

Kazushi Ueda

G₂-Grassmannians and derived equivalences

Received: 28 July 2017 / Accepted: 10 November 2018 / Published online: 17 November 2018

Abstract. We prove the derived equivalence of a pair of non-compact Calabi–Yau 7-folds, which are the total spaces of certain rank 2 bundles on G_2 -Grassmannians. The proof follows that of the derived equivalence of Calabi–Yau 3-folds in G_2 -Grassmannians by Kuznetsov (Derived equivalence of Ito–Miura–Okawa–Ueda Calabi–Yau 3-folds. arXiv:1611.08386) closely.

1. Introduction

The simply-connected simple algebraic group *G* of type G_2 has three homogeneous spaces $\mathbf{G} := G/P_1$, $\mathbf{Q} := G/P_2$, and $\mathbf{F} := G/B$ associated with the crossed Dynkin diagrams, and respectively. The Picard group of \mathbf{F} can be identified with the weight lattice of *G*, which in turn can be identified with \mathbb{Z}^2 as $(a, b) := a\omega_1 + b\omega_2$, where ω_1 and ω_2 are the fundamental weights associated with the long root and the short root respectively. We write the line bundle associated with the weight (k, l) as $\mathcal{O}_{\mathbf{F}}(k, l)$.

Let

$$R := \bigoplus_{k,l=0}^{\infty} H^0 \left(\mathcal{O}_{\mathbf{F}}(k,l) \right) \cong \bigoplus_{k,l=0}^{\infty} \left(V_{(k,l)}^G \right)^{\vee}$$
(1.1)

be the Cox ring of **F**, where $\left(V_{(k,l)}^G\right)^{\vee}$ is the dual of the irreducible representation of *G* with the highest weight (k, l).

The \mathbb{Z}^2 -grading of *R* defines a $(\mathbb{G}_m)^2$ -action on Spec *R*, which induces an action of \mathbb{G}_m embedded in $(\mathbb{G}_m)^2$ by the anti-diagonal map $\alpha \mapsto (\alpha, \alpha^{-1})$. We write the geometric invariant theory quotients as

$$\mathbf{V}_{+} := \operatorname{Proj} R_{+}, \quad \mathbf{V}_{-} := \operatorname{Proj} R_{-}, \quad \mathbf{V}_{0} := \operatorname{Spec} R_{0},$$
 (1.2)

where

$$R_n = \bigoplus_{i \in \mathbb{Z}} R_{i,n-i}, \quad R_+ := \bigoplus_{n=0}^{\infty} R_n, \quad R_- := \bigoplus_{n=0}^{\infty} R_{-n}.$$
(1.3)

K. Ueda (⊠): Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan. e-mail: kazushi@ms.u-tokyo.ac.jp

Mathematics Subject Classification: 14J32

https://doi.org/10.1007/s00229-018-1090-4

 V_+ and V_- are the total spaces of the dual of the equivariant vector bundles of rank 2 on **G** and **Q** associated with irreducible representations of P_1 and P_2 with the highest weight (1, 1). The computation in [11] shows that the first Chern classes of these rank 2 bundles are minus the first Chern classes of **G** and **Q** respectively, so that V_+ and V_- are non-compact Calabi–Yau manifolds. The structure morphisms $\phi_+: V_+ \rightarrow V_0$ and $\phi_-: V_- \rightarrow V_0$ are crepant resolutions which contract the zero-sections. Together with the total space **V** of the line bundle $\mathcal{O}_{\mathbf{F}}(1, 1)$ on **F**, they fit into the commutative diagrams (2.16) and (3.1).

The same construction for the simply-connected simple algebraic group Sp(2) of type C_2 , which is accidentally isomorphic to the simply-connected simple algebraic group Spin(5) of type B_2 , gives the 5-fold flop discussed in [21], where it is attributed to Abuaf.

The main result in this paper is the following:

Theorem 1.1. V_+ and V_- are derived-equivalent.

Theorem 1.1 provides an evidence for the conjecture [4, Conjecture 4.4] [15, Conjecture 1.2] that birationally equivalent smooth projective varieties are K-equivalent if and only if they are D-equivalent.

The proof of Theorem 1.1 closely follows [17], where the derived equivalence of Calabi–Yau complete intersections in **G** and **Q** defined by sections of the equivariant vector bundles dual to V_+ and V_- . The existence of a derived equivalence between these Calabi–Yau 3-folds in turn follows from Theorem 1.1 using matrix factorizations.

Notations and conventions. We work over a field **k** throughout this paper. All pull-back and push-forward are derived. The complexes underlying $\text{Ext}^{\bullet}(-, -)$ and $H^{\bullet}(-)$, considered as objects in the derived category of vector spaces, will be denoted by **hom**(-, -) and **h**(-).

