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Abstract. For any symplectic manifold (M, ω), the set of Hamiltonian diffeomorphisms
Hamc(M, ω) forms a group andHamc(M, ω) contains an important subsetAut(M, ω)which
consists of time one flows of autonomous(time-independent)Hamiltonian vector fields onM .
Onemight expect thatAut(M, ω) is a very small subset ofHamc(M, ω). In this paper,we esti-
mate the size of the subset Aut(M, ω) in C∞-topology and Hofer’s metric which was intro-
duced by Hofer. Polterovich and Shelukhin proved that the complement Hamc\Aut(M, ω)

is a dense subset of Hamc(M, ω) in C∞-topology and Hofer’s metric if (M, ω) is a closed
symplectically aspherical manifold where Conley conjecture is established (Polterovich and
Schelukhin in Sel Math 22(1):227–296, 2016). In this paper, we generalize above theorem
to general closed symplectic manifolds and general conv! ex symplectic manifolds. So, we
prove that the set of all non-autonomous Hamiltonian diffeomorphisms Hamc\Aut(M, ω)

is a dense subset of Hamc(M, ω) in C∞-topology and Hofer’s metric if (M, ω) is a closed
or convex symplectic manifold without relying on the solution of Conley conjecture.

1. Introduction

1.1. Background

For any closed manifold M , the set of diffeomorphisms Diff(M) forms a group
which is called diffeomorphism group. This is an infinite-dimensional Lie group
(non-Banach). It is well known that any one-parameter subgroup of Diff(M)

is generated by a vector field. More precisely, for any one-parameter subgroup
f : R → Diff(M), there is a vector field X ∈ �(T M) which satisfies

f (t) = exp(t X)

where exp : �(T M) → Diff(M) is a time 1 flow of a vector field. From the inverse
function theorem, one might expect that there is an open neighborhood of the zero
section U ⊂ �(T M) such that

exp : U −→ Diff(M)
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gives a diffeomorphism onto an open neighborhood of Id, but this is far from true
([3,9]Warning 1.6). This is an example that inverse function theorem does not hold
for non-Banach manifolds. This implies that the set of diffeomorphisms which are
generated by vector fields {exp(X)}X∈�(T M) is very small in Diff(M).

For a symplectic manifold (M, ω), one important subgroup of Diff(M) is the
Hamiltonian diffeomorphism group Hamc(M, ω). In this case, the set of Hamilto-
nian diffeomorphisms of the form exp(X) is autonomous Hamiltonian diffeomor-
phisms Aut(M, ω). So one might expect that the set of autonomous Hamiltonian
diffeomorphisms is very small in the Hamiltonian diffeomorphism group. Hofer
introduced the so-calledHofer’smetric onHamc(M, ω). Polterovich and Shelukhin
proved that the complement of Aut(M, ω) contains an open dense subset in Hofer’s
metric which is also dense in C∞-topology for closed symplectically aspherical
manifolds [10]. Their proof can not be adapted to general symplectic manifolds
because it was based on the solution of the Conley conjecture for closed symplecti-
cally asphericalmanifolds [5,6,11]. In this paper, we generalize the above theor! em
to general closed symplectic manifolds and general convex symplectic manifolds
without relying on the solution of the Conley conjecture.

1.2. Main results

Let (M, ω) be a symplectic manifold and let C∞
c (S1 × M) be the set of smooth

periodic Hamiltonian functions on M such that their supports are compact.

C∞
c (S1 × M) =

{
H : S1 × M −→ R | supp(H) ⊂ S1 × M is compact

}

In this paper, we define the Hamiltonian vector field of H as follows.

ω(XH , ·) = −dH

We denote the time t flow of the vector field XH by φt
H and time 1 flow by φH .

We call φH a Hamiltonian diffeomorphism generated by H and we denote the set
of all such Hamiltonian diffeomorphisms by Hamc(M, ω).

Hamc(M, ω) =
{
φH | H ∈ C∞

c (S1 × M)
}

If H ∈ C∞
c (H) (in other words, H does not depend on S1), H is called autonomous

Hamiltonian function and φH is called autonomous Hamiltonian diffeomorphism.

Aut(M, ω) = {φH | H ∈ C∞
c (M)

}

We want to know the size of Aut(M, ω) in Hamc(M, ω). In this paper, we prove
Aut(M, ω) is small with respect to Hofer’s metric. Hofer’s norm of a Hamiltonian
function is defined as follows.

||H || =
∫ 1

0
max Ht − min Htdt
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Then, Hofer’s norm of φ ∈ Hamc(M, ω) is defined by

||φ|| = inf
{
||H || | φH = φ, H ∈ C∞

c (S1 × M)
}

and Hofer’s metric on Hamc(M, ω) is defined by

ρ(φ,ψ) = ||φψ−1||.
It is known that (Hamc(M, ω), ρ) is a metric space. (M, ω) is called symplectically
aspherical if it satisfies the following conditions for any u : S2 → M .

• ω(u) = ∫S2 u∗ω = 0
• c1(u) = ∫S2 u∗c1 = 0 where c1 is the first Chern class of (M, ω)

Polterovich and Shelukhin proved the following theorem.

Theorem 1.1. (Polterovich–Shelukhin [10]) Let (M, ω) be a closed symplectically
aspherical manifold. Then Hamc(M, ω) contains a subset W which satisfies the
following conditions.

1. W ∩ Aut(M, ω) = ∅
2. W is C∞-dense
3. W is open and dense in the topology induced by Hofer’s metric

We generalize this theorem into Theorem 1.2. We define convex symplectic
manifolds.

Definition 1.1. Let (M, ω) be a symplectic manifold. (M, ω) is called convex if
there is a sequence of codimension 0 submanifolds {Mn}n∈N such that

• ∂Mn 	= ∅
• Mn−1 ⊂ Mn

• M =⋃n∈N Mn

• For any n, there is a vector field Xn defined near ∂Mn which is outward pointing
on ∂Mn and satisfies LXnω = ω (Liouville vector field).

holds.

Theorem 1.2. 1. Let (M, ω) be a closed symplectic manifold. Then, the set of
all non-autonomous Hamiltonian diffeomorphisms Hamc\Aut is C∞-dense in
Hamc(M, ω). Moreover, Hamc(M, ω) contains a subset W which satisfies the
following conditions.
(a) W ∩ Aut(M, ω) = ∅
(b) W is C0-dense (not C∞-dense)
(c) W is open and dense in the topology induced by Hofer’s metric

2. Let (M, ω) be a convex symplectic manifold. Then Hamc(M, ω) contains a
subset W which satisfies the following conditions.
(a) W ∩ Aut(M, ω) = ∅
(b) W is C∞-dense
(c) W is open and dense in the topology induced by Hofer’s metric
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The aim of this paper is to prove Theorem 1.2. In the second section, we explain
the definition of spectral spreadwhichwas introduced byPolterovich and Shelukhin
[10] and we prove a lemma (see Lemma 2.1 below) in the full generality in the third
section. Our proof of Lemma 2.1 simplifies that of Polterovich and Shelukhin.

