

Kazushi Ued[a](http://orcid.org/0000-0001-9568-0827)

*G***2-Grassmannians and derived equivalences**

Received: 28 July 2017 / Accepted: 10 November 2018 / Published online: 17 November 2018

Abstract. We prove the derived equivalence of a pair of non-compact Calabi–Yau 7-folds, which are the total spaces of certain rank 2 bundles on G_2 -Grassmannians. The proof follows that of the derived equivalence of Calabi–Yau 3-folds in G_2 -Grassmannians by Kuznetsov (Derived equivalence of Ito–Miura–Okawa–Ueda Calabi–Yau 3-folds. [arXiv:1611.08386\)](http://arxiv.org/abs/1611.08386) closely.

1. Introduction

The simply-connected simple algebraic group *G* of type G_2 has three homogeneous spaces $G := G/P_1, Q := G/P_2$, and $F := G/B$ associated with the crossed Dynkin diagrams , , and respectively. The Picard group of **F** can be identified with the weight lattice of *G*, which in turn can be identified with \mathbb{Z}^2 as $(a, b) := a\omega_1 + b\omega_2$, where ω_1 and ω_2 are the fundamental weights associated with the long root and the short root respectively. We write the line bundle associated with the weight (k, l) as $\mathcal{O}_\mathbf{F}(k,l)$.

Let

$$
R := \bigoplus_{k,l=0}^{\infty} H^0\left(\mathcal{O}_\mathbf{F}(k,l)\right) \cong \bigoplus_{k,l=0}^{\infty} \left(V_{(k,l)}^G\right)^\vee \tag{1.1}
$$

be the Cox ring of **F**, where $(V_{(k,l)}^G)$ ^{\vee} is the dual of the irreducible representation of *G* with the highest weight (*k*,*l*).

The \mathbb{Z}^2 -grading of *R* defines a $(\mathbb{G}_m)^2$ -action on Spec *R*, which induces an action of \mathbb{G}_m embedded in $(\mathbb{G}_m)^2$ by the anti-diagonal map $\alpha \mapsto (\alpha, \alpha^{-1})$. We write the geometric invariant theory quotients as

$$
\mathbf{V}_{+} := \text{Proj } R_{+}, \quad \mathbf{V}_{-} := \text{Proj } R_{-}, \quad \mathbf{V}_{0} := \text{Spec } R_{0}, \tag{1.2}
$$

where

$$
R_n = \bigoplus_{i \in \mathbb{Z}} R_{i,n-i}, \quad R_+ := \bigoplus_{n=0}^{\infty} R_n, \quad R_- := \bigoplus_{n=0}^{\infty} R_{-n}.
$$
 (1.3)

K. Ueda (B): Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan. e-mail: kazushi@ms.u-tokyo.ac.jp

Mathematics Subject Classification: 14J32

V⁺ and **V**[−] are the total spaces of the dual of the equivariant vector bundles of rank 2 on **G** and **Q** associated with irreducible representations of P_1 and P_2 with the highest weight $(1, 1)$. The computation in $[11]$ $[11]$ shows that the first Chern classes of these rank 2 bundles are minus the first Chern classes of **G** and **Q** respectively, so that **V**⁺ and **V**[−] are non-compact Calabi–Yau manifolds. The structure morphisms $\phi_+ : V_+ \to V_0$ and $\phi_- : V_- \to V_0$ are crepant resolutions which contract the zero-sections. Together with the total space **V** of the line bundle $\mathcal{O}_F(1, 1)$ on **F**, they fit into the commutative diagrams (2.16) and (3.1) .

The same construction for the simply-connected simple algebraic group Sp(2) of type C_2 , which is accidentally isomorphic to the simply-connected simple algebraic group Spin(5) of type *B*2, gives the 5-fold flop discussed in [\[21](#page-10-0)], where it is attributed to Abuaf.

The main result in this paper is the following:

Theorem 1.1. V⁺ *and* **V**[−] *are derived-equivalent.*

Theorem [1.1](#page-1-0) provides an evidence for the conjecture [\[4,](#page-9-1) Conjecture 4.4] [\[15,](#page-9-2) Conjecture 1.2] that birationally equivalent smooth projective varieties are Kequivalent if and only if they are D-equivalent.

The proof of Theorem [1.1](#page-1-0) closely follows [\[17\]](#page-9-3), where the derived equivalence of Calabi–Yau complete intersections in **G** and **Q** defined by sections of the equivariant vector bundles dual to V_+ and V_- . The existence of a derived equivalence between these Calabi–Yau 3-folds in turn follows from Theorem [1.1](#page-1-0) using matrix factorizations.

Notations and conventions. We work over a field **k** throughout this paper. All pull-back and push-forward are derived. The complexes underlying $Ext^{\bullet}(-, -)$ and *H*•(−), considered as objects in the derived category of vector spaces, will be denoted by $hom(-, -)$ and $h(-)$.

