{n} \sum_{i,j,\alpha,\beta} H^{\beta} \xi^{\beta} (\mathring{h}_{ij}^{\alpha})^{2} = \frac{2}{n} \langle H, \xi \rangle |\mathring{A}|^{2} \ge -\frac{2}{n} |H| |\xi| |\mathring{A}|^{2}, \tag{30}$$

$$\frac{2}{n} \sum_{i,j,\alpha,\beta} H^{\alpha} \xi^{\beta} \mathring{h}_{ij}^{\alpha} \mathring{h}_{ij}^{\beta} = \frac{2}{n} \sum_{i,j} \langle H, \mathring{h}_{ij} \rangle \langle \xi, \mathring{h}_{ij} \rangle \ge -\frac{2}{n} |H| |\xi| \sum_{i,j} |\mathring{h}_{ij}|^2 = -\frac{2}{n} |H| |\xi| |\mathring{A}|^2. \quad (31)$$

Combining (20), (21), (22), (26), (27), (28), (29), (30) and (31) together, we get that at any point of M, there holds

$$\mathcal{L}|\mathring{A}|^{2} \ge 2|\nabla\mathring{A}|^{2} + |\mathring{A}|^{2} - 4|\mathring{A}|^{4} - \frac{2}{n}|H|^{2}|\mathring{A}|^{2} - \frac{n-2}{\sqrt{n(n-1)}} \left(\frac{1}{n}|\mathring{A}|^{4} + \eta|\xi|^{2}|\mathring{A}|^{2}\right) - \frac{4}{n}|H||\xi||\mathring{A}|^{2}.$$
(32)

By using (32), we give the proof of Theorem 2 as follows.

Proof. If $\xi = 0$, then M is a self-shrinker of the mean curvature flow, and Theorem 2 follows by [2]. Now we assume $\xi \neq 0$. Similar to Theorem 1, we aim to show that this is impossible for submanifolds satisfying an suitable integral inequality.

From (32), the following inequality holds on M in the sense of distribution.

$$\mathcal{L}|\mathring{A}|^{2} \ge 2|\nabla|\mathring{A}||^{2} + \left(1 - \frac{n-2}{\sqrt{n(n-1)}}\eta|\xi|^{2}\right)|\mathring{A}|^{2} - \left(4 + \frac{n-2}{\sqrt{n(n-1)}\eta}\right)|\mathring{A}|^{4} - \frac{2}{n}|H|^{2}|\mathring{A}|^{2} - \frac{4}{n}|H||\xi||\mathring{A}|^{2}.$$
(33)

Let ϕ_r be a smooth function on M with compact support as in the proof of Theorem 1. Multiplying both side of (33) by $|\mathring{A}|^{n-2}\phi_r^2$ and integrating by parts with respect to the measure $\rho d\mu$ on M yield

$$0 \geq 2 \int_{M} |\nabla |\mathring{A}||^{2} |\mathring{A}|^{n-2} \phi_{r}^{2} \rho + \left(1 - \frac{n-2}{\sqrt{n(n-1)}} \eta |\xi|^{2}\right) \int_{M} |\mathring{A}|^{n} \phi_{r}^{2} \rho$$

$$- \frac{2}{n} \int_{M} |H|^{2} |\mathring{A}|^{n} \phi_{r}^{2} \rho - \frac{4}{n} \int_{M} |H| |\xi| |\mathring{A}|^{n} \phi_{r}^{2} \rho$$

$$- \left(4 + \frac{n-2}{\sqrt{n(n-1)} \eta}\right) \int_{M} |\mathring{A}|^{n+2} \phi_{r}^{2} \rho - \int_{M} |\mathring{A}|^{n-2} \phi_{r}^{2} \mathcal{L} |\mathring{A}|^{2} \rho$$

$$= 2(n-1) \int_{M} |\nabla |\mathring{A}||^{2} |\mathring{A}|^{n-2} \phi_{r}^{2} \rho + \left(1 - \frac{n-2}{\sqrt{n(n-1)}} \eta |\xi|^{2}\right) \int_{M} |\mathring{A}|^{n} \phi_{r}^{2} \rho$$

$$- \frac{2}{n} \int_{M} |H|^{2} |\mathring{A}|^{n} \phi_{r}^{2} \rho - \frac{4}{n} \int_{M} |H| |\xi| |\mathring{A}|^{n} \phi_{r}^{2} \rho$$

$$- \left(4 + \frac{n-2}{\sqrt{n(n-1)} \eta}\right) \int_{M} |\mathring{A}|^{n+2} \phi_{r}^{2} \rho + 4 \int_{M} \phi_{r} |\mathring{A}|^{n-1} \langle \nabla |\mathring{A}|, \nabla \phi_{r} \rangle \rho$$

$$\geq \left(2(n-1) - \frac{(4-\sigma)\varrho}{2}\right) \int_{M} |\nabla |\mathring{A}|^{2} |\mathring{A}|^{n-2} \phi_{r}^{2} \rho$$

$$+ \left(1 - \frac{n-2}{\sqrt{n(n-1)}} \eta |\xi|^{2}\right) \int_{M} |\mathring{A}|^{n} \phi_{r}^{2} \rho - \frac{2}{n} \int_{M} |H|^{2} |\mathring{A}|^{n} \phi_{r}^{2} \rho$$

$$- \frac{4}{n} \int_{M} |H| |\xi| |\mathring{A}|^{n} \phi_{r}^{2} \rho - \left(4 + \frac{n-2}{\sqrt{n(n-1)} \eta}\right) \int_{M} |\mathring{A}|^{n+2} \phi_{r}^{2} \rho$$

$$+ \sigma \int_{M} \phi_{r} |\mathring{A}|^{n-1} \langle \nabla |\mathring{A}|, \nabla \phi_{r} \rangle \rho - \frac{4-\sigma}{2\varrho} \int_{M} |\mathring{A}|^{n} |\nabla \phi_{r}|^{2} \rho.$$
(34)

Here $\rho \in \mathbb{R}^+$ and $\sigma \in (0, 4)$.

