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Abstract. For any smooth projective moduli space M of Gieseker stable sheaves on a
complex projective K3 surface (or an abelian surface) S, we prove that the Chow motive
h(M) becomes a direct summand of a motive

⊕
h(Ski )(ni ) with ki ≤ dim(M). The result

implies that finite dimensionality of h(M) follows from finite dimensionality of h(S). The
technique also applies to moduli spaces of twisted sheaves and to moduli spaces of stable
objects in Db(S, α) for a Brauer class α ∈ Br(S). In a similar vein, we investigate the relation
between the Chow motives of a K3 surface S and a cubic fourfold X when there exists an
isometry H̃(S, α,Z) ∼= H̃(AX ,Z). In this case, we prove that there is an isomorphism of
transcendental Chow motives t(S)(1) ∼= t(X).

Introduction

Given amoduli spaceM of stable sheaves on aK3 surface S, one expects that certain
invariants of M are determined by the geometry of S. We will study the relation
between the Chow groups and motives of M and S. The analogous question for
moduli spaces of stable vector bundles on a curve has been settled by del Baño
[15]. He showed that the Chow motive of the moduli space is contained in the full
pseudo-abelian tensor subcategory generated by the motive of the curve and the
Lefschetz motive.

For surfaces, a natural notion of stability for sheaves is provided by Gieseker
stability. More generally, we will consider stability for α-twisted sheaves with
α ∈ Br(S) a Brauer class. The case of a moduli space of Gieseker stable sheaves
corresponds to the trivial Brauer class α = 1. The first main result of this paper is
the following:

Theorem 0.1. Let S be a complex projective K3 surface or an abelian surface and
α ∈ Br(S). Assume that M is one of the following:

• a smooth projective moduli space of Gieseker stable α-twisted sheaves or
• a smooth projective moduli space of stable objects in Db(S, α).
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Then the Chow motive h(M) of M is a direct summand of a motive
⊕

h(Ski )(ni )
for some 1 ≤ ki ≤ dim M, ni ∈ Z.

The theorem extends a result of Arapura [5, Thm. 7.8] to the level of Chow
groups and, therefore, allows an application to Chow motives. In fact, our result
holds true for any surface with effective anti-canonical bundle, see Remark 2.2 for
details. The argument also applies to curves and gives a significantly easier proof
of del Baño’s result.

As a direct consequence, finite dimensionality of the motive of S implies the
same for M :

Corollary 0.2. Let S and M be as above. If h(S) is finite dimensional, then h(M)

is finite dimensional as well. ��
The motive of any abelian variety is known to be finite dimensional [26, Ex.

9.1] and consequently we obtain the following unconditional result:

Corollary 0.3. Let S be an abelian surface and M a smooth projective moduli
space of stable sheaves on S. Then the Chow motive h(M) is finite dimensional. ��

Although finite dimensionality is expected for all motives of smooth projective
varieties, only a few families of K3 surfaces with finite dimensional motives are
known. Even fewer examples are known in higher dimension; one example is pro-
vided by the Hilbert scheme S[n] of a K3 surface S with finite dimensional motive,
see [14, Thn. 6.2.1].

The second half of this paper has a similar flavour; we investigate the relation
between K3 surfaces and cubic fourfolds on the level of algebraic cycles. Recall
that cubic fourfolds admitting a labelling of discriminant d form a divisor Cd ⊆ C
inside the moduli space of smooth complex cubic fourfolds (see Sect. 3.1 for a brief
review of the relevant notions). For a cubic fourfold X , we denote byAX ⊆ Db(X)

the Kuznetsov component of the derived category [28]. We prove the following
result:

Theorem 0.4. Let X ∈ Cd be a special cubic fourfold. Assume that there exist a
K3 surface S, a Brauer class α ∈ Br(S) and a Hodge isometry H̃(S, α,Z) ∼=
H̃(AX ,Z). Then there is a cycle Z ∈ CH3(S × X) inducing an isomorphism of

Chow groups CH0(S)hom
∼ CH1(X)hom and transcendental motives t(S)(1) ∼=

t(X). Furthermore, h(X) ∼= 1 ⊕ h(S)(1) ⊕ L
2 ⊕ L

4 and, therefore, h(S) is finite
dimensional if and only if h(X) is finite dimensional.

A (twisted) K3 surface and a Hodge isometry H̃(S, α,Z) ∼= H̃(AX ,Z) as
above exist if and only if d satisfies a certain numerical condition (∗∗′), see for
example 3.1.

The two results fit into the following picture. For a variety X we denote by
Mot(X) the full pseudo-abelian tensor subcategory of motives generated by h(X)

and the Lefschetz motiveL. Let now X be a cubic fourfold and F its Fano variety of
lines, which is a hyperkähler variety of dimension four. It is known that the motive
of F is contained in Mot(X) (we say that h(F) is motivated by h(X) following
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Arapura [5]). Indeed, Laterveer [31, Thm. 5] proved a formula for Chow motives,
which is similar to the result obtained by Galkin–Shinder [19, Thm. 5.1] in the
Grothendieck ring of varieties:

h(F)(2) ⊕
4⊕

i=0

h(X)(i) ∼= h(X [2]).