2. The blow-up diagram

As described e.g. in $[18, \text{Section 6.4}]$ $[18, \text{Section 6.4}]$, the G_2 -Grassmannian **G** is the zero locus $s_{\lambda}^{-1}(0)$ of the section s_{λ} of the equivariant vector bundle $\mathcal{Q}^{\vee}(1)$ of rank 5 on $Gr(2, V)$, obtained as the tensor product of the dual Q^{\vee} of the universal quotient bundle *Q* and the hyperplane bundle $\mathcal{O}(1)$. Here $V := V_{(0,1)}^G$ is the 7-dimensional fundamental representation of G_2 , and s_λ corresponds to the G_2 -invariant 3-form on *V* under the isomorphism $H^0(\text{Gr}(2, V), \mathcal{Q}^{\vee}(1)) \cong \bigwedge^3 V^{\vee}$. We write the G_2 equivariant vector bundle associated with the irreducible representation of *P*¹ with the highest weight (a, b) as $\mathcal{E}_{(a, b)}$. The restriction $\mathcal{U} := \mathcal{S}|_{\mathbf{G}}$ of the universal subbundle *S* of rank 2 on Gr(2, *V*) is isomorphic to $\mathcal{E}_{(-1,1)}$.

The G_2 -flag variety **F** is isomorphic to the total space of the \mathbb{P}^1 -bundle $\overline{\omega}_+$: $\mathbb{P}(\mathcal{U}) \to \mathbb{G}$ associated with \mathcal{U} (or any other equivariant vector bundle of rank 2, since all of them are related by a twist by a line bundle). We write the relative hyperplane class of ϖ_+ as *h*, so that

$$
(\varpi_{+})_{*}(\mathcal{O}_{\mathbf{F}}(h)) \cong \mathscr{U}^{\vee}.
$$
 (2.1)

The pull-back to **F** of the ample generator *H* of Pic(**G**) $\cong \mathbb{Z}$ will be denoted by *H* again by abuse of notation.

The other G_2 -Grassmannian **Q** is a quadric hypersurface in $\mathbb{P}(V)$. We write the equivariant vector bundle on **Q** associated with the irreducible representation of P_2 with highest weight (a, b) as $\mathcal{F}_{(a, b)}$. The flag variety **F** has a structure of a \mathbb{P}^1 -bundle $\overline{\omega}$: **F** → **Q**, whose relative hyperplane class is given by *H*. We define a vector bundle K on **Q** by

$$
\mathcal{K} := ((\varpi_{-})_{*} (\mathcal{O}_{\mathbf{F}}(H)))^{\vee}, \tag{2.2}
$$

so that $\mathbf{F} \cong \mathbb{P}_{\mathbf{G}}(\mathscr{K})$. One can show that \mathscr{K} is isomorphic to $\mathcal{F}_{(1,-3)}$. We write the hyperplane class of **Q** as *h* by abuse of notation, since it pulls back to *h* on **F**.

Let **V** be the total space of the line bundle $\mathcal{O}_\mathbf{F}(-h - H)$ on **F**. The structure morphism will be denoted by $\pi : V \to F$. The Cox ring of V is the N^2 -graded ring

$$
S = \bigoplus_{k,l=0}^{\infty} S_{k,l}
$$
 (2.3)

given by

$$
S_{k,l} := H^0\left(\mathcal{O}_V(k,l)\right) \tag{2.4}
$$

$$
\cong H^0\left(\pi_*\left(\mathcal{O}_V(k,l)\right)\right) \tag{2.5}
$$

$$
\cong H^0 \left(\pi_* \mathcal{O}_V \otimes \mathcal{O}_F(k, l) \right) \tag{2.6}
$$

$$
\cong H^0\left(\left(\bigoplus_{m=0}^{\infty} \mathcal{O}_F(m, m)\right) \otimes \mathcal{O}_F(k, l)\right) \tag{2.7}
$$

$$
\cong \bigoplus_{m=0}^{\infty} H^0 \left(\mathcal{O}_F(k+m, l+m) \right) \tag{2.8}
$$

$$
\cong \bigoplus_{m=0}^{\infty} \left(V_{(k+m,l+m)}^G \right)^{\vee}, \tag{2.9}
$$

whose multiple Proj recovers **V**. Similarly, the Cox ring of the total space W_+ of the bundle $\mathcal{E}_{(1,1)}^{\vee} \cong \mathcal{U}(-H)$ is given by $\bigoplus_{k=0}^{\infty} H^0(\mathcal{O}_{\mathbf{W}_+}(kH))$ where

$$
H^{0}\left(\mathcal{O}_{\mathbf{W}_{+}}(kH)\right) \cong H^{0}\left(\pi_{*}\left(\mathcal{O}_{\mathbf{W}_{+}}(kH)\right)\right) \tag{2.10}
$$