2. The blow-up diagram

As described e.g. in [18, Section 6.4], the G_2 -Grassmannian **G** is the zero locus $s_{\lambda}^{-1}(0)$ of the section s_{λ} of the equivariant vector bundle $Q^{\vee}(1)$ of rank 5 on Gr(2, V), obtained as the tensor product of the dual Q^{\vee} of the universal quotient bundle Q and the hyperplane bundle O(1). Here $V := V_{(0,1)}^G$ is the 7-dimensional fundamental representation of G_2 , and s_{λ} corresponds to the G_2 -invariant 3-form on V under the isomorphism $H^0(\text{Gr}(2, V), Q^{\vee}(1)) \cong \bigwedge^3 V^{\vee}$. We write the G_2 -equivariant vector bundle associated with the irreducible representation of P_1 with the highest weight (a, b) as $\mathcal{E}_{(a,b)}$. The restriction $\mathscr{U} := \mathcal{S}|_{\mathbf{G}}$ of the universal subbundle \mathcal{S} of rank 2 on Gr(2, V) is isomorphic to $\mathcal{E}_{(-1,1)}$.

The G_2 -flag variety **F** is isomorphic to the total space of the \mathbb{P}^1 -bundle $\varpi_+ : \mathbb{P}(\mathscr{U}) \to \mathbf{G}$ associated with \mathscr{U} (or any other equivariant vector bundle of rank 2, since all of them are related by a twist by a line bundle). We write the relative hyperplane class of ϖ_+ as h, so that

$$(\varpi_+)_* (\mathcal{O}_{\mathbf{F}}(h)) \cong \mathscr{U}^{\vee}.$$
(2.1)

The pull-back to **F** of the ample generator *H* of $Pic(\mathbf{G}) \cong \mathbb{Z}$ will be denoted by *H* again by abuse of notation.

The other G_2 -Grassmannian \mathbf{Q} is a quadric hypersurface in $\mathbb{P}(V)$. We write the equivariant vector bundle on \mathbf{Q} associated with the irreducible representation of P_2 with highest weight (a, b) as $\mathcal{F}_{(a,b)}$. The flag variety \mathbf{F} has a structure of a \mathbb{P}^1 -bundle $\varpi_-: \mathbf{F} \to \mathbf{Q}$, whose relative hyperplane class is given by H. We define a vector bundle \mathcal{K} on \mathbf{Q} by

$$\mathscr{K} := \left((\varpi_{-})_{*} \left(\mathcal{O}_{\mathbf{F}}(H) \right) \right)^{\vee}, \qquad (2.2)$$

so that $\mathbf{F} \cong \mathbb{P}_{\mathbf{G}}(\mathscr{K})$. One can show that \mathscr{K} is isomorphic to $\mathcal{F}_{(1,-3)}$. We write the hyperplane class of \mathbf{Q} as *h* by abuse of notation, since it pulls back to *h* on \mathbf{F} .

Let V be the total space of the line bundle $\mathcal{O}_{\mathbf{F}}(-h - H)$ on F. The structure morphism will be denoted by $\pi : \mathbf{V} \to \mathbf{F}$. The Cox ring of V is the \mathbb{N}^2 -graded ring

$$S = \bigoplus_{k,l=0}^{\infty} S_{k,l} \tag{2.3}$$

given by

$$S_{k,l} := H^0\left(\mathcal{O}_{\mathbf{V}}(k,l)\right) \tag{2.4}$$

$$\cong H^0\left(\pi_*\left(\mathcal{O}_{\mathbf{V}}(k,l)\right)\right) \tag{2.5}$$

$$\cong H^0\left(\pi_*\mathcal{O}_{\mathbf{V}}\otimes\mathcal{O}_{\mathbf{F}}(k,l)\right) \tag{2.6}$$

$$\cong H^0\left(\left(\bigoplus_{m=0}^{\infty} \mathcal{O}_{\mathbf{F}}(m,m)\right) \otimes \mathcal{O}_{\mathbf{F}}(k,l)\right)$$
(2.7)

$$\cong \bigoplus_{m=0}^{\infty} H^0 \left(\mathcal{O}_{\mathbf{F}}(k+m, l+m) \right)$$
(2.8)

$$\cong \bigoplus_{m=0}^{\infty} \left(V_{(k+m,l+m)}^G \right)^{\vee}, \tag{2.9}$$

whose multiple Proj recovers **V**. Similarly, the Cox ring of the total space **W**₊ of the bundle $\mathcal{E}_{(1,1)}^{\vee} \cong \mathscr{U}(-H)$ is given by $\bigoplus_{k=0}^{\infty} H^0(\mathcal{O}_{\mathbf{W}_+}(kH))$ where