Since the Hilbert scheme X [2] can be described as a blow-up of the symmetric
product X (2) along the diagonal, its motive is motivated by h(X). In Sect. 2.2 we
will argue that h(X) is also motivated by h(F), see also [11, Thm. 4.5]:

Corollary 0.5. Let X be a cubic fourfold and F its Fano variety of lines. The full
pseudo-abelian tensor categories of motives generated by the Lefschetz motive and
h(X) and h(F) resp., agree:

Mot(X) = Mot(F).

In particular, h(X) is finite dimensional if and only if h(F) is finite dimensional.

To compare this result with Theorem 0.1, assume that X is a special cubic
fourfold satisfying condition (∗∗′), which is equivalent to the Fano variety F being
birational to a moduli space M of stable twisted sheaves on a K3 surface S, cf. [23,
Prop. 4.1]. In this case, all of the following categories of motives agree:

Mot(S) = Mot(M) = Mot(F) = Mot(X).

Indeed, we know that birational hyperkähler varieties have isomorphic Chow
motives, see Proposition 1.4. This induces the middle equality. It follows from
Theorem 0.4 that Mot(S) and Mot(X) coincide. For an arbitrary complex projec-
tiveK3 surface and amoduli spaceM as inTheorem0.1wehave at least an inclusion
Mot(M) ⊆ Mot(S) which we expect to be an equality as well, see Remark 2.3 for
some comments.

Notations and Conventions

We will work over the complex numbers unless otherwise stated. The bounded
derived category of coherent sheaves on a smooth projective variety X is denoted
by Db(X). Throughout, all motives are meant to be Chow motives with rational
coefficients, see Sect. 1.

1. Preliminaries

We briefly review the main facts about Chow motives of K3 surfaces and cubic
fourfolds. The objects of the category MotC of Chowmotives are triples (X, p,m),
with X a smooth projective variety over C, p ∈ CHdim(X)(X × X)Q a projector
(with respect to convolution) and m an integer. Morphisms are defined by

Hom((X, p,m), (Y, q, n)) = q ◦ CHdim(X)+n−m(X × Y )Q ◦ p.
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The motive of a smooth projective variety X is defined as h(X) = (X, [�X ], 0).
We denote the motive of a point by 1 and the Lefschetz motive by L. Let S be
a projective K3 surface and ρ(S) the Picard number of S. Recall that there is a
decomposition (see e.g. [36, Ch. 6.3]):

h(S) ∼= 1 ⊕ L
⊕ρ(S) ⊕ t(S) ⊕ L

2.

The only mysterious part is the transcendental motive t(S) = (S, π
2,tr
S , 0). The

motive of a cubic fourfold X splits similarly (cf. [11, Sec. 4]):

h(X) ∼= 1 ⊕ L ⊕ (L2)⊕ρ2 ⊕ t(X) ⊕ L
3 ⊕ L

4,

where ρ2 = dim H2,2(X,Q). Again, the only part which remains unclear is the
transcendentalmotive t(X) = (X, π

4,tr
X , 0). The above decompositions are so called

refined Chow–Künneth decompositions, see [36, Ch. 6.1]. The Chow and cohomol-
ogy groups of the transcendental motives are given by:

H∗(t(S)) = H2(t(S)) = T (S)Q and CH∗(t(S)) = CH2(t(S)) = CH0(S)hom,Q,

H∗(t(X)) = H4(t(X)) = T (X)Q and CH∗(t(X)) = CH3(t(X)) = CH1(X)hom,Q,

where T (S) and T (X) are the transcendental lattices.

Remark 1.1. One can also consider the following (coarser) decomposition of the
motive of a cubic fourfold X , which will be used in the proof of Theorem 0.4. Let
h ∈ CH1(X) be the class of a hyperplane section and pt the class of any closed
point. Define the primitive projector π

pr
X = [�X ]− [pt× X ]− 1

3 [h3 × h]− 1
3 [h2 ×

h2] − 1
3 [h × h3] − [X × pt] and the primitive motive hpr(X) = (X, π

pr
X , 0). There

is a decomposition:

h(X) ∼= 1 ⊕ L ⊕ L
2 ⊕ hpr(X) ⊕ L

3 ⊕ L
4.

Recall the notion of a surjectivemorphismofmotives f : M → N . Itmeans that
the induced map CH∗(M ⊗ h(Z)) → CH∗(N ⊗ h(Z)) is surjective for all smooth
projective varieties Z , cf. [36, Sec. 5.4]. Equivalently, f admits a right inverse and
N becomes a direct summand of M , see [36, Ex. 2.3.(vii), Lem. 5.4.3]. It is well
known (cf. [45, Lem. 3.2], [11, Lem. 4.3]) that it suffices to check surjectivity of
CHi (MK ) → CHi (NK ) for all function fields:

Lemma 1.2. Let M = (X, p,m), N = (Y, q, n) ∈ MotC and f ∈ Hom(M, N )

a morphism of motives. Assume that ( fK )∗ : CHi (MK ) → CHi (NK ) is surjective
for all finitely generated field extensions C ⊆ K. Then f is surjective.