$$
\cong H^0(\pi_* \mathcal{O}_{\mathbf{W}_+} \otimes \mathcal{O}_{\mathbf{G}}(kH))
$$
\n(2.11)

$$
\cong \bigoplus_{m=0}^{\infty} H^0\left(\left(\operatorname{Sym}^m \mathcal{E}_{(1,1)} \right) \otimes \mathcal{O}_G(kH) \right) \tag{2.12}
$$

$$
\cong \bigoplus_{m=0}^{\infty} H^0\left(\mathcal{E}_{(m,m)} \otimes \mathcal{E}_{(k,0)}\right) \tag{2.13}
$$

$$
\cong \bigoplus_{m=0}^{\infty} H^0\left(\mathcal{E}_{(m+k,m)}\right). \tag{2.14}
$$

This is isomorphic to R_{+} , so that W_{+} is isomorphic to V_{+} , and the affinization morphism

$$
\mathbf{V} \to \operatorname{Spec} H^0(\mathcal{O}_\mathbf{V}) \cong \mathbf{V}_0 \tag{2.15}
$$

is the composition of the natural projection $\varphi_+ : V \to V_+$ and the affinization morphism $\phi_+ : \mathbf{V}_+ \to \mathbf{V}_0$. Since \mathbf{V}_+ is the total space of $\mathcal{E}^{\vee}_{(1,1)}$, the ideal sheaf of the zero-section is the image of the natural morphism from $\pi_+^* \mathcal{E}_{(1,1)}$ to \mathcal{O}_{V_+} , and the morphism φ_+ is the blow-up along it. Similarly, the affinization morphism [\(2.15\)](#page-3-2) also factors into the blow-up φ : **V** → **V**_− and the affinization morphism ϕ – : V – \rightarrow V_0 , and one obtains the following commutative diagram:

3. Some extension groups

The zero-sections and the natural projections fit into the following diagram:

We write $\mathcal{U}_{\mathbf{F}} := \varpi_+^* \mathcal{U}$, $\mathcal{S}_{\mathbf{F}} := \varpi_-^* \mathcal{S}$, and $\mathcal{U}_{\mathbf{V}} := \pi^* \mathcal{U}_{\mathbf{F}}$. By abuse of notation, we use the same symbol for an object of D^b (**F**) and its image in D^b (**V**) by the push-forward ι_* . Since **V** is the total space of $\mathcal{O}_V(-h - H)$, one has a locally free resolution

$$
0 \to \mathcal{O}_{V}(h+H) \to \mathcal{O}_{V} \to \mathcal{O}_{F} \to 0 \tag{3.2}
$$

of $\mathcal{O}_\mathbf{F}$ as an $\mathcal{O}_\mathbf{V}$ -module.

By tensoring $\mathcal{O}_\mathbf{F}(-h)$ to [\[17,](#page-9-3) Equation (5)], one obtains an exact sequence

$$
0 \to \mathcal{O}_{\mathbb{F}}(H - 2h) \to \mathscr{U}_{\mathbb{F}}^{\vee}(-h) \to \mathcal{O}_{\mathbb{F}} \to 0. \tag{3.3}
$$

Lemma [3.1](#page-4-0) and Proposition [3.2](#page-4-1) below are taken from [\[17\]](#page-9-3):

Lemma 3.1. ([\[17](#page-9-3), Lemma 1])

- (i) Line bundles $\mathcal{O}_\mathbf{F}(t\mathbf{h} \mathbf{H})$ and $\mathcal{O}_\mathbf{F}(t\mathbf{H} \mathbf{h})$ are acyclic for all $t \in \mathbb{Z}$.
- (ii) Line bundles $\mathcal{O}_\mathbf{F}(-2H)$ and $\mathcal{O}_\mathbf{F}(2h-2H)$ are acyclic and

$$
H^{\bullet}(\mathcal{O}_F(3h-2H)) \cong k[-1].
$$

(iii) Vector bundles $\mathcal{U}_{\mathbf{F}}(-2H)$, $\mathcal{U}_{\mathbf{F}}(-H)$, $\mathcal{U}_{\mathbf{F}}(h-H)$ and $\mathcal{U}_{\mathbf{F}} \otimes \mathcal{U}_{\mathbf{F}}(-H)$ are acyclic, and

$$
H^{\bullet}(\mathscr{U}_{\mathbf{F}}(h)) \cong \mathbf{k}, \quad H^{\bullet}(\mathscr{U}_{\mathbf{F}} \otimes \mathscr{U}_{\mathbf{F}}(h)) \cong \mathbf{k}[-1].
$$

Proposition 3.2. *([\[17](#page-9-3), Proposition 3 and Lemma 4]) One has an exact sequence*

$$
0 \to \mathscr{U}_{\mathbf{F}} \to \mathscr{S}_{\mathbf{F}} \to \mathscr{U}_{\mathbf{F}}^{\vee}(-h) \to 0. \tag{3.4}
$$

Lemma [3.1](#page-4-0) immediately implies the following:

Lemma 3.3. $\mathcal{O}_\mathbf{F}(-H)$ is right orthogonal to both $\mathcal{U}_\mathbf{F}^{\vee}(-h)$ and $\mathcal{O}_\mathbf{F}(-h)$.