Polterovich and Shelukhin proved Theorem 1.1 by using spectral spread and
the solution of Conley conjecture for symplectically aspherical manifolds. More
precisely, they used Conley conjecture as follows. Let H ∈ C∞(S1 × M) be any
non-degenerate Hamiltonian function. The solution of Conley conjecture for closed
symplectically aspherical manifolds implies that there are infinitely many integers
k ∈ Z≥2 for which there exists a contractible k-periodic orbit of the Hamiltonian
vector field XH

x(t) : R/kZ −→ M

which satisfies x(0) 	= x(1). For general closed symplectic manifolds, we can not
argue in the same way because this fact does not hold in general. So we need new
ideas. For general convex symplectic manifolds, the proof is a bit more complicated
than that in closed case because spectral spread is not well-defined globally. More
precisely, spectral spread is only defined for each Mn (M =⋃n∈N Mn) as follows.

w
(n)
k : C0

c (S
1 × Mn) −→ R

So we only have a sequence of spectral spreads {w(n)
k }n≥1. We give a proof of

Theorem 1.2 in the fourth section.

2. Floer homology and spectral spread

2.1. Closed case

We recall the definition of Floer homology and spectral spread and their prop-
erties. Let (M, ω) be a closed symplectic manifold. Let H ∈ C∞(S1 × M) be a
Hamiltonian function. H is called non-degenerate if

dφH : TxM → TxM

does not have 1 as an eigenvalue for all x ∈ Fix(φH ). We denote the space of
contractible loops by L(M).

L(M) =
{
x : S1 → M | x is contractible

}

We define Novikov covering of L(M) as follows.

L̃(M) =
{
(u, x) | x ∈ L(M), u : D2 → M, ∂u = x

}
/ ∼

where D2 is a twodimensional disk and equivalence relation∼ is defined as follows.

(u, x) ∼ (v, y) ⇐⇒
⎧⎨
⎩
x = y
ω(u�v) = 0
c1(u�v) = 0
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Here v is a disc with opposite orientation on the domain (unit disk) and u�v is the
glued sphere. We denote the equivalence class which is represented by (u, x) by
[u, x]. We define an action functional AH on L̃(M) as follows.

AH ([u, x]) = −
∫

D2
u∗ω +

∫ 1

0
H(t, x(t))dt

Let P(H) be the set of contractible periodic orbits of XH .

P(H) = {x ∈ L(M) | ẋ(t) = XHt (x(t))
}

Let P̃(H) be the Novikov covering of P(H).

P̃(H) = {[u, x] ∈ L̃(M) | x ∈ P(H)
}

We denote the set of S1-dependent compatible almost complex structures on M by
J (M). Let H be a non-degenerate Hamiltonian function and let J ∈ J (M) be an
almost complex structure. We define the Floer chain complex of (H, J ) as follows.

CF(H, J )

=
⎧
⎨
⎩
∑

z∈P̃(H),az∈Q
az · z
∣∣∣∣ ∀C ∈ R, �{z ∈ P̃(H) | az 	= 0, AH (z) > C} < ∞

⎫
⎬
⎭

We consider the following equation on the cylinder.

u : R × S1 −→ M (∗)
∂su(s, t) + J (t, u(s, t))

(
∂t u(s, t) − XHt (u(s, t))

) = 0

For z− = [v−, x−], z+ = [v+, x+] ∈ P̃(H), we consider the following space.

M̃(z−, z+, H, J ) =
⎧⎨
⎩u : R × S1 → M

∣∣∣∣
u satisfies (∗)

lims→±∞ u(s, t) = x±(t)
[v−�u, x+] = [v+, x+]

⎫⎬
⎭

The above M̃(z−, z+, H, J ) has a natural R-action. For any u ∈ M̃(z−, z+,

H, J ) and s0 ∈ R, s0 · u is defined as follows.

s0 · u(s, t) = u(s + s0, t)

We take the quotient of this R-action.

M(z−, z+, H, J ) = M̃(z−, z+, H, J )/R

By counting the 0 dimensional part, we can define the boundary operator on the
Floer chain complex [4,8].

∂ : CF(H, J ) → CF(H, J )

∂(z−) =
∑

z+∈P̃(H)

�M(z−, z+, H, J ) · z+
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∂ satisfies ∂ ◦ ∂ = 0. Floer homology HF(H, J ) is the homology of the chain
complex (CF(H, J ), ∂). The action functional AH give a filtration on CF(H, J )

as follows.

CF<a(H, J ) =
{∑

az · z ∈ CF(H, J ) | AH (z) < a
}

CF<a(H, J ) is a subcomplex of CF(H, J ). In other words,

∂(CF<a(H, J )) ⊂ CF<a(H, J )

is satisfied (see also [12] Lemma 2.1).
For a, b ∈ R, we define the quotient

CF [a,b)(H, J ) = CF<b(H, J )/CF<a(H, J ).

We define HF<a(H, J ) and HF [a,b)(H, J ) as the homology of CF<a(H, J ) and
CF [a,b)(H, J ). We use this filtered Floer homology to define spectral spread.

For k ≥ 2, k ∈ Z, we have the 1
k -rotation of L(M).

Rk : L(M) → L(M)

Rk(x)(t) = x
(
t + 1

k

)

This action also induces an action on L̃(M) as follows.

Rk : L̃(M) → L̃(M)

[u, x] → [Rk(u), Rk(x)]
where Rk(u) is 1

k -rotation of the disk D2 composed with u. Let H ∈ C∞(S1 × M)

be a Hamiltonian function such that

H (k)(t, x) = kH(kt, x)

is non-degenerate.

For J ∈ J (M), we define J+ 1
k ∈ J (M) by

J+ 1
k (t, x) = J

(
t + 1

k
, x
)
.

Then, Rk induces an isomorphism between two chain complexes as follows.

Rk : CF(H (k), J ) → CF

(
H (k), J+ 1

k

)

Rk

( ∑

z∈P̃(H (k))

az · z
)

=
∑

z∈P̃(H (k))

az · Rk(z)

Rk also induces a homomorphism

Rk : HF [a,b)(H (k), J ) → HF [a+d,b+d)
(
H (k), J+ 1

k

)

for any a < b and d > 0. For any a < b and d > 0, we fix a homotopy (Ks, J ′
s)

(s ∈ R) between (H (k), J ) and (H (k), J+ 1
k ) as follows.
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• (Ks, J ′
s) = (H (k), J ) holds for s ≤ −T (for some T > 0).

• (Ks, J ′
s) = (H (k), J+ 1

k ) holds for s ≥ T .
• ∫

R
max(t,x)∈S1×M

∂
∂s Ks(t, x)ds < d

For any z− = [v−, x−], z+ = [v+, x+] ∈ P̃(H (k)), we define a moduli space

N (z−, z+, Ks, J
′
s)

as a space of maps u : R × S1 → M which satisfies the following equations.

∂su(s, t) + J ′
s,t (∂t u(s, t) − XKs ,t (u(s, t))) = 0

lim
s→±∞ u(s, t) = x±(t), [v−�u, x+] = [v+, x+]

Definition 2.1. We define a continuation homomorphism Ia,b,d as follows. First,
we define a chain map Ia,b,d,(Ks ,J ′

s )
.

Ia,b,d,(Ks ,J ′
s )

: CF [a,b)(H (k), J ) → CF [a+d,b+d)
(
H (k), J+ 1

k

)

Ia,b,d,(Ks ,J ′
s )
(z−) =

∑

z+∈P̃(H (k))

�N (z−, z+, Ks, J
′
s) · z+

The chain homotopy class of Ia,b,d,(Ks ,J ′
s )
does not depend on the choice of the

homotopy (Ks, J ′
s). So it induces a unique map on their homologies. We denote

this map by Ia,b,d .