Proof. Let Z be any variety overC. The proof proceeds by induction on the dimen-
sion of Z , the case of dimension zero being trivial. Let K be the function field of
Z and γ ∈ CHi (N ⊗ h(Z)). We write γ |NK for the pullback of γ to NK . By
assumption, there exists δ ∈ CHi (MK ) such that ( fK )∗δ = γ |NK . Denote by δ̄ the
closure of δ in X × Z . Then γ − ( fZ )∗δ̄ is supported on Y × Z ′ for some closed
proper subvariety Z ′ ⊆ Z and we conclude by induction. ��
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In Sect. 3 we will also include some comments on the notion of finite dimen-
sionality in the sense of Kimura and O’Sullivan, see e.g. [36, Ch. 4]. The following
key result is essentially due to Kimura:

Proposition 1.3. Let M → N be a surjective morphism of motives. If M is finite
dimensional, then N is finite dimensional. If M ∼= M1 ⊕ M2, then M1 and M2 are
finite dimensional if and only if M is finite dimensional. Moreover, if X → Y is a
dominant morphism of smooth projective varieties and h(X) is finite dimensional,
then so is h(Y ).

Proof. The first assertion is proven in [26, Prop. 6.9] and the statement about
direct summands is an immediate consequence. The last assertion follows from
the observation that any dominant morphism of varieties gives rise to a surjective
morphism of motives, see [36, Ex. 5.4.2]. ��

To conclude this section, observe that the Chowmotive of a hyperkähler variety
is in fact a birational invariant. Indeed, for two birational hyperkähler varieties X
and X ′ one can always find familiesX andX ′ over a smooth quasi-projective curve
C , which are isomorphic away from a point 0 ∈ C with central fibres X = X0 resp.
X ′ = X ′

0 (cf. [22, Thm. 10.12], [39, Prop. 2.1]). This can be used to show that their
Chow rings CH∗(X) and CH∗(X ′) are isomorphic [39, Thm. 3.2]. The same proof
also shows that their Chow motives are isomorphic, see also [44, Sec. 1.6]:

Proposition 1.4. Let X and X ′ be birational hyperkähler varieties. There is an
isomorphism of Chow motives

h(X) ∼= h(X ′).

��
Our result therefore also applies to any hyperkähler variety which is birational

to a moduli space as in Theorem 0.1.

2. Motives of moduli spaces of stable sheaves

2.1. Moduli spaces of stable sheaves on a K3 surface

This section contains the proof of Theorem 0.1. Let S be a projective K3 surface
or an abelian surface. Assume first that M is a smooth projective moduli space
of stable sheaves on S. The general case of a moduli space of stable objects in
Db(S, α) is treated at the end of the proof.

Proof of Theorem 0.1. Let E be a quasi-universal sheaf on M × S and F its trans-
pose on S × M . We use the following notation for the projections:

M × S × M

M × S M × M S × M

π12
π

π23
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and E = π∗
12(E), F = π∗

23(F) for the pullbacks. Consider the complex

W = Ext•π (E,F)[1] ∈ Db(M × M)

whose cohomology sheaves are the relative extension sheaves Extiπ (E,F) =
Ri (π∗ ◦ Hom)(E,F). Note that in our case only Ext1π (E,F) and Ext2π (E,F) are
non-zero. A computation of the Chern classes due to Markman [33, Thm. 1] yields

cm([W ]) = [�M ] ∈ CHm(M × M), (1)

where m is the dimension of M .
Consider the Chow groups CH∗(M × M)Q as a unital ring with convolution

of cycles and unit given by the diagonal. Define the following two-sided ideal
generated by correspondences which factor through some power of S:

I = 〈β ◦ α | α ∈ CH∗(M × Sk)Q, β ∈ CH∗(Sk × M)Q, k ≥ 1〉 ⊆ CH∗(M × M)Q.

Wewill prove that I is closed under intersection products. Let α ∈ CH∗(M× Sk)Q,
β ∈ CH∗(Sk × M)Q, α′ ∈ CH∗(M × Sk

′
)Q, β ′ ∈ CH∗(Sk′ × M)Q and denote by

τ the involution of M × M × M × M interchanging the middle two factors:

(β ◦ α) · (
β ′ ◦ α′) = [ t
�M×M

]
∗
(
β ◦ α × β ′ ◦ α′) = [ t
�M×M

]
∗ ◦ τ∗

(
β × β ′ ◦ α × α′)

= [ t
τ◦�M×M

]
∗
(
β × β ′ ◦ α × α′) = ([ t
�M

] × [ t
�M

])
∗
(
β × β ′ ◦ α × α′)

= ([ t
�M

] ◦ β × β ′) ◦ (
α × α′ ◦ [


�M

])
.

The last equality follows fromLieberman’s Lemma, cf. [36, Prop. 2.1.3].We obtain
a correspondence which factors through Sk+k′

, so it is contained in I . We will
conclude by showing that the class of the diagonal is contained in I .

