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Abstract. We establish local elliptic and parabolic gradient estimates for positive smooth
solutions to a nonlinear parabolic equation on a smooth metric measure space. As appli-
cations, we determine various conditions on the equation’s coefficients and the growth of
solutions that guarantee the nonexistence of nontrivial positive smooth solutions to many
special cases of the nonlinear equation. In particular, we apply gradient estimates to dis-
cuss some Yamabe-type problems of complete Riemannian manifolds and smooth metric
measure spaces.

1. Introduction and main results

In this paper we will study gradient estimates for positive smooth solutions u(x, t)
to a parabolic equation

(
� f − ∂

∂t

)
u + μ(x, t)u + p(x, t)uα + q(x, t)uβ = 0 (1.1)

on a smooth metric measure space (M, g, e− f dvg), where μ(x, t), p(x, t) and
q(x, t) are all smooth space-time functions, and α, β ∈ R. As applications, we
give Liouville-type theorems for various special cases of Eq. (1.1). In particular,
since Eq. (1.1) is related to Yamabe-type problems (see the explanation below), we
also apply gradient estimates to study some Yamabe-type problems of complete
Riemannian manifolds and smooth metric measure spaces.

A smooth metric measure space is a tuple (M, g, e− f dvg) of an n-dimensional
complete Riemannian manifold (M, g), and a weighted measure e− f dvg deter-
mined by some f ∈ C∞(M) and the Riemannian volume element dvg of the
metric g. Such spaces arise in many contexts, for example as collapsed measured
Gromov–Hausdorff limits [31]. On (M, g, e− f dvg), the f -Laplacian is defined by

� f = � − ∇ f · ∇,

where � is the usual Laplacian, which is self-adjoint with respect to e− f dvg . For
any number m ≥ 0, the m-Bakry–Émery Ricci tensor introduced by Bakry and
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Émery [5] is defined by

Ricmf := Ric + Hess f − 1

m
d f ⊗ d f,

where Ric is the Ricci tensor of (M, g), and Hess is the Hessian of metric g. When
m = 0, it means that f is constant and Ricmf returns to the usual Ricci tensor Ric.
In [32], the weighted scalar curvature related to Ricmf is defined by

Smf := S + 2� f − m + 1

m
|∇ f |2,

where S is the scalar curvature of (M, g). In general, Smf is not the trace of Ricmf ,
except when f is constant.Whenm → ∞, we have the Perelman’s scalar curvature
(see [34])

S∞
f := S + 2� f − |∇ f |2

and the (∞−)Bakry–Émery Ricci tensor

Ric f := Ric∞
f .

It is easy to see that Ricmf ≥ c implies Ric f ≥ c, but not vice versa.

On a smooth metric measure space (M, g, e− f dvg), if

Ric f = λ g

for some λ ∈ R, then (M, g, e− f dvg) is a gradient Ricci soliton, which is a gener-
alization of an Einstein manifold. Gradient Ricci solitons play a fundamental role
in the formation of singularities of the Ricci flow, and have been studied by many
authors; see [10,22] and references therein for nice surveys.

There have been many gradient estimates and Liouville-type theorems about
special cases of Eq. (1.1). In 1980s, Gidas and Spruck [19] studied the equation

�u + p(x)uα = 0, 1 ≤ α <
n + 2

n − 2
(1.2)

on an n-dimensional manifold. The case α = 3 is relevant to Yang-Mills equations
(see [7]). The case α < 0 is related to a steady state of the thin film (see [20]). Gidas
and Spruck [19] proved that any nonnegative solution to Eq. (1.2) is identically zero
when the Ricci tensor of manifold is nonnegative. Yang [47] showed that if α < 0
and p(x) is positive constant, then Eq. (1.2) does not admit any positive solution
on a complete manifold with the nonnegative Ricci tensor. Li [27] proved the
Gidas–Spruck’s result under some weaker restrictions of p(x) for 1 < α < n

n−2
(n ≥ 4). He also proved Li–Yau gradient estimates and Harnack inequalities for
the nonlinear parabolic equation

(
� − ∂

∂t

)
u + p(x, t)uα = 0, α > 0 (1.3)



Gradient estimates and Liouville theorems 513

on a manifold. In biomathematics, Eq. (1.3) could be interpreted as the population
dynamics (see [9]). Recently, Zhu [50,51] gave elliptic gradient estimates and
Liouville-type theorems for positive ancient solutions to Eq. (1.3).

Apart from the relation to the above equations, the famous and widely studied
special example of Eq. (1.1) is related to conformally deformation of the scalar
curvature on a manifold. Indeed, for any n-dimensional (n ≥ 3) complete manifold
(M, g), consider a pointwise conformal metric

g̃ = u
4

n−2 g

for some 0 < u ∈ C∞(M). Then the scalar curvature S̃ of metric g̃ related to the
scalar curvature S of metric g is given by (see [33])

�u − n − 2

4(n − 1)
S u + n − 2

4(n − 1)
S̃ u

n+2
n−2 = 0, (1.4)

which is a special form of Eq. (1.1). If M is compact and S̃ is constant, the existence
of a positive solution u is the well-knownYamabe problem and it has been solved in
the affirmative by the combined efforts of Yamabe [45], Trudinger [39], Aubin [2]
and Schoen [36]; see the survey [25] for more details. However, ifM is noncompact
(S̃ is still constant), Jin [23] gave examples of complete metrics on the noncompact
manifold on which there do not exist a positive smooth solution of (1.4). When S̃ is
a smooth function, the geometry of manifolds plays a large role in the existence and
nonexistence of positive solutions of (1.4) on compact or noncompact manifolds.
The interested reader can refer to [6,24,28,33,37,49] and references therein.

Another important reason of studying Eq. (1.1) is that a static form of Eq. (1.1)
is related to the weighted Yamabe problem posed by Case [15]. Recall that, for any
m ≥ 0, Case [15] introduced the weighted Yamabe quotient

Q(u) :=
(∫

M |∇u|2 + m+n−2
4(m+n−1)S

m
f u

2
) (∫

M |u| 2(m+n−1)
m+n−2 e

f
m

) 2m
n

(∫
M |u| 2(m+n)

m+n−2

) 2m+n−2
n

on a smooth metric measure space (M, g, e− f dvg), where all integrals are taken
with respect to the weighted measure e− f dvg . The weighted Yamabe quotient is
conformally invariant in the sense that if

(
Mn, g̃, e− f̃ dvg̃

)
=
(
Mn, e

2ρ
m+n−2 g, e

(m+n)ρ
m+n−2 e− f dvg

)

for some ρ ∈ C∞(M), then Q̃(u) = Q(e
ρ
2 u) (see [15]). The weighted Yamabe

constant is defined by

�[g, e− f dvg] := inf
{Q(u)| 0 < u ∈ C∞(M)

}
,

which is a generalization of the Yamabe constant. Indeed, if f = 0 and m = 0,
the weighted Yamabe constant returns to the classical Yamabe constant. In [15]
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Case observed that u is a critical point of the weighted Yamabe quotient Q(u) on
a smooth metric measure space (M, g, e− f dvg) if and only if it satisfies

� f u − m + n − 2

4(m + n − 1)
Smf u − c1e

f
m u

m+n
m+n−2 + c2u

m+n+2
m+n−2 = 0, (1.5)

which is a special elliptic case of (1.1) in some setting. Here,

c1 = 2m(m + n − 1)Q(u)

n(m + n − 2)

(∫
M
u

2(m+n)
m+n−2

) 2m+n−2
n

(∫
M
u

2(m+n−1)
m+n−2 e

f
m

)− 2m+n
n

,

c2 = (2m + n − 2)(m + n)Q(u)

n(m + n − 2)

(∫
M
u

2(m+n)
m+n−2

) 2m−2
n

(∫
M
u

2(m+n−1)
m+n−2 e

f
m

)− 2m
n

,

where all integrals are taken with respect to e− f dvg . Obviously, c1 and c2 have the
same sign. When �[g, e− f dvg] = 0, we have c1 = c2 = 0 and the critical point
ofQ is in fact a minimizer of �. Case [15] proved that minimizers always exist on
a compact smooth metric measure space provided the weighted Yamabe constant
is strictly less than its value on Euclidean space.

In this paper, we will give local elliptic and parabolic gradient estimates for
positive solutions to Eq. (1.1) on a smooth metric measure space with the Bakry–
Émery Ricci tensor bounded below. As applications, we will determine various
conditions on the growth of solutions and coefficients that guarantee the nonexis-
tence of nontrivial positive smooth solutions to many special cases of Eq. (1.1).
In particular, we can apply gradient estimates to analyze Yamabe-type problems
of equations (1.4) and (1.5) on a complete manifold and a smooth metric measure
space, respectively.

In order to state the results, we introduce some notations. On an n-dimensional
complete smooth metric measure space (M, g, e− f dv), let ∇ and | · | stand for the
Levi-Civita connection and the norm with respect to metric g, respectively. For a
fixed point x0 ∈ M and R > 0, let r(x) (or d(x, x0)) denote a distance function to
x from x0 with respect to g, and B(x0, R) denote the geodesic ball centered at x0
of radius R. In the elliptic gradient estimate setting, let QR,T be

QR,T :≡ B(x0, R) × [t0 − T, t0] ⊂ M × (−∞,∞), t0 ∈ R and T > 0.

In the parabolic gradient estimate setting, let HR,T be

HR,T :≡ B(x0, R) × [0, T ], T > 0.

For any μ ∈ C∞(QR,T ), denote

μ+ := sup
(x,t)∈QR,T

{μ+(x, t), 0} and μ− := inf
(x,t)∈QR,T

{μ−(x, t), 0},

where μ+(x, t) := max{μ(x, t), 0} and μ−(x, t) := min{μ(x, t), 0}. For μ ∈
C∞(HR,T ), we similarly define μ+ and μ− in HR,T as above. We also introduce
the geometric quantities

σ := max{x |d(x,x0)=1} � f r(x) and σ+ := max{σ, 0},



Gradient estimates and Liouville theorems 515

which will appear in our theorems.
We now give one of main theorems, a local elliptic (space-only) gradient esti-

mates for positive smooth solutions to Eq. (1.1) when Ric f is bounded below.

Theorem 1.1. Let (M, g, e− f dv) be an n-dimensional complete smooth metric
measure space. Assume that Ric f ≥ − (n − 1)K for some constant K ≥ 0 in
B(x0, R), where x0 ∈ M and R ≥ 2. Let 0 < u(x, t) ≤ D for some constant D,
be a smooth solution to Eq. (1.1) in QR,T := B(x0, R) × [t0 − T, t0]. There exists
a constant c depending only on n, such that

|∇ ln u| ≤ c

(
1 + ln

D

u

)
[
1

R
+
√

σ+
R

+ 1√
t − t0 + T

+ √
K +

√
μ+ + sup

QR,T

|∇μ| 13

+√[(α − 1)p]+ + p+ sup
QR,T

{u α−1
2 } + sup

QR,T

|∇ p| 13 sup
QR,T

{u α−1
3 }

+√[(β − 1)q]+ + q+ sup
QR,T

{u β−1
2 } + sup

QR,T

|∇q| 13 sup
QR,T

{u β−1
3 }

]

in QR/2,T with t �= t0 − T .