Ia,b,d : HF [a,b)(H (k), J ) → HF [a+d,b+d)
(
H (k), J+ 1

k

)

We define Sk as follows.
Sk = Rk − Ia,b,d

Definition 2.2. (Spectral spread [10])Wedefine the spectral spread of H as follows.
First, assume that H (k) is non-degenerate.

wk(H) = sup

{
d ≥ 0

∣∣∣∣
Sk : HF [a,b)(H (k), J ) → HF [a+d,b+d)

(
H (k), J+ 1

k

)

is not 0 for some a < b

}

Lemma 2.1(3) below implies that wk(H) is Lipschitz continuous with respect to
Hofer’s norm of Hamiltonian functions. So we extend wk(H) for any continuous
H ∈ C0(S1 × M) as follows. Let {Hi }i≥1 be a sequence of smooth Hamiltonian
functions such that H (k)

i are non-degenerate and ||H − Hi || → 0 holds.

wk(H) = lim
i→∞ wk(Hi )

Remark 2.1. Polterovich and Shelukhin defined wk,α(H) for any free homotopy
class α on symplectically atoroidal manifold (M, ω). They used Floer homology
of free homotopy classα to definewk,α .We use only Floer homology of contractible
periodic orbits for the sake of simplicity. Our arguments can be used also for non-
contractible case wk,α , but we omit it.
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We need the following properties of wk .

Lemma 2.1. wk(H) satisfies the following properties.

1. 0 ≤ wk(H) ≤ k||H ||
2. wk(H) = wk(K ) if φH = φK . In other words, wk induces a map

wk : Hamc(M, ω) → R≥0

3. |wk(H) − wk(K )| ≤ k||H − K ||
4. wk(φ) = 0 if φ ∈ Aut(M, ω).

Remark 2.2. • (1) follows from (3) and (4).
• Polterovich and Shelukhin proved Lemma 2.1 for symplectically aspherical
manifolds.

We do not need to prove (3) because the proof in [10] can be adapted to the
general case. It was a standard argument in Floer theory. So we only prove (2) and
(4) in the next section.

2.2. Convex case

A convex symplectic manifold is a union of compact codimension 0 submanifolds
such that their boundaries are non-empty and these boundaries are of contact type.
In this subsection, wewill define the spectral spread for each of these submanifolds.
So, we treat a compact symplectic manifold (M, ω) such that ∂M 	= ∅ holds in this
subsection.

We call ∂M of contact type if there exists a vector field near ∂M such that

• X is outward pointing on ∂M
• LXω = ω

hold. In this subsection, we assume that ∂M has contact type. Then α = ιXω|∂M is
a contact form on ∂M . A neighborhood of ∂M is identified with (1 − τ, 1] × ∂M
whose symplectic form on (r, y) ∈ (1 − τ, 1] × ∂M is d(rα). Symplectic comple-
tion (M̂, ω̂) is defined as follows [14].

• M̂ = M
⋃

∂M [1,∞) × ∂M
•

ω̂ =
{

ω on M
d(rα) on (r, y) ∈ [1,∞) × ∂M

An almost complex structure J on M̂ is called of contact type if it satisfies the
following conditions.

• J preserves Ker(rα) ⊂ T ({r} × ∂M) on {r} × ∂M
• Let X be a Liouville vector field on [1,∞) × ∂M (X (r, y) = r ∂

∂r ) and let R be
a Reeb vector field on {r} × ∂M with respect to the contact form rα. J satisfies
J (X) = R and J (R) = −X .
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Let T > 0 be the smallest period of periodic Reeb orbits of (∂M, α) and we
fix 0 < ε < 1

k T . we define the following family of pairs of a Hamiltonian function
and a S1-dependent contact type almost complex structure.

H =
⎧
⎨
⎩(H, J )

∣∣∣∣
J is a S1-dependent compatible almost complex structure of contact type

H ∈ C∞(S1 × M̂)

H(t, (r, y)) = −ε(r − 1),∀(r, y) ∈ [1,∞) × ∂M

⎫
⎬
⎭

For such (H, J ) we have the following Claim.

Claim 2.1. [1,14] Let (H, J ) ∈ H be any element of H such that H is non-
degenerate and let u : R × S1 → M̂ be any solution of

∂su(s, t) + J (∂t u(s, t) − XH (k) (u(s, t))) = 0.

Then u(s, t) ∈ M holds.

This claim implies that we can define HF [a,b)(H (k), J ) for (H (k), J ) ∈ H if H (k)

is non-degenerate. Let (H, J ) be an element ofH such that H (k) is non-degenerate.
Then we can define the spectral spread ŵk(H) as in the closed case as follows.

ŵk(H) = sup

{
d ≥ 0

∣∣∣∣
Sk : HF [a,b)(H (k), J ) → HF [a+d,b+d)

(
H (k), J+ 1

k

)

is not 0 for some a < b

}

This definition does not depend on the choice of contact type almost complex
structure J . Let Hε be a set of continuous Hamiltonian functions as follows.

Hε =
{
H ∈ C0(S1 × M̂)

∣∣∣∣
H(t, (r, y)) = −ε(r − 1)
on (r, y) ∈ [1,∞) × ∂M

}

ŵk also satisfies Lipschitz continuity as follows.

|ŵk(H) − ŵk(K )| ≤ k||H − K ||
So we can extend ŵk onHε .

In this paper, we define the space of compact supported Hamiltonian functions
C0
c (S

1 × M) as follows.

C0
c (S

1 × M) = {H ∈ C0(S1 × M) | supp(H) ⊂ S1 × Int(M)}
For such H ∈ C0

c (S
1 × M), we define the canonical extension Hε ∈ Hε as follows.

Hε(t, x) =
{
H(t, x) x ∈ M
−ε(r − 1) x = (r, y) ∈ [1,∞) × ∂M

We extend spectral spread on (M, ω) as follows.

Definition 2.3. For any H ∈ C0
c (S

1 × M), we define wk(H) by

wk(H) = ŵk(Hε).

Remark 2.3. The above wk also satisfies Lemma 2.1. So wk induces a map from

Hamc(M, ω) =
{
φH | H ∈ C∞

c (S1 × M)
}

to R≥0. In other words, we have the following map.

wk : Hamc(M, ω) −→ R≥0
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3. Proof of Lemma 2.1

3.1. Proof of Lemma 2.1 (2)

Wefirst prove (2). See also Proposition 5.3 in [13] and [10]where similar arguments
are used. Proof of Lemma 2.1 in convex case (∂M 	= ∅) is the same as in the closed
case. So we assume (M, ω) is a closed symplectic manifold in this section. We
assume H, K ∈ C∞(S1 × M) are Hamiltonian functions such that

• φH = φK

• H (k), K (k) are non-degenerate

hold. Let L ∈ C∞(S1 × M) be a Hamiltonian function such that

• φL = id
• H (k)(t, x) = L�K (k)(t, x) = L(t, x) + K (k)(t, (φt

L)−1x)

hold. Then, the flow φt
L satisfies φt

L = φt
H (k) (φ

t
K (k) )

−1.

We first compare P̃(H (k)) and P̃(K (k)). The loop φt
L in Hamc(M, ω) acts on

L(M) as follows.

f : L(M) → L(M)

f (x)(t) = φt
L(x(t))

We fix two points [u, x], [v, y] ∈ L̃(M) such that y = f (x) holds. Then, there is a
unique covering transformation

f̃ : L̃(M) → L̃(M)

such that f̃ ([u, x]) = [v, y] holds and the following diagram is commutative.

