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Abstract. We prove the derived equivalence of a pair of non-compact Calabi–Yau 7-folds,
which are the total spaces of certain rank 2 bundles onG2-Grassmannians. The proof follows
that of the derived equivalence of Calabi–Yau 3-folds in G2-Grassmannians by Kuznetsov
(Derived equivalence of Ito–Miura–Okawa–Ueda Calabi–Yau 3-folds. arXiv:1611.08386)
closely.

1. Introduction

The simply-connected simple algebraic groupG of typeG2 has three homogeneous
spacesG := G/P1,Q := G/P2, andF := G/B associatedwith the crossedDynkin
diagrams , , and respectively. The Picard group ofF can be identifiedwith theweight
lattice ofG, which in turn can be identified withZ2 as (a, b) := aω1+bω2,where
ω1 and ω2 are the fundamental weights associated with the long root and the short
root respectively. We write the line bundle associated with the weight (k, l) as
OF(k, l).

Let

R :=
∞⊕

k,l=0

H0 (OF(k, l)) ∼=
∞⊕

k,l=0

(
VG

(k,l)

)∨
(1.1)

be the Cox ring of F, where
(
VG

(k,l)

)∨
is the dual of the irreducible representation

of G with the highest weight (k, l).
TheZ2-grading of R defines a (Gm)2-action on Spec R, which induces an action

of Gm embedded in (Gm)2 by the anti-diagonal map α �→ (α, α−1). We write the
geometric invariant theory quotients as

V+ := Proj R+, V− := Proj R−, V0 := Spec R0, (1.2)

where

Rn =
⊕

i∈Z
Ri,n−i , R+ :=

∞⊕

n=0

Rn, R− :=
∞⊕

n=0

R−n . (1.3)
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V+ and V− are the total spaces of the dual of the equivariant vector bundles of
rank 2 onG andQ associated with irreducible representations of P1 and P2 with the
highest weight (1, 1). The computation in [11] shows that the first Chern classes of
these rank 2 bundles are minus the first Chern classes of G and Q respectively, so
that V+ and V− are non-compact Calabi–Yau manifolds. The structure morphisms
φ+ : V+ → V0 and φ− : V− → V0 are crepant resolutions which contract the
zero-sections. Together with the total space V of the line bundle OF(1, 1) on F,
they fit into the commutative diagrams (2.16) and (3.1).

The same construction for the simply-connected simple algebraic group Sp(2)
of type C2, which is accidentally isomorphic to the simply-connected simple alge-
braic group Spin(5) of type B2, gives the 5-fold flop discussed in [21], where it is
attributed to Abuaf.

The main result in this paper is the following:

Theorem 1.1. V+ and V− are derived-equivalent.

Theorem 1.1 provides an evidence for the conjecture [4, Conjecture 4.4] [15,
Conjecture 1.2] that birationally equivalent smooth projective varieties are K-
equivalent if and only if they are D-equivalent.

The proof of Theorem 1.1 closely follows [17], where the derived equivalence
of Calabi–Yau complete intersections inG andQ defined by sections of the equiv-
ariant vector bundles dual to V+ and V−. The existence of a derived equivalence
between these Calabi–Yau 3-folds in turn follows from Theorem 1.1 using matrix
factorizations.

Notations and conventions. We work over a field k throughout this paper. All
pull-back and push-forward are derived. The complexes underlying Ext•(−,−)

and H•(−), considered as objects in the derived category of vector spaces, will be
denoted by hom(−,−) and h(−).