As in (10), we have

$$|\nabla(|\mathring{A}|^{\frac{n}{2}}\phi_r)|^2 = |\mathring{A}|^n |\nabla\phi_r|^2 + n\phi_r |\mathring{A}|^{n-1} \langle \nabla\phi_r, \nabla|\mathring{A}| \rangle + \frac{n^2}{4} |\mathring{A}|^{n-2} |\nabla|\mathring{A}||^2 \phi_r^2.$$
(35)

Pick σ , $\varrho > 0$ such that $2(n-1) - \frac{(4-\sigma)\varrho}{2} = \frac{n\sigma}{4}$. Combining (34) and (35), we get

$$0 \geq \frac{\sigma}{n} \int_{M} |\nabla(|\mathring{A}|^{\frac{n}{2}} \phi_{r})|^{2} \rho + \left(1 - \frac{n-2}{\sqrt{n(n-1)}} \eta |\xi|^{2}\right) \int_{M} |\mathring{A}|^{n} \phi_{r}^{2} \rho$$

$$- \frac{2}{n} \int_{M} |H|^{2} |\mathring{A}|^{n} \phi_{r}^{2} \rho - \frac{4}{n} \int_{M} |H| |\xi| |\mathring{A}|^{n} \phi_{r}^{2} \rho$$

$$- \left(4 + \frac{n-2}{\sqrt{n(n-1)} \eta}\right) \int_{M} |\mathring{A}|^{n+2} \phi_{r}^{2} \rho - \left(\frac{\sigma}{n} + \frac{4-\sigma}{2\varrho}\right) \int_{M} |\mathring{A}|^{n} |\nabla \phi_{r}|^{2} \rho.$$
(36)

Set $f = |\mathring{A}|^{\frac{n}{2}} \rho^{\frac{1}{2}} \phi_r$. As in the proof of Theorem 1, we have

$$\int_{M} |\nabla f|^{2} \leq \int_{M} |\nabla (|\mathring{A}|^{\frac{n}{2}} \phi_{r})|^{2} \rho + \frac{n}{4} \int_{M} |\mathring{A}|^{n} \phi_{r}^{2} \rho + \frac{1}{2} \int_{M} |\mathring{A}|^{n} \phi_{r}^{2} \langle \xi, H \rangle \rho
- \frac{1}{2} \int_{M} |H|^{2} |\mathring{A}|^{n} \phi_{r}^{2} \rho.$$
(37)

Combining the Sobolev inequality, (36) with (37), we obtain

$$\begin{split} 0 &\geq \frac{\sigma}{n} \int_{M} |\nabla f|^{2} + \left(1 - \frac{\sigma}{4} - \frac{n-2}{\sqrt{n(n-1)}} \eta |\xi|^{2}\right) \int_{M} |\mathring{A}|^{n} \phi_{r}^{2} \rho \\ &+ \left(\frac{\sigma}{2n} - \frac{2}{n}\right) \int_{M} |\mathring{A}|^{n} \phi_{r}^{2} |H|^{2} \rho - \frac{\sigma}{2n} \int_{M} |\mathring{A}|^{n} \phi_{r}^{2} \langle \xi, H \rangle \rho \\ &- \frac{4}{n} \int_{M} |H| |\xi| |\mathring{A}|^{n} \phi_{r}^{2} \rho - \left(4 + \frac{n-2}{\sqrt{n(n-1)} \eta}\right) \int_{M} |\mathring{A}|^{n+2} \phi_{r}^{2} \rho \\ &- \left(\frac{\sigma}{n} + \frac{4-\sigma}{2\varrho}\right) \int_{M} |\mathring{A}|^{n} |\nabla \phi_{r}|^{2} \rho \\ &\geq \frac{\sigma}{n} \int_{M} |\nabla f|^{2} + \left(1 - \frac{\sigma}{4} - \frac{n-2}{\sqrt{n(n-1)}} \eta |\xi|^{2} - \frac{\sigma}{2n} |H| |\xi| - \frac{4}{n} |H| |\xi|\right) \int_{M} |\mathring{A}|^{n} \phi_{r}^{2} \rho \\ &+ \left(\frac{\sigma}{2n} - \frac{2}{n}\right) \int_{M} |\mathring{A}|^{n} \phi_{r}^{2} |H|^{2} \rho - \left(4 + \frac{n-2}{\sqrt{n(n-1)} \eta}\right) \int_{M} |\mathring{A}|^{n+2} \phi_{r}^{2} \rho \\ &- \left(\frac{\sigma}{n} + \frac{4-\sigma}{2\varrho}\right) \int_{M} |\mathring{A}|^{n} |\nabla \phi_{r}|^{2} \rho \\ &\geq \frac{(n-2)^{2} \sigma}{4n(n-1)^{2} D^{2}(n)(1+t)} |||\mathring{A}|^{n} \phi_{r}^{2} \rho ||_{\frac{n}{n-2}} \\ &+ \left(1 - \frac{\sigma}{4} - \frac{n-2}{\sqrt{n(n-1)}} \eta |\xi|^{2} - \frac{\sigma}{2n} |H| |\xi| - \frac{4}{n} |H| |\xi|\right) \int_{M} |\mathring{A}|^{n} \phi_{r}^{2} \rho \\ &+ \left(\frac{\sigma}{2n} - \frac{2}{n} - \frac{(n-2)^{2} \sigma}{4(n-1)^{2} n^{3} t}\right) \int_{M} |\mathring{A}|^{n} \phi_{r}^{2} |H|^{2} \rho \\ &- \left(4 + \frac{n-2}{\sqrt{n(n-1)} \eta}\right) \int_{M} |\mathring{A}|^{n+2} \phi_{r}^{2} \rho \\ &- \left(\frac{\sigma}{n} + \frac{4-\sigma}{2\varrho}\right) \int_{M} |\mathring{A}|^{n} |\nabla \phi_{r}|^{2} \rho. \end{split}$$