L̃(M)
f̃−−−−→ L̃(M)

π

⏐⏐� π

⏐⏐�
L(M)

f−−−−→ L(M)

We can also see that the difference

AK (k) (z) − AH (k) ( f̃ (z))

does not depend on z ∈ L̃(M). This follows from the following calculations. It
suffices to prove that the differential

T L̃(M) −→ R

X �→ D(AK (k) (z) − AH (k) ( f̃ (z)))X

vanishes. We fix z = [u, x] ∈ L̃(M). Then, the tangent space TzL̃(M) can be iden-
tified with the space of vector fields along x ∈ L(M). In other words,

TzL̃(M) ∼= x∗T M
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holds. We fix a vector field X (t) ∈ x∗T M . Then the following equalities hold.

D(AK (k) (z))X = −
∫

S1
ω(X (t), ẋ(t))dt +

∫

S1
dK (k)

t · X (t)dt

D(AH (k) ( f̃ (z)))X

= −
∫

S1
ω

(
dφt

L · X (t),
∂

∂t
(φt

L(x(t)))

)
dt +
∫

S1
dH (k)

t
(
dφt

L · X (t)
)
dt

= −
∫

S1
ω
(
dφt

L · X (t), XLt + dφt
L · ẋ(t)) dt

+
∫

S1

(
dLt + dK (k)

t ◦ d(φt
L)−1
)

◦ dφt
L · X (t)dt

= −
∫

S1

{
ω(X (t), ẋ(t)) + dLt ◦ dφt

L(X (t))
}
dt

+
∫

S1

{
dLt ◦ dφt

L(X (t)) + dK (k)
t · X (t)

}
dt

= D
(
AK (k) (z)

)
X

The above equalities imply that D(AK (k) (z) − AH (k) ( f̃ (z))) vanishes. So, AK (k) (z)
−AH (k) ( f̃ (z)) does not depend on z and we denote this constant by C .

Next, we compare moduli spaces

M̃(z−, z+, K (k), J0)

and
M̃( f̃ (z−), f̃ (z+), H (k), J1)

for any z± ∈ P̃(K (k)) and some J0, J1 ∈ J (M). We fix J1 ∈ J (M). For
u : R × S1 → M , we define v as follows.

v : R × S1 → M

φt
L(v(s, t)) = u(s, t)

Then straightforward computation shows the following equation.

∂su(s, t) + J1(u(s, t))(∂t u(s, t) − XH (k) (u(s, t)))

= (φt
L)∗ (∂sv(s, t)) + J1(u(s, t))

(
(φt

L)∗
(
∂tv(s, t)) − (φt

L)∗XK (k) (v(s, t)
))

This implies that the equation

∂su + J1(∂t u − XH(k)(u)) = 0

and the equation
∂sv + J0(∂tv − XK (k) (v)) = 0

are equivalent for J0 = (φt
L)−1∗ J1(φt

L)∗. We have the following 1 : 1 correspon-
dence.

M̃(z−, z+, K (k), J0) −→ M̃( f̃ (z−), f̃ (z+), H (k), J1)
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v(s, t) −→ u(s, t) = φt
L(v(s, t))

We can use f̃ to identify CF [a,b)(K (k), J0) and CF [a+C,b+C)(H (k), J1).

Next, we fix a homotopy (Fs, J ′
s) between (K (k), J0) and (K (k), J

+ 1
k

0 ) and a

homotopy (Gs, J ′′
s ) between (H (k), J0) and (H (k), J

+ 1
k

0 )which satisfy the follow-
ing conditions.

Gs(t, x) = L�Fs(t, s)

J ′′
s = (φt

L)−1∗ J ′
s(φ

t
L)∗

By using the similar calculation, we can see that there is the following 1 : 1
correspondence.

N (z−, z+, Fs, J
′
s) −→ N ( f̃ (z−), f̃ (z+),Gs, J

′′
s )

v(s, t) −→ u(s, t) = φt
L(v(s, t))

So we have the following commutative diagram.

CF [a,b)(K (k), J0)
Sk−−−−→ CF [a+d,b+d)(K (k), J

+ 1
k

0 )

f̃

⏐⏐� f̃

⏐⏐�

CF [a+C,b+C)(H (k), J1)
Sk−−−−→ CF [(a+C)+d,(b+C)+d)(H (k), J

+ 1
k

1 )

This implies that wk(H) = wk(K ) holds. So we proved (2). ��

3.2. Proof of Lemma 2.1 (4)

In this subsection, we prove (4). We fix a function

ρ : R −→ R

such that

ρ(s) =
{
0 s ≤ −1
1
k s ≥ 1

hold. We use ρ to twist Floer equation as follows. For a cylinder u : R × S1 → M ,
we define 1

k -twist of u by

v(s, t) = u(s, t + ρ(s)).

We have the following equation.

∂su(s, t) + Jt (∂t u(s, t) − XH (k) (u(s, t)))

= ∂sv(s, t − ρ(s)) − ρ′(s)∂tv(s, t − ρ(s))

+Jt (v(s, t − ρ(s)))(∂tv(s, t − ρ(s)) − XH (k) (v(s, t − ρ(s))))
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This equation implies that the Floer equation

∂su + Jt (∂t u − XH (k) (u)) = 0

is equivalent to

∂sv(s, t) − ρ′(s)∂tv(s, t) + Jt+ρ(s)(v)

(
∂tv(s, t) − X

H (k)
t+ρ(s)

(v(s, t))

)
= 0. (A)

We define the following moduli space for z−, z+ ∈ P̃(H (k)).

N (z−, z+, ρ, H (k), J ) =
{
v : R × S1 → M

∣∣∣∣
v satisfies (A)

lims→±∞ v(s, t) = z±, z−�u = z+

}

Then, the above equivalence implies that there is an isomorphism between the
following two moduli spaces.

M̃(z−, R−1
k (z+), H (k), J ) ∼= N (z−, z+, ρ, H (k), J )

This M̃(· · · ) is the space of connecting orbits which we defined in the second
section. In particular, the 0 dimensional part of N (z−, z+, ρ, H (k), J ) is compact
and the following equality holds.

�N (z−, z+, ρ, H (k), J ) =
{
1 z+ = Rk(z−)

0 z+ 	= Rk(z−)

This equality implies that the following lemma holds.

Lemma 3.1. We define a chain map R
′
k as follows.

R
′
k : CF [a,b)(H (k), J ) −→ CF [a,b)

(
H (k), J+ 1

k

)

z− �−→
∑

�N (z−, z+, ρ, H (k), J ) · z+

Then, R
′
k = Rk holds in chain level.

We deform the above equation (A) as follows.

∂sv(s, t) − τ · ρ′(s)∂tv(s, t) + Jt+ρ(s)(v)

(
∂tv(s, t) − X

H (k)
t+ρ(s)

)
= 0 (B)

For z− = [u−, x−], z+ = [u+, x+] ∈ P̃(H (k)), we define the following moduli
space.

N (z−, z+, [0, 1], ρ, H (k), J )

=
⎧⎨
⎩(τ, v) ∈ [0, 1] × C∞(R × S1 → M)

∣∣∣∣
v satisfies (B)

lims→±∞ v(s, t) = x±(t)
[u−�v, x−] = [u+, x+]

⎫⎬
⎭



496 Y. Sugimoto

The compactness of this moduli space follows from the following arguments. Let
(τ, v) be an element of this moduli space. We twist v as follows.

u(s, t) = v(s, t − τρ(s))

(τ, v) ∈ N (z−, z+, [0, 1], ρ, H (k), J ) iff u satisfies the following equation.