2. The blow-up diagram

As described e.g. in [18, Section 6.4], the G2-Grassmannian G is the zero locus
s−1
λ (0) of the section sλ of the equivariant vector bundle Q∨(1) of rank 5 on
Gr(2, V ), obtained as the tensor product of the dual Q∨ of the universal quotient
bundle Q and the hyperplane bundle O(1). Here V := VG

(0,1) is the 7-dimensional
fundamental representation of G2, and sλ corresponds to the G2-invariant 3-form
on V under the isomorphism H0(Gr(2, V ),Q∨(1)) ∼= ∧3 V∨. We write the G2-
equivariant vector bundle associated with the irreducible representation of P1 with
the highest weight (a, b) as E(a,b). The restriction U := S|G of the universal
subbundle S of rank 2 on Gr(2, V ) is isomorphic to E(−1,1).

The G2-flag variety F is isomorphic to the total space of the P
1-bundle

�+ : P(U ) → G associated with U (or any other equivariant vector bundle of
rank 2, since all of them are related by a twist by a line bundle).Wewrite the relative
hyperplane class of �+ as h, so that

(�+)∗ (OF(h)) ∼= U ∨. (2.1)



G2-Grassmannians and derived equivalences 551

The pull-back to F of the ample generator H of Pic(G) ∼= Z will be denoted by H
again by abuse of notation.

The other G2-Grassmannian Q is a quadric hypersurface in P(V ). We write
the equivariant vector bundle on Q associated with the irreducible representation
of P2 with highest weight (a, b) as F(a,b). The flag variety F has a structure of a
P
1-bundle �− : F → Q, whose relative hyperplane class is given by H . We define

a vector bundle K on Q by

K := ((�−)∗ (OF(H)))∨ , (2.2)

so that F ∼= PG(K ). One can show thatK is isomorphic to F(1,−3). We write the
hyperplane class of Q as h by abuse of notation, since it pulls back to h on F.

Let V be the total space of the line bundle OF(−h − H) on F. The structure
morphism will be denoted by π : V → F. The Cox ring of V is the N2-graded ring

S =
∞⊕

k,l=0

Sk,l (2.3)

given by

Sk,l := H0 (OV(k, l)) (2.4)

∼= H0 (π∗ (OV(k, l))) (2.5)

∼= H0 (π∗OV ⊗ OF(k, l)) (2.6)

∼= H0

(( ∞⊕

m=0

OF(m,m)

)
⊗ OF(k, l)

)
(2.7)

∼=
∞⊕

m=0

H0 (OF(k + m, l + m)) (2.8)

∼=
∞⊕

m=0

(
VG

(k+m,l+m)

)∨
, (2.9)

whose multiple Proj recovers V. Similarly, the Cox ring of the total space W+ of
the bundle E∨

(1,1)
∼= U (−H) is given by

⊕∞
k=0 H

0
(OW+(kH)

)
where

H0 (OW+(kH)
) ∼= H0 (

π∗
(OW+(kH)

))
(2.10)

∼= H0 (
π∗OW+ ⊗ OG(kH)

)
(2.11)

∼=
∞⊕

m=0

H0 ((
Symm E(1,1)

) ⊗ OG(kH)
)

(2.12)

∼=
∞⊕

m=0

H0 (E(m,m) ⊗ E(k,0)
)

(2.13)

∼=
∞⊕

m=0

H0 (E(m+k,m)

)
. (2.14)
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This is isomorphic to R+, so that W+ is isomorphic to V+, and the affinization
morphism

V → Spec H0 (OV) ∼= V0 (2.15)

is the composition of the natural projection ϕ+ : V → V+ and the affinization
morphism φ+ : V+ → V0. Since V+ is the total space of E∨

(1,1), the ideal sheaf
of the zero-section is the image of the natural morphism from π∗+E(1,1) to OV+ ,
and the morphism ϕ+ is the blow-up along it. Similarly, the affinization morphism
(2.15) also factors into the blow-up ϕ− : V → V− and the affinization morphism
φ− : V− → V0, and one obtains the following commutative diagram:

V
ϕ+ ϕ−

V+
φ+

V−
φ−

V0

(2.16)

3. Some extension groups

The zero-sections and the natural projections fit into the following diagram:

F
�+

ι
�−

G V
φ+ φ−

Q

V+ V−

(3.1)