$$H^{0}\left(\mathcal{O}_{\mathbf{W}_{+}}(kH)\right) \cong H^{0}\left(\pi_{*}\left(\mathcal{O}_{\mathbf{W}_{+}}(kH)\right)\right)$$
(2.10)

$$\cong H^0\left(\pi_*\mathcal{O}_{\mathbf{W}_+}\otimes\mathcal{O}_{\mathbf{G}}(kH)\right) \tag{2.11}$$

$$\cong \bigoplus_{m=0}^{\infty} H^0\left(\left(\operatorname{Sym}^m \mathcal{E}_{(1,1)}\right) \otimes \mathcal{O}_{\mathbf{G}}(kH)\right)$$
(2.12)

$$\cong \bigoplus_{m=0}^{\infty} H^0 \left(\mathcal{E}_{(m,m)} \otimes \mathcal{E}_{(k,0)} \right)$$
(2.13)

$$\cong \bigoplus_{m=0}^{\infty} H^0\left(\mathcal{E}_{(m+k,m)}\right).$$
(2.14)

This is isomorphic to R_+ , so that W_+ is isomorphic to V_+ , and the affinization morphism

$$\mathbf{V} \to \operatorname{Spec} H^0(\mathcal{O}_{\mathbf{V}}) \cong \mathbf{V}_0$$
 (2.15)

is the composition of the natural projection $\varphi_+: \mathbf{V} \to \mathbf{V}_+$ and the affinization morphism $\phi_+: \mathbf{V}_+ \to \mathbf{V}_0$. Since \mathbf{V}_+ is the total space of $\mathcal{E}_{(1,1)}^{\vee}$, the ideal sheaf of the zero-section is the image of the natural morphism from $\pi_+^* \mathcal{E}_{(1,1)}$ to $\mathcal{O}_{\mathbf{V}_+}$, and the morphism φ_+ is the blow-up along it. Similarly, the affinization morphism (2.15) also factors into the blow-up $\varphi_-: \mathbf{V} \to \mathbf{V}_-$ and the affinization morphism $\phi_-: \mathbf{V}_- \to \mathbf{V}_0$, and one obtains the following commutative diagram:

3. Some extension groups

The zero-sections and the natural projections fit into the following diagram:

We write $\mathscr{U}_{\mathbf{F}} := \varpi_{+}^{*}\mathscr{U}$, $\mathscr{S}_{\mathbf{F}} := \varpi_{-}^{*}\mathscr{S}$, and $\mathscr{U}_{\mathbf{V}} := \pi^{*}\mathscr{U}_{\mathbf{F}}$. By abuse of notation, we use the same symbol for an object of $D^{b}(\mathbf{F})$ and its image in $D^{b}(\mathbf{V})$ by the push-forward ι_{*} . Since **V** is the total space of $\mathcal{O}_{\mathbf{V}}(-h-H)$, one has a locally free resolution

$$0 \to \mathcal{O}_{\mathbf{V}}(h+H) \to \mathcal{O}_{\mathbf{V}} \to \mathcal{O}_{\mathbf{F}} \to 0 \tag{3.2}$$

of $\mathcal{O}_{\mathbf{F}}$ as an $\mathcal{O}_{\mathbf{V}}$ -module.

By tensoring $\mathcal{O}_{\mathbf{F}}(-h)$ to [17, Equation (5)], one obtains an exact sequence

$$0 \to \mathcal{O}_{\mathbf{F}}(H-2h) \to \mathscr{U}_{\mathbf{F}}^{\vee}(-h) \to \mathcal{O}_{\mathbf{F}} \to 0.$$
(3.3)

Lemma 3.1 and Proposition 3.2 below are taken from [17]:

Lemma 3.1. ([17, Lemma 1])

- (i) Line bundles $\mathcal{O}_{\mathbf{F}}(th H)$ and $\mathcal{O}_{\mathbf{F}}(tH h)$ are acyclic for all $t \in \mathbb{Z}$.
- (ii) Line bundles $\mathcal{O}_{\mathbf{F}}(-2H)$ and $\mathcal{O}_{\mathbf{F}}(2h-2H)$ are acyclic and

$$H^{\bullet}(\mathcal{O}_{\mathbf{F}}(3h-2H)) \cong \mathbf{k}[-1].$$

(iii) Vector bundles $\mathscr{U}_{\mathbf{F}}(-2H)$, $\mathscr{U}_{\mathbf{F}}(-H)$, $\mathscr{U}_{\mathbf{F}}(h-H)$ and $\mathscr{U}_{\mathbf{F}} \otimes \mathscr{U}_{\mathbf{F}}(-H)$ are acyclic, and

$$H^{\bullet}(\mathscr{U}_{\mathbf{F}}(h)) \cong \mathbf{k}, \quad H^{\bullet}(\mathscr{U}_{\mathbf{F}} \otimes \mathscr{U}_{\mathbf{F}}(h)) \cong \mathbf{k}[-1].$$