∂su(s, t) + Jt+(1−τ)ρ(s)(u)

(
∂t u(s, t) − X

H (k)
t+(1−τ )ρ(s)

(u)

)
= 0 (C)

Let R− 1
k τ be an obvious − 1

k τ rotation as follows.

R− 1
k τ : P̃(H (k)) −→ P̃

(
H (k)
t− 1

k τ

)

(Note that H (k)
t+ 1

k (1−τ)
= H (k)

t− 1
k τ

holds.) We define the following moduli space.

M(z−, z+, [0, 1], ρ, H (k), J )

=
⎧
⎨
⎩(τ, u) ∈ [0, 1] × C∞(R × S1 → M)

∣∣∣∣
u satisfies (C)

lims→±∞ u(s, t) = x±(t)

[u−�u, x−] = R− 1
k τ (z+)

⎫
⎬
⎭

Then, there is an isomorphism as follows.

N (z−, z+, [0, 1], ρ, H (k), J ) ∼= M(z−, z+, [0, 1], ρ, H (k), J )

The compactness of the 0 dimensional part of M(z−, z+, [0, 1], ρ, H (k), J ) fol-
lows from the standard arguments in Floer theory. SoN (z−, z+, [0, 1], ρ, H (k), J )

is also compact.
Then, by counting the 0 dimensional part of this moduli space, we construct T

as follows.

T : CF(H (k), J ) −→ CF
(
H (k), J+ 1

k

)

T (z−) =
∑

z+∈P̃(H (k))

�N (z−, z+, [0, 1], ρ, H (k), J ) · z+

Let (Gs,t , J ′
s) be a homotopy between (H (k), J ) and (H (k), J+ 1

k ) as follows.

Gs,t (x) = H (k)
t+ρ(s)

J ′
s(t, x) = Jt+ρ(s)(x)

Then Claim 3.1 below implies that for any d > kmax |∂t H |, T induces a map

Ta,b,d : CF [a,b)(H (k), J ) −→ CF [a+d,b+d)
(
H (k), J+ 1

k

)

and the homotopy (Gs,t , J ′
s) determines a chain map

Ia,b,d,(Gs,t ,J ′
s )

: CF [a,b)(H (k), J ) −→ CF [a+d,b+d)
(
H (k), J+ 1

k

)
.
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In other words, the homotopy (Gs,t , J ′
s) can be used to define the map Ia,b,d in

Definition 2.1 and [Ia,b,d,(Gs,t ,J ′
s )
] = Ia,b,d holds.

LetN l(· · · ) andMl(· · · ) be connected components of moduli spacesN (· · · )
and M(· · · ) whose (virtual) dimensions are equal to l. Then, the boundary of
N 1(z−, z+, [0, 1], ρ, H (k), J ) can be written as follows.

∂N 1(z−, z+, [0, 1], ρ, H (k), J ) = N 0(z−, z+, ρ, H (k), J )⊔
N 0(z−, z+,Gs,t , J

′
s)⊔ ⊔

w∈P̃(H (k))

M0(z−, w, H (k), J ) × N 0(w, z+, [0, 1], ρ, H (k), J )

⊔ ⊔

w∈P̃(H (k))

N 0(z−, w, [0, 1], ρ, H (k), J ) × M0
(
w, z+, H (k), J+ 1

k

)

(Here N 0(z−, z+,Gs,t , J ′
s) is the moduli space which we used to define

Ia,b,d,(Gs,t ,J ′
s )
.) This implies that

Ia,b,d,(Gs,t ,J ′
s )

− R′
k = ∂ ◦ Ta,b,d + Ta,b,d ◦ ∂

holds and Ta,b,d is a chain homotopy between

Rk : CF [a,b)(H (k), J ) −→ CF [a+d,b+d)
(
H (k), J+ 1

k

)

and Ia,b,d,(Gs,t ,J ′
s )
.

Claim 3.1. Assume that N (z−, z+, [0, 1], ρ, H (k), J ) 	= ∅ holds, then the follow-
ing inequality holds.

AH (k) (z+) ≤ AH (k) (z−) + k max
t∈[0,1] |∂t H |

We fix (τ, v) ∈ N (z−, z+, [0, 1], ρ, H (k), J ). We define u by

u(s, t) = v(s, t − τρ(s)).

So (τ, u) is an element of M(z−, z+, [0, 1], ρ, H (k), J )

We define w ∈ L̃(M) by z−�u. The equation for (τ, u) implies that

A
H (k)

t− 1
k τ

(w) ≤ AH (k) (z−) +
∫

R

max
t∈R

∣∣∣∣
∂

∂s
H (k)
t+(1−τ)ρ(s)

∣∣∣∣ ds

≤ AH (k) (z−) + (1 − τ)

∫

R

ρ′(s)max
t∈R

∣∣∣∣
∂

∂t
H (k)
∣∣∣∣ ds

≤ AH (k) (z−) + k(1 − τ)max |∂t H |
holds. On the other hand, we have

A
H (k)

t− 1
k τ

(w) = AH (k) (z+).
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So, we have
AH (k) (z+) ≤ AH (k) (z−) + k max

t∈[0,1] |∂t H |.
��

Wehave proved that Sk = Rk − Ia,b,d is zero and this implies that the following
inequality holds.

wk(H) ≤ kmax |∂t H |
So, wk(φ) = 0 holds for any φ ∈ Aut(M, ω). ��

4. Proof of Theorem 1.2

4.1. Closed case

In this subsection, we assume that (M, ω) is a closed symplectic manifold.
W =⋃k≥2 w−1

k ((0,∞)) is a subset of Ham\Aut(M, ω) and this subset is open
in Hofer’s metric. So it suffices to prove thatW is a dense subset of Hamc(M, ω) in
Hofer’s metric and C0-topology. We also prove that Ham\Aut(M, ω) is C∞-dense
in Ham(M, ω) independently. For these purposes, we use the following claim.

Claim 4.1. If K (k) is non-degenerate and there is a contractible periodic orbit
x ∈ P(K (k)) such that x(0) 	= x( 1k ) holds, then wk(K ) > 0 and φK /∈ Aut(M, ω)

hold.

Proof of this claim is straightforward. We fix z = [u, x] ∈ P̃(K (k)). Then
Rk(z) 	= z and AK (k) (z) = AK (k) (Rk(z)) = a hold for some a ∈ R.We fix ε > 0
so that any non-trivial cylinder

v : R × S1 → M

∂sv + J (∂tv − XK (k) (v)) = 0

satisfies

E(v) =
∫

R×S1
ω(∂sv, ∂tv − XK (k) (v))dsdt > 2ε.

Then,M(z, z+, K (k), J ) 	= ∅ implies that AK (k) (z+) < a − 2ε holds and similarly,

M(z−, Rk(z), K (k), J+ 1
k ) 	= ∅ implies AK (k) (z−) > a + 2ε holds.

So z ∈ CF [a−2ε,a+ε)(K (k), J ) becomes a cycle. Next, we prove that Sk(z) ∈
HF [a−ε,a+2ε)(K (k), J+ 1

k ) is not zero. First, we fix a homotopy of S1-dependent
compatible almost complex structure J ′

s which satisfies the following conditions.