A Grothendieck–Riemann–Roch computation gives:

ch([W ]) = −ch
(
π![RHom(E,F)]

)
= −π∗

(
ch[RHom(E,F)] · π∗

2 td(S)
)

= −π∗
(
π∗
12ch(E

∨) · π∗
23ch(F) · π∗

2 td(S)
)
, (2)

where E∨ = RHom(E,OM×S) denotes the derived dual of E and π2 is the pro-
jection to S. Let α = ⊕αi = ch(E∨) · π∗

2

√
td(S), β = ⊕β i = ch(F) · π∗

2

√
td(S)

and n ∈ N. Considering only the codimension n part of (2) we find that the nth
Chern character is contained in I :

chn([W ]) = −
∑

i+ j=n+2

π∗
(
π∗
12α

i · π∗
23β

j
)

∈ I.

The codimension n part of the Chern character is given as a sum
(− 1)n−1

(n − 1)! cn + p,

where p is a polynomial in the Chern classes of degree less than n. Note that
c1 = ch1 is contained in I and, therefore, also c2 = 1

2c
2
1 − ch2 ∈ I . It follows

iteratively that cn ∈ I for all n and therefore [�M ] ∈ I by (1). Thus, there are
cycles γi ∈ CHei (M × Ski )Q, δi ∈ CHdi (Ski × M)Q, for some ki ∈ N, such that

[�M ] =
∑

δi ◦ γi ∈ CHm(M × M)Q. (3)
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Let δ = ⊕
δi viewed as a morphism of motives

⊕
h(Ski )(ni ) → h(M) with

ni = di − 2ki . Equation (3) asserts that γ = ⊕
γi defines a right inverse for δ, i.e.

the following composition is the identity:

h(M)
⊕

h(Ski )(ni ) h(M).
γ δ

Hence, h(M) is a direct summand of
⊕

h(Ski )(ni ).
Moreover, we obtain a bound for the exponents ki . Consider the filtration Ik of I

generated by correspondences which factor through Sl with l ≤ k. With the above
notation we have chn ∈ I1 for all n and Ik · Ik′ ⊆ Ik+k′ . Thus ki ≤ m = dim M for
all i .

To conclude the proof, we consider the general case of a smooth projective
moduli space M of σ -stable objects in Db(S, α) for a Brauer class α ∈ Br(S)

and stability condition σ . It has been explained in [32, pp. 2–3] that Markman’s
formula (1) can be obtained analogously in this case. The two crucial ingredients
are the vanishing of Exti (Ex ,Fx ) for i �= 0, 1, 2 and x ∈ M × M and the fact that
Ext2π (E,F) is a line bundle on the diagonal in M × M . Both assertions still hold
true for stable α-twisted sheaves and similarly for stable objects in Db(S, α). ��
Corollary 2.1. Let S and M be as above. If h(S) is finite dimensional, then h(M)

is finite dimensional as well. ��
Remark 2.2. Asmentioned in the introduction, the proof ofTheorem0.1 also applies
tomoduli spaces of stable vector bundles of coprime rank anddegree on a curve, thus
recovering delBaño’s result [15, Thm. 4.5]. Indeed, it was observed byBeauville [8]
that in this case Eq. (1) follows from Porteous formula. The same argument may be
used in the case of a non-symplectic surface S with effective anti-canonical bundle
and a moduli space of stable sheaves of positive rank, see [34, Thm. 8]. Here, the
vanishing of the extension group Ext2(E, F) for any two stable sheaves E and F is
the key ingredient. For moduli spaces M of stable sheaves on P

2, a description of
the Chow ring CH∗(M) was given by Ellingsrud and Strømme [16, Thm. 1.1(iii)].
They proved that the cycle class map is an isomorphism and, therefore, the Chow
motive h(M) is a sum of Lefschetz powers.

Remark 2.3. We expect also that h(S) is motivated by h(M) (see the introduction).
This holds for example in the case of a Hilbert scheme. For fine moduli spaces it
would follow from a conjecture of Addington [2, Conj.]: A universal sheaf induces
a Fourier–Mukai transform F : Db(S) → Db(M) with right adjoint R. Addington
conjectured that the composition of F and R splits as follows:

R ◦ F ∼= id ⊕ id[− 2] ⊕ · · · ⊕ id[− 2n + 2].
If v and w are the Mukai vectors of the Fourier–Mukai kernels, we obtain:

[�S] = 1

n
v ◦ w ∈ CH2(S × S)Q.

It follows as above that h(S) is a direct summand of
⊕

h(M)(ni ) for some ni ∈ Z.
See for example [4, Thm. A] for some progress on the conjecture in the case of a
moduli space of torsion sheaves.
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2.2. The Fano variety of lines

We provide a short proof of Corollary 0.5. Let X be a cubic fourfold and F its
Fano variety of lines. The Chow groups and motive of F were investigated in detail
by Shen and Vial [44]. They studied Fourier transforms inducing a (particularly
interesting) decomposition of the Chow ring, similar to the case of an abelian
variety. The relation between the Chow groups of F and X given via the universal
line (viewed as a correspondence) has been elucidated as well. We refrain from
going into the details and recommend op. cit. for further reading.