Proposition 3.2. ([17, Proposition 3 and Lemma 4]) One has an exact sequence

$$0 \to \mathscr{U}_{\mathbf{F}} \to \mathscr{S}_{\mathbf{F}} \to \mathscr{U}_{\mathbf{F}}^{\vee}(-h) \to 0.$$
(3.4)

Lemma 3.1 immediately implies the following:

Lemma 3.3. $\mathcal{O}_{\mathbf{F}}(-H)$ is right orthogonal to both $\mathscr{U}_{\mathbf{F}}^{\vee}(-h)$ and $\mathcal{O}_{\mathbf{F}}(-h)$.

Proof. We have

and

$$\operatorname{hom}_{\mathcal{O}_{\mathbf{V}}}\left(\mathscr{U}_{\mathbf{F}}^{\vee}(-h), \mathcal{O}_{\mathbf{F}}(-H)\right) \cong \operatorname{hom}_{\mathcal{O}_{\mathbf{V}}}\left(\left\{\mathscr{U}_{\mathbf{V}}^{\vee}(H) \to \mathscr{U}_{\mathbf{V}}^{\vee}(-h)\right\}, \mathcal{O}_{\mathbf{F}}(-H)\right)$$
(3.7)
$$\cong \mathbf{h}\left(\left\{\mathscr{U}_{\mathbf{F}}(h-H) \to \mathscr{U}_{\mathbf{F}}(-2H)\right\}\right),$$
(3.8)

both of which vanish by Lemma 3.1.

Lemma 3.4. One has

$$\operatorname{hom}_{\mathcal{O}_{\mathbf{V}}}\left(\mathscr{U}_{\mathbf{F}}^{\vee}(-h), \mathscr{U}_{\mathbf{F}}\right) \cong \mathbf{k}[-1]. \tag{3.9}$$

Proof. One has

$$\operatorname{hom}_{\mathcal{O}_{\mathbf{V}}}\left(\mathscr{U}_{\mathbf{F}}^{\vee}(-h), \mathscr{U}_{\mathbf{F}}\right) \cong \operatorname{hom}_{\mathcal{O}_{\mathbf{V}}}\left(\left\{\mathscr{U}_{\mathbf{V}}^{\vee}(H) \to \mathscr{U}_{\mathbf{V}}^{\vee}(-h)\right\}, \mathscr{U}_{\mathbf{F}}\right)$$
(3.10)

$$\cong \mathbf{h} \left(\{ \mathscr{U}_{\mathbf{F}} \otimes \mathscr{U}_{\mathbf{F}}(h) \to \mathscr{U}_{\mathbf{F}} \otimes \mathscr{U}_{\mathbf{F}}(-H) \} \right).$$
(3.11)

Lemma 3.1 shows that the first term gives $\mathbf{k}[-1]$ and the second term vanishes. \Box

Lemma 3.5. One has

$$\hom_{\mathcal{O}_{\mathbf{V}}}\left(\mathscr{U}_{\mathbf{F}}^{\vee}(-h),\mathcal{O}_{\mathbf{F}}\right)\cong\mathbf{k}.$$
(3.12)

Proof. One has

$$\hom_{\mathcal{O}_{\mathbf{V}}}\left(\mathscr{U}_{\mathbf{F}}^{\vee}(-h),\mathcal{O}_{\mathbf{F}}\right)\cong\hom_{\mathcal{O}_{\mathbf{V}}}\left(\left\{\mathscr{U}_{\mathbf{V}}^{\vee}(H)\to\mathscr{U}_{\mathbf{V}}^{\vee}(-h)\right\},\mathcal{O}_{\mathbf{F}}\right)$$
(3.13)

$$\cong \mathbf{h} \left(\{ \mathscr{U}_{\mathbf{F}}(h) \to \mathscr{U}_{\mathbf{F}}(-H) \} \right). \tag{3.14}$$

Lemma 3.1 shows that the first term gives \mathbf{k} and the second term vanishes. \Box

Lemma 3.6. One has

$$\hom_{\mathcal{O}_{\mathbf{V}}} \left(\mathcal{O}_{\mathbf{F}}(H - 2h), \mathcal{O}_{\mathbf{F}}(h) \right) \cong 0.$$
(3.15)

Proof. One has

$$\operatorname{hom}_{\mathcal{O}_{\mathbf{V}}}(\mathcal{O}_{\mathbf{F}}(H-2h),\mathcal{O}_{\mathbf{F}}(h)) \cong \operatorname{hom}_{\mathcal{O}_{\mathbf{V}}}(\{\mathcal{O}_{\mathbf{V}}(2H-h) \to \mathcal{O}_{\mathbf{V}}(H-2h)\},\mathcal{O}_{\mathbf{F}}(h))$$
(3.16)

$$\cong \mathbf{h} \left(\{ \mathcal{O}_{\mathbf{V}}(3h - H) \to \mathcal{O}_{\mathbf{V}}(2h - 2H) \} \right), \tag{3.17}$$

which vanishes by Lemma 3.1.