Remark 1.2. If f is constant, the term
√

σ+
R is unnecessary in the above estimate.

If μ(x, t), p(x, t) and q(x, t) are identically zero, the theorem returns to [42].
Recently, Dung et al. [18] proved similar results when μ(x, t), p(x, t), q(x, t), α
and β are special constants.

Besides,we cangive a local parabolic (space-time) gradient estimate for positive
smooth solutions to Eq. (1.1) when Ricmf is bounded below.

Theorem 1.3. Let (M, g, e− f dv) be an n-dimensional complete smooth metric
measure space. Assume that Ricmf ≥ − (m + n − 1)K (m < ∞) for some constant
K ≥ 0 in B(x0, 2R), where x0 ∈ M and R > 0. Let u(x, t) be a positive smooth
solution to Eq. (1.1) in H2R,T := B(x0, 2R) × [0, T ]. Also assume that

|∇ p| ≤ a1, � f p ≥ b1 for some constants a1 and b1;
|∇q| ≤ a2, � f q ≥ b2 for some constants a2 and b2;
|∇μ| ≤ a3, � f μ ≥ b3 for some constants a3 and b3

in B(x0, 2R). For any λ > 1 and ε ∈ (0, 1) satisfying � ≥ 0, there exists a
universal positive constant c1 independent of the geometry of (M, g, e− f dv) such
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that

|∇u|2
λu2

+ puα−1 + quβ−1 + μ − ut
u

≤ (m + n)λ

2t
+
√
m + n

2
�

1
2

+ m + n

2R2 λ

[
(m + n)c1(1 + R

√
K ) + 2c21 + (m + n)c21λ

2

4(λ − 1)

]

+ m + n

2
λ

{[
(α − 1)p

]+ sup
H2R,T

{uα−1} + [
(β − 1)q

]+ sup
H2R,T

{uβ−1}
}

in B(x0, R) × (0, T ], where

� := 3

2

[
(m + n)λ2

4ε(λ − 1)2

] 1
3

γ
4
3 + (m + n)λ2 K̃ 2

2(1 − ε)(λ − 1)2

− λ

[
inf
H2R,T

(
uα−1b1 + uβ−1b2

)
+ b3

]
,

γ := a1 |λα − 1| sup
H2R,T

{uα−1} + a2 |λβ − 1| sup
H2R,T

{uβ−1} + a3(λ − 1)

and

K̃ := (m + n − 1)K − 1

2

[
(α − 1)(λα − 1)p

]− sup
H2R,T

{uα−1}

−1

2

[
(β − 1)(λβ − 1)q

]− sup
H2R,T

{uβ−1}.

Remark 1.4. If f is constant, p(x, t) and q(x, t) are identically zero, then the the-
orem returns to the well-known Li–Yau gradient estimate [29]. More parabolic
gradient estimates for special cases of Eq. (1.1) were proved in [11,13,27,30].

Theorem1.1describes local elliptic gradient estimates under onlyRic f bounded
below, whose assumption on Ric f is obviously weaker than the assumption on
Ricmf (m < ∞). Theorem 1.3 describes local Li–Yau gradient estimates under the
assumption on Ricmf (m < ∞) rather than Ric f , because, according to [42], there
seems essential obstacles to obtain Li–Yau gradient estimates for Eq. (1.1) when
Ric f is bounded below, even assuming growth assumption on f .

Theorems 1.1 and 1.3 have many applications. On one hand, we apply The-
orem 1.1 to get parabolic Liouville-type theorems for special cases of Eq. (1.1).
Here, we only provide two typical results. More related results will be discussed in
Sect. 4.

Theorem 1.5. Let (M, g, e− f dv) be an n-dimensional complete smooth metric
measure space with Ric f ≥ 0. Assume that there exist two constants s > 0 and
κ > 0, such that μ(x) and p(x) in the following equation(

� f − ∂

∂t

)
u + μ(x)u + p(x)uα = 0, α > 1, p(x) �≡ 0, (1.6)

satisfy
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(1) μ+∣∣
B(x0,R)

= o(R−s) and supB(x0,R) |∇μ| = o(R−s), as R → ∞;

(2) p+|B(x0,R) = o[R−κ(α−1)] and supB(x0,R) |∇ p| = o[R−κ(α−1)], as R → ∞.

Let u(x, t) be a positive ancient solution to Eq. (1.6) (that is, a solution defined in
all space and negative time) such that

u(x, t) = o[(r(x) + |t |)̃κ ]

for some κ̃ ∈ (0, κ) near infinity. Then u(x, t) ≡ c
1

α−1 and μ(x) ≡ −cp(x) for
some constant c > 0.

Theorem 1.6. Let (M, g, e− f dv) be an n-dimensional complete smooth metric
measure space with Ric f ≥ 0. Assume that there exist two constants s > 0 and
κ > 0, such that μ(x) and p(x) in the following equation

(
� f − ∂

∂t

)
u + μ(x)u + p(x)uα = 0, α < 1, p(x) �≡ 0, (1.7)

satisfy

(1) μ+∣∣
B(x0,R)

= o(R−s) and supB(x0,R) |∇μ| = o(R−s), as R → ∞;

(2) supB(x0,R) | p | = o[R−κ(1−α)] and supB(x0,R) |∇ p| = o[R−κ(1−α)], as R →
∞.

Let u(x, t) be a positive ancient solution to (1.7) such that

(r(x) + |t |)−κ̃ ≤ u(x, t) ≤ (r(x) + |t |)δ

for some κ̃ ∈ (0, κ) and δ > 0 near infinity. Then u(x, t) ≡ c
1

α−1 and μ(x) ≡
−cp(x) for some constant c > 0.

We also apply Theorem 1.1 to prove Liouville-type theorems for elliptic ver-
sions of Eq. (1.1); see for example Theorems 5.1 and 5.2 in Sect. 5. In particular,
we apply Theorem 1.5 to study the problem about conformal deformation of the
scalar curvature on complete manifolds.

Theorem 1.7. Let (M, g) be an n-dimensional (n ≥ 3) complete (possible non-
compact) Riemannian manifold with Ric ≥ 0 and supB(x0,R) |∇S| = o(R−s) for
some constant s > 0, as R → ∞. For any κ > 0, there does not exist complete
metric

g̃ ∈
{
u

4
n−2 g

∣∣ 0 < u ∈ C∞(M), u(x) = o(r κ̃ (x))
}

for some κ̃ ∈ (0, κ), such that the scalar curvature S̃ of g̃ satisfies

S̃+∣∣
B(x0,R)

= o(R− 4κ
n−2 ) and sup

B(x0,R)

|∇S̃| = o(R− 4κ
n−2 ), as R → ∞.



518 J.-Y. Wu

Remark 1.8. If S̃ is nonpositive constant, the growth conditions of S̃ and ∇S̃ in

Theorem 1.7 naturally hold and hence u(x) can be relaxed to u(x) = eo(r
s
3 (x)).

Compared with the work of [33,35], Theorem 1.7 is valid without any assumptions
on sectional curvature, eigenvalue of the conformal operator � − n−2

4(n−1)S, only
assuming some conditions of the Ricci tensor and the growth of u(x).

On a compact smooth metric measure space, Case [15] provided an example
which shows that minimizers of the weighted Yamabe constant do not always exist.
Using Theorem 1.1 we can prove

Theorem 1.9. Let (M, g, e− f dv) be an n-dimensional (n ≥ 3) complete smooth
metric measure space with Ric f ≥ 0. For any m > 0, assume that there exist two
constants s > 0 and κ > 0 such that

(1) (Smf )
−∣∣

B(x0,R)
= o(R−s) and supB(x0,R) |∇Smf | = o(R−s), as R → ∞;

(2) e
f
m |B(x0,R) = o[R −2κ

m+n−2 ] and supB(x0,R) |∇e
f
m | = o[R −2κ

m+n−2 ], as R → ∞.

Then there does not exist a minimizer of the weighted Yamabe constant � ≤ 0 with
u(x) = o (r κ̃ (x) ) for some κ̃ ∈ (0, κ) near infinity.

When � = 0, we have a simple statement.

Theorem 1.10. Let (M, g, e− f dv) be an n-dimensional (n ≥ 3) complete smooth
metric measure space with Ric f ≥ 0. For any m > 0, assume that

(Smf )
−∣∣

B(x0,R)
= o(R−1) and sup

B(x0,R)

|∇Smf | = o(R− 3
2 ), as R → ∞.

If the weighted Yamabe constant � = 0, there does not exist a critical point of the
weighted Yamabe quotient Q(u) with u(x) = eo(r

1/2(x)) near infinity.

On the other hand, we can apply Theorem 1.3 to give a new Liouville theorem
for an elliptic case of Eq. (1.1), which is a supplement to Yang’s result [47].

Theorem 1.11. Let (M, g, e− f dv) be an n-dimensional complete smooth metric
measure space with Ricmf ≥ 0. Then there does not exist any nontrivial positive
solution u(x) to the elliptic equation

� f u + puα = 0, α ≤ 1, (1.8)

where p is a nonnegative constant.

When � = 0, Theorem 1.11 indeed implies that

Corollary 1.12. Let (M, g, e− f dv) be an n-dimensional (n ≥ 3) complete smooth
metric measure space with Ricmf ≥ 0. Assume that the weighted scalar curvature
Smf is nonpositive constant. If the weighted Yamabe constant � = 0, there does not
exist a critical point of the weighted Yamabe quotient Q.
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Remark 1.13. In view of Theorem 1.9, we may apply Theorem 1.3 to study the
minimizer of the weighted Yamabe constant � ≤ 0 (or � ≥ 0). This enables us to
determine many complicated assumptions so that we can apply the Li–Yau gradient
estimate of Theorem 1.3 to achieve the Liouville-type theorem for Eq. (1.5). In the
paper we do not describe this complicated case.

Inequalities in Theorems 1.1 and 1.3 are called local elliptic and parabolic
gradient estimates, respectively (sometimes called Hamilton–Souplet–Zhang and
Li–Yau gradient estimates, respectively), which are both proved by using the max-
imum principle in a locally supported set of the manifold. Similar inequalities
have been obtained for the linear heat equation, e.g. [17,26,29,30,38,42] and some
nonlinear equations, e.g. [14,18,27,46,50,51]. However, our case is more compli-
cated due to the function coefficients of Eq. (1.1). To the best of our knowledge,
the gradient estimate technique is originated by Yau [48] (see also Cheng–Yau
[16]) in 1970s, who first proved a gradient estimate for the harmonic function on
the manifold. In 1980s, this technique was developed by Li–Yau [29] for the heat
equation on manifolds (though a precursory form of their estimate appeared in [1]).
In 1990s, Hamilton [21] gave an elliptic gradient estimate for the heat equation.
But this estimate is global which requires the equation defined on closed man-
ifolds. In 2006, Souplet and Zhang [38] proved a local elliptic form by adding
a logarithmic correction term. Recently, many authors extended the Li–Yau and
Hamilton–Souplet–Zhang gradient estimates to the other heat-type equations; see
for example [3,11–13,18,42–44,50,51] and references therein.