Proposition 2.4. Let X be a cubic fourfold and F its Fano variety of lines. Then
the transcendental motive t(X) is a direct summand of h(F)(− 1). In particular,
the motive of X is contained inMot(F).

Proof. The universal line L ∈ CH3(F × X) induces a morphism f of motives:

h(F)(− 1) h(X) t(X).
L π

4,tr
X

Let K be any finitely generated field extension of C. The only non-trivial ratio-
nal Chow group of t(XK ) is CH3(t(XK )) ∼= CH1(XK )hom,Q. Indeed, choose an
embedding of K into the complex numbers and denote by Y the base change of
XK to C, which is a smooth complex cubic fourfold. It is well known that the base
change map CHi (t(XK )) → CHi (t(Y )) induced by a field extension is injective
up to torsion, see e.g. [9, Lem. 1A.3] and [45, Lem. 1.2]. Now use that CHi (t(Y ))

vanishes for i �= 3. The Chow group of one-cycles is universally generated by
lines [43, Thm. 1.7] and the assertion thus follows from Lemma 1.2. ��

3. Motives of special cubic fourfolds

3.1. Special cubic fourfolds

Recall that cubic fourfolds admitting a labelling of discriminant d form a divisor
Cd ⊆ C inside the moduli space of smooth complex cubic fourfolds, see [21,
Sec. 3.1]. The existence of an associated K3 surface (in a suitable sense) can be
characterized solely in terms of d. The following numerical conditions have been
introduced over the past years (we use the notation of Addington [3]):

∃a, n ∈ Z : a2d = 2n2 + 2n + 2, (∗∗∗)

∃n ∈ Z : d | 2n2 + 2n + 2, (∗∗)

∃k, d0 ∈ Z : d0 satisfies (∗∗) and d = k2d0. (∗∗′)

There are (strict) inclusions of subsets inside the moduli space C of cubic four-
folds:

⋃

(∗∗∗)

Cd ⊆
⋃

(∗∗)

Cd ⊆
⋃

(∗∗′)
Cd .
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A cubic fourfold admits a labelling of discriminant d satisfying (∗∗′) if and only
if there exist a K3 surface S, a Brauer class α ∈ Br(S) and a Hodge isometry
H̃(S, α,Z) ∼= H̃(AX ,Z) [23, Thm. 1.3]. In this case, we prove that there is an
isomorphism of Chowmotives t(S)(1) ∼= t(X). This generalizes work of Bolognesi
and Pedrini [11], and Laterveer [30]. In [11, Thm. 4.13], the authors obtained such
an isomorphism in the case when F(X) ∼= S[2]. Injectivity has been proven in
[30, Thm. 3.1] for cubic fourfolds invariant under a certain involution. Both cases
are instances of Theorem 0.4, see the comments in Sect. 3.2. We start with a well
known fact:

Lemma 3.1. Let S be a projective K3 surface and X a cubic fourfold. Then
CH0(S)hom and CH1(X)hom are divisible and torsion-free.

Proof. Divisibility of CH0(S)hom is well known and follows easily by constructing
a curve through any two given points and using the Jacobian of the normalization.
The theorem of Rojtman [40] implies that this group is torsion-free. Let F be the
Fano variety of lines in X . It is a hyperkähler variety, so its first Betti number
vanishes and it follows as above that CH0(F)hom is divisible and torsion-free. The
universal line L induces a surjection

CH0(F)hom CH1(X)hom,
L∗

hence the assertion follows from the divisibility of Ker(L∗) which was proven by
Shen and Vial [44, Thm. 20.5, Lem. 20.6]. ��
Proof of Theorem 0.4. Since C is a universal domain, it suffices to prove the iso-
morphism on Chow groups. By a variant of Manin’s identity principle (cf. [20,
Lem. 1], [45, Lem. 3.2] or [11, Lem. 4.3]) this implies t(S)(1) ∼= t(X). The results
of Addington–Thomas [1, Thm. 1.1] and Huybrechts [23, Thm. 1.4] imply that
there is an exact equivalence Db(S) � AX (resp. Db(S, α) � AX ) if X ∈ Cd is
genericand we consider this case first. Assume that α = 1, i.e. d satisfies (∗∗).
Consider the composition� of an exact equivalence Db(S) � AX and the inclusion
AX ⊆ Db(X). By [37, Thm. 2.2], this functor is of Fourier–Mukai type, i.e. there
is a complex E ∈ Db(S × X), such that for all G ∈ Db(S):

�(G) ∼= p∗(E ⊗ q∗(G)),

where p and q are the projections. It follows that the left adjoint to � is of Fourier–
Mukai type as well, say with kernelF . Let v = ch(E) ·√td(S × X) (resp.w) be the
Mukai vector of E (resp. F). It is an algebraic cycle with Q-coefficients on S × X
which needs not be of pure dimension. Denote by vi (resp. wi ) its codimension i
part. Since � is fully faithful, the convolution w ◦ v is rationally equivalent to the
class of the diagonal [�S] on S × S. More precisely, the following equality holds
in CH2(S × S)Q:

[�S] = w0 ◦v6 +w1 ◦v5 +w2 ◦v4 +w3 ◦v3 +w4 ◦v2 +w5 ◦v1 +w6 ◦v0. (4)

At the moment, an equivalence Db(S) ∼= AX (resp. Db(S, α) ∼= AX ) is established
only for generic X ∈ Cd . This gap is expected to be filled soon and would make the last step
of the proof superfluous (see the upcoming work of Bayer et al. [7]).
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Recall that the homologically trivial part of the Chow groups of S and X are
concentrated in codimension two and three, respectively. The induced action of v

on Chow groups is compatible with the action on cohomology. Thus, w3 ◦ v3 is the
only summand on the right hand side of (4) acting non-trivially on CH0(S)hom,Q,
i.e. the following composition is the identity:

CH0(S)hom,Q CH1(X)hom,Q CH0(S)hom,Q.
v3∗ w3∗

This proves injectivity of v3∗. For the surjectivity consider the following diagram:

K(S)Q K(AX )Q K(X)Q

CH∗(S)Q CH∗(X)Q

CH0(S)hom,Q CH1(X)hom,Q.

v

∼
φ

v

v∗

v3∗

Commutativity of the middle diagram follows from the Grothendieck–Riemann–
Roch Theorem. It suffices to show that the image of φ : K(AX )Q → CH∗(X)Q
contains CH1(X)hom,Q. Indeed, this would imply that any β ∈ CH1(X)hom,Q lifts
to some α ∈ CH∗(S)Q such that v∗(α) = β. Since the action of v on cohomology
is injective, α is homologically trivial, i.e. α ∈ CH0(S)hom,Q.

Recall that CH1(X) is generated by lines by a result of Paranjape [38], see also
[42, Cor. 4.3]. Let i : � ⊆ X be the inclusion of a line and consider the associated
second syzygy sheaf F� of I�(1) defined by:

0 F� H0(X, I�(1)) ⊗ OX I�(1) 0.ev

Here, OX (1) is the induced polarization of X ⊆ P
5 and ev is the evaluation map

which is surjective, cf. [27, Lem. 5.1]. A straightforward computation in op. cit.
shows that F� is contained in AX . Next, we compute the Mukai vector of F�:

v(F�) = v(O⊕4
X ) − v(I�(1)) = v(O⊕4

X ) − v(OX (1)) + v(O�(1)).

Using the Grothendieck–Riemann–Roch Theorem one finds:

v(O�(1)) = ch(O�) · ch(OX (1)) · td(X)
1
2 = i∗(td(�)) · ch(OX (1)) · td(X)−

1
2

= ([�] + [pt]) · ch(OX (1)) · td(X)−
1
2 ,

where [pt] ∈ CH0(X) ∼= Z is the class of any closed point (X is rationally con-
nected). The Todd class of X is a polynomial in the class of a hyperplane section
h = c1(OX (1)), in fact

td(X) = 1 + 3

2
h + 5

4
h2 + 3

4
h3 + 1

3
h4.
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Therefore, v(O�(1)) = [�] + 5
4 [pt] and

φ([F�] − [F�′ ]) = v(O�(1)) − v(O�′(1)) = [�] − [�′],
for each pair of lines � and �′, which proves surjectivity of φ since CH1(X)hom,Q

is generated by cycles of this form.

So far, we proved that Z = v3 induces an isomorphism CH0(S)hom,Q
∼ CH1

(X)hom,Q. As mentioned earlier, a variant of Manin’s identity principle gives that
Z also induces an isomorphism of motives t(S)(1) ∼= t(X), which extends to an
isomorphism h(S)(1) ∼= L ⊕ hpr(X) ⊕ L

3. Indeed, the Picard rank ρ of S equals
ρ2 − 1 with ρ2 = dim H2,2(X,Q). Thus, there are cycles W , W ′ ∈ CH3(S × X)Q
such that

tW ′ ◦ W = [�S], W ◦ tW ′ = 1

3
[h3 × h] + π

pr
X + 1

3
[h × h3]. (5)

This will be useful for the specialization argument below.

Next, assume that d satisfies (∗∗′), i.e. Db(S, α) ∼= AX . The composition with
the inclusion is again of Fourier–Mukai type by [12, Thm. 1.1]) and the formalism
of Mukai vectors works in the twisted case as well, see [25, Sec. 1] for details. For
E ∈ Coh(S × X, α−1 � 1) locally free and n = ord(α) the order of the Brauer
class, E⊗n is naturally an untwisted sheaf and one defines (cf. [24, Sec. 2.1])

v(E) = n
√
ch(E⊗n) · √

td(S × X).

The nth root can be obtained formally, since rk(E) �= 0. Using a locally free
resolution, this definition extends to all twisted coherent sheaves. Define the cycle
Z as above. The proof now works analogously, replacing Db(S) by Db(S, α) and
K(S) by K(S, α).