Since $|H| \le \sup_M |H| < \sqrt{|\xi|^2 + \frac{n}{2}} - |\xi|$ by the assumption of Theorem 2 and $\sigma \in (0,4)$, we have

$$0 \geq \frac{(n-2)^{2}\sigma}{4n(n-1)^{2}D^{2}(n)(1+t)} |||\mathring{A}|^{n}\phi_{r}^{2}\rho||_{\frac{n}{n-2}} + \left(1 - \frac{\sigma}{4} - \frac{n-2}{\sqrt{n(n-1)}}\eta|\xi|^{2} - \frac{\sigma}{2n}|\xi|\sup_{M}|H|\right) - \frac{4}{n}|\xi|\sup_{M}|H|\right) \int_{M} |\mathring{A}|^{n}\phi_{r}^{2}\rho + \left(\frac{\sigma}{2n} - \frac{2}{n} - \frac{(n-2)^{2}\sigma}{4(n-1)^{2}n^{3}t}\right)\sup_{M}|H|^{2}\int_{M} |\mathring{A}|^{n}\phi_{r}^{2}\rho - \left(4 + \frac{n-2}{\sqrt{n(n-1)}\eta}\right) \int_{M} |\mathring{A}|^{n+2}\phi_{r}^{2}\rho - \left(\frac{\sigma}{n} + \frac{4-\sigma}{2\varrho}\right) \int_{M} |\mathring{A}|^{n}|\nabla\phi_{r}|^{2}\rho,$$
(38)

where η , σ are positive constants such that

$$2n\left(1 - \frac{\sigma}{4} - \frac{n-2}{\sqrt{n(n-1)}}\eta|\xi|^2 - \frac{\sigma}{2n}|\xi|\sup_M|H| - \frac{4}{n}|\xi|\sup_M|H|\right) + (\sigma - 4)\sup_M|H|^2 > 0.$$

Set

$$\begin{split} U &= U(n, |\xi|, \sup_M |H|, \sigma, \eta) \\ &= 2n \left(1 - \frac{\sigma}{4} - \frac{n-2}{\sqrt{n(n-1)}} \eta |\xi|^2 - \frac{\sigma}{2n} |\xi| \sup_M |H| - \frac{4}{n} |\xi| \sup_M |H| \right) \\ &+ (\sigma - 4) \sup_M |H|^2. \end{split}$$

We choose

$$t = \frac{\sigma(n-2)^2 \sup_M |H|^2}{2n^2(n-1)^2 U},$$

such that

$$U - \frac{(n-2)^2 \sigma}{2n^2(n-1)^2 t} \sup_M |H|^2 = 0.$$

Hence we get from (38) that

$$\begin{split} 0 &\geq \frac{\sigma n (n-2)^2 U}{2 D^2(n) [\sigma (n-2)^2 \mathrm{sup}_M |H|^2 + 2 n^2 (n-1)^2 U]} |||\mathring{A}|^n \phi_r^2 \rho||_{\frac{n}{n-2}} \\ &- \left(4 + \frac{n-2}{\sqrt{n(n-1)\eta}}\right) \int_M |\mathring{A}|^{n+2} \phi_r^2 \rho \\ &- \left(\frac{\sigma}{n} + \frac{4-\sigma}{2\varrho}\right) \int_M |\mathring{A}|^n |\nabla \phi_r|^2 \rho \,. \end{split}$$

By the Hölder inequality, we have

$$0 \ge \left\{ \frac{\sigma n(n-2)^{2} U}{2D^{2}(n) [\sigma(n-2)^{2} \sup_{M} |H|^{2} + 2n^{2}(n-1)^{2} U]} - \left(4 + \frac{n-2}{\sqrt{n(n-1)\eta}}\right) ||\mathring{A}||_{n}^{2} \right\} |||\mathring{A}|^{n} \phi_{r}^{2} \rho ||_{\frac{n}{n-2}} - \left(\frac{\sigma}{n} + \frac{4-\sigma}{2\varrho}\right) \int_{M} |\mathring{A}|^{n} |\nabla \phi_{r}|^{2} \rho.$$

$$(39)$$

Set

$$\begin{split} D &= D(n, |\xi|, \sup_{M} |H|, \sigma, \eta) \\ &= \sqrt{\frac{\sigma \eta n (n-2)^2 \sqrt{n(n-1)} U}{2 D^2(n) (4 \eta \sqrt{n(n-1)} + n - 2) [\sigma (n-2)^2 \sup_{M} |H|^2 + 2 n^2 (n-1)^2 U]}. \end{split}$$

We take

$$\sigma = \sigma_0 := \frac{n[\varsigma + (n-2)^2 |\xi|^2 - (n-2)|\xi|\sqrt{\varsigma + (n-2)^2 |\xi|^2}]}{\sqrt{2}(n-2)\sup_M |H|\sqrt{\tilde{\sigma}} + 2n(n-1)\tilde{\sigma}},$$

$$\eta = \eta_0 := \frac{\sqrt{\varsigma + (n-2)^2 |\xi|^2} - (n-2)|\xi|}{4\sqrt{n(n-1)}|\xi|},$$

where $\tilde{\sigma} = \frac{n}{2} + |\xi| \sup_M |H| - \sup_M |H|^2 > 0$, $\zeta = 4(n-1)(n-4|\xi| \sup_M |H| - 2\sup_M |H|^2) > 0$. One has

