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Abstract. We prove the derived equivalence of a pair of non-compact Calabi—Yau 7-folds,
which are the total spaces of certain rank 2 bundles on G,-Grassmannians. The proof follows
that of the derived equivalence of Calabi—Yau 3-folds in G»-Grassmannians by Kuznetsov
(Derived equivalence of Ito-Miura—Okawa—Ueda Calabi—Yau 3-folds. arXiv:1611.08386)
closely.

1. Introduction

The simply-connected simple algebraic group G of type G has three homogeneous
spaces G := G/P1,Q := G/ P,,andF := G/ B associated with the crossed Dynkin
diagrams, , and respectively. The Picard group of F can be identified with the weight
lattice of G, which in turn can be identified with Z2 as (a,b) := aw|+bwy, where
w1 and w; are the fundamental weights associated with the long root and the short
root respectively. We write the line bundle associated with the weight (k, /) as

Op(k, D).
Let
o0 o0 v
R:= @ H Ork.1)= P (Vg’,)) (1.1)
k,1=0 k,1=0

be the Cox ring of F, where (V(g’ D

of G with the highest weight (k, /).

The Z2-grading of R defines a (G,,)>-action on Spec R, which induces an action
of G,, embedded in (G,,)? by the anti-diagonal map o — (o, @~'). We write the
geometric invariant theory quotients as

\
) is the dual of the irreducible representation

Vi :=ProjR;, V_:=ProjR_, Vg := SpecRy, (1.2)
where

o o0
Ri=Rini. Ri:= G%Rn, R_:=EPR... (1.3)
e

i€Z n=0
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V. and V_ are the total spaces of the dual of the equivariant vector bundles of
rank 2 on G and Q associated with irreducible representations of Py and P, with the
highest weight (1, 1). The computation in [11] shows that the first Chern classes of
these rank 2 bundles are minus the first Chern classes of G and Q respectively, so
that V and V_ are non-compact Calabi—Yau manifolds. The structure morphisms
¢4+: Vi — Vgand ¢_: V_ — Vj are crepant resolutions which contract the
zero-sections. Together with the total space V of the line bundle Op(1, 1) on F,
they fit into the commutative diagrams (2.16) and (3.1).

The same construction for the simply-connected simple algebraic group Sp(2)
of type C», which is accidentally isomorphic to the simply-connected simple alge-
braic group Spin(5) of type B», gives the 5-fold flop discussed in [21], where it is
attributed to Abuaf.

The main result in this paper is the following:

Theorem 1.1. V. and V_ are derived-equivalent.

Theorem 1.1 provides an evidence for the conjecture [4, Conjecture 4.4] [15,
Conjecture 1.2] that birationally equivalent smooth projective varieties are K-
equivalent if and only if they are D-equivalent.

The proof of Theorem 1.1 closely follows [17], where the derived equivalence
of Calabi—Yau complete intersections in G and Q defined by sections of the equiv-
ariant vector bundles dual to V4 and V_. The existence of a derived equivalence
between these Calabi—Yau 3-folds in turn follows from Theorem 1.1 using matrix
factorizations.

Notations and conventions. We work over a field k throughout this paper. All
pull-back and push-forward are derived. The complexes underlying Ext®(—, —)
and H*®(—), considered as objects in the derived category of vector spaces, will be
denoted by hom(—, —) and h(—).

2. The blow-up diagram

As described e.g. in [18, Section 6.4], the G,-Grassmannian G is the zero locus
S5 1(0) of the section s; of the equivariant vector bundle QY (1) of rank 5 on
Gr(2, V), obtained as the tensor product of the dual QY of the universal quotient
bundle Q and the hyperplane bundle O(1). Here V := V(g’ 1 is the 7-dimensional
fundamental representation of G, and s, corresponds to the G-invariant 3-form
on V under the isomorphism HOGr2, V), Q¥ (1)) = /\3 VY. We write the G-
equivariant vector bundle associated with the irreducible representation of P; with
the highest weight (a, b) as &y p). The restriction % := S| of the universal
subbundle S of rank 2 on Gr(2, V) is isomorphic to £_1,1).

The G,-flag variety F is isomorphic to the total space of the P!-bundle
wy: P(%) — G associated with % (or any other equivariant vector bundle of
rank 2, since all of them are related by a twist by a line bundle). We write the relative
hyperplane class of @ as h, so that

(@) (Or(h) =% 2.1)
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The pull-back to F of the ample generator H of Pic(G) = Z will be denoted by H
again by abuse of notation.