The paper is organized as follows. In Sect. 2, we first give a useful lemma. Then
we apply the lemma and the maximum principle to prove Theorem 1.1. In Sect. 3,
we start to give a lemma, and then we apply the lemma to prove Theorem 1.3.
In Sect. 4, we apply Theorem 1.1 to discuss Liouville-type theorems for some
parabolic cases of Eq. (1.1), especially for Theorems 1.5 and 1.6. In Sect. 5, we
apply Theorems 1.1 and 1.3 to study Liouville-type theorems for various elliptic
versions of Eq. (1.1); see for example Theorems 1.11, 5.1 and 5.2. In particular,
using these results, we study some Yamabe-type problems of complete manifolds
and smooth metric measure spaces; see Theorems 1.7, 1.9, 1.10 and Corollary 1.12.

2. Elliptic gradient estimate

In this section, we first prove a lemma, which is a generalization of [38,42]. Then
we apply this lemma and the maximum principle to prove Theorem 1.1.

Let (M, g, e− f dv) be an n-dimensional complete smooth metric measure
space. For any point x0 ∈ M and R > 0, assume that 0 < u(x, t) ≤ D for
some constant D is a smooth solution to Eq. (1.1) in QR,T , where

QR,T :≡ B(x0, R) × [t0 − T, t0] ⊂ M × (−∞,∞), t0 ∈ R, T > 0.

Introduce a auxiliary function

h(x, t) := ln
u

D
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in QR,T . Then h ≤ 0 and h satisfies
(

� f − ∂

∂t

)
h + |∇h|2 + p(x, t)(Deh)α−1 + q(x, t)(Deh)β−1 + μ(x, t)

= 0. (2.1)

Using (2.1) we have the following lemma, which will play an significant part in the
proof of Theorem 1.1.

Lemma 2.1. Let (M, g, e− f dv) be a complete smooth metric measure space.
Assume that Ric f ≥ − (n − 1)K for some constant K ≥ 0 in B(x0, R), where
x0 ∈ M and R > 0. Let h(x, t) is a nonpositive smooth function defined in QR,T

satisfying (2.1). Then the function

ω := |∇ ln(1 − h)|2 = |∇h|2
(1 − h)2

(2.2)

satisfies

1

2

(
� f − ∂

∂t

)
ω ≥ h

1 − h
〈∇h,∇ω〉 + (1 − h)ω2 − (n − 1)Kω

−
(

α − 1 + 1

1 − h

)
p(Deh)α−1ω − (Deh)α−1

(1 − h)2
〈∇ p,∇h〉

−
(

β − 1 + 1

1 − h

)
q(Deh)β−1ω − (Deh)β−1

(1 − h)2
〈∇q,∇h〉

− μ

1 − h
ω − 1

(1 − h)2
〈∇μ,∇h〉

for all (x, t) in QR,T .

Proof. The proof is similar to that of Lemma 2.1 in [42], but is included for com-
pleteness. We shall apply local coordinates to conveniently compute these com-
plicated evolution equations. Let e1, e2, . . . , en be a local orthonormal frame field
at a point x ∈ Mn and we adopt the notation that subscripts in i , j , and k, with
1 ≤ i, j, k ≤ n, mean covariant differentiations in the ei , e j and ek , directions
respectively. We denote hi := ∇i h, hii = ∇i∇i h = �h and hi j j := ∇ j∇ j∇i h, etc.

By the definition of ω in (2.2), we compute that

ω j = 2hi hi j
(1 − h)2

+ 2h2i h j

(1 − h)3
,

〈∇ f,∇ω〉 = 2hi j hi f j
(1 − h)2

+ 2h2i h j f j
(1 − h)3

, (2.3)

and

�ω = 2|hi j |2
(1 − h)2

+ 2hi hi j j
(1 − h)2

+ 8hi h j hi j
(1 − h)3

+ 2h2i h j j

(1 − h)3
+ 6h2i h

2
j

(1 − h)4
.
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Hence,

� f ω = �ω − 〈∇ f,∇ω〉

= 2|hi j |2
(1 − h)2

+ 2hi hi j j
(1 − h)2

+ 8hi h j hi j
(1 − h)3

+ 2h2i h j j

(1 − h)3
+ 6h4i

(1 − h)4

− 2hi j hi f j
(1 − h)2

− 2h2i h j f j
(1 − h)3

.

Using the Ricci identity hi j j = h j ji + Ri j h j , the above inequality becomes

� f ω = 2|hi j |2
(1 − h)2

+ 2hi (� f h)i

(1 − h)2
+ 2(Ri j + fi j )hi h j

(1 − h)2
+ 8hi h j hi j

(1 − h)3

+ 6h4i
(1 − h)4

+ 2h2i · � f h

(1 − h)3
. (2.4)

From (2.1) and (2.2), we obtain

∂ω

∂t
= 2∇i h · ∇i

(
� f h + |∇h|2 + p(Deh)α−1 + q(Deh)β−1 + μ

)
(1 − h)2

+ 2|∇h|2 (� f h + |∇h|2 + p(Deh)α−1 + q(Deh)β−1 + μ
)

(1 − h)3

= 2∇h∇� f h

(1 − h)2
+ 4hi h j hi j

(1 − h)2
+ 2h2i � f h

(1 − h)3
+ 2|∇h|4

(1 − h)3

+ 2

(
α − 1 + 1

1 − h

)
p(Deh)α−1ω + 2pi hi (Deh)α−1

(1 − h)2

+ 2

(
β − 1 + 1

1 − h

)
q(Deh)β−1ω + 2qi hi (Deh)β−1

(1 − h)2

+ 2μ

1 − h
ω + 2μi hi

(1 − h)2
. (2.5)

Combining (2.4) and (2.5), we get

1

2

(
� f − ∂

∂t

)
ω = |hi j |2

(1 − h)2
+ (Ri j + fi j )hi h j

(1 − h)2
+ 4hi h j hi j

(1 − h)3

+ 3h4i
(1 − h)4

− 2hi h j hi j
(1 − h)2

− h4i
(1 − h)3

−
(

α − 1 + 1

1 − h

)
p(Deh)α−1ω − pi hi (Deh)α−1

(1 − h)2

−
(

β − 1 + 1

1 − h

)
q(Deh)β−1ω − qi hi (Deh)β−1

(1 − h)2

− μ

1 − h
ω − μi hi

(1 − h)2
.
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Since Ric f ≥ − (n − 1)K for some constant K ≥ 0, we have

(Ri j + fi j )hi h j ≥ − (n − 1)Kh2i .

Since 1 − h ≥ 1, we also have

|hi j |2
(1 − h)2

+ 2hi h j hi j
(1 − h)3

+ h4i
(1 − h)4

≥ 0.

Using these two inequalities, the above equation can be simplified as

1

2

(
� f − ∂

∂t

)
ω ≥ − (n − 1)Kh2i

(1 − h)2
+ 2hi h j hi j

(1 − h)3
+ 2h4i

(1 − h)4

−2hi h j hi j
(1 − h)2

− h4i
(1 − h)3

−
(

α − 1 + 1

1 − h

)
p(Deh)α−1ω − pi hi (Deh)α−1

(1 − h)2

−
(

β − 1 + 1

1 − h

)
q(Deh)β−1ω − qi hi (Deh)β−1

(1 − h)2

− μ

1 − h
ω − μi hi

(1 − h)2
. (2.6)

From (2.3), we know that

ω j h j = 2hi h j hi j
(1 − h)2

+ 2h4i
(1 − h)3

.

Using this formula, (2.6) can be rewritten as

1

2

(
� f − ∂

∂t

)
ω ≥ − (n − 1)Kh2i

(1 − h)2
+ h

1 − h
ω j h j + h4i

(1 − h)3

−
(

α − 1 + 1

1 − h

)
p(Deh)α−1ω − pi hi (Deh)α−1

(1 − h)2

−
(

β − 1 + 1

1 − h

)
q(Deh)β−1ω − qi hi (Deh)β−1

(1 − h)2

− μ

1 − h
ω − μi hi

(1 − h)2
.

By the definition of ω, the desired inequality immediately follows. ��
In the rest of this section, we will apply Lemma 2.1 and the localized technique

of Souplet–Zhang [38] and the author [42] to give an elliptic-type gradient estimate
for positive smooth solutions to Eq. (1.1).

We first introduce a useful space-time cut-off function originated by Li–Yau
[29] (see also [38,42]) as follows.

Lemma 2.2. Fix t0 ∈ R and T > 0. For any given τ ∈ (t0 − T, t0], there exists a
smooth function ψ̄ : [0,∞) × [t0 − T, t0] → R satisfying following propositions:
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(1) 0 ≤ ψ(r, t) ≤ 1 in [0, R] × [t0 − T, t0], and it is supported in a open subset of
[0, R] × [t0 − T, t0].

(2) ψ(r, t) = 1 and ∂rψ(r, t) = 0 in [0, R/2] × [τ, t0] and [0, R/2] × [t0 − T, t0],
respectively.

(3) |∂tψ | ≤ C
τ−(t0−T )

ψ
1
2 in [0,∞)×[t0−T, t0] for someC > 0, andψ(r, t0−T ) =

0 for all r ∈ [0,∞).
(4) −Cε

R ψ
ε ≤ ∂rψ ≤ 0 and |∂2r ψ | ≤ Cε

R2 ψ
ε
in [0,∞) × [t0 − T, t0] for every

ε ∈ (0, 1) with some constant Cε depending on ε.

Then we apply Lemmas 2.1 and 2.2 to prove Theorem 1.1 via the maximum
principle in a local space-time supported set. The proof mainly follows the argu-
ments of [4,42], which is a little different from [38].

Proof of Theorem 1.1. Pick any number τ ∈ (t0 − T, t0] and choose a cutoff func-
tion ψ̄(r, t) satisfying the conditions of Lemma 2.2. Briefly, we will show that
the inequalities in Theorem 1.1 hold at the point (x, τ ) for all x ∈ M such that
d(x, x0) < R/2. Since τ is arbitrary, the assertion of theorem will immediately
follow. In the following we provide a detailed description.

Let ψ : M × [t0 − T, t0] → R be the cutoff function ψ = ψ(d(x, x0), t) ≡
ψ(r, t). Then ψ(x, t) could be viewed as smooth cut-off function supported in
QR,T . Our strategy is to estimate (� f − ∂

∂t )(ψω) and carefully analyze the result
at a space-time point where the function ψω attains its maximum.