$$\begin{split} 0 &< \frac{n[\varsigma + (n-2)^2 |\xi|^2 - (n-2) |\xi| \sqrt{\varsigma + (n-2)^2 |\xi|^2}]}{\sqrt{2}(n-2) \mathrm{sup}_M |H| \sqrt{\tilde{\sigma}} + 2n(n-1)\tilde{\sigma}} \\ &< \frac{n\varsigma}{2n(n-1)\tilde{\sigma}} \\ &= \frac{4(n-1)(n-4 |\xi| \mathrm{sup}_M |H| - 2 \mathrm{sup}_M |H|^2)}{2(n-1)(\frac{n}{2} + |\xi| \mathrm{sup}_M |H| - \mathrm{sup}_M |H|^2)} \\ &\leq 4 \times \frac{n-4 |\xi| \mathrm{sup}_M |H| - 2 \mathrm{sup}_M |H|^2}{n+2 |\xi| \mathrm{sup}_M |H| - 2 \mathrm{sup}_M |H|^2} \\ &\leq 4. \end{split}$$

Here the second inequality is strict since $\xi \neq 0$. Hence $\sigma \in (0, 4)$. We also have $U = U(n, |\xi|, \sup_M |H|, \sigma_0, \eta_0) > 0$. As in the proof of Theorem 1, D achieves its maximum $D(n, |\xi|, \sup_M |H|)$ with

$$\begin{split} D(n,|\xi|,\sup_{M}|H|) &= \frac{\sqrt{n}(n-2)}{4\sqrt{n-1}D(n)} \\ &\times \frac{\sqrt{4(n-1)(n-4|\xi|\sup_{M}|H|-2\sup_{M}|H|^2)+(n-2)^2|\xi|^2}-(n-2)|\xi|}{(n-2)\sup_{M}|H|+\sqrt{2}n(n-1)\sqrt{\frac{n}{2}+|\xi|\sup_{M}|H|-\sup_{M}|H|^2}}. \end{split}$$

As in the proof of Theorem 1, $\frac{\sigma}{n} + \frac{4-\sigma}{2\varrho}$ has an upper bounded E(n) that depends only on n. Since $|\nabla \phi_r| \leq \frac{2}{r}$ and $\int_M |\mathring{A}|^n \mathrm{d}\mu < \infty$, we have

$$\lim_{r \to \infty} \int_{M} |\mathring{A}|^{n} |\nabla \phi_{r}|^{2} \rho = 0.$$

Since $||\mathring{A}||_n < D(n, |\xi|, \sup_M |H|)$, then we get from (39)

$$0 \ge \left(D(n, |\xi|, \sup_{M} |H|)^2 - ||\mathring{A}||_n^2 \right) \lim_{r \to \infty} |||\mathring{A}|^n \phi_r^2 \rho||_{\frac{n}{n-2}} \ge 0.$$

Hence $|||\mathring{A}|^n e^{-\frac{|X|^2}{4}}||_{\frac{n}{n-2}} = 0$, which implies that $\mathring{A} = 0$. Therefore, M is totally umbilical, i.e., M is $\mathbb{S}^n(\sqrt{|\xi|^2 + 2n} - |\xi|)$ or \mathbb{R}^n . Since we have assumed that $\sup_M |H| < \sqrt{\frac{n}{2} + |\xi|^2} - |\xi|$, the first case is excluded. So, M is \mathbb{R}^n and $\xi = 0$, which is a contradiction to the assumption. This completes the proof of Theorem 2.

4. Gap Theorems for n=2

We need another Sobolev type inequality in dimension 2, which was proved by Xu and Gu in [31].

$$\tilde{c}^{-1} \left(\int_{M} f^{4} d\mu \right)^{\frac{1}{2}} \leq \frac{1}{t} \int_{M} |\nabla f|^{2} d\mu + t \int_{M} f^{2} d\mu + \frac{1}{2} \int_{M} |H| f^{2} d\mu, \, \forall f \in C_{c}^{\infty}(M)$$
(40)

for all $t \in \mathbb{R}^+$, where $\tilde{c} = \frac{12\sqrt{3\pi}}{\pi}$. Now we give the proof of Theorem 3.

Proof. Set $f = |A|\rho^{\frac{1}{2}}\phi_r$. As in the proof of Theorem 1, for any $\tau, \varrho \in \mathbb{R}^+$, $\sigma \in (0, 4)$, we have

$$0 \ge \frac{\sigma}{2} \int_{M} |\nabla f|^{2} + \frac{\sigma}{4} \int_{M} |A|^{2} \phi_{r}^{2} |H|^{2} \rho - \frac{\sigma}{4} \int_{M} |A|^{2} \phi_{r}^{2} \langle \xi, H \rangle \rho + \left(1 - |\xi|\tau - \frac{\sigma}{4}\right) \int_{M} |A|^{2} \phi_{r}^{2} \rho - \left(3 + \frac{|\xi|}{\tau}\right) \int_{M} |A|^{4} \phi_{r}^{2} \rho - \left(\frac{\sigma}{2} + \frac{4 - \sigma}{2\varrho}\right) \int_{M} |A|^{2} |\nabla \phi_{r}|^{2} \rho.$$
(41)