The other G,-Grassmannian Q is a quadric hypersurface in P(V). We write
the equivariant vector bundle on Q associated with the irreducible representation
of P, with highest weight (a, b) as F 1. The flag variety F has a structure of a
P!-bundle w_: F — Q, whose relative hyperplane class is given by H. We define
a vector bundle % on Q by

H = (@)« (Or(H)))" (2.2)

so that F = P (.%"). One can show that %" is isomorphic to F(1,—3). We write the
hyperplane class of Q as & by abuse of notation, since it pulls back to 2 on F.

Let V be the total space of the line bundle Op(—h — H) on F. The structure
morphism will be denoted by 77 : V — F. The Cox ring of V is the N?-graded ring

S = @ Skl (2.3)
k,1=0
given by

Si1 := H® (Ov(k, 1)) 24
= H' (n. (Ov(k, 1)) (2.5)

~ HO (7,0v ® Op(k, 1)) (2.6)

~ HY ((@ Op(m, m)> ® Op(k, 1)) (2.7

m=0
=~ @ H® (Op(k +m, [+ m)) (2.8)
m=0
= @ (V(g—&-m,l—&-m)) s (29)

Il
=}

m

whose multiple Proj recovers V. Similarly, the Cox ring of the total space W of

the bundle €1 |, = % (—H) is given by B2y H” (Ow, (kH)) where

H' (Ow, (kH)) = H' (m. (Ow, (kH))) (2.10)
= H’ (7.0w, ® Og(kH)) @.11)
=@ H((Sym™ Ea.1)) ® Og(kH)) 2.12)
m=0
=P H® (Emnm © Ew0) (2.13)
m=0
=P H® (Enim) - (2.14)

3
Il
<)
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This is isomorphic to R4, so that W is isomorphic to V., and the affinization
morphism

V — Spec H? (Oy) =V, (2.15)

is the composition of the natural projection ¢4: V — V_ and the affinization
morphism ¢4 : V4 — Vj. Since V is the total space of E(V] 1) the ideal sheaf
of the zero-section is the image of the natural morphism from nié’(l,l) to Oy,,
and the morphism ¢ is the blow-up along it. Similarly, the affinization morphism
(2.15) also factors into the blow-up ¢_: V — V_ and the affinization morphism
¢_: V_ — Vj, and one obtains the following commutative diagram:

\Y%

vV, v_ (2.16)

3. Some extension groups

The zero-sections and the natural projections fit into the following diagram:

N
W]

We write % := o, ¥ = w*., and %y = 7" %. By abuse of notation,
we use the same symbol for an object of D?(F) and its image in D”(V) by the
push-forward ¢,. Since V is the total space of Oy(—h — H), one has a locally free
resolution

(3.1

0> Oy(h+H)—> Oy —>0Op—0 (3.2)

of O as an Oy-module.
By tensoring Op(—h) to [17, Equation (5)], one obtains an exact sequence

0 — Op(H —2h) — %Fv(—h) — O — 0. 3.3)

Lemma 3.1 and Proposition 3.2 below are taken from [17]:
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Lemma 3.1. ([17, Lemma 1])

(i) Line bundles Op(th — H) and Op(t H — h) are acyclic for all t € Z.
(i1) Line bundles Op(—2H) and Op(2h — 2H) are acyclic and

H®*(Or(3h —2H)) ZK[-1].

(iii) Vector bundles %¢(—2H), % (—H), % (h — H) and 2% Q@ % (—H) are
acyclic, and

H* (v (h)) =k, H*(% ® v (h)) = K[—1].
Proposition 3.2. ([17, Proposition 3 and Lemma 4]) One has an exact sequence
0 — % — S5 — %’ (—h) — 0. (3.4)
Lemma 3.1 immediately implies the following:
Lemma 3.3. Op(—H) is right orthogonal to both %FV(—h) and Op(—h).
Proof. We have

homp,, (Op(—h), Op(—=H)) = homp, {Ov(H) — Oy(—h)}, Op(—H))
3.5)

=h({Op(h — H) — Op(=2H)}) (3.6)
and

homo, (%’ (—=h), Or(—H)) = homo, ({2 (H) — %) (—h)}, Op(—H))