We apply Lemma 2.1 to conclude that

1

2

(
� f − ∂

∂t

)
(ψω) −

(
h

1 − h
∇h + ∇ψ

ψ

)
· ∇(ψω)

≥ ψ(1 − h)ω2 −
(

h

1 − h
∇h · ∇ψ

)
ω − |∇ψ |2

ψ
ω

+ 1

2
(� f ψ)ω − 1

2
ψtω − (n − 1)Kψω

−
(

α − 1 + 1

1 − h

)
p(Deh)α−1ψω − ψpi hi (Deh)α−1

(1 − h)2

−
(

β − 1 + 1

1 − h

)
q(Deh)β−1ψω − ψqi hi (Deh)β−1

(1 − h)2

− μ

1 − h
ψω − ψμi hi

(1 − h)2
. (2.7)

Now let (x1, t1) be a maximum space-time point for ψω in the closed set

{(x, t) ∈ M × [t0 − T, τ ] |d(x, x0) ≤ R} .

We may assume (ψω)(x1, t1) > 0; otherwise, ω(x, τ ) ≤ 0 and the conclusion
naturally holds at (x, τ ) whenever d(x, x0) < R

2 . Notice that t1 �= t0 − T , since we
assume (ψω)(x1, t1) > 0. We may also assume that ψ(x, t) is smooth at (x1, t1)
due to the standard Calabi argument [8]. Since (x1, t1) is a maximum space-time
point, at this point we have

� f (ψω) ≤ 0, (ψω)t ≥ 0 and ∇(ψω) = 0.
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Using the above estimates at (x1, t1), (2.7) can be simplified as

ψ(1 − h)ω2 ≤
(

h

1 − h
∇h · ∇ψ + |∇ψ |2

ψ

)
ω

− 1

2
(� f ψ)ω + 1

2
ψtω + (n − 1)Kψω

+
(

α − 1 + 1

1 − h

)
puα−1ψω + ψpi hi uα−1

(1−h)2

+
(

β − 1 + 1

1 − h

)
quβ−1ψω + ψqi hi uβ−1

(1−h)2

+ μ

1 − h
ψω + ψμi hi

(1 − h)2

(2.8)

at (x1, t1), where in the above estimates we have used the fact that u = Deh .

In the rest, we will use (2.8) at the maximum space-time point (x1, t1) to give
the desired gradient estimate in Theorem 1.1. We will achieve it by two steps.

Case One: We assume the maximum space-point x1 /∈ B(x0, 1). Recall that,
Ric f ≥ − (n − 1)K and r(x1, x0) ≥ 1 in B(x0, R), R ≥ 2. Hence by the f -
Laplacian comparison theorem (Theorem 3.1 in [40]), we have

� f r(x1) ≤ σ + (n − 1)K (R − 1), (2.9)

where σ := max{x |d(x,x0)=1} � f r(x), which will be used later. Below we will
carefully estimate upper bounds for each term on the right hand side (RHS) of
(2.8), similar to the arguments of Souplet–Zhang [38] and the author [42]. This
will lead us to give the desired result. We remark that the Young’s inequality will
be repeatedly used in the following estimates. Below we let c denote a constant
depending only on n whose value may change from line to line.

First, we estimate the first term on the RHS of (2.8):

(
h

1 − h
∇h · ∇ψ

)
ω ≤ |h| · |∇ψ | · ω3/2

=
[
ψ(1 − h)ω2

]3/4 · |h| · |∇ψ |
[ψ(1 − h)]3/4

≤ 1

3
ψ(1 − h)ω2 + c

(h|∇ψ |)4
[ψ(1 − h)]3

≤ 1

3
ψ(1 − h)ω2 + ch4

R4(1 − h)3
.

(2.10)
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For the second term on the RHS of (2.8), we have

|∇ψ |2
ψ

ω = ψ1/2ω · |∇ψ |2
ψ3/2

≤ 1

18
ψω2 + c

( |∇ψ |2
ψ3/2

)2

≤ 1

18
ψω2 + c

R4 .

(2.11)

For the third term on the RHS of (2.8), since ψ is a radial function, then at
(x1, t1), using (2.9) we have

−1

2
(� f ψ)ω = − 1

2

[
(∂rψ)� f r + (∂2r ψ)|∇r |2

]
ω

≤ − 1

2

[
∂rψ (σ + (n − 1)K (R − 1)) + ∂2r ψ

]
ω

≤
[
|∂2r ψ | + (

σ+ + (n − 1)K (R − 1)
) |∂rψ |

]
ω

= ψ1/2ω
|∂2r ψ |
ψ1/2 + ψ1/2ω[σ+ + (n − 1)K (R − 1)] |∂rψ |

ψ1/2

≤ 1

18
ψω2 + c

|∂2r ψ |2
ψ

+ c
(σ+)2|∂rψ |2

ψ
+ c

K 2(R − 1)2|∂rψ |2
ψ

≤ 1

18
ψω2 + c

R4 + c(σ+)2

R2 + cK 2,

(2.12)

where σ+ := max{σ, 0}, and in the last inequality we have used proposition (4) in
Lemma 2.2.

For the fourth term on the RHS of (2.8), we have

1

2
|ψt |ω = 1

2
ψ1/2ω

|ψt |
ψ1/2

≤ 1

18

(
ψ1/2ω

)2 + c

( |ψt |
ψ1/2

)2

≤ 1

18
ψω2 + c

(τ − t0 + T )2
.

(2.13)

For the fifth term on the RHS of (2.8), we have

(n − 1)Kψω = (n − 1)ψ1/2ω · ψ1/2K

≤ 1

18
ψω2 + cK 2.

(2.14)

For the sixth term on the RHS of (2.8), we easily get

(
α − 1 + 1

1 − h

)
p ≤ (α − 1)p + p+

1 − h
≤ [(α − 1)p]+ + p+,
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where in the above inequality we used the fact 1
1−h > 1 due to h ≤ 0. Hence we

have

(
α − 1 + 1

1 − h

)
puα−1ψω ≤

(
[(α − 1)p]+ + p+) uα−1ψω

≤ 1

18
ψω2 + c

(
[(α − 1)p]+ + p+)2 sup

QR,T

{u2(α−1)},
(2.15)

where in the last inequality, we have used the fact ψ ≤ 1.
For the seventh term on the RHS of (2.8), since h < 0, we have the following

estimate

uα−1

(1 − h)2
ψpi hi ≤ uα−1

(1 − h)2
ψ |pi | · |hi | ≤ uα−1ψω1/2|∇ p(x1, t1)|

≤ 1

18
(ψ1/4ω1/2)4 + c

(
ψ3/4uα−1|∇ p(x1, t1)|

) 4
3

≤ 1

18
ψω2 + c sup

QR,T

|∇ p| 43 sup
QR,T

{u 4
3 (α−1)}.

(2.16)

For the eighth and ninth terms on the RHS of (2.8), the estimates are very similar
to the sixth and seventh terms. We summarize these estimates without providing
the detailed proof.

(
β − 1 + 1

1 − h

)
quβ−1ψω

≤ 1

18
ψω2 + c

(
[(β − 1)q]+ + q+)2 sup

QR,T

{u2(β−1)} (2.17)

and

uβ−1

(1 − h)2
ψqi hi ≤ 1

18
ψω2 + c sup

QR,T

|∇q| 43 sup
QR,T

{u 4
3 (β−1)}. (2.18)

For the tenth term on the RHS of (2.8), similar to (2.15), we have the following
estimate

μ

1 − h
ψω ≤ 1

18
ψω2 + c(μ+)2, (2.19)

where μ+ := sup(x,t)∈QR,T
{μ+(x, t), 0} and μ+(x, t) = max{μ(x, t), 0}. For the

eleventh term on the RHS of (2.8), similar to (2.16), we have the estimate

ψμi hi
(1 − h)2

≤ 1

18
ψω2 + c sup

QR,T

|∇μ| 43 . (2.20)

In the following, we will apply the above estimates to prove the theorem. Sub-
stituting (2.10)–(2.20) into the RHS of (2.8), at (x1, t1), we have that
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ψ(1 − h)ω2 ≤ 1

3
ψ(1 − h)ω2 + ch4

R4(1 − h)3
+ 10

18
ψω2

+ c

R4 + c(σ+)2

R2 + c

(τ − t0 + T )2
+ cK 2

+ c(μ+)2 + c sup
QR,T

|∇μ| 43

+ c
(
[(α − 1)p]+ + p+)2 sup

QR,T

{u2(α−1)}

+ c sup
QR,T

|∇ p| 43 sup
QR,T

{u 4
3 (α−1)}

+ c
(
[(β − 1)q]+ + q+)2 sup

QR,T

{u2(β−1)}

+ c sup
QR,T

|∇q| 43 sup
QR,T

{u 4
3 (β−1)}.

Since 1 − h ≥ 1, the above estimate implies

ψω2 ≤ ch4

R4(1 − h)4
+ c

R4 + c(σ+)2

R2 + c

(τ − t0 + T )2

+ cK 2 + c(μ+)2 + c sup
QR,T

|∇μ| 43

+ c
(
[(α − 1)p]+ + p+)2 sup

QR,T

{u2(α−1)} + c sup
QR,T

|∇ p| 43 sup
QR,T

{u 4
3 (α−1)}

+ c
(
[(β − 1)q]+ + q+)2 sup

QR,T

{u2(β−1)} + c sup
QR,T

|∇q| 43 sup
QR,T

{u 4
3 (β−1)}

at (x1, t1). Moreover, since h4

(1−h)4
≤ 1, the above inequality implies that

(ψ2ω2)(x1, t1) ≤ (ψω2)(x1, t1)

≤ c

R4 + c(σ+)2

R2 + c

(τ − t0 + T )2
+ cK 2

+ c(μ+)2 + c sup
QR,T

|∇μ| 43

+ c
(
[(α − 1)p]+ + p+)2 sup

QR,T

{u2(α−1)}

+ c sup
QR,T

|∇ p| 43 sup
QR,T

{u 4
3 (α−1)}

+ c
(
[(β − 1)q]+ + q+)2 sup

QR,T

{u2(β−1)}

+ c sup
QR,T

|∇q| 43 sup
QR,T

{u 4
3 (β−1)}.
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Since ψ(x, τ ) = 1 when d(x, x0) < R/2 by the proposition (2) in Lemma 2.2,
from the above estimate, we in fact get

ω(x, τ ) = (ψω)(x, τ )

≤ (ψω)(x1, t1)

≤ c

R2 + cσ+

R
+ c

τ − t0 + T
+ cK + cμ+ + c sup

QR,T

|∇μ| 23

+ c
(
[(α − 1)p]+ + p+) sup

QR,T

{uα−1} + c sup
QR,T

|∇ p| 23 sup
QR,T

{u 2
3 (α−1)}

+ c
(
[(β − 1)q]+ + q+) sup

QR,T

{uβ−1} + c sup
QR,T

|∇q| 23 sup
QR,T

{u 2
3 (β−1)}

for all x ∈ M such that d(x, x0) < R/2. By the definition of w(x, τ ) and the fact
that τ ∈ (t0 − T, t0] was chosen arbitrarily, we get the estimate

|∇h|
(1 − h)

(x, t) ≤ c

R
+ c

√
σ+
R

+ c√
t − t0 + T

+ c
√
K + c

√
μ+ + c sup

QR,T

|∇μ| 13

+ c
√[(α − 1)p]+ + p+ · sup

QR,T

{u α−1
2 } + c sup

QR,T

|∇ p| 13 sup
QR,T

{u α−1
3 }

+ c
√[(β − 1)q]+ + q+ · sup

QR,T

{u β−1
2 } + c sup

QR,T

|∇q| 13 sup
QR,T

{u β−1
3 }

for all (x, t) ∈ QR/2,T with t �= t0−T . Since h = ln(u/D), substituting this into the
above estimate completes the proof of theorem when x1 /∈ B(x0, 1) ⊂ B(x0, R),
where R ≥ 2.