J ′
s(t, x) =

{
J (t, x) s < −R

J+ 1
k (t, x) = J

(
t + 1

k , x
)

s > R

Let {(Gs,t , J ′
s)}m∈N be a homotopy between (K (k), J ) and (K (k), J+ 1

k ) satisfying
Gs,t (x) = K (k)(x) for all s ∈ R, t ∈ S1 and x ∈ M . Then, AK (k) (z) = AK (k) (Rk(z))
and z 	= Rk(z) implies that

N (z, Rk(z),Gs,t , J
′
s) = ∅
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holds. This implies that a representative of homology class Sk(z) ∈
HF [a−ε,a+2ε)(K (k), J+ 1

k ) can be written in the following form.

Rk(z) −
∑

w∈P̃(K (k))\Rk(z), a−ε≤AK (k) (w)<a+2ε

�N (z, w,Gs,t , J
′
s) · w

If z− ∈ P̃(K (k)) satisfies AK (k) (z−) < a + 2ε,M(z−, Rk(z), K (k), J+ 1
k ) = ∅. So

the above chain does not become a boundary and Sk(z) 	= 0. This implies that
wk(K ) ≥ ε holds. ��

We fix a Hamiltonian diffeomorphism φH ∈⋂k≥2 w−1
k (0). We construct a

Hamiltonian function K so that ||H − K || is arbitrary small.
We can perturb H inC∞-topology so thatφH and (φH )2 are non-degenerate. So

without loss of generality, we can assume that φH and (φH )2 are non-degenerate.
We fix γ (t) ∈ P(H) and we denote γ (0) by p. w2(φH ) = 0 and above claim
imply that we can choose a small open neighborhoodUp of p so that the following
condition holds.

q ∈ Up\{p} �⇒ φH (q) 	= q, (φH )2(q) 	= q

We fix q ∈ Up\{p} and a path l : [0, 1] → Up which satisfies the following con-
ditions.

• l(0) = (φH )2(q)

• l(1) = q
• φH (q) /∈ Im(l)

We also choose a small open neighborhood Ul of Im(l) so that φH (q) /∈ Ul holds
and we choose a Hamiltonian function G so that the following conditions hold.

• supp(G) ⊂ S1 ×Ul

• (φG ◦ φH )2(q) = φG ◦ (φH )2(q) = q
• d((φG ◦ φH )2)q : TqM → TqM does not have 1 as an eigenvalue.

Then, K ′ def.= G�H is a Hamiltonian function which satisfies the following condi-
tions.

• φK ′(q) = φH (q) 	= q
• (φK ′)2(q) = φG ◦ (φH )2(q) = q
• q is a non-degenerate fixed point of (φK ′)2 and this orbit is contractible.

In order to applyClaim4.1, K ′(2) have to be non-degenerate. Let K ∈ C∞(S1 × M)

be a C∞-small perturbation of K ′ so that

supp(K − K ′) ⊂ S1 × M\{∪{t} × φt
K ′(q)
⋃

∪{t} × φ1+t
K ′ (q)}

holds and φK and (φK )2 are non-degenerate. Then φK (q) 	= q and (φK )2(q) = q
hold andφ2t

K (q) (t ∈ S1) is contractible. ThenClaim 4.1 impliesw2(φK ) > 0 holds.
By making q → p, we can make φK arbitrarily close to φH in C0-topology and
Hofer’s metric. So, we proved that W is dense in Hofer’s metric and C0-topology
and open in Hofer’s metric.
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In the rest of this subsection, we prove that Ham\Aut(M, ω) is C∞-dense in
Ham(M, ω).We fix φ ∈ Aut(M, ω).Without loss of generality, we assume that φ is
strongly non-degenerate (In other words, φk is non-degenerate for every k ∈ Z≥1.).
Non-degeneracy of φ implies that there is a Morse function f ∈ C∞(M,R) such
that φ = φ f holds. Let p ∈ M be a critical point of f so that

f (p) = max
x∈M f (x) = C

holds. This implies that the Morse index of p is equal to dimM = 2n. Claim 4.1
and φ ∈ Aut(M, ω) imply that

Fix(φk) = Fix(φ)

holds for any k ∈ Z≥1. Let U be and open neighborhood of p and let ψ be a local
chart (symplectic embedding) as follows.

ψ : (U, ω|U ) −→ (R2n, ω0)

We assume that ψ(p) = (0, . . . , 0) and Fix(φ) ∩U = {p} hold. Let (x1, y1, . . . ,
xn, yn) be local coordinates of R2n . Let X be a vector field on U as follows.

X = ψ∗
(
1

2

∑
i

(
xi

∂

∂xi
+ yi

∂

∂yi

))

This X satisfies LXω = ω. We choose a sufficiently small a > 0. Then,

V (a) = {x ∈ U | f (x) ≥ C − a}
is diffeomorphic to 2n-disk and X is outward pointing on ∂V (a) (In other words,
∂V (a) is of contact type with respect to the Liouville vector field X .). We prove
the following claim.

Claim 4.2. There is a T -periodic solution of the following equation for some T > 0.
{

γ : R −→ V (a)\{p}
dγ
dt (t) = X f (γ (t))

So,
{x ∈ V (a)\{p} | φT

f (x) = x for some T > 0} 	= ∅
holds.

Remark 4.1. The assumption Fix(φk) = Fix(φ) and Fix(φ) ∩U = {p} implies that
T /∈ Q holds.

The proof of this claim relies on the computation of “local Floer homology” near
p ∈ M . First, we assume that

{x ∈ V (a)\{p} | φT
f (x) = x for some T > 0} = ∅

holds.We fix an almost complex structure J on V (a)which is of contact type on the
boundary ∂V (a). Then, Claim 2.1 implies that HF∗( f |(l)V (a), J ) is well-defined for
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all l ∈ Z≥1 (Here, ∗ is the grading of Floer homology which comes from Conley–
Zehnder index of periodic orbits). We can compute this homology by using the
assumption Fix(φl

f ) ∩U = {p}.

HF∗( f |(l)V (a), J ) ∼=
{
Q ∗ = Conley–Zehnder index of p ∈ Fix(φl

f )

0 others

Let ρ : R → R be a strictly increasing function which satisfies the following
conditions.

• ρ(s) = s holds near s = C − a
• ρ′′(s) ≤ 0
• ρ′(C) < 1

Then, theHamiltonian function g = ρ ◦ f |V (a) onV (a) satisfies Fix(φl
g) = {p}

and

HF∗(g(l), J ) ∼=
{
Q ∗ = Conley–Zehnder index of p ∈ Fix(φl

g)

0 others

holds. The assumption ρ′(s) = 1 near s = C − a implies we can construct a homo-
topy (Gs,t , J ) between ( f |(l)V (a), J ) and (g(l), J ) which satisfies the following con-
ditions.

• Gs,t (x) = f |(l)V (a)(x) holds on (s, t, x) ∈ (−∞,−R] × S1 × V (a)

• Gs,t (x) = g(l)(x) holds on (s, t, x) ∈ [R,∞) × S1 × V (a)

• Gs,t (x) = f |(l)V (a)(x) = g(l)(x) hold on (s, t, x) ∈ R × S1 × O(∂V (a)) (Here,
O(∂V (a)) is an open neighborhood of ∂V (a).)

Then, by using Claim 2.1, we can see that a chain map

CF∗( f |(l)V (a), J ) −→ CF∗(g(l), J )

z− �→
∑
z+

�N (z−, z+,Gs,t , J ) · z+

is well defined and this induces an isomorphism between their homologies.