Finally, we prove the assertion for any X0 ∈ Cd via specialization. Let T ⊆ Cd
be a curve passing through the point corresponding to X0 such that there are families
of K3 surfaces (resp. cubic fourfolds) S and X over T with an exact equivalence
Db(Ss) ∼= AXs over a very general point s ∈ T and X0 ∼= X0 for a closed point
0 ∈ T , see [1, Thm. 1.1]. Write S0 for the fibre of S over 0.

By a standard argument (see e.g. [41, Lem. 8]) we may assume that T is the
spectrum of a complete discrete valuation ring R ∼= C�t� with generic point η and
closed point 0.Write K = C((t)) for its fraction field and K̄ for an algebraic closure
of K .

Let W , W ′ ∈ CH3(Sη̄ ×K̄ Xη̄) be as above, such that (5) holds. In fact, all

cycles of (5) are defined over a finite extension C((t
1
n )) of K . Replacing R by

C�t
1
n �, we may assume that the cycles W and W ′ are defined over K . Recall

the specialization map for Chow groups (see [18, Ch. 10.1] for details), which
is compatible with intersection product, pullback and proper pushforward. We
obtain cycles W0, W ′

0 ∈ CH3(S0 × X0)Q such that equalities of the form (5) hold.
Thus, W0 induces an isomorphism of motives h(S0)(1) ∼= L ⊕ hpr(X0) ⊕ L

3. The
action on Chow groups restricts to an isomorphism of homologically trivial cycles



120 T.-H. Bülles

CH0(S)hom,Q
∼ CH1(X)hom,Q induced by π

4,tr
X0

◦W0 ◦ π
2,tr
S0

. In fact, CH0(S)hom
and CH1(X)hom are both divisible and torsion-free, see Lemma 3.1. Hence, tensor-
ing with Q is a bijection and we obtain an isomorphism of integral Chow groups.
��
Corollary 3.2. Let X ∈ Cd be a special cubic fourfold with d satisfying (∗∗′) and
S an associated (twisted) K3 surface. Then h(X) is finite dimensional if and only
if h(S) is finite dimensional. Moreover, if ρ2 = dim H2,2(X,Q) ≥ 20, then h(X)

is finite dimensional.

Proof. The above theorem evidently implies h(X) ∼= 1⊕h(S)(1)⊕L
2 ⊕L

4. This
proves the first assertion. If ρ2 = dim H2,2(X,Q) ≥ 20, then the Picard rank of S
is at least 19 and, therefore, S admits a Shioda–Inose structure, cf. [35, Cor. 6.4].
The motive of an abelian variety is finite dimensional, see e.g. [36, Ch. 4.6, Thm.
2.7.2]. Thus, h(S) is finite dimensional and we conclude using Proposition 1.3. ��

3.2. Examples

This section contains a comparison with the work of Bolognesi, Pedrini [11] and
some applications of Theorem 0.4. In each example, the relation on the level of
motives between the K3 surface and the cubic fourfold becomes visible by a con-
crete geometric construction.

Example 3.3. (Cubic fourfolds containing a plane) Consider the divisor C8 ⊆ C.
It corresponds exactly to the cubic fourfolds X containing a plane, cf. [46, Sec.
3]. In this case, there is the following standard construction: Let X̃ be the blow-up
of X along a plane P . Projecting X from P onto a disjoint plane in P

5 yields a
rational map which can be resolved to give a morphism q : X̃ → P

2. The fiber of q
over a point x ∈ P

2 is the residual surface of the intersection x P ∩ X . Generically,
it is a smooth quadric surface, i.e. isomorphic to P

1 × P
1 and has two different

rulings. The discriminant divisor of q is a sextic curve in P
2, which is smooth if

and only if X does not contain any other plane meeting P , see e.g. [6, Prop. 4.1].
The fibres over points of the discriminant curve are singular with only one ruling.
More precisely, let F(X̃/P2) be the relative Fano variety of lines with universal
line L ⊆ F(X̃/P2) × X̃ . The projection L → P

2 factors through a double cover
S → P

2 branched along a sextic curve, which is smooth for a general choice of X .
Thus, S is a K3 surface. The projection L → S is a P1-bundle (a Brauer–Severi
variety) and induces a Brauer class α ∈ Br(S). Kuznetsov showed that there is an
exact equivalence Db(S, α) ∼= AX , cf. [28, Thm. 4.3].