Combining the Sobolev inequality (40) and (41), we obtain

$$0 \geq \frac{\sigma}{2} \left[\frac{t}{\tilde{c}} \left(\int_{M} f^{4} \right)^{\frac{1}{2}} - t^{2} \int_{M} |A|^{2} \phi_{r}^{2} \rho - \frac{t}{2} \int_{M} |H| |A|^{2} \phi_{r}^{2} \rho \right]$$

$$+ \frac{\sigma}{4} \int_{M} |A|^{2} \phi_{r}^{2} |H|^{2} \rho - \frac{\sigma}{4} \int_{M} |A|^{2} \phi_{r}^{2} \langle \xi, H \rangle \rho$$

$$+ \left(1 - |\xi| \tau - \frac{\sigma}{4} \right) \int_{M} |A|^{2} \phi_{r}^{2} \rho - \left(3 + \frac{|\xi|}{\tau} \right) \int_{M} |A|^{4} \phi_{r}^{2} \rho$$

$$- \left(\frac{\sigma}{2} + \frac{4 - \sigma}{2\varrho} \right) \int_{M} |A|^{2} |\nabla \phi_{r}|^{2} \rho.$$

$$(42)$$

7

By using the Cauchy inequality, for any $\theta > 0$, we get from (42)

$$\begin{split} 0 &\geq \frac{\sigma t}{2\tilde{c}} \left(\int_{M} f^{4} \right)^{\frac{1}{2}} - \frac{\sigma t}{4} \int_{M} \left(\frac{\theta}{2} |H|^{2} + \frac{1}{2\theta} \right) |A|^{2} \phi_{r}^{2} \rho \\ &+ \frac{\sigma}{4} \int_{M} |A|^{2} \phi_{r}^{2} |H|^{2} \rho - \frac{\sigma}{4} \int_{M} |A|^{2} \phi_{r}^{2} \langle \xi, H \rangle \rho \\ &+ \left(1 - |\xi| \tau - \frac{\sigma}{4} - \frac{\sigma t^{2}}{2} \right) \int_{M} |A|^{2} \phi_{r}^{2} \rho - \left(3 + \frac{|\xi|}{\tau} \right) \int_{M} |A|^{4} \phi_{r}^{2} \rho \\ &- \left(\frac{\sigma}{2} + \frac{4 - \sigma}{2\varrho} \right) \int_{M} |A|^{2} |\nabla \phi_{r}|^{2} \rho \\ &\geq \frac{\sigma t}{2\tilde{c}} \left(\int_{M} f^{4} \right)^{\frac{1}{2}} + \left(\frac{\sigma}{4} - \frac{\theta \sigma t}{8} \right) \int_{M} |A|^{2} \phi_{r}^{2} |H|^{2} \rho \\ &+ \left(1 - |\xi| \tau - \frac{\sigma}{4} - \frac{\sigma t}{8\theta} - \frac{\sigma t^{2}}{2} \right) \int_{M} |A|^{2} \phi_{r}^{2} \rho \\ &- \frac{\sigma}{4} \int_{M} |A|^{2} \phi_{r}^{2} \langle \xi, H \rangle \rho - \left(3 + \frac{|\xi|}{\tau} \right) \int_{M} |A|^{4} \phi_{r}^{2} \rho \\ &- \left(\frac{\sigma}{2} + \frac{4 - \sigma}{2\varrho} \right) \int_{M} |A|^{2} |\nabla \phi_{r}|^{2} \rho \,. \end{split}$$

We choose $t = \frac{2}{\theta}$, such that $\frac{\sigma}{4} = \frac{\theta \sigma t}{8}$. Hence

$$0 \ge \frac{\sigma}{\theta \tilde{c}} \left(\int_{M} f^{4} \right)^{\frac{1}{2}} + \left(1 - |\xi|\tau - \frac{\sigma}{4} - \frac{9\sigma}{4\theta^{2}} \right) \int_{M} |A|^{2} \phi_{r}^{2} \rho$$

$$- \frac{\sigma}{4} \int_{M} |A|^{2} \phi_{r}^{2} \langle \xi, H \rangle \rho - \left(3 + \frac{|\xi|}{\tau} \right) \int_{M} |A|^{4} \phi_{r}^{2} \rho$$

$$- \left(\frac{\sigma}{2} + \frac{4 - \sigma}{2\rho} \right) \int_{M} |A|^{2} |\nabla \phi_{r}|^{2} \rho.$$

$$(43)$$

On the other hand, for any $\omega > 0$, we have

$$-\frac{\sigma}{4} \int_{M} |A|^{2} \phi_{r}^{2} \langle \xi, H \rangle \rho \geq -\frac{\sigma}{4} \int_{M} |A|^{2} \phi_{r}^{2} |\xi| |H| \rho$$

$$\geq -\frac{\sigma |\xi|}{4} \int_{M} |A|^{2} \phi_{r}^{2} \left(\frac{1}{2\omega} + \frac{\omega}{2} |H|^{2} \right) \rho \qquad (44)$$

$$\geq -\frac{\sigma |\xi|}{8\omega} \int_{M} |A|^{2} \phi_{r}^{2} \rho - \frac{\sigma |\xi| \omega}{4} \int_{M} |A|^{4} \phi_{r}^{2} \rho.$$

Combining (43) and (44), we get

$$\begin{split} 0 &\geq \frac{\sigma}{\theta \tilde{c}} \left(\int_{M} f^{4} \right)^{\frac{1}{2}} + \left(1 - |\xi|\tau - \frac{\sigma}{4} - \frac{9\sigma}{4\theta^{2}} - \frac{\sigma|\xi|}{8\omega} \right) \int_{M} |A|^{2} \phi_{r}^{2} \rho \\ &- \left(3 + \frac{|\xi|}{\tau} + \frac{\sigma|\xi|\omega}{4} \right) \int_{M} |A|^{4} \phi_{r}^{2} \rho \\ &- \left(\frac{\sigma}{2} + \frac{4 - \sigma}{2\varrho} \right) \int_{M} |A|^{2} |\nabla \phi_{r}|^{2} \rho. \end{split}$$

Let τ satisfy $1 - |\xi \tau| > 0$. We take

$$\sigma = \frac{8\omega\theta^2(1 - |\xi|\tau)}{2\omega\theta^2 + 18\omega + |\xi|\theta^2},$$

which satisfies

$$0 < \sigma < \frac{8\omega\theta^2}{2\omega\theta^2 + 18\omega + |\xi|\theta^2} < \frac{8\omega\theta^2}{2\omega\theta^2} = 4$$

since $\omega > 0$, such that

$$1 - |\xi|\tau - \frac{\sigma}{4} - \frac{9\sigma}{4\theta^2} - \frac{\sigma|\xi|}{8\omega} = 0.$$