4. Derived equivalence by mutation

Recall from [17] that

$$D^{b}(\mathbf{G}) = \left\langle \mathcal{O}_{\mathbf{G}}(-H), \mathscr{U}, \mathcal{O}_{\mathbf{G}}, \mathscr{U}^{\vee}, \mathcal{O}_{\mathbf{G}}(H), \mathscr{U}^{\vee}(H) \right\rangle$$
(4.1)

and

$$D^{b}(\mathbf{Q}) = \left\langle \mathcal{O}_{\mathbf{Q}}(-3h), \mathcal{O}_{\mathbf{Q}}(-2h), \mathcal{O}_{\mathbf{Q}}(-h), \mathscr{S}, \mathcal{O}_{\mathbf{Q}}, \mathcal{O}_{\mathbf{Q}}(h) \right\rangle.$$
(4.2)

It follows from [19] that

$$D^{b}(\mathbf{V}) = \left\langle \iota_{*} \varpi_{+}^{*} D^{b}(\mathbf{G}), \Phi_{+}(D^{b}(\mathbf{V}_{+})) \right\rangle$$
(4.3)

and

$$D^{b}(\mathbf{V}) = \left\langle \iota_{*} \overline{\varpi}_{-}^{*} D^{b}(\mathbf{Q}), \Phi_{-}(D^{b}(\mathbf{V}_{-})) \right\rangle, \qquad (4.4)$$

where

$$\Phi_{+} := \phi_{+}^{*}(-) \otimes \mathcal{O}_{\mathbf{V}}(h) \colon D^{b}(\mathbf{V}_{+}) \to D^{b}(\mathbf{V})$$

$$(4.5)$$

and

$$\Phi_{-} := \phi_{-}^{*}(-) \otimes \mathcal{O}_{\mathbf{V}}(H) \colon D^{b}(\mathbf{V}_{-}) \to D^{b}(\mathbf{V}).$$

$$(4.6)$$

(4.1) and (4.3) gives

$$D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-H), \, \mathscr{U}_{\mathbf{F}}, \, \mathcal{O}_{\mathbf{F}}, \, \mathscr{U}_{\mathbf{F}}^{\vee}, \, \mathcal{O}_{\mathbf{F}}(H), \, \mathscr{U}_{\mathbf{F}}^{\vee}(H), \, \Phi_{+}(D^{b}(\mathbf{V}_{+})) \right\rangle.$$
(4.7)

By mutating $\Phi_+(D^b(\mathbf{V}_+))$ two steps to the left, one obtains

$$D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-H), \mathscr{U}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}, \mathscr{U}_{\mathbf{F}}^{\vee}, \Phi_{1}(D^{b}(\mathbf{V}_{+})), \mathcal{O}_{\mathbf{F}}(H), \mathscr{U}_{\mathbf{F}}^{\vee}(H) \right\rangle$$
(4.8)

where

$$\Phi_1 := \mathbf{L}_{\langle \mathcal{O}_{\mathbf{F}}(H), \mathscr{U}_{\mathbf{F}}^{\vee}(H) \rangle} \circ \Phi_+.$$
(4.9)

Recall from [3, Proposition 3.6] that the effect of the left mutation of a semiorthogonal summand from the far right to the far left is given by the action of the Serre functor;

$$\langle \mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_{\ell-1}, \mathcal{A}_\ell \rangle \rightsquigarrow \langle \mathcal{S}(\mathcal{A}_\ell), \mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_{\ell-1} \rangle.$$
 (4.10)

By mutating the last two terms to the far left, one obtains

$$D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-h), \mathscr{U}_{\mathbf{F}}^{\vee}(-h), \mathcal{O}_{\mathbf{F}}(-H), \mathscr{U}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}, \mathscr{U}_{\mathbf{F}}^{\vee}, \Phi_{1}(D^{b}(\mathbf{V}_{+})) \right\rangle, \quad (4.11)$$

since $\omega_{\mathbf{V}} \cong \mathcal{O}_{\mathbf{V}}(-h-H)$. Lemma 3.3 allows one to move $\mathcal{O}_{\mathbf{F}}(-H)$ to the far left without affecting other objects:

$$D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-H), \mathcal{O}_{\mathbf{F}}(-h), \mathscr{U}_{\mathbf{F}}^{\vee}(-h), \mathscr{U}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}, \mathscr{U}_{\mathbf{F}}^{\vee}, \Phi_{1}(D^{b}(\mathbf{V}_{+})) \right\rangle.$$
(4.12)