It is well known that rationality of the cubic fourfold X follows, if q has a
rational section. This holds true if there is an additional surface W ⊆ X such that
deg(W ) − 〈P,W 〉 is odd. In this case, it was observed in [11, Sec. 8] that the
isomorphism t(S)(1) ∼= t(X) would follow from finite dimensionality of h(S). In
fact, Theorem 0.4 implies that the isomorphism t(S)(1) ∼= t(X) holds without any
further assumptions.
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Example 3.4. (Cubic fourfolds with an automorphism of order three) Let X be a
cubic fourfold given by an equation of the form

f (x0, x1, x2) − g(x3, x4, x5) = 0,

where f and g are homogeneous polynomials of degree three. Denote by ζ3 a
primitive third root of unity. Then X is invariant under the automorphism σ of P5

given by

[x0 : x1 : x2 : x3 : x4 : x5] �→ [x0 : x1 : x2 : ζ3x3 : ζ3x4 : ζ3x5].
Thus, there is an induced automorphism σF of the Fano variety F(X), which is
in fact symplectic, i.e. σF |H2,0 = id, see e.g. [17] for a classification of polar-
ized symplectic automorphisms of F(X). Consider the cubic surfaces Z1 =
{ f (x0, x1, x2) − s3 = 0} and Z2 = {g(x3, x4, x5) − t3 = 0} in P3 with s resp. t as
additional variables. The rational map

([x0 : x1 : x2 : s], [x3 : x4 : x5 : t]) �→
[ x0
s

: x1
s

: x2
s

: x3
t

: x4
t

: x5
t

]

induces a degree three morphism Z1 × Z2
� → X from the blow-up of Z1 × Z2

along E1 × E2. Here, Ei is the cubic curve in Zi defined by the vanishing of s resp.
t , see e.g. [13, Prop. 1.2].

Note that finite dimensionality of h(X) follows from Proposition 1.3 since
rational surfaces have finite dimensional motives. Moreover, this morphism can be
used to find two disjoint planes P1 and P2 contained in X ; if �i ⊆ Zi are lines
(recall that Zi contains 27 of them) the image of the product �1 × �2 is a plane in
X and certain choices of lines produce disjoint planes, cf. [13, Rem. 2.4]. There is
a birational map from P1 × P2 to X sending a pair of points (x, y) to the residual
point of the intersection xy∩X . The indeterminacy locus S ⊆ P1×P2 parametrizes
lines contained in X joining the two planes. It is a complete intersection of divisors
of type (1, 2) and (2, 1), i.e. S is a K3 surface, see [19, Ex. 5.9]. Resolving the

indeterminacy locus gives an isomorphism BlS(P1 × P2)
∼ BlP1∪P2(X) which

induces t(S)(1) ∼= t(X) by comparing homologically trivial cycles. In fact, the
cubic fourfold X satisfies condition (∗∗∗), since the Fano variety of X is birational
to the Hilbert scheme S[2].

Example 3.5. (Cubic fourfolds with an involution) Consider the involution σ on P5

given by

[x0 : x1 : x2 : x3 : x4 : x5] �→ [x0 : x1 : x2 : x3 : −x4 : −x5].
A cubic X invariant under σ is always of the form

{F(x0, x1, x2, x3) + x24 L1 + x25 L2 + x4x5L3 = 0},
where F is homogeneous of degree three and the Li are linear forms in x0, . . . , x3.
Note that the fixed locus of σ in P

5 is the union of P3 = {x4 = x5 = 0} and the
line � = {[0 : 0 : 0 : 0 : x4 : x5]}. Thus, the fixed locus in X consists of a cubic
surface W and the line �.
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The fixed locus of the induced symplectic involution on the Fano variety F(X)

can be described as follows. It consists of the line �, the 27 lines contained in
W and a K3 surface S. The surface S parametrizes lines contained in X joining
W and �. It is a double cover of the cubic W branched along the degree 6 curve
L2
3−L1L2. This suggests that S is associated to X : The inclusion S ⊆ F(X) induces

an isomorphism H2,0(F(X)) ∼= H2,0(S) and an isomorphism of transcendental
lattices.Composingwith the incidence correspondence,wegetT (S)(− 1) ∼= T (X).
It is not directly obvious that this is an isometry. An isomorphism t(S)(1) ∼= t(X)

was nevertheless established by Bolognesi and Pedrini [11, Sec. 5.2] building on
work of Laterveer [30, Thm. 3.1].

Example 3.6. (Cyclic cubic fourfolds) Let f (x0, . . . , x4) be a homogeneous poly-
nomial of degree three, defining a smooth cubic threefold Y ⊆ P

4. A cyclic cubic
fourfold is a triple cover X → P

4 ramified along Y . It is a smooth cubic hypersur-
face X ⊆ P

5 with an equation:

f (x0, . . . , x4) + x35 = 0

and covering automorphism σ : X ∼ X given by:

[x0 : x1 : x2 : x3 : x4 : x5] �→ [x0 : x1 : x2 : x3 : x4 : ζ3x5].
It was shown in [29, Thm. 3.1] that the motive of a cyclic cubic fourfold X is

finite dimensional. If X satisfies condition (∗∗′) and S is an associated (twisted) K3
surface, then t(S)(1) ∼= t(X) and h(S) is finite dimensional as well. Unfortunately,
it is not clear which K3 surfaces can be associated to X as above. Note that the
family of cyclic cubic fourfolds contains the Fermat cubic, so in particular it has
non-trivial intersection with the divisor C8 of cubic fourfolds containing a plane.
However, there exists an example of a cyclic Pfaffian cubic fourfold containing no
plane, see [10, Prop. 5.1].
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