Hence we obtain

$$0 \ge \frac{8\omega\theta(1 - |\xi|\tau)}{\tilde{c}(2\omega\theta^{2} + 18\omega + |\xi|\theta^{2})} \left(\int_{M} f^{4}\right)^{\frac{1}{2}} \\
- \left(3 + \frac{|\xi|}{\tau} + \frac{2\omega^{2}\theta^{2}|\xi|(1 - |\xi|\tau)}{2\omega\theta^{2} + 18\omega + |\xi|\theta^{2}}\right) \int_{M} |A|^{4}\phi_{r}^{2}\rho \\
- \left(\frac{\sigma}{2} + \frac{4 - \sigma}{2\varrho}\right) \int_{M} |A|^{2}|\nabla\phi_{r}|^{2}\rho \\
\ge \left[\frac{8\omega\theta(1 - |\xi|\tau)}{\tilde{c}(2\omega\theta^{2} + 18\omega + |\xi|\theta^{2})}\right] \\
- \left(3 + \frac{|\xi|}{\tau} + \frac{2\omega^{2}\theta^{2}|\xi|(1 - |\xi|\tau)}{2\omega\theta^{2} + 18\omega + |\xi|\theta^{2}}\right) \left(\int_{M} |A|^{4}\right)^{\frac{1}{2}} \left[\int_{M} f^{4}\right]^{\frac{1}{2}} \\
- \left(\frac{\sigma}{2} + \frac{4 - \sigma}{2\varrho}\right) \int_{M} |A|^{2}|\nabla\phi_{r}|^{2}\rho.$$
(45)

Set

$$K(|\xi|,\tau,\omega,\theta) = \frac{8\omega\theta(1-|\xi|\tau)}{\tilde{c}[(2\omega\theta^2+18\omega+|\xi|\theta^2)\left(3+\frac{|\xi|}{\tau}\right)+2\omega^2\theta^2|\xi|(1-|\xi|\tau)]}.$$

Similar as in the proof of Theorem 1, $K(|\xi|, \tau, \omega, \theta)$ achieves its maximum

$$K(|\xi|) = \frac{2}{3\tilde{c}(\sqrt{|\xi|^2 + 3} + |\xi|)} \sqrt{\frac{1}{(\sqrt{|\xi|^2 + 3} + |\xi|)(\sqrt{|\xi|^2 + 3} + (1 + \sqrt{2})|\xi|)}},$$

when

$$\begin{split} \tau &= \frac{\sqrt{|\xi|^2 + 3} - |\xi|}{3}, \omega = \frac{3}{\sqrt{2}(\sqrt{|\xi|^2 + 3} - |\xi|)} = \frac{1}{\sqrt{2}\tau}, \\ \theta &= \frac{3\sqrt{3}}{\sqrt{3 + \sqrt{2}|\xi|(\sqrt{|\xi|^2 + 3} - |\xi|)}}. \end{split}$$

As in the proof of Theorem 1, $\frac{\sigma}{n} + \frac{4-\sigma}{2\varrho}$ is bounded from above. Since $|\nabla \phi_r| \le \frac{2}{r}$ and $\int_M |A|^2 d\mu < \infty$, we have

$$\lim_{r \to \infty} \int_M |A|^2 |\nabla \phi_r|^2 \rho = 0.$$

Since $\left(\int_M |A|^4 d\mu\right)^{1/2} < K(|\xi|)$, we get from (45) that

$$0 \geq \left[K(|\xi|) - \left(\int_{M} |A|^{4} \mathrm{d}\mu\right)^{\frac{1}{2}}\right] \lim_{r \to \infty} \left(\int_{M} |A|^{4} \phi_{r}^{4} \rho^{2}\right)^{\frac{1}{2}} \geq 0.$$

Hence $\int_M |A|^4 \rho^2 = 0$, which implies that |A| = 0. Hence M is a linear subspace of \mathbb{R}^{2+p} . This completes the proof of Theorem 3.

Using a similar argument, we give the proof of Theorem 4.

Proof. Set $f = |\mathring{A}| \rho^{\frac{1}{2}} \phi_r$. For n = 2, we have

$$0 \ge \frac{\sigma}{2} \int_{M} |\nabla f|^{2} d\mu + \left(\frac{\sigma}{4} - 1\right) \int_{M} |\mathring{A}|^{2} \phi_{r}^{2} |H|^{2} \rho$$

$$+ \left(1 - \frac{\sigma}{4} - \frac{\sigma}{4} |\xi| |H| - 2|\xi| |H|\right) \int_{M} |\mathring{A}|^{2} \phi_{r}^{2} \rho$$

$$- 4 \int_{M} |\mathring{A}|^{4} \phi_{r}^{2} \rho - \left(\frac{\sigma}{2} + \frac{4 - \sigma}{2\varrho}\right) \int_{M} |\mathring{A}|^{2} |\nabla \phi_{r}|^{2} \rho.$$
(46)

Combining the Sobolev inequality (40) and (46), we obtain

$$0 \ge \frac{t\sigma}{2\tilde{c}} \left(\int_{M} f^{4} \right)^{\frac{1}{2}} + \left(\frac{\sigma}{4} - 1 \right) \int_{M} |\mathring{A}|^{2} \phi_{r}^{2} |H|^{2} \rho$$

$$+ \left(1 - \frac{\sigma}{4} - \frac{t^{2}\sigma}{2} - \frac{t\sigma}{4} |H| - \frac{\sigma}{4} |\xi| |H| - 2|\xi| |H| \right) \int_{M} |\mathring{A}|^{2} \phi_{r}^{2} \rho \qquad (47)$$

$$- 4 \int_{M} |\mathring{A}|^{4} \phi_{r}^{2} \rho - \left(\frac{\sigma}{2} + \frac{4 - \sigma}{2\varrho} \right) \int_{M} |\mathring{A}|^{2} |\nabla \phi_{r}|^{2} \rho.$$