By mutating $\mathscr{U}_{\mathbf{F}}$ one step to the left and using Proposition 3.2 and Lemma 3.4, one obtains

$$D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-H), \mathcal{O}_{\mathbf{F}}(-h), \mathscr{S}_{\mathbf{F}}, \mathscr{U}_{\mathbf{F}}^{\vee}(-h), \mathcal{O}_{\mathbf{F}}, \mathscr{U}_{\mathbf{F}}^{\vee}, \Phi_{1}(D^{b}(\mathbf{V}_{+})) \right\rangle.$$
(4.13)

By mutating $\mathcal{O}_{\mathbf{F}}(-H)$ to the far right, one obtains

$$D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-h), \mathscr{S}_{\mathbf{F}}, \mathscr{U}_{\mathbf{F}}^{\vee}(-h), \mathcal{O}_{\mathbf{F}}, \mathscr{U}_{\mathbf{F}}^{\vee}, \Phi_{1}(D^{b}(\mathbf{V}_{+})), \mathcal{O}_{\mathbf{F}}(h) \right\rangle.$$
(4.14)

By mutating $\Phi_1(D^b(\mathbf{V}_+))$ to the right, one obtains

$$D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-h), \mathscr{S}_{\mathbf{F}}, \mathscr{U}_{\mathbf{F}}^{\vee}(-h), \mathcal{O}_{\mathbf{F}}, \mathscr{U}_{\mathbf{F}}^{\vee}, \mathcal{O}_{\mathbf{F}}(h), \Phi_{2}(D^{b}(\mathbf{V}_{+})) \right\rangle$$
(4.15)

where

$$\Phi_2 := \mathbf{R}_{\mathcal{O}_{\mathbf{F}}(h)} \circ \Phi_1. \tag{4.16}$$

By mutating $\mathscr{U}_{\mathbf{F}}^{\vee}(-h)$ one step to the right and using Lemma 3.5 and (3.3), one obtains

$$D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-h), \mathscr{S}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}(H-2h), \mathscr{U}_{\mathbf{F}}^{\vee}, \mathcal{O}_{\mathbf{F}}(h), \Phi_{2}(D^{b}(\mathbf{V}_{+})) \right\rangle.$$
(4.17)

Similarly, by mutating $\mathscr{U}_{\mathbf{F}}^{\vee}$ one step to the right, one obtains

$$D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-h), \mathscr{S}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}(H-2h), \mathcal{O}_{\mathbf{F}}(h), \mathcal{O}_{\mathbf{F}}(H-h), \Phi_{2}(D^{b}(\mathbf{V}_{+})) \right\rangle.$$
(4.18)

Lemma 3.6 allows one to exchange $\mathcal{O}_{\mathbf{F}}(H-2h)$ and $\mathcal{O}_{\mathbf{F}}(h)$ to obtain

$$D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-h), \mathscr{S}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}(h), \mathcal{O}_{\mathbf{F}}(H-2h), \mathcal{O}_{\mathbf{F}}(H-h), \Phi_{2}(D^{b}(\mathbf{V}_{+})) \right\rangle.$$
(4.19)

By mutating $\Phi_2(D^b(\mathbf{V}_+))$ two steps to the left, one obtains

$$D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-h), \mathscr{S}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}(h), \Phi_{3}(D^{b}(\mathbf{V}_{+})), \mathcal{O}_{\mathbf{F}}(H-2h), \mathcal{O}_{\mathbf{F}}(H-h) \right\rangle$$
(4.20)

where

$$\Phi_3 := \mathbf{L}_{\langle \mathcal{O}_{\mathbf{F}}(H-2h), \mathcal{O}_{\mathbf{F}}(H-h) \rangle} \circ \Phi_2.$$
(4.21)

By mutating the last two terms to the far left, one obtains

$$D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-3h), \mathcal{O}_{\mathbf{F}}(-2h), \mathcal{O}_{\mathbf{F}}(-h), \mathscr{S}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}(h), \Phi_{3}(D^{b}(\mathbf{V}_{+})) \right\rangle.$$
(4.22)