Proof. We have

$$
\mathbf{hom}_{\mathcal{O}_V} \left(\mathcal{O}_F(-h), \mathcal{O}_F(-H) \right) \cong \mathbf{hom}_{\mathcal{O}_V} \left(\{ \mathcal{O}_V(H) \to \mathcal{O}_V(-h) \}, \mathcal{O}_F(-H) \right) \tag{3.5}
$$
\n
$$
\cong \mathbf{h} \left(\{ \mathcal{O}_F(h - H) \to \mathcal{O}_F(-2H) \} \right) \tag{3.6}
$$

and

$$
\mathbf{hom}_{\mathcal{O}_V} \left(\mathcal{U}_{\mathbf{F}}^{\vee}(-h), \mathcal{O}_{\mathbf{F}}(-H) \right) \cong \mathbf{hom}_{\mathcal{O}_V} \left(\left\{ \mathcal{U}_{\mathbf{V}}^{\vee}(H) \to \mathcal{U}_{\mathbf{V}}^{\vee}(-h) \right\}, \mathcal{O}_{\mathbf{F}}(-H) \right) \tag{3.7}
$$
\n
$$
\cong \mathbf{h} \left(\left\{ \mathcal{U}_{\mathbf{F}}(h-H) \to \mathcal{U}_{\mathbf{F}}(-2H) \right\} \right), \tag{3.8}
$$

both of which vanish by Lemma [3.1.](#page-4-0)

Lemma 3.4. One has

$$
\mathbf{hom}_{\mathcal{O}_V} \left(\mathscr{U}_F^{\vee}(-h), \mathscr{U}_F \right) \cong \mathbf{k}[-1]. \tag{3.9}
$$

Proof. One has

$$
\mathbf{hom}_{\mathcal{O}_V} \left(\mathcal{U}_F^{\vee}(-h), \mathcal{U}_F \right) \cong \mathbf{hom}_{\mathcal{O}_V} \left(\left\{ \mathcal{U}_V^{\vee}(H) \to \mathcal{U}_V^{\vee}(-h) \right\}, \mathcal{U}_F \right) \tag{3.10}
$$

$$
\cong \mathbf{h}\left(\left\{\mathscr{U}_{\mathbf{F}}\otimes\mathscr{U}_{\mathbf{F}}(h)\to\mathscr{U}_{\mathbf{F}}\otimes\mathscr{U}_{\mathbf{F}}(-H)\right\}\right). \tag{3.11}
$$

Lemma [3.1](#page-4-0) shows that the first term gives **k**[−1] and the second term vanishes.

Lemma 3.5. One has

$$
\mathbf{hom}_{\mathcal{O}_V} \left(\mathscr{U}_F^{\vee}(-h), \mathcal{O}_F \right) \cong \mathbf{k}.\tag{3.12}
$$

 \Box

Proof. One has

$$
\text{hom}_{\mathcal{O}_V} \left(\mathscr{U}_F^{\vee}(-h), \mathcal{O}_F \right) \cong \text{hom}_{\mathcal{O}_V} \left(\left\{ \mathscr{U}_V^{\vee}(H) \to \mathscr{U}_V^{\vee}(-h) \right\}, \mathcal{O}_F \right) \tag{3.13}
$$

$$
\cong \mathbf{h}\left(\{\mathscr{U}_{\mathbf{F}}(h) \to \mathscr{U}_{\mathbf{F}}(-H)\}\right). \tag{3.14}
$$

Lemma [3.1](#page-4-0) shows that the first term gives **k** and the second term vanishes. \Box

Lemma 3.6. One has

$$
\mathbf{hom}_{\mathcal{O}_V} \left(\mathcal{O}_F(H - 2h), \mathcal{O}_F(h) \right) \cong 0. \tag{3.15}
$$

Proof. One has

$$
\mathbf{hom}_{\mathcal{O}_V} \left(\mathcal{O}_F(H - 2h), \mathcal{O}_F(h) \right) \cong \mathbf{hom}_{\mathcal{O}_V} \left(\left\{ \mathcal{O}_V(2H - h) \to \mathcal{O}_V(H - 2h) \right\}, \mathcal{O}_F(h) \right) \tag{3.16}
$$

$$
\cong \mathbf{h} \left(\{ \mathcal{O}_{\mathbf{V}}(3h - H) \to \mathcal{O}_{\mathbf{V}}(2h - 2H) \} \right), \tag{3.17}
$$

which vanishes by Lemma [3.1.](#page-4-0)