Case Two: We assume the maximum space-point x1 ∈ B(x0, 1). In this case, ψ is
constant in space direction in B(x0, R/2) by our assumption, where R ≥ 2. So by
(2.8), we have

ψω2 ≤ 1

2
ψtω + (n − 1)Kψω + μ

1 − h
ψω + ψμi hi

(1 − h)2

+
(

α − 1 + 1

1 − h

)
p(Deh)α−1ψω + ψpi hi (Deh)α−1

(1 − h)2

+
(

β − 1 + 1

1 − h

)
q(Deh)β−1ψω + ψqi hi (Deh)β−1

(1 − h)2

at (x1, t1), where we have used 1 − h ≥ 1 on the left hand side of the above
inequality. By (2.13)–(2.20), the above inequality can be estimated by

ψω2 ≤ 8

18
ψω2 + c

(τ − t0 + T )2
+ cK 2 + c(μ+)2 + c sup

QR,T

|∇μ| 43

+ c
(
[(α − 1)p]+ + p+)2 sup

QR,T

{u2(α−1)} + c sup
QR,T

|∇ p| 43 sup
QR,T

{u 4
3 (α−1)}

+ c
(
[(β − 1)q]+ + q+)2 sup

QR,T

{u2(β−1)} + c sup
QR,T

|∇q| 43 sup
QR,T

{u 4
3 (β−1)}
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at (x1, t1). Since ψ(x1, t1) = 1, the above inequality can be written as

ω2(x1, t1) ≤ c

(τ − t0 + T )2
+ cK 2 + c(μ+)2 + c sup

QR,T

|∇μ| 43

+ c
(
[(α − 1)p]+ + p+)2 sup

QR,T

{u2(α−1)}

+ c sup
QR,T

|∇ p| 43 sup
QR,T

{u 4
3 (α−1)}

+ c
(
[(β − 1)q]+ + q+)2 sup

QR,T

{u2(β−1)}

+ c sup
QR,T

|∇q| 43 sup
QR,T

{u 4
3 (β−1)}.

Since ψ(x, τ ) = 1 when d(x, x0) < R/2 by the proposition (2) in Lemma 2.2, the
above estimate indeed gives that

ω(x, τ ) = (ψω)(x, τ )

≤ (ψω)(x1, t1)

≤ ω(x1, t1)

≤ c

τ − t0 + T
+ cK + cμ+ + c sup

QR,T

|∇μ| 23

+ c
(
[(α − 1)p]+ + p+) sup

QR,T

{uα−1} + c sup
QR,T

|∇ p| 23 sup
QR,T

{u 2
3 (α−1)}

+ c
(
[(β − 1)q]+ + q+) sup

QR,T

{uβ−1} + c sup
QR,T

|∇q| 23 sup
QR,T

{u 2
3 (β−1)}

for all x ∈ M such that d(x, x0) < R/2. By the definition of w(x, τ ) and the fact
that τ ∈ (t0 − T, t0] was chosen arbitrarily, we in fact prove that the estimate in
theorem still holds when x1 ∈ B(x0, 1). ��

3. Parabolic gradient estimate

In this section, by adapting the arguments of [29,41], we first give a useful lemma.
Then we apply the lemma to prove Theorem 1.3 by the maximum principle in a
locally supported set of the manifold.

Let (M, g, e− f dv) be an n-dimensional complete smooth metric measure
space. For any point x0 ∈ M and R > 0, assume that u(x, t) is a positive smooth
solution to Eq. (1.1) in H2R,T , where H2R,T := B(x0, 2R) × [0, T ], T > 0.
Introduce a auxiliary function

h(x, t) := ln u(x, t)

in H2R,T . By Eq. (1.1), the function h satisfies
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(
� f − ∂

∂t

)
h + |∇h|2 + p(x, t)(eh)α−1 + q(x, t)(eh)β−1 + μ(x, t)

= 0. (3.1)

Then we have the following useful lemma, which will be important in the proof of
Theorem 1.3.

Lemma 3.1. Let (M, g, e− f dv) be a complete smooth metric measure space.
Assume that Ricmf ≥ − (m + n − 1)K for some constant K ≥ 0 in B(x0, 2R),
where x0 ∈ M and R > 0. Let h(x, t) be a smooth function in H2R,T satisfying
Eq. (3.1). Then for any λ > 1, the function

F := t
[
|∇h|2 − λ

(
ht − p(eh)α−1 − q(eh)β−1 − μ

)]
(3.2)

satisfies

(
� f − ∂

∂t

)
F ≥ − F

t
− 2〈∇h,∇F〉 − 2(m + n − 1)Kt |∇h|2

+ 2t

m + n

[
|∇h|2 + p(eh)α−1 + q(eh)β−1 + μ − ht

]2
− (α − 1)p(eh)α−1F + 2(λα − 1)t (eh)α−1〈∇h,∇ p〉
+ (α − 1)(λα − 1)tp(eh)α−1|∇h|2 + λt (eh)α−1� f p

− (β − 1)q(eh)β−1F + 2(λβ − 1)t (eh)β−1〈∇h,∇q〉
+ (β − 1)(λβ − 1)tq(eh)β−1|∇h|2 + λt (eh)β−1� f q

+ 2(λ − 1)t〈∇h,∇μ〉 + λt� f μ

for all (x, t) in H2R,T .

Proof of Lemma 3.1. The proof follows by direct computations. Using (3.1) and
(3.2), by the definition of F , we compute that

� f F = t
[
� f |∇h|2 − λ� f ht + λ� fD

]
,

where D := p(eh)α−1 + q(eh)β−1 + μ. By the Bochner formula of the m-Bakry–
Émery Ricci tensor and the assumption Ricmf ≥ − (m + n − 1)K , we have

� f |∇h|2 ≥ 2(� f h)2

m + n
+ 2〈∇h,∇� f h〉 − 2(m + n − 1)K |∇h|2.

Hence,

� f F ≥ t

[
2(� f h)2

m + n
+ 2〈∇h,∇� f h〉 − 2(m + n − 1)K |∇h|2

− λ� f ht + λ� fD
]
. (3.3)
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Notice that by (3.1) and (3.2), we have the following equality:

−λ� f ht+2〈∇h,∇� f h〉 = Ft
t

− F

t2
+ 2(λ−1)∇h∇ht + 2〈∇h,∇� f h〉

= Ft
t

− F

t2
+ 2(λ−1)∇h∇(� f h+|∇h|2+D)

+ 2〈∇h,∇� f h〉
= Ft

t
− F

t2
− 2

t
〈∇h,∇F〉 + 2(λ − 1)〈∇h,∇D〉,

(3.4)

where in the last equality we have used the following formulae

� f h = − |∇h|2 + ht − D = − F

λt
−
(
1 − 1

λ

)
|∇h|2. (3.5)

Substituting (3.4) into (3.3) yields

(
� f − ∂

∂t

)
F ≥ − F

t
+ 2t

m + n
(� f h)2 − 2(m + n − 1)Kt |∇h|2

− 2〈∇h,∇F〉 + 2(λ − 1)t〈∇h,∇D〉 + λt� fD.

Further using (3.5), the above inequality becomes

(
� f − ∂

∂t

)
F ≥ − F

t
+ 2t

m + n
(|∇h|2 + D − ht )

2 − 2(m + n − 1)Kt |∇h|2

− 2〈∇h,∇F〉 + 2(λ − 1)t〈∇h,∇D〉 + λt� fD.

(3.6)

In the following we will compute the last two terms in the inequality (3.6). We first
notice that

2(λ − 1)t
〈
∇h,∇(p(eh)α−1)〉+ λt� f

(
p(eh)α−1)

= 2(λα − 1)t (eh)α−1∇ p∇h + (α − 1)(λα + λ − 2)tp(eh)α−1|∇h|2
+ λt (eh)α−1� f p + λ(α − 1)tp(eh)α−1� f h

= 2(λα − 1)t (eh)α−1∇ p∇h + λt (eh)α−1� f p − (α − 1)p(eh)α−1F

+ (α − 1)(λα − 1)tp(eh)α−1|∇h|2,

where in the last equality we have used the formulae (3.5). Similar to the above
equality, we also have

2(λ − 1)t
〈
∇h,∇(q(eh)β−1)〉+ λt� f

(
q(eh)β−1)

= 2(λβ − 1)t (eh)β−1∇q∇h + λt (eh)β−1� f q − (β − 1)q(eh)β−1F

+ (β − 1)(λβ − 1)tq(eh)β−1|∇h|2.
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Combining the above two equalities, we have

2(λ − 1)t〈∇h,∇D〉 + λt� fD
= 2(λα − 1)t (eh)α−1∇ p∇h + λt (eh)α−1� f p − (α − 1)p(eh)α−1F

+ (α − 1)(λα − 1)tp(eh)α−1|∇h|2
+ 2(λβ − 1)t (eh)β−1∇q∇h + λt (eh)β−1� f q − (β − 1)q(eh)β−1F

+ (β − 1)(λβ − 1)tq(eh)β−1|∇h|2
+ 2(λ − 1)t∇μ∇h + λt� f μ.

Finally substituting this into (3.6) gives the proof of the lemma. ��
In the following, we will apply Lemma 3.1 and the localized technique of Li–

Yau [29] and the author [41] to give parabolic gradient estimates for the positive
smooth solutions to Eq. (1.1) on smooth metric measure spaces.

Proof of Theorem 1.3. Firstly, we introduce an auxiliary cut-off function and its
useful properties. This cut-off function is very important in the following proof.