(3.7)

=h({%(h — H) - % (-2H)}), (3.8)

both of which vanish by Lemma 3.1. |
Lemma 3.4. One has

homo, (%’ (—h), %) = k[—1]. (3.9)

Proof. One has

homo, (%’ (—h), %) =homo, ({%) (H) — %/ (-h)}, %)  (3.10)
=h({% @ U (h) — % @ ¢(—H)})).  (3.11)

Lemma 3.1 shows that the first term gives k[—1] and the second term vanishes. O
Lemma 3.5. One has

homo, (% (—h), Or) = k. (3.12)
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Proof. One has

homo, (%' (—h), Or) = homo, ({2 (H) — %)/ (—h)},Or)  (3.13)

Zh{%(h) - 2 (—H)}) . (3.14)

Lemma 3.1 shows that the first term gives k and the second term vanishes. O
Lemma 3.6. One has

homp,, (Op(H — 2h), Op(h)) = 0. (3.15)

Proof. One has

hom(y, (Op(H — 2h), Op(h)) = homp,, ({(Oy(2H — h) — Oy(H — 2h)}, Op(h))

(3.16)
=~ h({Oy(Bh — H) — Oy(2h —2H)}), (3.17)
which vanishes by Lemma 3.1. O
4. Derived equivalence by mutation
Recall from [17] that
DY(G) = (Og(—H), %, 0, %", Oc(H), %" (H)) 4.1)

and
D"(Q) = (0qg(=3h), Og(—2h), Og(—h), #, Oq, Og(h)). 4.2)

It follows from [19] that

DP(V) = (1@ DP(G), &-(D"(V.)) 4.3)
and
DPP(V) = (1.m* PP (Q), & (D"(V-)), (44)
where
@4 1= ¢1(-) ® Oy(h): D’ (V1) — DP(V) (4.5)
and
®_ = ¢* (=) ® Oy(H): D"(V_) - D" (V). (4.6)

(4.1) and (4.3) gives

DY(V) = (Ox(=H). %, Or, %, Ox(H), % (H), 4(D* (V). (47)
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By mutating &, (D”(V)) two steps to the left, one obtains
DY (V) = (Ox(=H), %, Op, %, @1(DP(V-0), Op(H), % (H))  (48)
where

q)l = L(OF(H),OJFV(H)> o cI)+. (4.9)

Recall from [3, Proposition 3.6] that the effect of the left mutation of a semiorthog-
onal summand from the far right to the far left is given by the action of the Serre
functor;

(A1, Az, ooy Ap—t, Ag) ~ (S(Ap), A, Ao, oo Agy) (4.10)
By mutating the last two terms to the far left, one obtains
DP(V) = (Ox(=h), % (~h), Ox(—H), U, Op, %, ®1(D* (V1)) (.11)

since wy = Oy(—h — H). Lemma 3.3 allows one to move Op(— H) to the far left
without affecting other objects:

D"(V) = (Op(=H), Op(=h). %' (=h). %, Op, %, @1(DP (V). (4.12)

By mutating %% one step to the left and using Proposition 3.2 and Lemma 3.4, one
obtains

D! (V) = (Ox(=H), Ox(=h), S, % (=), Or, %, 1(D" (V1)) . (4.13)
By mutating Op(— H) to the far right, one obtains
DP(V) = (Op(=h), o, %4 (~h), Op, %, @1(DP(V-)), O (414)
By mutating & (D? (V4)) to the right, one obtains
DY (V) = (Ok(=h), T, % (=h), O, %, Ox(h), ®2(D"(V4))  (4.15)
where
®) := Rop o 1. (4.16)

By mutating %4’ (—h) one step to the right and using Lemma 3.5 and (3.3), one
obtains

DP(V) = (Ox(=h), i, Op, Op(H — 2h), %, Ox(h), 2(D"(V-)). (.17)
Similarly, by mutating %4, one step to the right, one obtains

DP(V) = (Op(=h), F&, Ox, Op(H —2h), Op(h), O(H — h), ®2(D" (V1)) .
(4.18)
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Lemma 3.6 allows one to exchange Or(H — 2h) and Op(h) to obtain

DP(V) = (Ox(=h), i, Op, Ox(h), Ox(H = 2h), Op(H —~ h), ©2(D (V).
(4.19)