4. Derived equivalence by mutation

Recall from [\[17\]](#page-9-3) that

$$
D^{b}(\mathbf{G}) = \langle \mathcal{O}_{\mathbf{G}}(-H), \mathcal{U}, \mathcal{O}_{\mathbf{G}}, \mathcal{U}^{\vee}, \mathcal{O}_{\mathbf{G}}(H), \mathcal{U}^{\vee}(H) \rangle \tag{4.1}
$$

and

$$
D^{b}(\mathbf{Q}) = \langle \mathcal{O}_{\mathbf{Q}}(-3h), \mathcal{O}_{\mathbf{Q}}(-2h), \mathcal{O}_{\mathbf{Q}}(-h), \mathcal{S}, \mathcal{O}_{\mathbf{Q}}, \mathcal{O}_{\mathbf{Q}}(h) \rangle. \tag{4.2}
$$

It follows from [\[19](#page-9-5)] that

$$
D^{b}(\mathbf{V}) = \left\langle \iota_{*} \varpi_{+}^{*} D^{b}(\mathbf{G}), \Phi_{+}(D^{b}(\mathbf{V}_{+})) \right\rangle \tag{4.3}
$$

and

$$
D^{b}(\mathbf{V}) = \left\langle \iota_{*} \varpi_{-}^{*} D^{b}(\mathbf{Q}), \Phi_{-}(D^{b}(\mathbf{V}_{-})) \right\rangle, \tag{4.4}
$$

where

$$
\Phi_+ := \phi_+^*(-) \otimes \mathcal{O}_V(h) : D^b(\mathbf{V}_+) \to D^b(\mathbf{V}) \tag{4.5}
$$

and

$$
\Phi_- := \phi_-^*(-) \otimes \mathcal{O}_V(H) : D^b(V_-) \to D^b(V). \tag{4.6}
$$

[\(4.1\)](#page-5-0) and [\(4.3\)](#page-5-1) gives

$$
D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-H), \mathscr{U}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}, \mathscr{U}_{\mathbf{F}}^{\vee}, \mathcal{O}_{\mathbf{F}}(H), \mathscr{U}_{\mathbf{F}}^{\vee}(H), \Phi_{+}(D^{b}(\mathbf{V}_{+})) \right\rangle. \tag{4.7}
$$

$$
\Box
$$

By mutating $\Phi_+(D^b(\mathbf{V}_+))$ two steps to the left, one obtains

$$
D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-H), \mathscr{U}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}, \mathscr{U}_{\mathbf{F}}^{\vee}, \Phi_{1}(D^{b}(\mathbf{V}_{+})), \mathcal{O}_{\mathbf{F}}(H), \mathscr{U}_{\mathbf{F}}^{\vee}(H) \right\rangle \tag{4.8}
$$

where

$$
\Phi_1 := \mathbf{L}_{\langle \mathcal{O}_F(H), \mathcal{U}_F^{\vee}(H) \rangle} \circ \Phi_+.
$$
\n(4.9)

Recall from [\[3,](#page-9-6) Proposition 3.6] that the effect of the left mutation of a semiorthogonal summand from the far right to the far left is given by the action of the Serre functor;

$$
\langle \mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_{\ell-1}, \mathcal{A}_{\ell} \rangle \rightsquigarrow \langle S(\mathcal{A}_{\ell}), \mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_{\ell-1} \rangle. \tag{4.10}
$$

By mutating the last two terms to the far left, one obtains

$$
D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-h), \mathscr{U}_{\mathbf{F}}^{\vee}(-h), \mathcal{O}_{\mathbf{F}}(-H), \mathscr{U}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}, \mathscr{U}_{\mathbf{F}}^{\vee}, \Phi_{1}(D^{b}(\mathbf{V}_{+})) \right\rangle, \quad (4.11)
$$

since $\omega_{\mathbf{V}} \cong \mathcal{O}_{\mathbf{V}}(-h - H)$. Lemma [3.3](#page-4-2) allows one to move $\mathcal{O}_{\mathbf{F}}(-H)$ to the far left without affecting other objects:

$$
D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-H), \mathcal{O}_{\mathbf{F}}(-h), \mathscr{U}_{\mathbf{F}}^{\vee}(-h), \mathscr{U}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}, \mathscr{U}_{\mathbf{F}}^{\vee}, \Phi_{1}(D^{b}(\mathbf{V}_{+})) \right\rangle. \tag{4.12}
$$