We write UF := � ∗+U , SF := � ∗−S , and UV := π∗UF. By abuse of notation,
we use the same symbol for an object of Db(F) and its image in Db(V) by the
push-forward ι∗. Since V is the total space of OV(−h − H), one has a locally free
resolution

0 → OV(h + H) → OV → OF → 0 (3.2)

of OF as an OV-module.
By tensoring OF(−h) to [17, Equation (5)], one obtains an exact sequence

0 → OF(H − 2h) → U ∨
F (−h) → OF → 0. (3.3)

Lemma 3.1 and Proposition 3.2 below are taken from [17]:
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Lemma 3.1. ([17, Lemma 1])

(i) Line bundles OF(th − H) and OF(t H − h) are acyclic for all t ∈ Z.
(ii) Line bundles OF(−2H) and OF(2h − 2H) are acyclic and

H•(OF(3h − 2H)) ∼= k[−1].
(iii) Vector bundles UF(−2H), UF(−H), UF(h − H) and UF ⊗ UF(−H) are

acyclic, and

H•(UF(h)) ∼= k, H•(UF ⊗ UF(h)) ∼= k[−1].
Proposition 3.2. ([17, Proposition 3 and Lemma 4]) One has an exact sequence

0 → UF → SF → U ∨
F (−h) → 0. (3.4)

Lemma 3.1 immediately implies the following:

Lemma 3.3. OF(−H) is right orthogonal to both U ∨
F (−h) and OF(−h).

Proof. We have

homOV (OF(−h),OF(−H)) ∼= homOV ({OV(H) → OV(−h)} ,OF(−H))

(3.5)
∼= h ({OF(h − H) → OF(−2H)}) (3.6)

and

homOV

(
U ∨

F (−h),OF(−H)
) ∼= homOV

({
U ∨

V (H) → U ∨
V (−h)

}
,OF(−H)

)

(3.7)
∼= h ({UF(h − H) → UF(−2H)}) , (3.8)

both of which vanish by Lemma 3.1. 
�
Lemma 3.4. One has

homOV

(
U ∨

F (−h),UF
) ∼= k[−1]. (3.9)

Proof. One has

homOV

(
U ∨

F (−h),UF
) ∼= homOV

({
U ∨

V (H) → U ∨
V (−h)

}
,UF

)
(3.10)

∼= h ({UF ⊗ UF(h) → UF ⊗ UF(−H)}) . (3.11)

Lemma 3.1 shows that the first term gives k[−1] and the second term vanishes. 
�
Lemma 3.5. One has

homOV

(
U ∨

F (−h),OF
) ∼= k. (3.12)
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Proof. One has

homOV

(
U ∨

F (−h),OF
) ∼= homOV

({
U ∨

V (H) → U ∨
V (−h)

}
,OF

)
(3.13)

∼= h ({UF(h) → UF(−H)}) . (3.14)

Lemma 3.1 shows that the first term gives k and the second term vanishes. 
�
Lemma 3.6. One has

homOV (OF(H − 2h),OF(h)) ∼= 0. (3.15)

Proof. One has

homOV (OF(H − 2h),OF(h)) ∼= homOV ({OV(2H − h) → OV(H − 2h)} ,OF(h))

(3.16)
∼= h ({OV(3h − H) → OV(2h − 2H)}) , (3.17)

which vanishes by Lemma 3.1. 
�

4. Derived equivalence by mutation

Recall from [17] that

Db(G) = 〈OG(−H),U ,OG,U ∨,OG(H),U ∨(H)
〉

(4.1)

and

Db(Q) = 〈OQ(−3h),OQ(−2h),OQ(−h),S ,OQ,OQ(h)
〉
. (4.2)

It follows from [19] that

Db(V) =
〈
ι∗� ∗+Db(G),
+(Db(V+))

〉
(4.3)

and

Db(V) =
〈
ι∗� ∗−Db(Q),
−(Db(V−))