By mutating ®,(D”(V)) two steps to the left, one obtains

DP(V) = (Or(=h), Fx, Ox, Ox(h), @3(D"(V-)), Ox(H — 2h), O(H — h))
(4.20)

where
@3 1= LiopH-20),0pH-R)) © P2. 4.21)

By mutating the last two terms to the far left, one obtains

D"(V) = (Op(=3h), Op(=2h), Op(=h), S, Op, Ox(h), @3(D (V).
(4.22)

By comparing (4.22) with

DP(V) = (Op(=3h), Ok (=2h), O (~h), F, O, O(h), @_(D(V-)))

(4.23)
obtained by combining (4.2) and (4.4), one obtains a derived equivalence
@ =P od3: DP(VL) S DV(VL), (4.24)
where
®L (=) := (¢-)« (-) ® Ov(=H)) : D"(V) — D"(V_) (4.25)

is the left adjoint functor of ®_. Note that the left mutation along an exceptional
object £ € D?(V) is an integral functor ®xc(—) := (p2)s (p]k(—) ® IC) along the
diagram

V xy, V

/ K (4.26)

v A\

whose kernel K is the cone over the evaluation morphism ev: £¥Y X € — Ay.
The functors &, : D*(V,) — D’(V)and &' : D’(V) — D?(V_) are clearly an
integral functor, so that the functor (4.24) is also an integral functor, whose kernel
is an object of D’ (V. xv, V_) obtained by convolution.
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5. Matrix factorizations

Let s be a general section of the equivariant vector bundle &1, 1y on G. The zero X |-
of s is a smooth projective Calabi—Yau 3-fold. Since V is the total space of the
dual bundle £ (Vl 1) on G, the space of regular functions on V. which are linear along
the fiber can naturally be identified with the space of sections of &£(,1). We write
the regular function on V. associated with s € H (1,1)) as ¢4 € H? (Ov,).
The zero D of ¢ is the union of a line sub-bundle of V_ and the inverse image
of X by the structure morphism 7 : V4 — G. The singular locus of D is given
by X +.

Let ¢_ be aregular function on V_ corresponding to ¢ under the isomorphism
H° (Ov,) = H°(Ov,) = H°(Ov._) given by the diagram in (2.16), and X_
be the zero of the corresponding section s_ € H 0 (f(l,l)) , Which is a smooth
projective Calabi—Yau 3-fold in Q.

The push-forward of the kernel of ® on Vi xy, V_to V. x,1 V_ gives a
kernel of ® on V1 x 41 V_. By taking the base-change along the inclusion 0 — Al
of the origin and applying [18, Proposition 2.44], one obtains an equivalence
Dp: DP (Dy) = DP (D_) of the bounded derived categories of coherent sheaves.
By using either of the characterization of perfect complexes as homologically
finite objects (i.e., objects whose total Ext-groups with any other object are finite-
dimensional) or compact objects (i.e., objects such that the covariant functors repre-
sented by them commute with direct sums), one deduces that @, preserves perfect
complexes, so that it induces an equivalence ®; sing., D2 (Dy) = Dfmg(D ) of
singularity categories (see [16, Section 7] and [5 Theorem 1.1]).

Recall that V., V_ and V( are geometric invariant theory quotient of Spec R
by the anti-diagonal G,,-action. The residual diagonal G,;,-action on both V. and
V_ are dilation action on the fiber. The equivalences ®, ®p and CDBmg are equivari-
ant with respect to this G,,-action, and induces an equivalence of G,,-equivariant
categories [8, Theorem 1.1], which will be denoted by the same symbol by abuse
of notation. Now [14, Theorem 3.6] gives equivalences

Dlpe(ID1/G]) = D (X 1) (5.1)
and

D} (ID-/Gy]) = D* (X ) (5.2)
between (G,,-equivariant singularity categories and derived categories of coherent
sheaves (see also [22] where the case of line bundles is discussed independently
and around the same time as [14]). By composing these derived equivalences with
q)gmg, one obtains a derived equivalence between Xy and X_. It is an interest-
ing problem to compare this equivalence with the one obtained in [17]. Another
interesting problem is to prove the derived equivalence using variation of geomet-
ric invariant theory quotient along the lines of [1,2,7,9,20], and use it to produce
autoequivalences of the derived category [6, 10].
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