By mutating $\mathcal{U}_\mathbf{F}$ one step to the left and using Proposition [3.2](#page-4-1) and Lemma [3.4,](#page-4-3) one obtains

$$
D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-H), \mathcal{O}_{\mathbf{F}}(-h), \mathcal{S}_{\mathbf{F}}, \mathscr{U}_{\mathbf{F}}^{\vee}(-h), \mathcal{O}_{\mathbf{F}}, \mathscr{U}_{\mathbf{F}}^{\vee}, \Phi_{1}(D^{b}(\mathbf{V}_{+})) \right\rangle. (4.13)
$$

By mutating $\mathcal{O}_F(-H)$ to the far right, one obtains

$$
D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-h), \mathcal{S}_{\mathbf{F}}, \mathcal{U}_{\mathbf{F}}^{\vee}(-h), \mathcal{O}_{\mathbf{F}}, \mathcal{U}_{\mathbf{F}}^{\vee}, \Phi_{1}(D^{b}(\mathbf{V}_{+})), \mathcal{O}_{\mathbf{F}}(h) \right\rangle. \tag{4.14}
$$

By mutating $\Phi_1(D^b(\mathbf{V}_+))$ to the right, one obtains

$$
D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-h), \mathcal{S}_{\mathbf{F}}, \mathcal{U}_{\mathbf{F}}^{\vee}(-h), \mathcal{O}_{\mathbf{F}}, \mathcal{U}_{\mathbf{F}}^{\vee}, \mathcal{O}_{\mathbf{F}}(h), \Phi_{2}(D^{b}(\mathbf{V}_{+})) \right\rangle \tag{4.15}
$$

where

$$
\Phi_2 := \mathbf{R}_{\mathcal{O}_{\mathbf{F}}(h)} \circ \Phi_1. \tag{4.16}
$$

By mutating $\mathscr{U}_{\mathbf{F}}^{\vee}(-h)$ one step to the right and using Lemma [3.5](#page-4-4) and [\(3.3\)](#page-3-3), one obtains

$$
D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-h), \mathcal{S}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}(H-2h), \mathscr{U}_{\mathbf{F}}^{\vee}, \mathcal{O}_{\mathbf{F}}(h), \Phi_{2}(D^{b}(\mathbf{V}_{+})) \right\rangle. (4.17)
$$

Similarly, by mutating $\mathscr{U}_{\mathbf{F}}^{\vee}$ one step to the right, one obtains

$$
D^{b}(\mathbf{V}) = \Big \langle \mathcal{O}_{\mathbf{F}}(-h), \mathcal{S}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}(H-2h), \mathcal{O}_{\mathbf{F}}(h), \mathcal{O}_{\mathbf{F}}(H-h), \Phi_{2}(D^{b}(\mathbf{V}_{+})) \Big \rangle. \tag{4.18}
$$

Lemma [3.6](#page-5-2) allows one to exchange $\mathcal{O}_F(H - 2h)$ and $\mathcal{O}_F(h)$ to obtain

$$
D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-h), \mathcal{S}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}(h), \mathcal{O}_{\mathbf{F}}(H-2h), \mathcal{O}_{\mathbf{F}}(H-h), \Phi_{2}(D^{b}(\mathbf{V}_{+})) \right\rangle.
$$
\n(4.19)

By mutating $\Phi_2(D^b(\mathbf{V}_+))$ two steps to the left, one obtains

$$
D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-h), \mathcal{S}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}(h), \Phi_{3}(D^{b}(\mathbf{V}_{+})), \mathcal{O}_{\mathbf{F}}(H-2h), \mathcal{O}_{\mathbf{F}}(H-h) \right\rangle
$$
\n(4.20)

where

$$
\Phi_3 := \mathbf{L}_{\langle \mathcal{O}_F(H-2h), \mathcal{O}_F(H-h) \rangle} \circ \Phi_2. \tag{4.21}
$$

By mutating the last two terms to the far left, one obtains

$$
D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-3h), \mathcal{O}_{\mathbf{F}}(-2h), \mathcal{O}_{\mathbf{F}}(-h), \mathcal{S}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}(h), \Phi_{3}(D^{b}(\mathbf{V}_{+})) \right\rangle.
$$
\n(4.22)

By comparing [\(4.22\)](#page-7-0) with

$$
D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-3h), \mathcal{O}_{\mathbf{F}}(-2h), \mathcal{O}_{\mathbf{F}}(-h), \mathcal{S}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}(h), \Phi_{-}(D^{b}(\mathbf{V}_{-})) \right\rangle
$$
\n(4.23)

obtained by combining [\(4.2\)](#page-5-3) and [\(4.4\)](#page-5-4), one obtains a derived equivalence

$$
\Phi := \Phi^! \circ \Phi_3 \colon D^b(\mathbf{V}_+) \xrightarrow{\sim} D^b(\mathbf{V}_-), \tag{4.24}
$$