〉
, (4.4)

where


+ := φ∗+(−) ⊗ OV(h) : Db(V+) → Db(V) (4.5)

and


− := φ∗−(−) ⊗ OV(H) : Db(V−) → Db(V). (4.6)

(4.1) and (4.3) gives

Db(V) =
〈
OF(−H),UF,OF,U ∨

F ,OF(H),U ∨
F (H),
+(Db(V+))

〉
. (4.7)
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By mutating 
+(Db(V+)) two steps to the left, one obtains

Db(V) =
〈
OF(−H),UF,OF,U ∨

F ,
1(D
b(V+)),OF(H),U ∨

F (H)
〉

(4.8)

where


1 := L〈OF(H),U ∨
F (H)〉 ◦ 
+. (4.9)

Recall from [3, Proposition 3.6] that the effect of the left mutation of a semiorthog-
onal summand from the far right to the far left is given by the action of the Serre
functor;

〈A1,A2, . . . ,A�−1,A�〉 � 〈S(A�),A1,A2, . . . ,A�−1〉 . (4.10)

By mutating the last two terms to the far left, one obtains

Db(V) =
〈
OF(−h),U ∨

F (−h),OF(−H),UF,OF,U ∨
F ,
1(D

b(V+))
〉
, (4.11)

since ωV ∼= OV(−h − H). Lemma 3.3 allows one to moveOF(−H) to the far left
without affecting other objects:

Db(V) =
〈
OF(−H),OF(−h),U ∨

F (−h),UF,OF,U ∨
F ,
1(D

b(V+))
〉
. (4.12)

By mutatingUF one step to the left and using Proposition 3.2 and Lemma 3.4, one
obtains

Db(V) =
〈
OF(−H),OF(−h),SF,U ∨

F (−h),OF,U ∨
F ,
1(D

b(V+))
〉
. (4.13)

By mutating OF(−H) to the far right, one obtains

Db(V) =
〈
OF(−h),SF,U ∨

F (−h),OF,U ∨
F ,
1(D

b(V+)),OF(h)
〉
. (4.14)

By mutating 
1(Db(V+)) to the right, one obtains

Db(V) =
〈
OF(−h),SF,U ∨

F (−h),OF,U ∨
F ,OF(h),
2(D

b(V+))
〉

(4.15)

where


2 := ROF(h) ◦ 
1. (4.16)

By mutating U ∨
F (−h) one step to the right and using Lemma 3.5 and (3.3), one

obtains

Db(V) =
〈
OF(−h),SF,OF,OF(H − 2h),U ∨

F ,OF(h),
2(D
b(V+))

〉
. (4.17)

Similarly, by mutating U ∨
F one step to the right, one obtains

Db(V) =
〈
OF(−h),SF,OF,OF(H − 2h),OF(h),OF(H − h),
2(D

b(V+))
〉
.

(4.18)
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Lemma 3.6 allows one to exchange OF(H − 2h) and OF(h) to obtain

Db(V) =
〈
OF(−h),SF,OF,OF(h),OF(H − 2h),OF(H − h),
2(D

b(V+))
〉
.

(4.19)

By mutating 
2(Db(V+)) two steps to the left, one obtains

Db(V) =
〈
OF(−h),SF,OF,OF(h),
3(D

b(V+)),OF(H − 2h),OF(H − h)
〉

(4.20)

where


3 := L〈OF(H−2h),OF(H−h)〉 ◦ 
2. (4.21)

By mutating the last two terms to the far left, one obtains

Db(V) =
〈
OF(−3h),OF(−2h),OF(−h),SF,OF,OF(h),
3(D

b(V+))
〉
.