Wechoose anyC2 cut-off function ϕ̃ on [0,∞) such that ϕ̃(r) ≡ 1 for r ∈ [0, 1],
ϕ̃(r) = 0 for r ∈ [2,∞), and 0 ≤ ϕ̃(r) ≤ 1; meanwhile ϕ̃ satisfies

−c1 ≤ ϕ̃′(r)
ϕ̃1/2(r)

≤ 0 and ϕ̃′′(r) ≥ − c1

for some universal positive constant c1. Let

ϕ(x) = ϕ̃

(
r(x)

R

)
,

where r(x) denotes the distance between x and x0 in M . Then suppϕ ⊆ B(x0, 2R)

and ϕ|B(x0,R) ≡ 1. We shall consider the function ϕF in H2R,T . By the argument
of Calabi [8], by using approximation, we can assume without loss of generality
that ϕ(x) ∈ C2(M) with support in B(x0, 2R). By a easy computation, we have

|∇ϕ|2
ϕ

≤ c21
R2 (3.7)

and

� f ϕ = ϕ̃′� f r

R
+ ϕ̃′′|∇r |2

R2 (3.8)

in B(x0, 2R). On the other hand, since Ricmf ≥ − (m + n − 1)K for some K ≥ 0,
the generalized Laplacian comparison theorem (see [40]) gives that

� f r ≤ (m + n − 1)
√
K coth(

√
K r).

Since coth is decreasing, and ϕ̃′ = 0 when r(x) < R, by (3.8), this implies

� f ϕ ≥ − c1
R

(m + n − 1)
√
K coth(

√
K R) − c1

R2

≥ − (m + n)c1(1 + R
√
K )

R2 ,

(3.9)
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where we have used the inequality
√
K coth(

√
K R) ≤ 1

R (1 + √
K R).

Secondly, we will apply the f -Laplacian operator � f to the function ϕF and
get a useful inequality. Then we apply the maximum principle argument to the
inequality in a compactly supported set and obtain the Li–Yau gradient estimate.

For any 0 < τ ≤ T , if ϕF ≤ 0 in H2R,τ , then the desired estimate follows. Now
we assume max(x,t)∈H2R,τ

(ϕF) > 0. Let (x1, t1) be a point where ϕF achieves the
positive maximum, where x1 ∈ B(x0, 2R) and 0 < t1 ≤ τ . Clearly, at (x1, t1), we
have

∇(ϕF) = 0, Ft ≥ 0 and � f (ϕF) ≤ 0. (3.10)

From now on all calculations below will be at (x1, t1). Applying Lemma 3.1 to the
following equality

� f (ϕF) = F(� f ϕ) + 2〈∇ϕ,∇F〉 + ϕ(� f F),

and using (3.7), (3.8), (3.9), (3.10) and the fact eh = u, we get that

0 ≥ � f (ϕF)

≥ − F
(m + n)c1(1 + R

√
K )

R2 − 2F
|∇ϕ|2

ϕ

+ ϕ

[
− F

t1
− 2〈∇h,∇F〉 − (α − 1)puα−1F − (β − 1)quβ−1F

]

+ 2t1ϕ

m + n

[
|∇h|2 + puα−1 + quβ−1 + μ − ht

]2

+ t1ϕ|∇h|2
[
(α − 1)(λα − 1)puα−1 + (β − 1)(λβ − 1)quβ−1 − 2(m + n − 1)K

]

+ 2t1ϕ
[
(λα − 1)uα−1〈∇h,∇ p〉 + (λβ − 1)uβ−1〈∇h,∇q〉 + (λ − 1)〈∇h,∇μ〉

]

+ λt1ϕ
[
uα−1� f p + uβ−1� f q + � f μ

]

≥ F

[
− (m + n)c1(1 + R

√
K ) + 2c21

R2 − ϕ

t1
− (α − 1)puα−1ϕ − (β − 1)quβ−1ϕ

]

+ 2F〈∇h,∇ϕ〉 + 2t1ϕ

m + n

[
|∇h|2 + puα−1 + quβ−1 + μ − ht

]2

+ t1ϕ|∇h|2
[
(α − 1)(λα − 1)puα−1 + (β − 1)(λβ − 1)quβ−1 − 2(m + n − 1)K

]

+ 2t1ϕ
[
(λα − 1)uα−1〈∇h,∇ p〉 + (λβ − 1)uβ−1〈∇h,∇q〉 + (λ − 1)〈∇h,∇μ〉

]

+ λt1ϕ
[
uα−1� f p + uβ−1� f q + � f μ

]
.

Multiplying both sides of the above inequality by t1ϕ, using the assumptions
of p(x, t), q(x, t), μ(x, t) and ϕ(x) in Theorem 1.1, recalling that 0 ≤ ϕ ≤ 1, we
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in fact get that

0 ≥ − t1ϕF

[
(m+n)c1(1 + R

√
K ) + 2c21

R2 + 1

t1
+ [(α − 1)p]+uα−1

+[(β − 1)q]+uβ−1
]

− 2c1R
−1t1F |∇h|ϕ3/2

+ 2t21ϕ2

m + n

{[
|∇h|2 + puα−1 + quβ−1 + μ − ht

]2

+ m+n

2
|∇h|2

[
[(α−1)(λα−1)p]−uα−1

+ [(β−1)(λβ−1)q]−uβ−1−2(m+n−1)K
]}

− 2t21ϕ1/2|∇h|
[
|λα − 1|a1uα−1 + |λβ − 1|a2uβ−1 + (λ − 1)a3

]

+ λt21

[
inf
H2R,T

(
uα−1b1 + uβ−1b2

)
+ b3

]
.

(3.11)

In the above inequality, we denote

p+ := sup
(x,t)∈HR,T

{p+(x, t), 0} and p− := inf
(x,t)∈HR,T

{p−(x, t), 0},

for any p(x, t) ∈ C∞(HR,T ), where

p+(x, t) := max{p(x, t), 0} and p−(x, t) := min{p(x, t), 0}.
We let

y := ϕ|∇h|2

and

z := ϕ(ht − puα−1 − quβ−1 − μ).

Then (3.11) can be rewritten as

0 ≥ −ϕF

[
(m + n)c1(1 + R

√
K ) + 2c21

R2 t1 + 1

]

− ϕF

[
[(α − 1)p]+ sup

H2R,T

{uα−1}t1 + [(β − 1)q]+ sup
H2R,T

{uβ−1}t1
]

+ 2t21
m + n

{
(y − z)2 − c1(m + n)R−1y1/2(y − λz)

− (m + n)K̃ y − (m + n)γ y1/2
}

+ λt21

[
inf
H2R,T

(
uα−1b1 + uβ−1b2

)
+ b3

]
,

(3.12)
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where

K̃ := (n + m − 1)K − 1

2
[(α − 1)(λα − 1)p]− sup

H2R,T

{uα−1}

−1

2
[(β − 1)(λβ − 1)q]− sup

H2R,T

{uβ−1}

and

γ := |λα − 1|a1 sup
H2R,T

{uα−1} + |λβ − 1|a2 sup
H2R,T

{uβ−1} + (λ − 1)a3.

Inequality (3.12) is rather complicated andwewant to simplify it so that the inequal-
ity can be estimated efficiently. Indeed, we can follow the Li–Yau’s arguments [29]
to estimate the third line of inequality (3.12). The similar argument also appeared in
[41]. That is to say, we can use the Cauchy–Schwarz inequality to get the following
key inequality

(y − z)2 − c1(m + n)R−1y1/2(y − λz) − (m + n)K̃ y − (m + n)γ y1/2

≥ λ−2(y − λz)2 − (m + n)2

8
c21λ

2(λ − 1)−1R−2(y − λz)

− 3

4
4− 1

3 (m + n)4/3γ 4/3
(

λ

λ − 1

)2/3

ε−1/3 − (m + n)2λ2 K̃ 2

4(1 − ε)(λ − 1)2

for any 0 < ε < 1. Substituting this inequality into (3.12) and arranging the terms
yields

0 ≥ −ϕF

[
(m + n)c1(1 + R

√
K ) + 2c21

R2 t1 + 1

]

− ϕF

[
[(α − 1)p]+ sup

H2R,T

{uα−1}t1 + [(β − 1)q]+ sup
H2R,T

{uβ−1}t1
]

+ 2

m + n

[
λ−2(ϕF)2 − (m + n)2c21λ

2

8(λ − 1)R2 t1(ϕF)

]

+ t21
m + n

⎡
⎣−3

2

(
(m + n)4λ2

4ε(λ − 1)2

) 1
3

γ
4
3 − (m + n)2λ2 K̃ 2

2(1 − ε)(λ − 1)2

⎤
⎦

+ λt21

[
inf
H2R,T

(
uα−1b1 + uβ−1b2

)
+ b3

]

= 2λ−2

m + n
(ϕF)2 − � · (ϕF) − t21�,

where

� : = (m + n)c1(1 + R
√
K ) + 2c21

R2 t1 + (m + n)c21λ
2

4(λ − 1)R2 t1 + 1

+ [(α − 1)p]+ sup
H2R,T

{uα−1}t1 + [(β − 1)q]+ sup
H2R,T

{uβ−1}t1
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and

� := 3

2

(
(m + n)λ2

4ε(λ − 1)2

) 1
3

γ
4
3 + (m + n)λ2 K̃ 2

2(1 − ε)(λ − 1)2

− λ

[
inf
H2R,T

(
uα−1b1 + uβ−1b2

)
+ b3

]
,

and where

γ := |λα − 1|a1 sup
H2R,T

{uα−1} + |λβ − 1|a2 sup
H2R,T

{uβ−1} + (λ − 1)a3

and

K̃ := (n + m − 1)K − 1

2
[(α − 1)(λα − 1)p]− sup

H2R,T

{uα−1}

−1

2
[(β − 1)(λβ − 1)q]− sup

H2R,T

{uβ−1}.

This implies

(ϕF)(x1, t1) ≤ m + n

4
λ2

[
� +

(
�2 + 8

m + n
λ−2t21�

)1/2
]

≤ m + n

4
λ2

[
� + � +

(
8

m + n
λ−2t21�

)1/2
]

= m + n

2
λ2� + t1λ

(m + n

2
�
)1/2

,

(3.13)

where � and � are defined as above. Notice that on B(x0, R)×[0, τ ], since ϕ ≡ 1
and (x1, t1) is a maximum point of function ϕF , we have

sup
B(x0,R)

F(x, τ ) ≤ (ϕF)(x1, t1). (3.14)

Substituting (3.13) into (3.14), and using a easy fact that t1 ≤ τ , we indeed show
that

τ · sup
B(x0,R)

[
|∇h|2 + λpuα−1 + λquβ−1 + λμ − λht

]
(x, τ )

≤ τλ
(m + n

2
�
)1/2

+ m + n

2
λ2

[
(m + n)c1(1 + R

√
K ) + 2c21

R2 τ + (m + n)c21λ
2

4(λ − 1)R2 τ

]

+ m + n

2
λ2

+ m + n

2
λ2

{
[(α − 1)p]+ sup

H2R,T

{uα−1}τ + [(β − 1)q]+ sup
H2R,T

{uβ−1}τ
}

,

which immediately implies the theorem because τ ∈ (0, T ] is arbitrary. ��
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4. Parabolic Liouville theorem

In this section, we will apply Theorem 1.1 to give many sufficient conditions on the
growth of solutions and coefficients that guarantee the parabolic Liouville theorems
for various cases of Eq. (1.1).