Since $|H| \le \sup_M |H| < \sqrt{|\xi|^2 + 1} - |\xi|$ by the assumption of Theorem 4 and $\sigma \in (0, 4), (47)$ becomes

$$\begin{split} 0 &\geq \frac{t\sigma}{2\tilde{c}} \left(\int_{M} f^{4} \right)^{\frac{1}{2}} + \left(\frac{\sigma}{4} - 1 \right) \sup_{M} |H|^{2} \int_{M} |\mathring{A}|^{2} \phi_{r}^{2} \rho \\ &+ \left(1 - \frac{\sigma}{4} - \frac{t^{2}\sigma}{2} - \frac{t\sigma}{4} \sup_{M} |H| - \frac{\sigma}{4} |\xi| \sup_{M} |H| - 2|\xi| \sup_{M} |H| \right) \int_{M} |\mathring{A}|^{2} \phi_{r}^{2} \rho \\ &- 4 \int_{M} |\mathring{A}|^{4} \phi_{r}^{2} \rho - \left(\frac{\sigma}{2} + \frac{4 - \sigma}{2\varrho} \right) \int_{M} |\mathring{A}|^{2} |\nabla \phi_{r}|^{2} \rho. \end{split} \tag{48}$$

We take

$$\sigma = \frac{4 - 8|\xi|\sup_{M}|H| - 4\sup_{M}|H|^{2}}{1 + 2t^{2} + t\sup_{M}|H| + |\xi|\sup_{M}|H| - \sup_{M}|H|^{2}},$$

which satisfies

$$0 < \sigma < \frac{4(1 - 2|\xi|\sup_{M}|H| - \sup_{M}|H|^2)}{1 + |\xi|\sup_{M}|H| - \sup_{M}|H|^2} \le 4$$

since t > 0, such that

$$1-\frac{\sigma}{4}-\frac{t^2\sigma}{2}-\frac{t\sigma}{4}\mathrm{sup}_M|H|-\frac{\sigma}{4}|\xi|\mathrm{sup}_M|H|-2|\xi|\mathrm{sup}_M|H|=\left(1-\frac{\sigma}{4}\right)\mathrm{sup}_M|H|^2.$$

Hence we obtain from (48)

$$0 \geq \frac{2t(1-2|\xi|\sup_{M}|H|-\sup_{M}|H|^{2})}{\tilde{c}(1+2t^{2}+t\sup_{M}|H|+|\xi|\sup_{M}|H|-\sup_{M}|H|^{2})} \left(\int_{M} f^{4}\right)^{\frac{1}{2}} \\ -4\int_{M}|\mathring{A}|^{4}\phi_{r}^{2}\rho - \left(\frac{\sigma}{2} + \frac{4-\sigma}{2\varrho}\right)\int_{M}|\mathring{A}|^{2}|\nabla\phi_{r}|^{2}\rho \\ \geq \left[\frac{2t(1-2|\xi|\sup_{M}|H|-\sup_{M}|H|^{2})}{\tilde{c}(1+2t^{2}+t\sup_{M}|H|+|\xi|\sup_{M}|H|-\sup_{M}|H|^{2})}\right] \\ -4\left(\int_{M}|\mathring{A}|^{4}\right)^{\frac{1}{2}}\left(\int_{M} f^{4}\right)^{\frac{1}{2}} - \left(\frac{\sigma}{2} + \frac{4-\sigma}{2\varrho}\right)\int_{M}|\mathring{A}|^{2}|\nabla\phi_{r}|^{2}\rho.$$

$$(49)$$

Set

$$D(|\xi|, \sup_{M}|H|, t) = \frac{t(1 - 2|\xi|\sup_{M}|H| - \sup_{M}|H|^2)}{2\tilde{c}(1 + 2t^2 + t\sup_{M}|H| + |\xi|\sup_{M}|H| - \sup_{M}|H|^2)}.$$

We choose

$$t = \sqrt{\frac{1+|\xi|\mathrm{sup}_M|H|-\mathrm{sup}_M|H|^2}{2}},$$

such that $D(|\xi|, \sup_M |H|, t)$ achieves its maximum $D(|\xi|, \sup_M |H|)$ with

$$D(|\xi|, \sup_{M}|H|) = \frac{1 - 2|\xi|\sup_{M}|H| - \sup_{M}|H|^{2}}{2\tilde{c}(2\sqrt{2}\sqrt{1 + |\xi|\sup_{M}|H|} - \sup_{M}|H|^{2} + \sup_{M}|H|)}.$$

As in the proof of Theorem 1, $\frac{\sigma}{n} + \frac{4-\sigma}{2\varrho}$ is bounded from above. Since $|\nabla \phi_r| \leq \frac{2}{r}$ and $\int_M |\mathring{A}|^2 d\mu < \infty$, we have

$$\lim_{r \to \infty} \int_{M} |\mathring{A}|^{2} |\nabla \phi_{r}|^{2} \rho = 0.$$

Since $\left(\int_M |\mathring{A}|^4 d\mu\right)^{1/2} < D(|\xi|, \sup_M |H|)$, then we get from (49) that

$$0 \geq \left\lceil D(|\xi|, \sup_M |H|) - \left(\int_M |\mathring{A}|^4 \mathrm{d}\mu \right)^{\frac{1}{2}} \right\rceil \lim_{r \to \infty} \left(\int_M |\mathring{A}|^4 \phi_r^4 \rho^2 \right)^{\frac{1}{2}} \geq 0.$$

Hence $\int_M |\mathring{A}|^4 \rho^2 = 0$, which implies that $\mathring{A} = 0$. Therefore, M is totally umbilical, i.e., M is $\mathbb{S}^2(\sqrt{|\xi|^2+4}-|\xi|)$ or \mathbb{R}^2 . Since we have assumed that $\sup_M |H| < \sqrt{1+|\xi|^2}-|\xi|$, the first case is excluded. This completes the proof of Theorem 4.