where

$$
\Phi_-^!(-) := (\phi_-)_* ((-) \otimes \mathcal{O}_V(-H)) : D^b(V) \to D^b(V_-) \tag{4.25}
$$

is the left adjoint functor of Φ_{-} . Note that the left mutation along an exceptional object $\mathcal{E} \in D^b(\mathbf{V})$ is an integral functor $\Phi_{\mathcal{K}}(-) := (p_2)_* (p_1^*(-) \otimes \mathcal{K})$ along the diagram

whose kernel *K* is the cone over the evaluation morphism ev: $\mathcal{E}^{\vee} \boxtimes \mathcal{E} \rightarrow \Delta_{V}$. The functors $\Phi_+ : D^b(\mathbf{V}_+) \to D^b(\mathbf{V})$ and $\Phi_-^! : D^b(\mathbf{V}) \to D^b(\mathbf{V}_-)$ are clearly and integral functor, so that the functor [\(4.24\)](#page-7-1) is also an integral functor, whose kernel is an object of D^b (**V**₊ ×**v**₀**V**_−) obtained by convolution.

5. Matrix factorizations

Let s_+ be a general section of the equivariant vector bundle $\mathcal{E}_{(1,1)}$ on **G**. The zero X_+ of s_+ is a smooth projective Calabi–Yau 3-fold. Since V_+ is the total space of the dual bundle $\mathcal{E}^{\vee}_{(1,1)}$ on **G**, the space of regular functions on **V**₊ which are linear along the fiber can naturally be identified with the space of sections of $\mathcal{E}_{(1,1)}$. We write the regular function on V_+ associated with $s_+ \in H^0(\mathcal{E}_{(1,1)})$ as $\zeta_+ \in H^0(\mathcal{O}_{V_+})$. The zero D_+ of ζ_+ is the union of a line sub-bundle of V_+ and the inverse image of X_+ by the structure morphism $\pi_+ : V_+ \to G$. The singular locus of D_+ is given by X_+ .

Let ς − be a regular function on **V**− corresponding to ς + under the isomorphism H^0 $(\mathcal{O}_{V_+}) \cong H^0$ $(\mathcal{O}_{V_0}) \cong H^0$ (\mathcal{O}_{V_-}) given by the diagram in [\(2.16\)](#page-3-0), and *X*− be the zero of the corresponding section $s_-\in H^0(\mathcal{F}_{(1,1)})$, which is a smooth projective Calabi–Yau 3-fold in **Q**.

The push-forward of the kernel of Φ on $V_+ \times_{V_0} V_-$ to $V_+ \times_{\mathbb{A}^1} V_-$ gives a kernel of Φ on $V_+ \times_{\mathbb{A}^1} V_-.$ By taking the base-change along the inclusion $0 \to \mathbb{A}^1$ of the origin and applying [\[18](#page-9-4), Proposition 2.44], one obtains an equivalence Φ_0 : $D^b(D_+) \cong D^b(D_-)$ of the bounded derived categories of coherent sheaves. By using either of the characterization of perfect complexes as *homologically finite* objects (i.e., objects whose total Ext-groups with any other object are finitedimensional) or *compact* objects (i.e., objects such that the covariant functors represented by them commute with direct sums), one deduces that Φ_D preserves perfect complexes, so that it induces an equivalence Φ_0^{sing} : $D_{\text{sing}}^b(D_+) \cong D_{\text{sing}}^b(D_-)$ of singularity categories (see [\[16](#page-9-7), Section 7] and [\[5,](#page-9-8) Theorem 1.1]).

Recall that **V**+, **V**[−] and **V**⁰ are geometric invariant theory quotient of Spec *R* by the anti-diagonal \mathbb{G}_m -action. The residual diagonal \mathbb{G}_m -action on both \mathbf{V}_+ and **V**− are dilation action on the fiber. The equivalences Φ , Φ_0 and Φ_0^{sing} are equivariant with respect to this \mathbb{G}_m -action, and induces an equivalence of \mathbb{G}_m -equivariant categories [\[8,](#page-9-9) Theorem 1.1], which will be denoted by the same symbol by abuse of notation. Now [\[14,](#page-9-10) Theorem 3.6] gives equivalences

$$
D_{\text{sing}}^b([D_+/\mathbb{G}_m]) \cong D^b(X_+) \tag{5.1}
$$

and

$$
D_{\text{sing}}^b([D_-/\mathbb{G}_m]) \cong D^b(X_-) \tag{5.2}
$$

between G*m*-equivariant singularity categories and derived categories of coherent sheaves (see also [\[22\]](#page-10-1) where the case of line bundles is discussed independently and around the same time as [\[14\]](#page-9-10)). By composing these derived equivalences with sing ⁰ , one obtains a derived equivalence between *X*⁺ and *X*−. It is an interesting problem to compare this equivalence with the one obtained in [\[17\]](#page-9-3). Another interesting problem is to prove the derived equivalence using variation of geometric invariant theory quotient along the lines of $[1,2,7,9,20]$ $[1,2,7,9,20]$ $[1,2,7,9,20]$ $[1,2,7,9,20]$ $[1,2,7,9,20]$ $[1,2,7,9,20]$, and use it to produce autoequivalences of the derived category [\[6,](#page-9-16)[10\]](#page-9-17).