By comparing (4.22) with

$$D^{b}(\mathbf{V}) = \left\langle \mathcal{O}_{\mathbf{F}}(-3h), \mathcal{O}_{\mathbf{F}}(-2h), \mathcal{O}_{\mathbf{F}}(-h), \mathscr{S}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}, \mathcal{O}_{\mathbf{F}}(h), \Phi_{-}(D^{b}(\mathbf{V}_{-})) \right\rangle$$
(4.23)

obtained by combining (4.2) and (4.4), one obtains a derived equivalence

$$\Phi := \Phi_{-}^{!} \circ \Phi_{3} \colon D^{b}(\mathbf{V}_{+}) \xrightarrow{\sim} D^{b}(\mathbf{V}_{-}), \qquad (4.24)$$

where

$$\Phi_{-}^{!}(-) := (\phi_{-})_{*} ((-) \otimes \mathcal{O}_{\mathbf{V}}(-H)) : D^{b}(\mathbf{V}) \to D^{b}(\mathbf{V}_{-})$$
(4.25)

is the left adjoint functor of Φ_- . Note that the left mutation along an exceptional object $\mathcal{E} \in D^b(\mathbf{V})$ is an integral functor $\Phi_{\mathcal{K}}(-) := (p_2)_* (p_1^*(-) \otimes \mathcal{K})$ along the diagram

whose kernel \mathcal{K} is the cone over the evaluation morphism $\text{ev}: \mathcal{E}^{\vee} \boxtimes \mathcal{E} \to \Delta_{\mathbf{V}}$. The functors $\Phi_+: D^b(\mathbf{V}_+) \to D^b(\mathbf{V})$ and $\Phi_-^!: D^b(\mathbf{V}) \to D^b(\mathbf{V}_-)$ are clearly an integral functor, so that the functor (4.24) is also an integral functor, whose kernel is an object of $D^b(\mathbf{V}_+ \times_{\mathbf{V}_0} \mathbf{V}_-)$ obtained by convolution.

5. Matrix factorizations

Let s_+ be a general section of the equivariant vector bundle $\mathcal{E}_{(1,1)}$ on **G**. The zero X_+ of s_+ is a smooth projective Calabi–Yau 3-fold. Since \mathbf{V}_+ is the total space of the dual bundle $\mathcal{E}_{(1,1)}^{\vee}$ on **G**, the space of regular functions on \mathbf{V}_+ which are linear along the fiber can naturally be identified with the space of sections of $\mathcal{E}_{(1,1)}$. We write the regular function on \mathbf{V}_+ associated with $s_+ \in H^0(\mathcal{E}_{(1,1)})$ as $\varsigma_+ \in H^0(\mathcal{O}_{\mathbf{V}_+})$. The zero D_+ of ς_+ is the union of a line sub-bundle of \mathbf{V}_+ and the inverse image of X_+ by the structure morphism $\pi_+ : \mathbf{V}_+ \to \mathbf{G}$. The singular locus of D_+ is given by X_+ .

Let ς_{-} be a regular function on \mathbf{V}_{-} corresponding to ς_{+} under the isomorphism $H^{0}(\mathcal{O}_{\mathbf{V}_{+}}) \cong H^{0}(\mathcal{O}_{\mathbf{V}_{0}}) \cong H^{0}(\mathcal{O}_{\mathbf{V}_{-}})$ given by the diagram in (2.16), and X_{-} be the zero of the corresponding section $s_{-} \in H^{0}(\mathcal{F}_{(1,1)})$, which is a smooth projective Calabi–Yau 3-fold in \mathbf{Q} .

The push-forward of the kernel of Φ on $\mathbf{V}_+ \times_{V_0} \mathbf{V}_-$ to $\mathbf{V}_+ \times_{\mathbb{A}^1} \mathbf{V}_-$ gives a kernel of Φ on $\mathbf{V}_+ \times_{\mathbb{A}^1} \mathbf{V}_-$. By taking the base-change along the inclusion $0 \to \mathbb{A}^1$ of the origin and applying [18, Proposition 2.44], one obtains an equivalence $\Phi_0: D^b(D_+) \cong D^b(D_-)$ of the bounded derived categories of coherent sheaves. By using either of the characterization of perfect complexes as *homologically finite* objects (i.e., objects whose total Ext-groups with any other object are finite-dimensional) or *compact* objects (i.e., objects such that the covariant functors represented by them commute with direct sums), one deduces that Φ_D preserves perfect complexes, so that it induces an equivalence $\Phi_0^{sing}: D_{sing}^b(D_+) \cong D_{sing}^b(D_-)$ of singularity categories (see [16, Section 7] and [5, Theorem 1.1]).