References

[1] Cao, H.D., Li, H.Z.: A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension. Calc. Var. Partial Differ. Equ. 46, 879–889 (2013)

- [2] Cao, S.J., Xu, H.W., Zhao, E.T.: Pinching theorems for self-shrinkers of higher codimension. Preprint. 2014. http://www.cms.zju.edu.cn/upload/file/20170320/ 1489994331903839.pdf
- [3] Cheng, Q.M., Ogata, S., Wei, G.: Rigidity theorems of λ-hypersurfaces. Commun. Anal. Geom. 24, 45–58 (2016)
- [4] Cheng, Q.M., Peng, Y.J.: Complete self-shrinkers of the mean curvature flow. Calc. Var. Partial Differ. Equ. **52**, 497–506 (2015)
- [5] Cheng, Q.M., Wei, G.: A gap theorem of self-shrinkers. Trans. Am. Math. Soc. 367, 4895–4915 (2015)
- [6] Cheng, Q.M., Wei, G.: The Gauss image of λ-hypersurfaces and a Bernstein type problem. arXiv:1410.5302
- [7] Cheng, Q.M., Wei, G.: Complete λ-hypersurfaces of weighted volume-preserving mean curvature flow. arXiv:1403.3177
- [8] Cheng, X., Mejia, T., Zhou, D.T.: Stability and compactness for complete f-minimal surfaces. Trans. Am. Math. Soc. 367, 4041–4059 (2015)
- [9] Cheng, X., Mejia, T., Zhou, D.T.: Simons-type equation for *f*-minimal hypersurfaces and applications. J. Geom. Anal. **25**, 2667–2686 (2015)
- [10] Colding, T.H., Minicozzi II, W.P.: Generic mean curvature flow I; generic singularities. Ann. Math. 175, 755–833 (2012)
- [11] Ding, Q., Xin, Y.L.: The rigidity theorems of self-shrinkers. Trans. Am. Math. Soc. 366, 5067–5085 (2014)
- [12] Ding, Q., Xin, Y.L., Yang, L.: The rigidity theorems of self shrinkers via Gauss maps. Adv. Math. 303, 151–174 (2016)
- [13] Guang, Q.: Gap and rigidity theorems of λ -hypersurfaces, arXiv:1405.4871
- [14] Hoffman, D., Spruck, J.: Soblev and isoperimetric inequalities for Riemannian submanifolds. Commun. Pure Appl. Math. 27, 715–727 (1974)
- [15] Huisken, G.: Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31, 285–299 (1990)
- [16] Ilmanen, T.: Singularities of mean curvature flow of surfaces. Preprint, 1995. https://people.math.ethz.ch/~ilmanen/papers/pub.html
- [17] Le, N.Q., Sesum, N.: Blow-up rate of the mean curvature during the mean curvature flow and a gap theorem for self-shrinkers. Commun. Anal. Geom. 19, 633–659 (2011)
- [18] Li, A.M., Li, J.M.: An instrinsic rigidity theorem for minimal submanifolds in a sphere. Arch. Math. 58, 582–594 (1992)
- [19] Li, H.Z., Wei, Y.: Classification and rigidity of self-shrinkers in the mean curvature flow. J. Math. Soc. Jpn. **66**, 709–734 (2014)
- [20] Li, X.X., Chang, X.F.: A rigidity theorem of ξ -submanifolds in \mathbb{C}^2 . Geom. Dedic. **185**, 155–169 (2016)
- [21] Lin, H.Z.: Some rigidity theorems for self-shrinkers of the mean curvature flow. J. Korean Math. Soc. **53**, 769–780 (2016)
- [22] Lin, J.M., Xia, C.Y.: Global pinching theorem for even dimensional minimal submanifolds in a unit sphere. Math. Z. **201**, 381–389 (1989)
- [23] McGonagle, M., Ross, J.: The hyperplane is the only stable, smooth solution to the isoperimetric problem in Gaussian space. Geom. Dedic. 178, 277–296 (2015)
- [24] Ogata, S.: A global pinching theorem of complete λ-hypersurfaces. arXiv:1504.00789

- [25] Shiohama, K., Xu, H.W.: A general rigidity theorem for complete submanifolds. Nagoya Math. J. 150, 105–134 (1998)
- [26] Wang, H.J., Xu, H.W., Zhao, E.T.: Gap theorems for complete λ-hypersurfaces. Pac. J. Math. 288, 453–474 (2017)
- [27] White, B.: Stratification of minimal surfaces, mean curvature flows, and harmonic maps. J. Reine Angew. Math. 488, 1–35 (1997)
- [28] Xia, C.Y., Wang, Q.L.: Gap theorems for minimal submanifolds of a hyperbolic space. J. Math. Anal. Appl. 436, 983–989 (2016)
- [29] Xu, H.W.: A rigidity theorem for submanifolds with parallel mean curvature in a sphere. Arch. Math. **61**, 489–496 (1993)
- [30] Xu, H.W., Gu, J.R.: A general gap theorem for submanifolds with parallel mean curvature in \mathbb{R}^{n+p} . Commun. Anal. Geom. **15**, 175–194 (2007)
- [31] Xu, H.W., Gu, J.R.: L^2 -isolation phenomenon for complete surfaces arising from Yang-Mills theory. Lett. Math. Phys. **80**, 115–126 (2007)
- [32] Yau, S.T.: Submanifolds with constant mean curvature I. Am. J. Math. 96, 346–366 (1974)
- [33] Yau, S.T.: Submanifolds with constant mean curvature II. Am. J. Math. 97, 76–100 (1975)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.