HF∗( f |(l)V (a), J )
∼=−→ HF∗(g(l), J )

This implies that the Conleys–Zehnder index of p as a periodic orbit of φl
f is equal

to the Conley–Zehnder index of p as a periodic orbit of φl
g . This is a contradiction

because these two indices become different as l ∈ Z≥1 becomes large. Sowe proved
the claim.

We choose q ∈ V (a)\{p} and T ∈ R>0 so that φT
f (q) = q holds. We also

assume that T is the smallest period (In other words, φ f (q)t 	= q holds for any
0 < t < T ). Let κ > 0 be a constant such that

κT ∈ Q\
{
1

m
| m ∈ Z≥1

}

hold. Let ρ : R → R be a strictly increasing function such that
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• ρ(s) = s on s ≤ C − a
• ρ′( f (q)) = 1

κ

hold.Wedefine aHamiltonian function f ρ by f ρ = ρ ◦ f .We also choose k ∈ Z≥1
so that

k(κT ) ∈ Z

holds. Then, 1 /∈ {m(κT )}m∈Z>0 implies that

{q} ∈ Fix(φk
f ρ )\Fix(φ f ρ )

holds. We perturb f ρ as follows. Let F ∈ C∞(S1 × M,R) be a Hamiltonian func-
tion which satisfies the following conditions.

• φF (φm
f ρ (q)) = φm

f ρ (q) holds for any m ∈ Z

• (F� fρ)(k) is non-degenerate

Then Claim 4.1 implies that wk(φF� f ρ ) > 0 and φF� f ρ ∈ Ham\Aut(M, ω) hold.
By making κ → 1, we can make ρ(s) → s (in C∞-topology) and F� f ρ → f (in
C∞-topology). So, we proved that Ham\Aut(M, ω) is C∞-dense in Ham(M, ω).

��

4.2. Convex case

In this subsection, we assume that (M, ω) is convex. We fix a sequence of codi-
mension 0 submanifolds {Mm}m∈N such that

• M =⋃m∈N Mm

• (Mm, ωm = ω|Mm ) is a symplectic manifold with a contact type boundary ∂Mm

holds. Then for any fixed k ∈ N≥2, we have a sequence of spectral spread w
(m)
k as

follows.

w
(m)
k :
{
H ∈ C0

c (S
1 × M) | supp(H) ⊂ S1 × Int(Mm)

}
−→ R

Let δ > 0 be a small positive real number so that kδ is smaller than the smallest
period of periodic Reeb orbits on ∂Mm . Then, the definition of w

(m)
k (H) is as

follows.
w

(m)
k (H) = ŵk((H |Mm )δ)

Above (H |Mm )δ ∈ C0(S1 × M̂m) is the canonical extension.
We also fix φ ∈ Hamc(M, ω). We will construct a subset Uφ ⊂ Hamc(M, ω)

so that the following conditions hold.

• Uφ ⊂ Hamc\Aut
• Uφ is open with respect to Hofer’s metric.
• There is a sequence φi ∈ Uφ(i = 1, 2, . . .) such that φi → φ in C∞-topology

and Hofer’s metric.
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Then W =⋃φ∈Hamc Uφ is a C∞-dense and an open dense subset of Hamc with
respect to Hofer’s metric.

Let H ∈ C∞
c (S1 × M) be aHamiltonian functionwhich generatesφ (φ = φH ).

We choose a symplectic embedding

ι : (B(3r), ω0) ↪→ (M, ω)

so that S1 × Im(ι) ∩ supp(H) = ∅ holds.
We fix a function ρ : [0, (3r)2] → [0,∞) and ε > 0 as follows.

ρ(t) < ε

−π < ρ′(0) < 0

supp(ρ) ⊂ [0, (3r)2)
ρ′(t) ≤ 0

ρ′′(t) < 0 on t < r2

ρ′|t∈[r2,(2r)2] ≡ −4

3
π
(

�⇒ min
t∈[0,r2]

ρ′(t) = −4

3
π
)

Remark 4.2. Let F(z) = ρ(|z|2) be a Hamiltonian function on B(3r) ⊂ C
n . Then,

F generates the following Hamiltonian flow.

φt
F (z) = exp(2ρ′(|z|2)ti) · z

We want to construct a sequence of Hamiltonian functions {Kk}k∈N≥2 so that
this sequence satisfies the following conditions.

• supp(H − Kk) ⊂ S1 × ι(B(3r))
• ||H − Kk || < 1

k ε

• There is a contractible periodic orbit x(t) ∈ P(K (k)
k )which satisfies x(0) 	= x( 1k )

and x(t) ∈ ι(B(r)).
• K (k)

k is non-degenerate on ι(B(r)).

First,wedefine a sequenceofHamiltonian functions {K ′
k}k∈N≥2 ⊂ C∞

c (S1 × M)

as follows.

K ′
k(t, x) = H(t, x) (x ∈ M\ι(B(3r)))

K ′
k(t, ι(z)) = 1

k
ρ(|ι(z)|2) (z ∈ B(3r))

(We can define such K ′
k because the ball ι(B(3r)) and the support of H are disjoint.)

We define 0 < τ < r as follows.

|ρ′(τ 2)| = π

Such a τ is uniquely determined because we assumed ρ′′(t) < 0 on t < r2.
Then, x = ι(0) is the unique fixed point of φK ′

k
on ι(B(r)) and x = ι(z) (z ∈ B(r))

is a fixed point of φ
K ′(k)
k

if and only if z = 0 or |z| = τ hold. x = ι(0) is a non-

degenerate fixed point, but x = ι(z) (|z| = τ ) is a degenerate fixed point.We perturb
K ′
k in a small neighborhood of the sphere ι(∂B(τ )) as follows. Let Kk be a perturbed

Hamiltonian function which satisfies the following conditions.
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• ||H − Kk || < 1
k ε• ι(0) is the unique fixed point of φKk on ι(B(r))

• Fixed points of K (k)
k on ι(B(r)) are non-degenerate.

Then, we have at least one contractible periodic orbit x ∈ P(K (k)
k ) such that

x(0) 	= x( 1k ) and x(t) ∈ ι(B(r)) hold. This fact follows from the following argu-
ments. ι(0) is the unique fixed point of φKk on ι(B(r)). So it suffices to prove that
φ
K (k)
k

has at least two fixed points in ι(B(r)). This follows from the following claim.

Claim 4.3. Let T ∈ C∞(S1 × B(r)) be a Hamiltonian function on (B(r), ω0)

which is defined as follows.

T (t, z) = Kk(t, ι(z))

Then, Floer homology of T (k) can be computed as follows. Here, ∗ is the grading
of Floer homology which comes from Conley-Zehnder index of periodic orbits.

H F∗(T (k), i) ∼=
{
Q ∗ = 3n
0 ∗ 	= 3n

The Conley-Zehnder index of the periodic orbit ι(0) is n, so this claim implies
that φ

K (k)
k

has at least two fixed point in ι(B(r)).

This claim follows from the calculation of symplectic homology of balls in Cn

([2], Theorem 2). We fix λ ∈ R>0 \ {kπ}k∈N and we fix a Hamiltonian function
P ∈ C∞(S1 × B(r)) such that

P(t, x) = −λ|x |2 + constant

holds on (t, x) ∈ S1 × (B(r) \ X) for some compact subset X ⊂ B(r). Then, one

can see that SH [−∞,λπ2)∗ (B(r)) ∼= HF∗(P). In our case, λ = 4
3π and P = T (k).