Recall that V_+ , V_- and V_0 are geometric invariant theory quotient of Spec *R* by the anti-diagonal \mathbb{G}_m -action. The residual diagonal \mathbb{G}_m -action on both V_+ and V_- are dilation action on the fiber. The equivalences Φ , Φ_0 and Φ_0^{sing} are equivariant with respect to this \mathbb{G}_m -action, and induces an equivalence of \mathbb{G}_m -equivariant categories [8, Theorem 1.1], which will be denoted by the same symbol by abuse of notation. Now [14, Theorem 3.6] gives equivalences

$$D^{b}_{\operatorname{sing}}([D_{+}/\mathbb{G}_{m}]) \cong D^{b}(X_{+})$$
(5.1)

and

$$D^b_{\text{sing}}([D_-/\mathbb{G}_m]) \cong D^b(X_-) \tag{5.2}$$

between \mathbb{G}_m -equivariant singularity categories and derived categories of coherent sheaves (see also [22] where the case of line bundles is discussed independently and around the same time as [14]). By composing these derived equivalences with Φ_0^{sing} , one obtains a derived equivalence between X_+ and X_- . It is an interesting problem to compare this equivalence with the one obtained in [17]. Another interesting problem is to prove the derived equivalence using variation of geometric invariant theory quotient along the lines of [1,2,7,9,20], and use it to produce autoequivalences of the derived category [6,10]. *Acknowledgements* We thank Atsushi Ito, Makoto Miura, and Shinnosuke Okawa for collaborations [11–13] which led to this work. We also thank the anonymous referee for suggestions for improvements. K.U. was supported by Grants-in-Aid for Scientific Research (24740043, 15KT0105, 16K13743, 16H03930).

References

- Addington, N., Donovan, W., Segal, E.: The Pfaffian–Grassmannian equivalence revisited. Algebr. Geom. 2(3), 332–364 (2015)
- [2] Ballard, M., Favero, D., Katzarkov, L.: Variation of geometric invariant theory quotients and derived categories, arXiv:1203.6643
- [3] Bondal, A.I., Kapranov, M.M.: Representable functors, Serre functors, and reconstructions. Izv. Akad. Nauk SSSR Ser. Mat. 53(6), 1188–1205 (1989). 1337
- [4] Bondal, A., Orlov, D.: Derived categories of coherent sheaves. In: Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, pp. 47–56 (2002)
- [5] Baranovsky, V., Pecharich, J.: On equivalences of derived and singular categories. Cent. Eur. J. Math. 8(1), 1–14 (2010)
- [6] Donovan, W., Segal, E.: Window shifts, flop equivalences and Grassmannian twists. Compos. Math 150(6), 942–978 (2014)
- [7] Herbst, M., Hori, K., Page, D.: Phases of N=2 theories in 1+1 dimensions with boundary, arXiv:0803.2045
- [8] Hirano, Y.: Equivalences of derived factorization categories of gauged Landau– Ginzburg models, arXiv:1506.00177
- [9] Halpern-Leistner, D.: The derived category of a GIT quotient. J. Am. Math. Soc. 28(3), 871–912 (2015)
- [10] Halpern-Leistner, D., Shipman, I.: Autoequivalences of derived categories via geometric invariant theory. Adv. Math. 303, 1264–1299 (2016)
- [11] Ito, A., Miura, M., Okawa, S., Ueda, K.: Calabi–Yau complete intersections in G₂grassmannians, arXiv:1606.04076
- [12] Ito, A., Miura, M., Okawa, S., Ueda, K.: The class of the affine line is a zero divisor in the Grothendieck ring: via G₂-Grassmannians, arXiv:1606.04210
- [13] Ito, A., Miura, M., Okawa, S., Ueda, K.: The class of the affine line is a zero divisor in the Grothendieck ring: via K3 surfaces of degree 12 and abelian varieties, arXiv:1612.08497
- [14] Isik, M.U.: Equivalence of the derived category of avariety with a singularity category, Int. Math. Res. Not. IMRN no. 12, 2787–2808 (2013)
- [15] Kawamata, Y.: D-equivalence and K-equivalence. J. Differ. Geom. 61(1), 147–171 (2002)
- [16] Kapustin, A., Katzarkov, L., Orlov, D., Yotov, M.: Homological mirror symmetry for manifolds of general type. Cent. Eur. J. Math. 7(4), 571–605 (2009)
- [17] Kuznetsov, A.: Derived equivalence of Ito-Miura-Okawa-Ueda Calabi-Yau 3-folds, arXiv:1611.08386
- [18] Kuznetsov, A.G.: Hyperplane sections and derived categories. Izv. Ross. Akad. Nauk Ser. Mat. 70(3), 23–128 (2006)
- [19] Orlov, D.O.: Projective bundles, monoidal transformations, and derived categories of coherent sheaves. Izv. Ross. Akad. Nauk Ser. Mat. 56(4), 852–862 (1992)
- [20] Segal, E.: Equivalence between GIT quotients of Landau–Ginzburg B-models. Commun. Math. Phys 304(2), 411–432 (2011)

- [21] Segal, E.: A new 5-fold flop and derived equivalence. Bull. Lond. Math. Soc. 48(3), 533–538 (2016)
- [22] Shipman, I.: A geometric approach to Orlov's theorem. Compos. Math. 148(5), 1365– 1389 (2012)