First, we will prove Theorem 1.5 in the introduction. We consider the case:
α > 1, μ(x, t) ≡ μ(x), p(x, t) ≡ p(x) �≡ 0 and q(x, t) ≡ 0 in Eq. (1.1).

Proof of Theorem 1.5. Under the assumptions of Theorem 1.5, let u(x, t) be a pos-
itive smooth ancient solution to Eq. (1.6). For any fixed space-time point (x0, t0),
since α > 1 and K = 0, we apply Theorem 1.1 to u(x0, t0) in the space-time set
B(x0, R) × (t0 − R, t0] (i.e., let T = R in QR,T ), and obtain that

|∇ ln u(x0, t0)|
≤ c(n)

(
1 + ln(D(QR,R)) − ln u(x0, t0)

)

×
[
1 + √

σ+
√
R

+ o(R− s
2 ) + o(R− s

3 ) + o[R (̃κ−κ) α−1
2 ] + o[R (̃κ−κ) α−1

3 ]
]

for sufficiently large R >> 2, depending on |t0|, where R has been chosen suffi-
ciently large such that R ≥ |t0|. Since u(x, t) = o([r(x) + |t | ]̃κ) in QR,R , then we
have D(QR,R) = o(Rκ̃ ). For the number κ̃ ∈ (0, κ) and the fixed value ln u(x0, t0),
letting R → ∞ in the above inequality, we immediately get

|∇u(x0, t0)| = 0.

Since (x0, t0)was chosen arbitrarily, we conclude that u(x, t) = u(t) for all x ∈ M .

Case One: μ(x) ≡ 0.

In this case (1.6) becomes

u′(t) = p(x)uα(t), p(x) �≡ 0, α > 1.

This equation implies p(x) ≡ c for some constant c < 0 due to the growth
assumption on p(x). Therefore,

u1−α(t) = c(1 − α)t + u1−α(0).

Since u is a positive ancient solution, from above we see that u1−α(−∞) < 0 for
t → −∞. This is a contradiction with the positivity of u(x, t).

Case Two: μ(x) �≡ 0.

In this case, (1.6) reduces to

u′(t) = μ(x)u(t) + p(x)uα(t), μ(x) �≡ 0, p(x) �≡ 0, α > 1,

which can be rewritten as a first-order ODE by

[u1−α(t)]′ = (1 − α)p(x) + (1 − α)μ(x)u1−α.
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This equation has a general solution

u1−α(t) = Ce(1−α)μ(x)t − p(x)/μ(x), (4.1)

where C is a arbitrary constant, μ(x) �≡ 0 and p(x) �≡ 0.
Since the left-hand side of (4.1) is independent of x , it must hold that p(x)/μ(x)

is constant. Moreover, if μ(x) ≡ c < 0 (c > 0 is impossible due to the growth of
μ(x)), then p(x) ≡ c′ < 0 (c′ > 0 is impossible due to the growth of p(x)). In this
case, (4.1) becomes

u1−α(t) =
(
u1−α(0) + c

c′
)
e(1−α)c t − c

c′ , t < 0,

where α > 1, c < 0, u(0) > 0 and c/c′ > 0. Letting t → −∞, we get

u1−α(t) → − c

c′ < 0,

which is impossible since u(x, t) > 0. So μ(x) is not constant and from (4.1),
we conclude that C ≡ 0 and u1−α(t) = − p(x)/μ(x) is constant. Therefore

μ(x) ≡ −cp(x) for some constant c > 0 and u(x, t) ≡ c
1

α−1 . ��
InTheorem1.5, ifμ(x) and p(x) are both negative constants, then they naturally

satisfy the conditions (1) and (2). In this case we are able to improve the growth
condition of u(x, t) and get a simple statement, which was also proved by Dung,
Khanh and Ngo (see Corollary 2.6 in [18]).

Corollary 4.1. Let (M, g, e− f dv) be an n-dimensional complete smooth metric
measure space with Ric f ≥ 0. There does not exist any positive ancient solution
to equation

(
� f − ∂

∂t

)
u + μ u + p uα = 0, α > 1, μ < 0, p < 0, (4.2)

such that u(x, t) = eo(r
1
2 (x)+|t | 12 ) near infinity. Moreover, if f is identically con-

stant, then the growth of u can be relaxed to u(x, t) = eo(r(x)+|t | 12 ).

Proof of Corollary 4.1. Because μ(x) and p(x) are both negative constants, we
know that the conditions (1) and (2) in Theorem 1.5 naturally hold. Now let u(x, t)
be a positive smooth ancient solution to Eq. (4.2), such that

ln u(x, t) = o(r
1
2 (x) + |t | 12 )

near infinity. Similar to the proof of Theorem 1.5, for a fixed space-time point
(x0, t0), we apply Theorem 1.1 (i) to u(x0, t0) in QR,R = B(x0, R) × (t0 − R, t0],

|∇ ln u(x0, t0)| ≤ c(n)
(
1 + o(

√
R) − ln u(x0, t0)

)[ 1√
R

+
√

σ+
R

]
(4.3)
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for sufficiently large R >> 2, depending on |t0|. Then letting R → ∞, we have
|∇u(x0, t0)| = 0. Since (x0, t0) is arbitrary, we get u(x, t) = u(t) for all x ∈ M .
Finally, the conclusion follows by the same argument of Theorem 1.5.

As for the case f is constant, we assume that

ln u(x, t) = o(r(x) + |t | 12 )
near infinity. We apply Theorem 1.1 to u(x0, t0) in QR,R2 = B(x0, R) × (t0 −
R2, t0] and the proof is almost the same as before except the corresponding gradient
estimate of (4.3) is replaced by

|∇ ln u(x0, t0)| ≤ c(n) (1 + o(R) − ln u(x0, t0)) · 1

R

for sufficiently large R, depending on |t0|. ��
Second, we consider the case: α = 1, μ(x, t) ≡ μ(x), p(x, t) ≡ p(x) and

q(x, t) ≡ 0 in Eq. (1.1). In this case we prove that

Theorem 4.2. Let (M, g, e− f dv) be an n-dimensional complete smooth metric
measure space with Ric f ≥ 0. Assume that μ(x) in the following equation(

� f − ∂

∂t

)
u + μ(x)u = 0 (4.4)

satisfies

μ+|B(x0,R) = o(R−1) and sup
B(x0,R)

|∇μ| = o(R− 3
2 ), as R → ∞.

(1) For μ(x) �≡ 0, there does not exist any positive ancient solution to Eq. (4.4)

such that u(x, t) = eo(r
1
2 (x)+|t | 12 ) near infinity;

(2) for μ(x) ≡ 0, there only exist constant positive ancient solution to Eq. (4.4)

such that u(x, t) = eo(r
1
2 (x)+|t | 12 ) near infinity.

Remark 4.3. There indeed exist many functions μ(x) satisfying the growth of μ,
such as μ(x) = − e−x/(x2 + 1) in R

1. If μ(x) is negative constant, it naturally
satisfies the growth ofμ. Ifμ(x) ≡ 0, the theorem returns to a slight improvement of
[42]. Notice that the growth condition of u is necessary. For example, let u = ex+t ,
f = − x and μ(x) = − 1 in R1. Then u is a positive eternal solution to Eq. (4.4).

Proof of Theorem 4.2. Letu(x, t)be a positive smooth ancient solution toEq. (4.4),
such that

ln u(x, t) = o(r
1
2 (x) + |t | 12 )

near infinity. For any point (x0, t0), since α = 1 and K = 0, applying Theorem 1.1
to u(x0, t0) in the set QR,R := B(x0, R) × (t0 − R, t0],

|∇ ln u(x0, t0)| ≤ c(n)
(
1 + o(

√
R) − ln u(x0, t0)

)[1 + √
σ+

√
R

+ o(R− 1
2 )

]
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for sufficiently large R >> 2, depending on |t0|. Letting R → ∞, |∇u(x0, t0)| = 0.
Since (x0, t0) is arbitrary,we know that u(x, t) = u(t) for all x ∈ M , which satisfies

u′(t) = μ(x)u(t).

If μ(x) ≡ 0, then u(x, t) ≡ c is positive constant. If μ(x) �≡ 0, this implies
μ(x) = C for some constant C < 0 by the growth of μ(x). So we have

u(t) = u(0)eCt , t < 0.

This contradicts the assumption of theorem u(x, t) = eo(r
1
2 (x)+|t | 12 ) near infinity.

Hence the theorem follows. ��
In Theorem 4.2, if we further assume f is a constant, we can improve the growth

assumptions on μ(x) and u(x, t). This has also been obtained by Zhu [51].

Corollary 4.4. Let (M, g) be an n-dimensional complete noncompact Riemannian
manifold with Ric ≥ 0. Assume that μ(x) in the following equation

(
� − ∂

∂t

)
u + μ(x)u = 0 (4.5)

satisfies

μ+|B(x0,R) = o(R−2) and sup
B(x0,R)

|∇μ| = o(R−3), as R → ∞.

(1) For μ(x) �≡ 0, there does not exist any positive ancient solution to Eq. (4.5)

such that u(x, t) = eo(r(x)+|t | 12 ) near infinity;
(2) for μ(x) ≡ 0, there only exist constant positive ancient solution to Eq. (4.5)

such that u(x, t) = eo(r(x)+|t | 12 ) near infinity.

Proof of Corollary 4.4. The proof is nearly the same as the proof Theorem 4.2 with
the only difference is that we apply Theorem 1.1 to u(x0, t0) in the new space-time
set QR,R2 = B(x0, R) × (t0 − R2, t0], and get that

|∇ ln u(x0, t0)| ≤ c(n) (1 + o(R) − ln u(x0, t0))

[
1

R
+ o(R−1)

]

for sufficiently large R >> 2, depending on |t0|. We would like to point out that

the term
√

σ+
R in Theorem 1.1 does not exist in this case (see Remark 1.2). ��

Remark 4.5. The growth condition of u(x, t) is sharp in the space direction. For
example, let u = e2x+t and μ(x) = − 3 in R

1. Obviously, u is a positive eternal
solution to Eq. (4.5).

Third, we prove Theorem 1.6 in the introduction. Let α < 1,μ(x, t) ≡ μ(x) �≡
0, p(x, t) ≡ p(x) �≡ 0 and q(x, t) ≡ q(x) ≡ 0 in (1.1), and we have
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Proof of Theorem 1.6. Let u(x, t) be a positive ancient solution to Eq. (1.7) such
that

(r(x) + |t |)−κ̃ ≤ u(x, t) ≤ (r(x) + |t |)δ

for some κ̃ ∈ (0, κ) and δ > 0 near infinity. For any point (x0, t0), since α < 1 and
K = 0, applying Theorem 1.1 to u(x0, t0) in B(x0, R) × (t0 − R, t0], we get that

|∇ ln u(x0, t0)| ≤ c(n)
(
1 + c(δ) ln R − ln u(x0, t0)

)

×
[
1+√

σ+
√
R

+ o(R− s
2 ) + o(R− s

3 ) + o[R− κ
2 (1−α)] (R−κ̃ )

α−1
2

+ o[R− κ
3 (1−α)] (R−κ̃ )

α−1
3

]
(4.6)

for sufficiently large R >> 2, depending on |t0|, where R has been chosen suffi-
ciently large such that R ≥ |t0|.Wewould like to point out, in the above complicated
estimate, we have chosen minQR,T u(x, t) = (3R)−κ̃ due to the fact: r(x) ≤ R and
|t | ≤ |t0| + R ≤ 2R.