(4.22)

By comparing (4.22) with

Db(V) =
〈
OF(−3h),OF(−2h),OF(−h),SF,OF,OF(h),
−(Db(V−))

〉

(4.23)

obtained by combining (4.2) and (4.4), one obtains a derived equivalence


 := 
!− ◦ 
3 : Db(V+)
∼−→ Db(V−), (4.24)

where


!−(−) := (φ−)∗ ((−) ⊗ OV(−H)) : Db(V) → Db(V−) (4.25)

is the left adjoint functor of 
−. Note that the left mutation along an exceptional
object E ∈ Db(V) is an integral functor 
K(−) := (p2)∗

(
p∗
1(−) ⊗ K)

along the
diagram

V ×V0 V
p1 p2

V V

(4.26)

whose kernel K is the cone over the evaluation morphism ev : E∨ � E → �V.

The functors 
+ : Db(V+) → Db(V) and 
!− : Db(V) → Db(V−) are clearly an
integral functor, so that the functor (4.24) is also an integral functor, whose kernel
is an object of Db(V+ ×V0 V−) obtained by convolution.
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5. Matrix factorizations

Let s+ be a general section of the equivariant vector bundle E(1,1) onG. The zero X+
of s+ is a smooth projective Calabi–Yau 3-fold. Since V+ is the total space of the
dual bundle E∨

(1,1) onG, the space of regular functions onV+ which are linear along
the fiber can naturally be identified with the space of sections of E(1,1). We write
the regular function on V+ associated with s+ ∈ H0

(E(1,1)
)
as ς+ ∈ H0

(OV+
)
.

The zero D+ of ς+ is the union of a line sub-bundle of V+ and the inverse image
of X+ by the structure morphism π+ : V+ → G. The singular locus of D+ is given
by X+.

Let ς− be a regular function onV− corresponding to ς+ under the isomorphism
H0

(OV+
) ∼= H0

(OV0

) ∼= H0
(OV−

)
given by the diagram in (2.16), and X−

be the zero of the corresponding section s− ∈ H0
(F(1,1)

)
, which is a smooth

projective Calabi–Yau 3-fold in Q.
The push-forward of the kernel of 
 on V+ ×V0 V− to V+ ×A1 V− gives a

kernel of
 onV+ ×A1 V−. By taking the base-change along the inclusion 0 → A
1

of the origin and applying [18, Proposition 2.44], one obtains an equivalence

0 : Db(D+) ∼= Db(D−) of the bounded derived categories of coherent sheaves.
By using either of the characterization of perfect complexes as homologically
finite objects (i.e., objects whose total Ext-groups with any other object are finite-
dimensional) or compact objects (i.e., objects such that the covariant functors repre-
sented by them commute with direct sums), one deduces that 
D preserves perfect
complexes, so that it induces an equivalence 


sing
0 : Db

sing(D+) ∼= Db
sing(D−) of

singularity categories (see [16, Section 7] and [5, Theorem 1.1]).
Recall that V+, V− and V0 are geometric invariant theory quotient of Spec R

by the anti-diagonal Gm-action. The residual diagonal Gm-action on both V+ and
V− are dilation action on the fiber. The equivalences 
, 
0 and 


sing
0 are equivari-

ant with respect to this Gm-action, and induces an equivalence of Gm-equivariant
categories [8, Theorem 1.1], which will be denoted by the same symbol by abuse
of notation. Now [14, Theorem 3.6] gives equivalences

Db
sing([D+/Gm]) ∼= Db(X+) (5.1)

and

Db
sing([D−/Gm]) ∼= Db(X−) (5.2)

between Gm-equivariant singularity categories and derived categories of coherent
sheaves (see also [22] where the case of line bundles is discussed independently
and around the same time as [14]). By composing these derived equivalences with



sing
0 , one obtains a derived equivalence between X+ and X−. It is an interest-

ing problem to compare this equivalence with the one obtained in [17]. Another
interesting problem is to prove the derived equivalence using variation of geomet-
ric invariant theory quotient along the lines of [1,2,7,9,20], and use it to produce
autoequivalences of the derived category [6,10].
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