So, we can see that

HF∗(T (k), i) ∼= SH
[−∞, 43πr2)
∗ (B(r)) ∼=

{
Q ∗ = 3n
0 ∗ 	= 3n

Next, we prove the theorem in the following two steps.

1. We prove that φKk ∈ Hamc\Aut hold.
2. We construct an open neighborhood Vk of φKk (in Hofer’s metric) so that

Vk ⊂ Hamc\Aut holds.
Then, we can define Uφ by Uφ =⋃k∈N≥2

Vk and {φKk ∈ Uφ} converges to φ in
Hofer’s metric and C∞-topology.

We fix N ∈ N so that supp(Kk) ⊂ S1 × Int(MN ). For (1), it suffices to prove
that

φKk |Mm ∈ Hamc(Mm)\Aut(Mm) (∀m ≥ N )

holds. We also fix m ≥ N . So it suffices to prove that w
(m)
k (Kk) 	= 0 holds. Let

{z j }1≤ j≤l be a subset of P̃(K (k)
k ) which satisfies the following conditions. z j is

written in the form [v, x] such that

v : D2 −→ ι(B(r)) ⊂ Mm
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x : S1 −→ ι(B(r)) ⊂ Mm

hold. We choose z = [v, x] ∈ {z j } which satisfies x(0) 	= x( 1k ).
Let C1 > 0 be a constant which is defined as follows.

C1 = min
{∣∣∣AK (k)

k
(zi ) − A

K (k)
k

(z j )
∣∣∣ 	= 0
}

Then ∣∣∣AK (k)
k

(z) − A
K (k)
k

(z j )
∣∣∣ ≥ C1

or

A
K (k)
k

(z) = A
K (k)
k

(z j )

hold. We denote A
K (k)
k

(z) by a ∈ R.

For a relatively compact connected open subset S ⊂ R × R/3Z such that
∂S = ∂1S

⊔
∂2S (∂1S and ∂2S are not empty), we consider maps which satisfy

the following conditions.

f : S −→ B(3r)

f (∂1S) ⊂ ∂B(r), f (∂2S) ⊂ ∂B(2r)

∂s f (s, t) + i∂t f (s, t) = 0 on (s, t) ∈ S

Then we define C2 as follows. Let ω0 be a standard symplectic form on Cn .

C2 = 1

3
inf

{∫

S
f ∗ω0

∣∣∣ S and f are as above

}

Remark 4.3. This C2 satisfies C2 > 0. This follows from the famous monotonicity
lemma (see for example, [7] Theorem 1.3).

Let C > 0 be a constant which satisfies C < 1
2 min{C1,C2}. Let L ∈ C∞(S1

×M̂m) be a Hamiltonian function which satisfies the following conditions.

• L = Kk on ι(B(2r))
• L(t, (r, y)) = −δr on (r, y) ∈ [1,∞) × ∂Mm

• L(k) is non-degenerate.

The first condition implies that {z j }1≤ j≤l are also elements of P̃(L(k)). Next,

we prove that ŵ(m)
k (L) ≥ C holds. For this, it suffices to prove the following claim.

Claim 4.4. Let z = [v, x] be the element of P̃(L(k)) which we fixed above and let
z−, z+ be any elements of P̃(L(k)). Then, the following two claims hold.

• M(z, z+, L(k), J ) 	= ∅ �⇒ AL(k) (z+) < a − 2C

• M(z−, Rk(z), L(k), J+ 1
k ) 	= ∅ �⇒ AL(k) (z−) > a + 2C
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Then, by using the same arguments as in the proof of Claim 4.1, we can see
that z ∈ P̃(L(k)) becomes a cycle in CF [a−2C,a+C)(L(k), J ) and Sk(z) is not zero

in HF [a−C,a+2C)(L(k), J+ 1
k ).

Claim 4.3 follows from the following arguments. We fix an almost complex
structure of contact type J on M̂m which satisfies J |S1×ι(B(3r)) = ι∗i . Assume that
M̃(z, z+, L(k), J ) 	= ∅ holds. If z+ ∈ {z j }1≤ j≤l holds, then AL(k) (z+) < a − 2C
holds. If z+ /∈ {z j }1≤ j≤l holds, u ∈ M̃(z, z+) satisfies the following conditions.

u−1(ι(∂(B(r)))) 	= ∅, u−1(ι(∂(B(2r)))) 	= ∅
On u−1(ι(B(2r)/B(r))), a map g′(s, t) = ι−1(u(s, t)) satisfies the following equa-
tion.

∂sg
′(s, t) + i

{
∂t g

′(s, t) + 8
3π i · g′(s, t)

} = 0

In order to transform g′ into a holomorphic curve f below, we consider the
following three-fold covering.

π : R × Z/3Z −→ R × S1

Let S′ ⊂ R × R/3Z be the preimage π−1(u−1(ι(B(2r)/B(r)))). We define a map
g : S′ → B(3r) by g(s, t) = ι−1(u(π(s, t))). Then g also satisfies the following
Floer equation.

∂sg(s, t) + i
{
∂t g(s, t) + 8

3π i · g(s, t)} = 0

Then, we define f : S′ → B(3r) as follows.

f (s, t) = exp
( 8
3π i t
)
g(s, t)

This f is a holomorphic curve as follows.

∂s f (s, t) + i∂t f (s, t) = 0

f −1(∂B(r)) 	= ∅, f −1(∂B(2r)) 	= ∅
So we can choose a connected component S ⊂ S′ which satisfies the following
conditions.

∂S = ∂1S
⊔

∂2S

f (∂1S) ⊂ ∂B(r), f (∂2S) ⊂ ∂B(2r)

∂s f (s, t) + i∂t f (s, t) = 0

The definition of C2 > 0 implies that

AL(k) (z+) = a −
∫

R×S1
ω(∂su, J∂su)dsdt

< a −
∫

u−1(ι(B(2r)\B(r)))
ω(∂su, J∂su)dsdt

= a − 1

3

∫

S′
ω0(∂sg, i∂sg)dsdt
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= a − 1

3

∫

S′
ω0(∂s f, i∂s f )dsdt = a − 1

3

∫

S′
f ∗ω0

≤ a − 1

3

∫

S
f ∗ω0 ≤ a − C2 < a − 2C

holds.
This implies that

M(z, z+, L(k), J ) 	= ∅ �⇒ AL(k) (z+) < a − 2C

holds. By using the same arguments, we can prove that the second claim holds. So,
we proved that ŵ(m)

k (L) ≥ C holds. By making ||L − (Kk |Mm )δ|| → 0, we can see
that

w
(m)
k (Kk) = lim

L→(Kk |Mm )δ
ŵ

(m)
k (L) ≥ C > 0

holds. So we proved (1). For (2), we define Vk ⊂ Hamc(M, ω) as follows.

Vk =
{
ψ ∈ Hamc(M, ω)

∣∣∣ ||ψ − φKk || <
C

k

}

So it suffices to prove the following claim.

Claim 4.5. Vk ⊂ Hamc\Aut holds.
Recall that above constant C > 0 does not depend on the choice of m ≥ N . So we

proved that w(m′)
k (Kk) ≥ C holds for any m′ ≥ N .

We fix ψ = φG ∈ Vk and m′ ≥ N so that supp(G) ⊂ Mm′ . Then,

w
(m′)
k (G) ≥ w

(m′)
k (Kk) − k · C

k
> C − C = 0

holds. So ψ = φG /∈ Aut(M, ω) holds and we proved the theorem. ��
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