Acknowledgements We thank Atsushi Ito, Makoto Miura, and Shinnosuke Okawa for collaborations $[11-13]$ $[11-13]$ which led to this work. We also thank the anonymous referee for suggestions for improvements. K.U. was supported by Grants-in-Aid for Scientific Research (24740043, 15KT0105, 16K13743, 16H03930).

References

- [1] Addington, N., Donovan, W., Segal, E.: The Pfaffian–Grassmannian equivalence revisited. Algebr. Geom. **2**(3), 332–364 (2015)
- [2] Ballard, M., Favero, D., Katzarkov, L.: *Variation of geometric invariant theory quotients and derived categories*, [arXiv:1203.6643](http://arxiv.org/abs/1203.6643)
- [3] Bondal, A.I., Kapranov, M.M.: Representable functors, Serre functors, and reconstructions. Izv. Akad. Nauk SSSR Ser. Mat. **53**(6), 1188–1205 (1989). 1337
- [4] Bondal, A., Orlov, D.: Derived categories of coherent sheaves. In: Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, pp. 47–56 (2002)
- [5] Baranovsky, V., Pecharich, J.: On equivalences of derived and singular categories. Cent. Eur. J. Math. **8**(1), 1–14 (2010)
- [6] Donovan, W., Segal, E.: Window shifts, flop equivalences and Grassmannian twists. Compos. Math **150**(6), 942–978 (2014)
- [7] Herbst, M., Hori, K., Page, D.: *Phases of N=2 theories in 1+1 dimensions with boundary*, [arXiv:0803.2045](http://arxiv.org/abs/0803.2045)
- [8] Hirano, Y.: Equivalences of derived factorization categories of gauged Landau– Ginzburg models, [arXiv:1506.00177](http://arxiv.org/abs/1506.00177)
- [9] Halpern-Leistner, D.: The derived category of a GIT quotient. J. Am. Math. Soc. **28**(3), 871–912 (2015)
- [10] Halpern-Leistner, D., Shipman, I.: Autoequivalences of derived categories via geometric invariant theory. Adv. Math. **303**, 1264–1299 (2016)
- [11] Ito, A., Miura, M., Okawa, S., Ueda, K.: Calabi–Yau complete intersections in *G*2 grassmannians, [arXiv:1606.04076](http://arxiv.org/abs/1606.04076)
- [12] Ito, A., Miura, M., Okawa, S., Ueda, K.: The class of the affine line is a zero divisor in the Grothendieck ring: via *G*2-Grassmannians, [arXiv:1606.04210](http://arxiv.org/abs/1606.04210)
- [13] Ito, A., Miura, M., Okawa, S., Ueda, K.: The class of the affine line is a zero divisor in the Grothendieck ring: via K3 surfaces of degree 12 and abelian varieties, [arXiv:1612.08497](http://arxiv.org/abs/1612.08497)
- [14] Isik, M.U.: *Equivalence of the derived category of avariety with a singularity category*, Int. Math. Res. Not. IMRN no. 12, 2787–2808 (2013)
- [15] Kawamata, Y.: *D*-equivalence and *K*-equivalence. J. Differ. Geom. **61**(1), 147–171 (2002)
- [16] Kapustin, A., Katzarkov, L., Orlov, D., Yotov, M.: Homological mirror symmetry for manifolds of general type. Cent. Eur. J. Math. **7**(4), 571–605 (2009)
- [17] Kuznetsov, A.: *Derived equivalence of Ito–Miura–Okawa–Ueda Calabi–Yau 3-folds*, [arXiv:1611.08386](http://arxiv.org/abs/1611.08386)
- [18] Kuznetsov, A.G.: Hyperplane sections and derived categories. Izv. Ross. Akad. Nauk Ser. Mat. **70**(3), 23–128 (2006)
- [19] Orlov, D.O.: Projective bundles, monoidal transformations, and derived categories of coherent sheaves. Izv. Ross. Akad. Nauk Ser. Mat. **56**(4), 852–862 (1992)
- [20] Segal, E.: Equivalence between GIT quotients of Landau–Ginzburg B-models. Commun. Math. Phys **304**(2), 411–432 (2011)
- [21] Segal, E.: A new 5-fold flop and derived equivalence. Bull. Lond. Math. Soc. **48**(3), 533–538 (2016)
- [22] Shipman, I.: A geometric approach to Orlov's theorem. Compos. Math. **148**(5), 1365– 1389 (2012)