Letting R → ∞ in (4.6), since κ̃ ∈ (0, κ), we have

|∇u(x0, t0)| = 0.

Since (x0, t0) is arbitrary, we conclude that u(x, t) = u(t) and it satisfies

u′(t) = μ(x)u(t) + p(x)uα, p(x) �≡ 0, α < 1. (4.7)

Case One: μ(x) ≡ 0.

In this case (4.7) becomes

u′(t) = p(x)uα(t), p(x) �≡ 0, α < 1.

Similar to the Case One in the proof of Theorem 1.5, this is impossible.

Case Two: μ(x) �≡ 0.

Equation (4.7) can be rewritten as a first-order ODE by

[u1−α(t)]′ = (1 − α)μ(x)u1−α + (1 − α)p(x),

which has a general solution

u1−α(t) = Ce(1−α)μ(x)t − p(x)/μ(x), μ(x) �≡ 0, p(x) �≡ 0,

where C is a arbitrary constant. Similar to the proof of Case Two in Theorem 1.5,
we have μ(x) ≡ −cp(x) for some constant c > 0 and u1−α(t) = 1/c. ��
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5. Elliptic Liouville theorem

In this section, we have two goals. One is that we apply Theorem 1.1 to discuss
Liouville-type theorems for some elliptic versions of Eq. (1.1) on complete (not
necessarily compact) manifolds and smooth metric measure spaces.

Firstly, we consider a special elliptic version of (1.1) for α < 1 on a smooth
metric measure space, which supplements Yang’s result [47].

Theorem 5.1. Let (M, g, e− f dv) be an n-dimensional complete smooth metric
measure space with Ric f ≥ 0. Assume that there exists a constant κ > 0 such that
p(x) in the following elliptic equation

� f u + p(x)uα = 0, α < 1, p(x) �≡ 0, (5.1)

satisfies

sup
B(x0,R)

| p | = o[R−κ(1−α)] and sup
B(x0,R)

|∇ p| = o[R−κ(1−α)], as R → ∞.

Then there does not exist any positive solution to (5.1) on M, such that

r−κ̃ (x) ≤ u(x) ≤ r δ(x)

for some κ̃ ∈ (0, κ) and δ > 0 near infinity.

Proof of Theorem 5.1. The proof is similar to the argument of Theorem 1.6. Let
u(x, t) be a positive smooth solution to Eq. (5.1) such that

r−κ̃ (x) ≤ u(x) ≤ r δ(x)

for some κ̃ ∈ (0, κ) and δ > 0 near infinity. For any fixed point x0, since α < 1 and
K = 0, we apply Theorem 1.1 to u(x0) in B(x0, R) (here function u is independent
of time t), and get that

|∇ ln u(x0)| ≤ c(n) (1 + c(δ) ln R − ln u(x0))

×
[
1 + √

σ+
√
R

+ o[R− κ
2 (1−α)] (R−κ̃ )

α−1
2 + o[R− κ

3 (1−α)] (R−κ̃ )
α−1
3

]

for R > 2, where we have used the fact that minx∈B(x0,R) u(x) = R−κ̃ . Letting
R → ∞ and using κ > κ̃ > 0, we get

|∇u(x0)| = 0.

Since point x0 was chosen arbitrarily, we have that u(x) ≡ c for some constant
c > 0. Substituting u(x) ≡ c into (5.1) we get p(x) ≡ 0 which is impossible due
to the assumption of p(x). Therefore we complete the proof. ��

Secondly, we consider a static version of Eq. (1.1) for α > 1 and β > 1 on a
smooth metric measure space. Because the proof method of Theorem 1.5 is suitable
to the elliptic version of (1.1), we only state the result without the proof.
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Theorem 5.2. Let (M, g, e− f dv) be an n-dimensional complete smooth metric
measure space with Ric f ≥ 0. Assume that there exist three constants s > 0,
κ > 0 and k > 0 such that μ(x), p(x) and q(x) in the following elliptic equation

� f u + μ(x)u + p(x)uα + q(x)uβ = 0, α > 1, β > 1, (5.2)

satisfy

(1) μ+∣∣
B(x0,R)

= o(R−s) and supB(x0,R) |∇μ| = o(R−s), as R → ∞;

(2) p+|B(x0,R) = o[R−κ(α−1)] and supB(x0,R) |∇ p| = o[R−κ(α−1)], as R → ∞;
(3) q+|B(x0,R) = o[R−k(β−1)] and supB(x0,R) |∇q| = o[R−k(β−1)], as R → ∞.

Let u(x) be positive solution to the elliptic equation (5.2) on M such that

u(x) = o (r κ̃ (x) )

for some κ̃ ∈ (0, l) near infinity, where l := min{κ, k}. Then u(x) is a positive
constant.

Thirdly, we will apply Theorem 1.1 to discuss some Yamabe-type problems of
complete Riemannian manifolds and smooth metric measure spaces.

We now prove Theorem 1.7 by applying Theorem 1.5 to Eq.1.4).

Proof of Theorem 1.7. In order to prove the theorem, we only need to discuss the
nonexistence of positive smooth solutions u(x) to Eq.1.4) on (M, g). In Theo-
rem 1.5, if we let

u(x, t) = u(x), f = 0, α = n + 2

n − 2
,

and

μ(x) = − n − 2

4(n − 1)
S, p(x) = n − 2

4(n − 1)
S̃,

then by the assumptions of Theorem 1.7, we know that S ≥ 0 and such u(x) does
not exist and hence the theorem follows. ��

Theorem 1.9 can be proved by applying Theorem 5.2 to Eq.1.5).

Proof of Theorem 1.9. Assume that u is a minimizer of the weighted Yamabe con-
stant � ≤ 0. By the proof of Proposition 4.1 in [15], u is a solution of the equation

� f u − m + n − 2

4(m + n − 1)
Smf u − c1e

f
m u

m+n
m+n−2 + c2u

m+n+2
m+n−2 = 0,

where

c1 = 2m(m + n − 1)�

n(m + n − 2)

(∫
M
u

2(m+n)
m+n−2

) 2m+n−2
n

(∫
M
u

2(m+n−1)
m+n−2 e

f
m

)− 2m+n
n

,

c2 = (2m + n − 2)(m + n)�

n(m + n − 2)

(∫
M
u

2(m+n)
m+n−2

) 2m−2
n

(∫
M
u

2(m+n−1)
m+n−2 e

f
m

)− 2m
n

.



544 J.-Y. Wu

In order to prove the theorem, we only need to check the nonexistence of
nonconstant positive solutions u(x) to the above equation under the assumptions
of Theorem 1.9. Notice that c1 ≤ 0 and c2 ≤ 0 due to � ≤ 0. In Theorem 5.2, if
we let

μ(x) = − m + n − 2

4(m + n − 1)
Smf , p(x) = − c1e

f
m , q(x) = c2,

and

α = m + n

m + n − 2
> 1, β = m + n + 2

m + n − 2
> 1,

then the assumptions of Theorem 1.9 imply that all the conditions of Theorem 5.2
are satisfied and hence such u(x) does not exist, which contradicts the existence of
positive minimizer u. ��

When� = 0, we can prove Theorem 1.10 by applying Theorem 4.2 to Eq.1.5).

Proof of Theorem 1.10. Assume that u is a critical point of the weighted Yamabe
quotient Q(u) with u(x) = eo(r

1/2(x)) near infinity. Then such u satisfies Eq.1.5).
Since � = 0, we have c1 = c2 = 0 and the critical point in fact is a minimizer. So
(1.5) becomes

� f u − m + n − 2

4(m + n − 1)
Rm

f u = 0.

In order to prove Theorem 1.10, we only need to check the nonexistence of positive
solutions to the above equation under conditions of Theorem 1.10. Indeed, if we
let

μ(x) = − m + n − 2

4(m + n − 1)
Smf and u(x, t) = u(x),

in Theorem 4.2, then the assumptions of Theorem 1.10 satisfy all the conditions of
Theorem 4.2. Therefore, by Theorem 4.2, we know that there does not exist any
positive solution u(x) with u(x) = eo(r

1/2(x)) near infinity. So the theorem follows.
��

The other goal of this section is that we apply Theorem 1.3 to study elliptic
Liouville-type theorems for some elliptic versions of Eq.1.1) on a smooth metric
measure space. Here, we mainly apply Theorem 1.3 to prove Theorem 1.11 and
Corollary 1.12.

Proof of Theorem 1.11. Let u(x) be a positive smooth function to the equation

� f u + puα = 0, α ≤ 1,

where p is a nonnegative constant. Since Ricmf ≥ 0 and ai = bi = 0 (i = 1, 2, 3),
applying Theorem 1.3 to this equation, for any λ > 1, we have the gradient estimate

|∇u|2
λu2

+ puα−1 ≤
√
m + n

2
�

1
2
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by letting R → ∞, where

� := (m + n)λ2 K̃ 2

2(1 − ε)(λ − 1)2
and K̃ := − 1

2

[
(α − 1)(λα − 1)p

]− sup
H2R,T

{uα−1}.

In the above estimate, if α = 1, then K̃ ≡ 0 and

|∇u|2
λu2

+ puα−1 = 0,

which implies the theorem. So we only consider the case α < 1. In this case, we
choose λ = λ0 > 1 such that λ0α < 1 and then K̃ ≡ 0, hence � ≡ 0, which also
implies the theorem. ��

Theorem 1.11 immediately implies Corollary 1.12 as follows.

Proof of Corollary 1.12. Assume that u is a critical point of the weighted Yamabe
quotient Q(u). Then u satisfies Eq.1.5). Since � = 0, we have c1 = c2 = 0 and
hence (1.5) becomes

� f u − m + n − 2

4(m + n − 1)
Smf u = 0.

In the following we only need to check the nonexistence of positive solutions to
the above equation under the condition of Corollary 1.12. Indeed, since Smf is non-

positive constant, we know that − m+n−2
4(m+n−1)S

m
f is nonnegative constant. According

to Theorem 1.11, we immediately conclude that there does not exist any nontrivial
positive solution to the above equation. So our assumption does not hold and the
theorem follows. ��
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